losartan potassium 100 MG / hydrochlorothiazide 12.5 MG Oral Tablet

DRUG INTERACTIONS

7 •Agents increasing serum potassium: Risk of hyperkalemia. (7.1) •Lithium: Risk of lithium toxicity. (7.2) •Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): increased risk of renal impairment and reduced diuretic, natriuretic, and antihypertensive effects. (7.3) •Dual inhibition of the renin-angiotensin system: increased risk of renal impairment, hypotension, syncope, and hyperkalemia. (7.4) •Antidiabetic drugs: dosage adjustment of antidiabetic may be required. (7.5) •Cholestyramine and colestipol: Reduced absorption of thiazides. (7.5) 7.1 Agents Increasing Serum Potassium Coadministration of losartan with other drugs that raise serum potassium levels may result in hyperkalemia. Monitor serum potassium in such patients. 7.2 Lithium Increases in serum lithium concentrations and lithium toxicity have been reported with concomitant use of angiotensin II receptor antagonists or thiazide diuretics. Monitor lithium levels in patients receiving losartan potassium and hydrochlorothiazide and lithium. 7.3 Non-Steroidal Anti-Inflammatory Agents Including Selective Cyclooxygenase-2 Inhibitors Losartan Potassium In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs, including selective COX-2 inhibitors, with angiotensin II receptor antagonists (including losartan) may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving losartan and NSAID therapy. The antihypertensive effect of angiotensin II receptor antagonists, including losartan, may be attenuated by NSAIDs, including selective COX-2 inhibitors. Hydrochlorothiazide The administration of a non-steroidal anti-inflammatory agent including a selective COX-2 inhibitor can reduce the diuretic, natriuretic, and antihypertensive effects of loop, potassium-sparing and thiazide diuretics. Therefore, when losartan potassium and hydrochlorothiazide and non-steroidal anti-inflammatory agents including selective COX-2 inhibitors are used concomitantly, observe closely to determine if the desired effect of the diuretic is obtained. In patients receiving diuretic therapy, coadministration of NSAIDs with angiotensin receptor blockers, including losartan, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving hydrochlorothiazide, losartan, and NSAID therapy. 7.4 Dual Blockade of the Renin-Angiotensin System (RAS) Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. The Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial enrolled 1448 patients with type 2 diabetes, elevated urinary-albumin-to-creatinine ratio, and decreased estimated glomerular filtration rate (GFR 30 to 89.9 mL/min), randomized them to lisinopril or placebo on a background of losartan therapy and followed them for a median of 2.2 years. Patients receiving the combination of losartan and lisinopril did not obtain any additional benefit compared to monotherapy for the combined endpoint of decline in GFR, end-stage renal disease, or death, but experienced an increased incidence of hyperkalemia and acute kidney injury compared with the monotherapy group. Closely monitor blood pressure, renal function, and electrolytes in patients on losartan potassium and hydrochlorothiazide and other agents that affect the RAS. Do not coadminister aliskiren with losartan potassium and hydrochlorothiazide in patients with diabetes. Avoid use of aliskiren with losartan potassium and hydrochlorothiazide in patients with renal impairment (GFR <60 mL/min). 7.5 The Use of Hydrochlorothiazide with Other Drugs When administered concurrently, the following drugs may interact with thiazide diuretics [see Clinical Pharmacology (12.3)]: Antidiabetic drugs (oral agents and insulin) — dosage adjustment of the antidiabetic drug may be required. Cholestyramine and colestipol resins — Absorption of hydrochlorothiazide is impaired in the presence of anionic exchange resins. Single doses of either cholestyramine or colestipol resins bind the hydrochlorothiazide and reduce its absorption from the gastrointestinal tract by up to 85 and 43 percent, respectively. Stagger the dosage of hydrochlorothiazide and the resin such that hydrochlorothiazide is administered at least 4 hours before or 4 to 6 hours after the administration of the resin.

OVERDOSAGE

10 Losartan Potassium Significant lethality was observed in mice and rats after oral administration of 1000 mg/kg and 2000 mg/kg, respectively, about 44 and 170 times the maximum recommended human dose on a mg/m2 basis. Limited data are available in regard to overdosage in humans. The most likely manifestation of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. If symptomatic hypotension should occur, supportive treatment should be instituted. Neither losartan nor its active metabolite can be removed by hemodialysis. Hydrochlorothiazide The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in both mice and rats. The most common signs and symptoms observed are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. The degree to which hydrochlorothiazide is removed by hemodialysis has not been established.

