Omeprazole 10 MG Delayed Release Oral Capsule

Generic Name: OMEPRAZOLE
Brand Name: Omeprazole
  • Substance Name(s):
  • OMEPRAZOLE

DRUG INTERACTIONS

7 •Atazanavir and nelfinavir: Omeprazole reduces plasma levels of atazanavir and nelfinavir. Concomitant use is not recommended (7.1) •Saquinavir: Omeprazole increases plasma levels of saquinavir. Monitor for toxicity and consider dose reduction of saquinavir (7.1) •May interfere with drugs for which gastric pH affects bioavailability (e.g., ketoconazole, iron salts, erlotinib, ampicillin esters, and digoxin). Patients treated with omeprazole and digoxin may need to be monitored for increases in digoxin toxicity (7.2) •Clopidogrel: Omeprazole decreases exposure to the active metabolite of clopidogrel. (7.3, 12.3) •Cilostazol: Omeprazole increases systemic exposure of cilostazol and one of its active metabolites. Consider dose reduction of cilostazol. (7.3) •Drugs metabolized by cytochrome P450 (e.g., diazepam, warfarin, phenytoin, cyclosporine, disulfiram, benzodiazepines): omeprazole can prolong their elimination. Monitor and determine need for dose adjustments (7.3) •Patients treated with proton pump inhibitors and warfarin may need to be monitored for increases in INR and prothrombin time (7.3) •Combined inhibitor of CYP 2C19 and 3A4 (e.g. voriconazole) may raise omeprazole levels (7.3) •Tacrolimus: Omeprazole may increase serum levels of tacrolimus (7.4) •Methotrexate: Omeprazole may increase serum levels of methotrexate (7.7) 7.1 Interference with Antiretroviral Therapy Concomitant use of atazanavir and nelfinavir with proton pump inhibitors is not recommended. Co-administration of atazanavir with proton pump inhibitors is expected to substantially decrease atazanavir plasma concentrations and may result in a loss of therapeutic effect and the development of drug resistance. Co-‑administration of saquinavir with proton pump inhibitors is expected to increase saquinavir concentrations, which may increase toxicity and require dose reduction. Omeprazole has been reported to interact with some antiretroviral drugs. The clinical importance and the mechanisms behind these interactions are not always known. Increased gastric pH during omeprazole treatment may change the absorption of the antiretroviral drug. Other possible interaction mechanisms are via CYP 2C19. Reduced concentrations of atazanavir and nelfinavir For some antiretroviral drugs, such as atazanavir and nelfinavir, decreased serum levels have been reported when given together with omeprazole. Following multiple doses of nelfinavir (1250 mg, twice daily) and omeprazole (40 mg daily), AUC was decreased by 36% and 92%, Cmax by 37% and 89% and Cmin by 39% and 75% respectively for nelfinavir and M8. Following multiple doses of atazanavir (400 mg, daily) and omeprazole (40 mg, daily, 2 hr before atazanavir), AUC was decreased by 94%, Cmax by 96%, and Cmin by 95%. Concomitant administration with omeprazole and drugs such as atazanavir and nelfinavir is therefore not recommended. Increased concentrations of saquinavir For other antiretroviral drugs, such as saquinavir, elevated serum levels have been reported, with an increase in AUC by 82%, in Cmax by 75%, and in Cmin by 106%, following multiple dosing of saquinavir/ritonavir (1000/100 mg) twice daily for 15 days with omeprazole 40 mg daily co-administered days 11 to 15. Therefore, clinical and laboratory monitoring for saquinavir toxicity is recommended during concurrent use with omeprazole. Dose reduction of saquinavir should be considered from the safety perspective for individual patients. There are also some antiretroviral drugs of which unchanged serum levels have been reported when given with omeprazole. 7.2 Drugs for Which Gastric pH Can Affect Bioavailability Because of its profound and long lasting inhibition of gastric acid secretion, it is theoretically possible that omeprazole may interfere with absorption of drugs where gastric pH is an important determinant of their bioavailability. Like with other drugs that decrease the intragastric acidity, the absorption of drugs such as ketoconazole, ampicillin esters, iron salts and erlotinib can decrease, while the absorption of drugs such as digoxin can increase during treatment with omeprazole. Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10% (30% in two subjects). Therefore, patients may need to be monitored when digoxin is taken concomitantly with omeprazole. In the clinical trials, antacids were used concomitantly with the administration of omeprazole. 7.3 Effects on Hepatic Metabolism/Cytochrome P-450 Pathways Omeprazole can prolong the elimination of diazepam, warfarin and phenytoin, drugs that are metabolized by oxidation in the liver. There have been reports of increased INR and prothrombin time in patients receiving proton pump inhibitors, including omeprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin may need to be monitored for increases in INR and prothrombin time. Although in normal subjects no interaction with theophylline or propranolol was found, there have been clinical reports of interaction with other drugs metabolized via the cytochrome P450 system (e.g., cyclosporine, disulfiram, benzodiazepines). Patients should be monitored to determine if it is necessary to adjust the dosage of these drugs when taken concomitantly with omeprazole. Concomitant administration of omeprazole and voriconazole (a combined inhibitor of CYP2C19 and CYP3A4) resulted in more than doubling of the omeprazole exposure. Dose adjustment of omeprazole is not normally required. However, in patients with Zollinger-Ellison syndrome, who may require higher doses up to 240 mg/day, dose adjustment may be considered. When voriconazole (400 mg Q12h x 1 day, then 200 mg x 6 days) was given with omeprazole (40 mg once daily x 7 days) to healthy subjects, it significantly increased the steady-state Cmax and AUC0-24 of omeprazole, an average of 2 times (90% CI: 1.8, 2.6) and 4 times (90% CI: 3.3, 4.4) respectively as compared to when omeprazole was given without voriconazole. Omeprazole acts as an inhibitor of CYP 2C19. Omeprazole, given in doses of 40 mg daily for one week to 20 healthy subjects in cross-‑over study, increased Cmax and AUC of cilostazol by 18% and 26% respectively. Cmax and AUC of one of its active metabolites, 3,4-‑dihydro-cilostazol, which has 4 to 7 times the activity of cilostazol, were increased by 29% and 69% respectively. Co-administration of cilostazol with omeprazole is expected to increase concentrations of cilostazol and its above mentioned active metabolite. Therefore a dose reduction of cilostazol from 100 mg twice daily to 50 mg twice daily should be considered. Drugs known to induce CYP2C19 or CYP3A4 (such as rifampin) may lead to decreased omeprazole serum levels. In a cross-over study in 12 healthy male subjects, St John’s Wort (300 mg three times daily for 14 days), an inducer of CYP3A4, decreased the systemic exposure of omeprazole in CYP2C19 poor metabolisers (Cmax and AUC decreased by 37.5% and 37.9%, respectively) and extensive metabolisers (Cmax and AUC decreased by 49.6% and 43.9%, respectively). Avoid concomitant use of St. John’s Wort or rifampin with omeprazole. Clopidogrel Omeprazole is an inhibitor of CYP2C19 enzyme. Clopidogrel is metabolized to its active metabolite in part by CYP2C19. Concomitant use of omeprazole 80 mg results in reduced plasma concentrations of the active metabolite of clopidogrel and a reduction in platelet inhibition. Avoid concomitant administration of omeprazole with clopidogrel. When using omeprazole, consider use of alternative anti-platelet therapy [see Pharmacokinetics (12.3) ]. There are no adequate combination studies of a lower dose of omeprazole or a higher dose of clopidogrel in comparison with the approved dose of clopidogrel. 7.4 Tacrolimus Concomitant administration of omeprazole and tacrolimus may increase the serum levels of tacrolimus. 7.5 Interactions with Investigations of Neuroendocrine Tumors Drug-induced decrease in gastric acidity results in enterochromaffin-like cell hyperplasia and increased Chromogranin A levels which may interfere with investigations for neuroendocrine tumors [see Warnings and Precautions (5.8) and Clinical Pharmacology (12) ]. 7.6 Combination Therapy with Clarithromycin Concomitant administration of clarithromycin with other drugs can lead to serious adverse reactions due to drug interactions [see Warnings and Precautions in prescribing information for clarithromycin]. Because of these drug interactions, clarithromycin is contraindicated for co-administration with certain drugs [see Contraindications in prescribing information for clarithromycin]. 7.7 Methotrexate Case reports, published population pharmacokinetic studies, and retrospective analyses suggest that concomitant administration of PPIs and methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite hydroxymethotrexate. However, no formal drug interaction studies of methotrexate with PPIs have been conducted [see Warnings and Precautions (5.9) ].

OVERDOSAGE

10 Reports have been received of overdosage with omeprazole in humans. Doses ranged up to 2400 mg (120 times the usual recommended clinical dose). Manifestations were variable, but included confusion, drowsiness, blurred vision, tachycardia, nausea, vomiting, diaphoresis, flushing, headache, dry mouth, and other adverse reactions similar to those seen in normal clinical experience. [See Adverse Reactions (6) ] Symptoms were transient, and no serious clinical outcome has been reported when omeprazole was taken alone. No specific antidote for omeprazole overdosage is known. Omeprazole is extensively protein bound and is, therefore, not readily dialyzable. In the event of overdosage, treatment should be symptomatic and supportive. As with the management of any overdose, the possibility of multiple drug ingestion should be considered. For current information on treatment of any drug overdose, contact a Poison Control Center at 1-800-222-1222. Single oral doses of omeprazole at 1350, 1339, and 1200 mg/kg were lethal to mice, rats, and dogs, respectively. Animals given these doses showed sedation, ptosis, tremors, convulsions, and decreased activity, body temperature, and respiratory rate and increased depth of respiration.

DESCRIPTION

11 The active ingredient in omeprazole delayed-release capsules is a substituted benzimidazole, 5-methoxy-2-[[(4-methoxy-3, 5-dimethyl-2-pyridinyl) methyl] sulfinyl]-1H-benzimidazole, a compound that inhibits gastric acid secretion. Its empirical formula is C17H19N3O3S, with a molecular weight of 345.42. The structural formula is: Omeprazole is a white to off-white crystalline powder that melts with decomposition at about 155°C. It is a weak base, freely soluble in ethanol and methanol, and slightly soluble in acetone and isopropanol and very slightly soluble in water. The stability of omeprazole is a function of pH; it is rapidly degraded in acid media, but has acceptable stability under alkaline conditions. Omeprazole Delayed-Release Capsules meet USP Dissolution Test 2. Omeprazole is supplied as delayed-release capsules for oral administration. Each delayed-release capsule contains either 10 mg, 20 mg or 40 mg of omeprazole in the form of enteric-coated granules with the following inactive ingredients: magnesium hydroxide, mannitol, methacrylic acid copolymer dispersion, povidone and triethyl citrate. The capsule shells have the following inactive ingredients: gelatin, red iron oxide and titanium dioxide. The capsule imprinting ink contains ammonium hydroxide, black iron oxide, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, potassium hydroxide, propylene glycol and shellac. chemical-structure