DESCRIPTION

11 Losartan potassium and hydrochlorothiazide 50 mg/12.5 mg, losartan potassium and hydrochlorothiazide 100 mg/12.5 mg and losartan potassium and hydrochlorothiazide 100 mg/25 mg tablets combine an angiotensin II receptor blocker acting on the AT1 receptor subtype and a diuretic, hydrochlorothiazide. Losartan potassium, a non-peptide molecule, is chemically described as 2-butyl-4-chloro-1-[p-(o-1H‑ tetrazol-5-ylphenyl)benzyl]imidazole-5-methanol monopotassium salt. Its molecular formula is C22 H22 CIKN6 O, and its structural formula is: Losartan potassium USP is a white to off-white powder with a molecular weight of 461.01. It is freely soluble in water, soluble in alcohols, and slightly soluble in common organic solvents, such as acetonitrile and methyl ethyl ketone. Oxidation of the 5-hydroxymethyl group on the imidazole ring results in the active metabolite of losartan. Hydrochlorothiazide is 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Its molecular formula is C7 H8 CIN3 O4 S2 and its structural formula is: Hydrochlorothiazide USP is a white or practically white, practically odorless, crystalline powder with a molecular weight of 297.74, which is slightly soluble in water, but freely soluble in sodium hydroxide solution. Losartan potassium and hydrochlorothiazide is available for oral administration in three tablet combinations of losartan and hydrochlorothiazide. Losartan potassium and hydrochlorothiazide tablets USP, 50 mg/12.5 mg contain 50 mg of losartan potassium USP and 12.5 mg of hydrochlorothiazide USP. Losartan potassium and hydrochlorothiazide tablets USP, 100 mg/12.5 mg contain 100 mg of losartan potassium USP and 12.5 mg of hydrochlorothiazide USP. Losartan potassium and hydrochlorothiazide tablets USP, 100 mg/25 mg contain 100 mg of losartan potassium USP and 25 mg of hydrochlorothiazide USP. Inactive ingredients are colloidal silicon dioxide, hydroxypropyl cellulose, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, pregelatinisedstarch(maize), and titanium dioxide. Losartan potassium and hydrochlorothiazide 50 mg/12.5 mg and losartan potassium and hydrochlorothiazide 100 mg/25 mg also contain D&C yellow No. 10 aluminum lake. Losartan potassium and hydrochlorothiazide tablets USP, 50 mg/12.5 mg contains 4.24 mg (0.108 mEq) of potassium, losartan potassium and hydrochlorothiazide tablets USP, 100 mg/12.5 mg contains 8.48 mg (0.217 mEq) of potassium, and losartan potassium and hydrochlorothiazide tablets USP, 100 mg/25 mg contains 8.48 mg (0.217 mEq) of potassium. Meets USP Dissolution Test 2. Losartan Chemical Structure Hydrochlorothiazide Chemical Structure