CLINICAL STUDIES

14 14.1 Duodenal Ulcer Disease Active Duodenal Ulcer In a multicenter, double-blind, placebo-controlled study of 147 patients with endoscopically documented duodenal ulcer, the percentage of patients healed (per protocol) at 2 and 4 weeks was significantly higher with omeprazole 20 mg once daily than with placebo (p ≤ 0.01). Treatment of Active Duodenal Ulcer % of Patients Healed Omeprazole Placebo 20 mg a.m. (n=99) a.m. (n=48) Week 2 (p ≤ 0.01)41 13 Week 4 75 27 Complete daytime and nighttime pain relief occurred significantly faster (p ≤ 0.01) in patients treated with omeprazole 20 mg than in patients treated with placebo. At the end of the study, significantly more patients who had received omeprazole had complete relief of daytime pain (p ≤ 0.05) and nighttime pain (p ≤ 0.01). In a multicenter, double-blind study of 293 patients with endoscopically documented duodenal ulcer, the percentage of patients healed (per protocol) at 4 weeks was significantly higher with omeprazole 20 mg once daily than with ranitidine 150 mg b.i.d. (p < 0.01). Treatment of Active Duodenal Ulcer % of Patients Healed Omeprazole Ranitidine 20 mg a.m. 150 mg twice daily (n = 145) (n = 148) Week 2 42 34 Week 4 (p < 0.01)82 63 Healing occurred significantly faster in patients treated with omeprazole than in those treated with ranitidine 150 mg b.i.d. (p < 0.01). In a foreign multinational randomized, double-blind study of 105 patients with endoscopically documented duodenal ulcer, 20 mg and 40 mg of omeprazole were compared with 150 mg b.i.d. of ranitidine at 2, 4 and 8 weeks. At 2 and 4 weeks both doses of omeprazole were statistically superior (per protocol) to ranitidine, but 40 mg was not superior to 20 mg of omeprazole, and at 8 weeks there was no significant difference between any of the active drugs. Treatment of Active Duodenal Ulcer % of Patients Healed Omeprazole Ranitidine 20 mg (n=34) 40 mg (n=36) 150 mg twice daily (n=35) Week 2 (p ≤ 0.01)83 83 53 Week 4 97 100 82 Week 8 100 100 94 H. pylori Eradication in Patients with Duodenal Ulcer Disease Triple Therapy (omeprazole/clarithromycin/amoxicillin) Three U.S., randomized, double-blind clinical studies in patients with H. pylori infection and duodenal ulcer disease (n = 558) compared omeprazole plus clarithromycin plus amoxicillin with clarithromycin plus amoxicillin. Two studies (1 and 2) were conducted in patients with an active duodenal ulcer, and the other study (3) was conducted in patients with a history of a duodenal ulcer in the past 5 years but without an ulcer present at the time of enrollment. The dose regimen in the studies was omeprazole 20 mg twice daily plus clarithromycin 500 mg twice daily plus amoxicillin 1 g twice daily for 10 days; or clarithromycin 500 mg twice daily plus amoxicillin 1 g twice daily for 10 days. In studies 1 and 2, patients who took the omeprazole regimen also received an additional 18 days of omeprazole 20 mg once daily. Endpoints studied were eradication of H. pylori and duodenal ulcer healing (studies 1 and 2 only). H. pylori status was determined by CLOtest®, histology and culture in all three studies. For a given patient, H. pylori was considered eradicated if at least two of these tests were negative, and none was positive. The combination of omeprazole plus clarithromycin plus amoxicillin was effective in eradicating H. pylori. Table 5 Per-Protocol and Intent-to-Treat H. pylori Eradication Rates % of Patients Cured [95% Confidence Interval] Omeprazole + Clarithromycin + Amoxicillin Clarithromycin + Amoxicillin Per-Protocol Patients were included in the analysis if they had confirmed duodenal ulcer disease (active ulcer, studies 1 and 2; history of ulcer within 5 years, study 3) and H. pylori infection at baseline defined as at least two of three positive endoscopic tests from CLOtest ® , histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. The impact of eradication on ulcer recurrence has not been assessed in patients with a past history of ulcer. Intent-to-Treat Patients were included in the analysis if they had documented H. pylori infection at baseline and had confirmed duodenal ulcer disease. All dropouts were included as failures of therapy. Per-Protocol Intent-to-Treat Study 1 (p < 0.05) versus clarithromycin plus amoxicillin.77 [64, 86] (n = 64) 69 [57, 79] (n = 80) 43 [31, 56] (n = 67) 37 [27, 48] (n = 84) Study 2 78 [67, 88] (n = 65) 73 [61, 82] (n = 77) 41 [29, 54] (n = 68) 36 [26, 47] (n = 83) Study 3 90 [80, 96] (n = 69) 83 [74, 91] (n = 84) 33 [24, 44] (n = 93) 32 [23, 42] (n = 99) Dual Therapy (omeprazole/clarithromycin) Four randomized, double-blind, multi-center studies (4, 5, 6, and 7) evaluated omeprazole 40 mg once daily plus clarithromycin 500 mg three times daily for 14 days, followed by omeprazole 20 mg once daily, (Studies 4, 5, and 7) or by omeprazole 40 mg once daily (Study 6) for an additional 14 days in patients with active duodenal ulcer associated with H. pylori. Studies 4 and 5 were conducted in the U.S. and Canada and enrolled 242 and 256 patients, respectively. H. pylori infection and duodenal ulcer were confirmed in 219 patients in Study 4 and 228 patients in Study 5. These studies compared the combination regimen to omeprazole and clarithromycin monotherapies. Studies 6 and 7 were conducted in Europe and enrolled 154 and 215 patients, respectively. H. pylori infection and duodenal ulcer were confirmed in 148 patients in Study 6 and 208 patients in Study 7. These studies compared the combination regimen with omeprazole monotherapy. The results for the efficacy analyses for these studies are described below. H. pylori eradication was defined as no positive test (culture or histology) at 4 weeks following the end of treatment, and two negative tests were required to be considered eradicated of H. pylori. In the per-protocol analysis, the following patients were excluded: dropouts, patients with missing H. pylori tests post-treatment, and patients that were not assessed for H. pylori eradication because they were found to have an ulcer at the end of treatment. The combination of omeprazole and clarithromycin was effective in eradicating H. pylori. Table 6 H. pylori Eradication Rates (Per-Protocol Analysis at 4 to 6 Weeks) % of Patients Cured [95% Confidence Interval] Omeprazole + Clarithromycin Omeprazole Clarithromycin U.S. Studies Study 4 74 [60, 85] Statistically significantly higher than clarithromycin monotherapy (p < 0.05) Statistically significantly higher than omeprazole monotherapy (p < 0.05) (n = 53) 0 [0, 7] (n = 54) 31 [18, 47] (n = 42) Study 5 64 [51, 76] (n = 61) 0 [0, 6] (n = 59) 39 [24, 55] (n = 44) Non U.S. Studies Study 6 83 [71, 92] (n = 60) 1 [0, 7] (n = 74) N/A Study 7 74 [64, 83] (n = 86) 1 [0, 6] (n = 90) N/A Ulcer healing was not significantly different when clarithromycin was added to omeprazoletherapy compared with omeprazole therapy alone. The combination of omeprazole and clarithromycin was effective in eradicating H. pylori and reduced duodenal ulcer recurrence. Table 7 Duodenal Ulcer Recurrence Rates by H. pylori Eradication Status % of Patients with Ulcer Recurrence H. pylori eradicated H. pylori eradication status assessed at same time point as ulcer recurrence H. pylori not eradicated U.S. Studies Combined results for omeprazole + clarithromycin, omeprazole, and clarithromycin treatment arms 6 months post-treatment Study 4 (p ≤ 0.01) versus proportion with duodenal ulcer recurrence who were not H. pylori eradicated35 (n=49) 60 (n=88) Study 5 8 (n=53) 60 (n=106) Non U.S. Studies Combined results for omeprazole + clarithromycin and omeprazole treatment arms 6 months post-treatment Study 6 5 (n=43) 46 (n=78) Study 7 6 (n=53) 43 (n=107) 12 months post-treatment Study 6 5 (n=39) 68 (n=71) 14.2 Gastric Ulcer In a U.S. multicenter, double-blind, study of omeprazole 40 mg once daily, 20 mg once daily, and placebo in 520 patients with endoscopically diagnosed gastric ulcer, the following results were obtained. Treatment of Gastric Ulcer % of Patients Healed (All Patients Treated) Omeprazole 20 mg once daily (n=202) Omeprazole 40 mg once daily (n=214) Placebo (n=104) Week 4 47.5(p < 0.01) omeprazole 40 mg or 20 mg versus placebo 55.6 30.8 Week 8 74.8 82.7,(p < 0.05) omeprazole 40 mg versus 20 mg 48.1 For the stratified groups of patients with ulcer size less than or equal to 1 cm, no difference in healing rates between 40 mg and 20 mg was detected at either 4 or 8 weeks. For patients with ulcer size greater than 1 cm, 40 mg was significantly more effective than 20 mg at 8 weeks. In a foreign, multinational, double-blind study of 602 patients with endoscopically diagnosed gastric ulcer, omeprazole 40 mg once daily, 20 mg once daily, and ranitidine 150 mg twice a day were evaluated. Treatment of Gastric Ulcer % of Patients Healed (All Patients Treated) Omeprazole 20 mg once daily (n=200) Omeprazole 40 mg once daily (n=187) Ranitidine 150 twice daily. (n=199) Week 4 63.5 78.1(p < 0.01) omeprazole 40 mg versus ranitidine,(p < 0.01) omeprazole 40 mg versus 20 mg 56.3 Week 8 81.5 91.4, 78.4 14.3 Gastroesophageal Reflux Disease (GERD) Symptomatic GERD A placebo-controlled study was conducted in Scandinavia to compare the efficacy of omeprazole 20 mg or 10 mg once daily for up to 4 weeks in the treatment of heartburn and other symptoms in GERD patients without erosive esophagitis. Results are shown below. % Successful Symptomatic OutcomeDefined as complete resolution of heartburn Omeprazole 20 mg a.m. Omeprazole 10 mg a.m. Placebo a.m. All patients 46(p < 0.005) versus 10 mg,(p < 0.005) versus placebo (n=205) 31 (n=199) 13 (n=105) Patients with confirmed GERD 56, (n=115) 36 (n=109) 14 (n=59) 14.4 Erosive Esophagitis In a U.S. multicenter double-blind placebo controlled study of 20 mg or 40 mg of omeprazole delayed-release capsules in patients with symptoms of GERD and endoscopically diagnosed erosive esophagitis of grade 2 or above, the percentage healing rates (per protocol) were as follows: Week 20 mg Omeprazole (n=83) 40 mg Omeprazole (n=87) Placebo (n=43) 4 39(p < 0.01) omeprazole versus placebo. 45 7 8 74 75 14 In this study, the 40 mg dose was not superior to the 20 mg dose of omeprazole in the percentage healing rate. Other controlled clinical trials have also shown that omeprazole is effective in severe GERD. In comparisons with histamine H2-receptor antagonists in patients with erosive esophagitis, grade 2 or above, omeprazole in a dose of 20 mg was significantly more effective than the active controls. Complete daytime and nighttime heartburn relief occurred significantly faster (p < 0.01) in patients treated with omeprazole than in those taking placebo or histamine H2- receptor antagonists. In this and five other controlled GERD studies, significantly more patients taking 20 mg omeprazole (84%) reported complete relief of GERD symptoms than patients receiving placebo (12%). Long Term Maintenance Of Healing of Erosive Esophagitis In a U.S. double-blind, randomized, multicenter, placebo controlled study, two dose regimens of omeprazole were studied in patients with endoscopically confirmed healed esophagitis. Results to determine maintenance of healing of erosive esophagitis are shown below. Life Table Analysis Omeprazole 20 mg once daily (n=138) Omeprazole 20 mg 3 days per week (n=137) Placebo (n=131) Percent in endoscopic remission at 6 months (p < 0.01) Omeprazole 20 mg once daily versus Omeprazole 20 mg 3 consecutive days per week or placebo.70 34 11 In an international multicenter double-blind study, omeprazole 20 mg daily and 10 mg daily were compared with ranitidine 150 mg twice daily in patients with endoscopically confirmed healed esophagitis. The table below provides the results of this study for maintenance of healing of erosive esophagitis. Life Table Analysis Omeprazole 20 mg once daily (n=131) Omeprazole 10 mg once daily (n=133) Ranitidine 150 mg twice daily (n=128) Percent in endoscopic remission at 12 months (p = 0.01) omeprazole 20 mg once daily versus omeprazole 10 mg once daily or Ranitidine.77 (p = 0.03) omeprazole 10 mg once daily versus Ranitidine.58 46 In patients who initially had grades 3 or 4 erosive esophagitis, for maintenance after healing 20 mg daily of omeprazole was effective, while 10 mg did not demonstrate effectiveness. 14.5 Pathological Hypersecretory Conditions In open studies of 136 patients with pathological hypersecretory conditions, such as Zollinger-Ellison (ZE) syndrome with or without multiple endocrine adenomas, omeprazole delayed-release capsules significantly inhibited gastric acid secretion and controlled associated symptoms of diarrhea, anorexia, and pain. Doses ranging from 20 mg every other day to 360 mg per day maintained basal acid secretion below 10 mEq/hr in patients without prior gastric surgery, and below 5 mEq/hr in patients with prior gastric surgery. Initial doses were titrated to the individual patient need, and adjustments were necessary with time in some patients [ See Dosage and Administration (2) ]. Omeprazole was well tolerated at these high dose levels for prolonged periods (> 5 years in some patients). In most ZE patients, serum gastrin levels were not modified by omeprazole. However, in some patients serum gastrin increased to levels greater than those present prior to initiation of omeprazole therapy. At least 11 patients with ZE syndrome on long-term treatment with omeprazole developed gastric carcinoids. These findings are believed to be a manifestation of the underlying condition, which is known to be associated with such tumors, rather than the result of the administration of omeprazole. [ See Adverse Reactions (6) ] 14.6 Pediatric GERD Symptomatic GERD The effectiveness of omeprazole for the treatment of nonerosive GERD in pediatric patients 2 to 16 years of age is based in part on data obtained from pediatric patients in an uncontrolled Phase III studies. [ See Use in Specific Populations (8.4) ] The study enrolled 113 pediatric patients 2 to 16 years of age with a history of symptoms suggestive of nonerosive GERD. Patients were administered a single dose of omeprazole (10 mg or 20 mg, based on body weight) for 4 weeks either as an intact capsule or as an open capsule in applesauce. Successful response was defined as no moderate or severe episodes of either pain-related symptoms or vomiting/regurgitation during the last 4 days of treatment. Results showed success rates of 60% (9/15; 10 mg omeprazole) and 59% (58/98; 20 mg omeprazole), respectively. Healing of Erosive Esophagitis In an uncontrolled, open-label dose-titration study, healing of erosive esophagitis in pediatric patients 1 to 16 years of age required doses that ranged from 0.7 to 3.5 mg/kg/day (80 mg/day). Doses were initiated at 0.7 mg/kg/day. Doses were increased in increments of 0.7 mg/kg/day (if intraesophageal pH showed a pH of < 4 for less than 6% of a 24-hour study). After titration, patients remained on treatment for 3 months. Forty-four percent of the patients were healed on a dose of 0.7 mg/kg body weight; most of the remaining patients were healed with 1.4 mg/kg after an additional 3 months’ treatment. Erosive esophagitis was healed in 51 of 57 (90%) children who completed the first course of treatment in the healing phase of the study. In addition, after 3 months of treatment, 33% of the children had no overall symptoms, 57% had mild reflux symptoms, and 40% had less frequent regurgitation/vomiting. Maintenance of Healing of Erosive Esophagitis In an uncontrolled, open-label study of maintenance of healing of erosive esophagitis in 46 pediatric patients, 54% of patients required half the healing dose. The remaining patients increased the healing dose (0.7 to a maximum of 2.8 mg/kg/day) either for the entire maintenance period, or returned to half the dose before completion. Of the 46 patients who entered the maintenance phase, 19 (41%) had no relapse. In addition, maintenance therapy in erosive esophagitis patients resulted in 63% of patients having no overall symptoms.