CLINICAL STUDIES

14 14.1 Losartan Monotherapy Reduction in the Risk of Stroke: The LIFE study was a multinational, double-blind study comparing losartan and atenolol in 9193 hypertensive patients with ECG-documented left ventricular hypertrophy. Patients with myocardial infarction or stroke within six months prior to randomization were excluded. Patients were randomized to receive once daily losartan 50 mg or atenolol 50 mg. If goal blood pressure (<140/90 mmHg) was not reached, hydrochlorothiazide (12.5 mg) was added first and, if needed, the dose of losartan or atenolol was then increased to 100 mg once daily. If necessary, other antihypertensive treatments (e.g., increase in dose of hydrochlorothiazide therapy to 25 mg or addition of other diuretic therapy, calcium channel blockers, alpha-blockers, or centrally acting agents, but not ACE inhibitors, angiotensin II antagonists, or beta-blockers) were added to the treatment regimen to reach the goal blood pressure. In efforts to control blood pressure, the patients in both arms of the LIFE study were coadministered hydrochlorothiazide the majority of time they were on study drug (73.9% and 72.4% of days in the losartan and atenolol arms, respectively). Of the randomized patients, 4963 (54%) were female and 533 (6%) were Black. The mean age was 67 with 5704 (62%) age ≥65. At baseline, 1195 (13%) had diabetes, 1326 (14%) had isolated systolic hypertension, 1469 (16%) had coronary heart disease, and 728 (8%) had cerebrovascular disease. Baseline mean blood pressure was 174/98 mmHg in both treatment groups. The mean length of follow-up was 4.8 years. At the end of study or at the last visit before a primary endpoint, 77% of the group treated with losartan and 73% of the group treated with atenolol were still taking study medication. Of the patients still taking study medication, the mean doses of losartan and atenolol were both about 80 mg/day, and 15% were taking atenolol or losartan as monotherapy, while 77% were also receiving hydrochlorothiazide (at a mean dose of 20 mg/day in each group). Blood pressure reduction measured at trough was similar for both treatment groups but blood pressure was not measured at any other time of the day. At the end of study or at the last visit before a primary endpoint, the mean blood pressures were 144.1/81.3 mmHg for the group treated with losartan and 145.4/80.9 mmHg for the group treated with atenolol [the difference in SBP of 1.3 mmHg was significant (p<0.001), while the difference of 0.4 mmHg in DBP was not significant (p=0.098)]. The primary endpoint was the first occurrence of cardiovascular death, nonfatal stroke, or nonfatal myocardial infarction. Patients with nonfatal events remained in the trial, so that there was also an examination of the first event of each type even if it was not the first event (e.g., a stroke following an initial myocardial infarction would be counted in the analysis of stroke). Treatment with losartan resulted in a 13% reduction (p=0.021) in risk of the primary endpoint compared to the atenolol group; this difference was primarily the result of an effect on fatal and nonfatal stroke. Treatment with losartan reduced the risk of stroke by 25% relative to atenolol (p=0.001). 14.2 Losartan Potassium-Hydrochlorothiazide The 3 controlled studies of losartan and hydrochlorothiazide included over 1300 patients assessing the antihypertensive efficacy of various doses of losartan (25 mg, 50 mg and 100 mg) and concomitant hydrochlorothiazide (6.25 mg, 12.5 mg and 25 mg). A factorial study compared the combination of losartan/hydrochlorothiazide 50 mg/12.5 mg with its components and placebo. The combination of losartan/hydrochlorothiazide 50 mg/12.5 mg resulted in an approximately additive placebo-adjusted systolic/diastolic response (15.5/9 mmHg for the combination compared to 8.5/5 mmHg for losartan alone and 7/3 mmHg for hydrochlorothiazide alone). Another study investigated the dose-response relationship of various doses of hydrochlorothiazide (6.25 mg, 12.5 mg and 25 mg) or placebo on a background of losartan (50 mg) in patients not adequately controlled (Sitting Diastolic Blood Pressure [SiDBP] 93 to 120 mmHg) on losartan (50 mg) alone. The third study investigated the dose-response relationship of various doses of losartan (25 mg, 50 mg and 100 mg) or placebo on a background of hydrochlorothiazide (25 mg) in patients not adequately controlled (SiDBP 93 to 120 mmHg) on hydrochlorothiazide (25 mg) alone. These studies showed an added antihypertensive response at trough (24 hours post-dosing) of hydrochlorothiazide 12.5 mg or 25 mg added to losartan 50 mg of 5.5/3.5 and 10/6 mmHg, respectively. Similarly, there was an added antihypertensive response at trough when losartan 50 mg or 100 mg was added to hydrochlorothiazide 25 mg of 9/5.5 and 12.5/6.5 mmHg, respectively. There was no significant effect on heart rate. There was no difference in response for men and women or in patients over or under 65 years of age. Black patients had a larger response to hydrochlorothiazide than non-Black patients and a smaller response to losartan. The overall response to the combination was similar for Black and non-Black patients. Severe Hypertension (SiDBP ≥110 mmHg) The safety and efficacy of losartan potassium and hydrochlorothiazide as initial therapy for severe hypertension (defined as a mean SiDBP≥110 mmHg confirmed on 2 separate occasions off all antihypertensive therapy) was studied in a 6-week double-blind, randomized, multicenter study. Patients were randomized to either losartan and hydrochlorothiazide (50 mg/12.5 mg, once daily) or to losartan (50 mg, once daily) and followed for blood pressure response. Patients were titrated at 2-week intervals if their SiDBP did not reach goal (<90 mmHg). Patients on combination therapy were titrated from losartan 50 mg/hydrochlorothiazide 12.5 mg to losartan 50 mg/hydrochlorothiazide 12.5 mg (sham titration to maintain the blind) to losartan 100 mg/hydrochlorothiazide 25 mg. Patients on monotherapy were titrated from losartan 50 mg to losartan 100 mg to losartan 150 mg, as needed. The primary endpoint was a comparison at 4 weeks of patients who achieved goal diastolic blood pressure (trough SiDBP <90 mmHg). The study enrolled 585 patients, including 264 (45%) females, 124 (21%) blacks, and 21 (4%) ≥65 years of age. The mean blood pressure at baseline for the total population was 171/113 mmHg. The mean age was 53 years. After 4 weeks of therapy, the mean SiDBP was 3.1 mmHg lower and the mean SiSBP was 5.6 mmHg lower in the group treated with losartan potassium and hydrochlorothiazide. As a result, a greater proportion of the patients on losartan potassium and hydrochlorothiazide reached the target diastolic blood pressure (17.6% for losartan potassium and hydrochlorothiazide, 9.4% for losartan; p=0.006). Similar trends were seen when the patients were grouped according to gender, race or age (<, ≥ 65). After 6 weeks of therapy, more patients who received the combination regimen reached target diastolic blood pressure than those who received the monotherapy regimen (29.8% versus 12.5%).