HOW SUPPLIED

16 /STORAGE AND HANDLING Omeprazole delayed-release capsules, USP 10 mg are available for oral administration as hard gelatin capsules with a pink opaque body and a reddish brown opaque cap. “APO 010” is imprinted on each capsule in black ink. They are supplied as follows: Bottles of 30 (NDC 63187-061-30) Bottles of 60 (NDC 63187-061-60) Bottles of 90 (NDC 63187-061-90) Bottles of 120 (NDC 63187-061-72) Bottles of 180 (NDC 63187-061-78) Omeprazole delayed-release capsules, USP 20 mg are available for oral administration as hard gelatin capsules with a pink opaque body and a reddish brown opaque cap. “APO 020” is imprinted on each capsule in black ink. They are supplied as follows: Bottles of 14 (NDC 63187-070-14) Bottles of 30 (NDC 63187-070-30) Bottles of 60 (NDC 63187-070-60) Bottles of 90 (NDC 63187-070-90) Bottles of 120 (NDC 63187-070-120) Bottles of 180 (NDC 63187-070-180) Storage Store omeprazole delayed-release capsules in a tight container protected from light and moisture. Store at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature].

RECENT MAJOR CHANGES

Warnings and Precautions, Interaction with Clopidogrel (5.4) 10/2012 Warnings and Precautions, Clostridium difficile associated diarrhea (5.3) 09/2012

GERIATRIC USE

8.5 Geriatric Use Omeprazole was administered to over 2000 elderly individuals (≥ 65 years of age) in clinical trials in the U.S. and Europe. There were no differences in safety and effectiveness between the elderly and younger subjects. Other reported clinical experience has not identified differences in response between the elderly and younger subjects, but greater sensitivity of some older individuals cannot be ruled out. Pharmacokinetic studies have shown the elimination rate was somewhat decreased in the elderly and bioavailability was increased. The plasma clearance of omeprazole was 250 mL/min (about half that of young volunteers) and its plasma half-life averaged one hour, about twice that of young healthy volunteers. However, no dosage adjustment is necessary in the elderly. [ See Clinical Pharmacology (12.3) ]

DOSAGE FORMS AND STRENGTHS

3 Omeprazole delayed-release capsules, USP 10 mg are hard gelatin capsules with a pink opaque body and a reddish brown opaque cap. “APO 010” is imprinted on each capsule in black ink. Omeprazole delayed-release capsules, USP 20 mg are hard gelatin capsules with a pink opaque body and a reddish brown opaque cap. “APO 020” is imprinted on each capsule in black ink. Omeprazole delayed-release capsules, USP 40 mg are hard gelatin capsules with a pink opaque body and a reddish brown opaque cap. “APO 040” is imprinted on each capsule in black ink. Omeprazole delayed-release capsules, 10 mg, 20 mg and 40 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Omeprazole belongs to a class of antisecretory compounds, the substituted benzimidazoles, that suppress gastric acid secretion by specific inhibition of the H+/K+ ATPase enzyme system at the secretory surface of the gastric parietal cell. Because this enzyme system is regarded as the acid (proton) pump within the gastric mucosa, omeprazole has been characterized as a gastric acid-pump inhibitor, in that it blocks the final step of acid production. This effect is dose-related and leads to inhibition of both basal and stimulated acid secretion irrespective of the stimulus. Animal studies indicate that after rapid disappearance from plasma, omeprazole can be found within the gastric mucosa for a day or more.

INDICATIONS AND USAGE

1 Omeprazole is a proton pump inhibitor indicated for: • Treatment in adults of duodenal ulcer (1.1) and gastric ulcer (1.2) • Treatment in adults and children of gastroesophageal reflux disease (GERD) (1.3) and maintenance of healing of erosive esophagitis (1.4) The safety and effectiveness of omeprazole in pediatric patients <1 year of age have not been established. (8.4) 1.1 Duodenal Ulcer (adults) Omeprazole delayed-release capsules, USP are indicated for short-term treatment of active duodenal ulcer in adults. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. Omeprazole delayed-release capsules, USP, in combination with clarithromycin and amoxicillin, are indicated for treatment of patients with H. pylori infection and duodenal ulcer disease (active or up to 1-year history) to eradicate H. pylori in adults. Omeprazole delayed-release capsules, USP, in combination with clarithromycin are indicated for treatment of patients with H. pylori infection and duodenal ulcer disease to eradicate H. pylori in adults. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence [ see Clinical Studies (14.1 ) and Dosage and Administration (2) ]. Among patients who fail therapy, omeprazole delayed-release capsules with clarithromycin are more likely to be associated with the development of clarithromycin resistance as compared with triple therapy. In patients who fail therapy, susceptibility testing should be done. If resistance to clarithromycin is demonstrated or susceptibility testing is not possible, alternative antimicrobial therapy should be instituted. [ See Microbiology section (12.4) ], and the clarithromycin package insert, Microbiology section.) 1.2 Gastric Ulcer (adults) Omeprazole delayed-release capsules, USP are indicated for short-term treatment (4 to 8 weeks) of active benign gastric ulcer in adults. [ See Clinical Studies (14.2) ] 1.3 Treatment of Gastroesophageal Reflux Disease (GERD) (adults and pediatric patients) Symptomatic GERD Omeprazole delayed-release capsules, USP are indicated for the treatment of heartburn and other symptoms associated with GERD in pediatric patients and adults. Erosive Esophagitis Omeprazole delayed-release capsules, USP are indicated for the short-term treatment (4 to 8 weeks) of erosive esophagitis that has been diagnosed by endoscopy in pediatric patients and adults. [See Clinical Studies (14.4)] The efficacy of omeprazole delayed-release capsules, USP used for longer than 8 weeks in these patients has not been established. If a patient does not respond to 8 weeks of treatment, an additional 4 weeks of treatment may be given. If there is recurrence of erosive esophagitis or GERD symptoms (e.g., heartburn), additional 4 to 8 week courses of omeprazole may be considered. 1.4 Maintenance of Healing of Erosive Esophagitis (adults) Omeprazole delayed-release capsules, USP are indicated to maintain healing of erosive esophagitis in pediatric patients and adults. Controlled studies do not extend beyond 12 months. [ See Clinical Studies (14.4) ] 1.5 Pathological Hypersecretory Conditions Omeprazole delayed-release capsules, USP are indicated for the long-term treatment of pathological hypersecretory conditions (e.g., Zollinger-Ellison syndrome, multiple endocrine adenomas and systemic mastocytosis) in adults.

PEDIATRIC USE

8.4 Pediatric Use Use of omeprazole in pediatric and adolescent patients 2 to 16 years of age for the treatment of GERD and maintenance of healing of erosive esophagitis is supported by a) extrapolation of results from adequate and well-controlled studies that supported the approval of omeprazole for adults, and b) safety and pharmacokinetic studies performed in pediatric and adolescent patients. [ See Clinical Pharmacology, Pharmacokinetics, Pediatric for pharmacokinetic information (12.3) and Dosage and Administration (2) , Adverse Reactions (6.1) and Clinical Studies, (14.6) ]. The safety and effectiveness of omeprazole for the treatment of GERD in patients <1 year of age have not been established. The safety and effectiveness of omeprazole for other pediatric uses have not been established.

PREGNANCY

8.1 Pregnancy Pregnancy Category C Risk Summary There are no adequate and well-controlled studies with omeprazole in pregnant women. Available epidemiologic data fail to demonstrate an increased risk of major congenital malformations or other adverse pregnancy outcomes with first trimester omeprazole use. Reproduction studies in rats and rabbits resulted in dose-dependent embryolethality at omeprazole doses that were approximately 5.5 to 56 times higher than the human dose. Omeprazole should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Human Data Four epidemiological studies compared the frequency of congenital abnormalities among infants born to women who used omeprazole during pregnancy with the frequency of abnormalities among infants of women exposed to H2-receptor antagonists or other controls. A population-based retrospective cohort epidemiological study from the Swedish Medical Birth Registry, covering approximately 99% of pregnancies, from 1995 to 99, reported on 955 infants (824 exposed during the first trimester with 39 of these exposed beyond first trimester, and 131 exposed after the first trimester) whose mothers used omeprazole during pregnancy. The number of infants exposed in utero to omeprazole that had any malformation, low birth weight, low Apgar score, or hospitalization was similar to the number observed in this population. The number of infants born with ventricular septal defects and the number of stillborn infants was slightly higher in the omeprazole-exposed infants than the expected number in this population. A population-based retrospective cohort study covering all live births in Denmark from 1996 to 2009, reported on 1,800 live births whose mothers used omeprazole during the first trimester of pregnancy and 837, 317 live births whose mothers did not use any proton pump inhibitor. The overall rate of birth defects in infants born to mothers with first trimester exposure to omeprazole was 2.9% and 2.6% in infants born to mothers not exposed to any proton pump inhibitor during the first trimester. A retrospective cohort study reported on 689 pregnant women exposed to either H2-blockers or omeprazole in the first trimester (134 exposed to omeprazole) and 1,572 pregnant women unexposed to either during the first trimester. The overall malformation rate in offspring born to mothers with first trimester exposure to omeprazole, an H2-blocker, or were unexposed was 3.6%, 5.5%, and 4.1% respectively. A small prospective observational cohort study followed 113 women exposed to omeprazole during pregnancy (89% first trimester exposures). The reported rate of major congenital malformations was 4% in the omeprazole group, 2% in controls exposed to non-‑teratogens, and 2.8% in disease-paired controls. Rates of spontaneous and elective abortions, preterm deliveries, gestational age at delivery, and mean birth weight were similar among the groups. Several studies have reported no apparent adverse short-term effects on the infant when single dose oral or intravenous omeprazole was administered to over 200 pregnant women as premedication for cesarean section under general anesthesia. Animal Data Reproductive studies conducted with omeprazole in rats at oral doses up to 138 mg/kg/day (about 56 times the human dose on a body surface area basis) and in rabbits at doses up to 69 mg/kg/day (about 56 times the human dose on a body surface area basis) did not disclose any evidence for a teratogenic potential of omeprazole. In rabbits, omeprazole in a dose range of 6.9 to 69.1 mg/kg/day (about 5.5 to 56 times the human dose on a body surface area basis) produced dose-related increases in embryo-lethality, fetal resorptions, and pregnancy disruptions. In rats, dose-related embryo/fetal toxicity and postnatal developmental toxicity were observed in offspring resulting from parents treated with omeprazole at 13.8 to 138.0 mg/kg/day (about 5.6 to 56 times the human doses on a body surface area basis).

NUSRING MOTHERS

8.3 Nursing Mothers Omeprazole is present in human milk. Omeprazole concentrations were measured in breast milk of a woman following oral administration of 20 mg. The peak concentration of omeprazole in breast milk was less than 7% of the peak serum concentration. This concentration would correspond to 0.004 mg of omeprazole in 200 mL of milk. Caution should be exercised when omeprazole is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Symptomatic response does not preclude the presence of gastric malignancy (5.1) Atrophic gastritis: has been noted with long-term therapy (5.2) PPI therapy may be associated with increased risk of Clostridium difficile associated diarrhea. (5.3) Avoid concomitant use of omeprazole with clopidogrel. (5.4) Bone Fracture: Long-term and multiple daily dose PPI therapy may be associated with an increased risk for osteoporosis-related fractures of the hip, wrist or spine. (5.5) Hypomagnesemia has been reported rarely with prolonged treatment with PPIs (5.6) Avoid concomitant use of omeprazole with St John’s Wort or rifampin due to the potential reduction in omeprazole concentrations (5.7, 7.3) Interactions with diagnostic investigations for Neuroendocrine Tumors: Increases in intragastric pH may result in hypergastrinemia and enterochromaffin-like cell hyperplasia and increased Choromogranin A levels which may interfere with diagnostic investigations for neuroendocrine tumors. (5.8, 12.2) 5.1 Concomitant Gastric Malignancy Symptomatic response to therapy with omeprazole does not preclude the presence of gastric malignancy. 5.2 Atrophic Gastritis Atrophic gastritis has been noted occasionally in gastric corpus biopsies from patients treated long-term with omeprazole. 5.3 Clostridium difficile associated diarrhea Published observational studies suggest that PPI therapy like omeprazole may be associated with an increased risk of Clostridium difficile associated diarrhea, especially in hospitalized patients. This diagnosis should be considered for diarrhea that does not improve [see Adverse Reactions (6.2) ]. Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated. Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents. For more information specific to antibacterial agents (clarithromycin and amoxicillin) indicated for use in combination with omeprazole, refer to WARNINGS and PRECAUTIONS sections of those package inserts. 5.4 Interaction with Clopidogrel Avoid concomitant use of omeprazole with clopidogrel. Clopidogrel is a prodrug. Inhibition of platelet aggregation by clopidogrel is entirely due to an active metabolite. The metabolism of clopidogrel to its active metabolite can be impaired by use with concomitant medications, such as omeprazole, that inhibit CYP2C19 activity. Concomitant use of clopidogrel with 80 mg omeprazole reduces the pharmacological activity of clopidogrel, even when administered 12 hours apart. When using omeprazole, consider alternative anti-platelet therapy [see Drug Interactions (7.3) and Pharmacokinetics (12.3) ]. 5.5 Bone Fracture Several published observational studies suggest that proton pump inhibitor (PPI) therapy may be associated with an increased risk for osteoporosis-related fractures of the hip, wrist, or spine. The risk of fracture was increased in patients who received high-dose, defined as multiple daily doses, and long-term PPI therapy (a year or longer). Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated. Patients at risk for osteoporosis-related fractures should be managed according to established treatment guidelines. [see Dosage and Administration (2) and Adverse Reactions (6.3) ] 5.6 Hypomagnesemia Hypomagnesemia, symptomatic and asymptomatic, has been reported rarely in patients treated with PPIs for at least three months, in most cases after a year of therapy. Serious adverse events include tetany, arrhythmias, and seizures. In most patients, treatment of hypomagnesemia required magnesium replacement and discontinuation of the PPI. For patients expected to be on prolonged treatment or who take PPIs with medications such as digoxin or drugs that may cause hypomagnesemia (e.g., diuretics), health care professionals may consider monitoring magnesium levels prior to initiation of PPI treatment and periodically. [See Adverse Reactions (6.3) ] 5.7 Concomitant Use of Omeprazole with St John’s Wort or Rifampin Drugs which induce CYP2C19 or CYP3A4 (such as St John’s Wort or rifampin) can substantially decrease omeprazole concentrations. [See Drug Interactions (7.3) ]. Avoid concomitant use of omeprazole with St John’s Wort or rifampin. 5.8 Interactions with Diagnostic Investigations for Neuroendocrine Tumors Serum chromogranin A (CgA) levels increase secondary to drug-induced decreases in gastric acidity. The increased CgA level may cause false positive results in diagnostic investigations for neuroendocrine tumors. Providers should temporarily stop omeprazole treatment before assessing CgA levels and consider repeating the test if initial CgA levels are high. If serial tests are performed (e.g. for monitoring), the same commercial laboratory should be used for testing, as reference ranges between tests may vary. 5.9 Concomitant use of Omeprazole with Methotrexate Literature suggests that concomitant use of PPIs with methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite, possibly leading to methotrexate toxicities. In high-dose methotrexate administration a temporary withdrawal of the PPI may be considered in some patients. [See Drug Interactions (7.7) ]

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION “See FDA-Approved Medication Guide” Omeprazole delayed-release capsule should be taken before eating. Patients should be informed that the omeprazole delayed-release capsule should be swallowed whole. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsule can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use. Advise patients to immediately report and seek care for diarrhea that does not improve. This may be a sign of Clostridium difficile associated diarrhea [see Warnings and Precautions (5.3) ]. Advise patients to immediately report and seek care for any cardiovascular or neurological symptoms including palpitations, dizziness, seizures, and tetany as these may be signs of hypomagnesemia [see Warnings and Precautions (5.6) ]. APOTEX INC. OMEPRAZOLE DELAYED-RELEASE CAPSULES, USP 10 mg, 20 mg and 40 mg Manufactured by: Manufactured for: Apotex Inc. Apotex Corp. Toronto, Ontario Weston, Florida Canada M9L 1T9 USA 33326 Repackaged by: Proficient Rx LP Thousand Oaks, CA 91320 Revised: June 2013 Revision: 17

DOSAGE AND ADMINISTRATION

2 Omeprazole delayed-release capsules should be taken before eating. In the clinical trials, antacids were used concomitantly with omeprazole. Patients should be informed that the omeprazole delayed-release capsule should be swallowed whole. For patients unable to swallow an intact capsule, alternative administration options are available [ See Dosage and Administration (2.8) ]. Indication Omeprazole Dose Frequency Treatment of Active Duodenal Ulcer (2.1) 20 mg Once daily for 4 weeks. Some patients may require an additional 4 weeks H. pylori Eradication to Reduce the Risk of Duodenal Ulcer Recurrence (2.2) Triple Therapy: Omeprazole 20 mg Each drug twice daily for 10 days Amoxicillin 1000 mg Clarithromycin 500 mg Dual Therapy: Omeprazole 40 mg Once daily for 14 days Clarithromycin 500 mg Three times daily for 14 days Gastric Ulcer (2.3) 40 mg Once daily for 4 to 8 weeks GERD (2.4) 20 mg Once daily for 4 to 8 weeks Maintenance of Healing of Erosive Esophagitis (2.5) 20 mg Once daily Pathological Hypersecretory Conditions (2.6) 60 mg (varies with individual patient) Once daily Pediatric Patients (2 to 16 years of age) (2.7) Weight Dose GERD And Maintenance of Healing of Erosive Esophagitis 10 < 20 kg 10 mg Once daily ≥ 20 kg 20 kg 2.1 Short-Term Treatment of Active Duodenal Ulcer The recommended adult oral dose of omeprazole delayed-release capsules are 20 mg once daily. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. 2.2 H. pylori Eradication for the Reduction of the Risk of Duodenal Ulcer Recurrence Triple Therapy (omeprazole/clarithromycin/amoxicillin) The recommended adult oral regimen is omeprazole delayed-release capsules 20 mg plus clarithromycin 500 mg plus amoxicillin 1000 mg each given twice daily for 10 days. In patients with an ulcer present at the time of initiation of therapy, an additional 18 days of omeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. Dual Therapy (omeprazole/clarithromycin) The recommended adult oral regimen is omeprazole delayed-release capsules 40 mg once daily plus clarithromycin 500 mg three times daily for 14 days. In patients with an ulcer present at the time of initiation of therapy, an additional 14 days of omeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. 2.3 Gastric Ulcer The recommended adult oral dose is 40 mg once daily for 4 to 8 weeks. 2.4 Gastroesophageal Reflux Disease (GERD) The recommended adult oral dose for the treatment of patients with symptomatic GERD and no esophageal lesions is 20 mg daily for up to 4 weeks. The recommended adult oral dose for the treatment of patients with erosive esophagitis and accompanying symptoms due to GERD is 20 mg daily for 4 to 8 weeks. 2.5 Maintenance of Healing of Erosive Esophagitis The recommended adult oral dose is 20 mg daily. [ See Clinical Studies (14.4) ] 2.6 Pathological Hypersecretory Conditions The dosage of omeprazole delayed-release capsules in patients with pathological hypersecretory conditions varies with the individual patient. The recommended adult oral starting dose is 60 mg once daily. Doses should be adjusted to individual patient needs and should continue for as long as clinically indicated. Doses up to 120 mg three times daily have been administered. Daily dosages of greater than 80 mg should be administered in divided doses. Some patients with Zollinger-Ellison syndrome have been treated continuously with omeprazole delayed-release capsules for more than 5 years. 2.7 Pediatric Patients For the treatment of GERD and maintenance of healing of erosive esophagitis, the recommended daily dose for pediatric patients 2 to 16 years of age is as follows: Patient Weight Omeprazole Daily Dose 10 < 20 kg 10 mg ≥ 20 kg 20 mg On a per kg basis, the doses of omeprazole required to heal erosive esophagitis in pediatric patients are greater than those for adults. Alternative administrative options can be used for pediatric patients unable to swallow an intact capsule [ See Dosage and Administration (2.8) ]. 2.8 Alternative Administration Options Omeprazole is available as a delayed-release capsule. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsule can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use.