HOW SUPPLIED

16 /STORAGE AND HANDLING Losartan Potassium and Hydrochlorothiazide Tablets USP, 100 mg/12.5 mg are white, oval shaped, beveled edge, biconvex film-coated tablets debossed with ‘F’ on one side and ‘74’ on the other side. Bottles of 30 NDC 68788-6812-3 Bottles of 60 NDC 68788-6812-6 Bottles of 90 NDC 68788-6812-9 Bottles of 100 NDC 68788-6812-1 Storage Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Keep container tightly closed. Protect from light.

GERIATRIC USE

8.5 Geriatric Use In a controlled clinical study for the reduction in the combined risk of cardiovascular death, stroke and myocardial infarction in hypertensive patients with left ventricular hypertrophy, 2857 patients (62%) were 65 years and over, while 808 patients (18%) were 75 years and over. In an effort to control blood pressure in this study, patients were coadministered losartan and hydrochlorothiazide 74% of the total time they were on study drug. No overall differences in effectiveness were observed between these patients and younger patients. Adverse events were somewhat more frequent in the elderly compared to non-elderly patients for both the losartan-hydrochlorothiazide and the control groups [see Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 Losartan Potassium and Hydrochlorothiazide Tablets USP, 50 mg/12.5 mg are yellow colored, oval shaped, beveled edge, biconvex film-coated tablets debossed with ‘E’ on one side and ‘48’ on the other side. Losartan Potassium and Hydrochlorothiazide Tablets USP, 100 mg/12.5 mg are white, oval shaped, beveled edge, biconvex film-coated tablets debossed with ‘F’ on one side and ‘74’ on the other side. Losartan Potassium and Hydrochlorothiazide Tablets USP, 100 mg/25 mg are yellow colored, oval shaped, beveled edge, biconvex film-coated tablets debossed with ‘E’ on one side and ‘49’ on the other side. Tablets (losartan potassium/hydrochlorothiazide content): 50 mg/12.5 mg; 100 mg/12.5 mg; and 100 mg/25 mg. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Losartan Potassium Angiotensin II [formed from angiotensin I in a reaction catalyzed by angiotensin converting enzyme (ACE, kininase II)], is a potent vasoconstrictor, the primary vasoactive hormone of the renin-angiotensin system and an important component in the pathophysiology of hypertension. It also stimulates aldosterone secretion by the adrenal cortex. Losartan and its principal active metabolite block the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor found in many tissues (e.g., vascular smooth muscle, adrenal gland). There is also an AT2 receptor found in many tissues but it is not known to be associated with cardiovascular homeostasis. Neither losartan nor its principal active metabolite exhibits any partial agonist activity at the AT1 receptor, and both have much greater affinity (about 1000-fold) for the AT1 receptor than for the AT2 receptor. In vitro binding studies indicate that losartan is a reversible, competitive inhibitor of the AT1 receptor. The active metabolite is 10 to 40 times more potent by weight than losartan and appears to be a reversible, non-competitive inhibitor of the AT1 receptor. Neither losartan nor its active metabolite inhibits ACE (kininase II, the enzyme that converts angiotensin I to angiotensin II and degrades bradykinin), nor do they bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation. Hydrochlorothiazide Hydrochlorothiazide is a thiazide diuretic. Thiazides affect the renal tubular mechanisms of electrolyte reabsorption, directly increasing excretion of sodium and chloride in approximately equivalent amounts. Indirectly, the diuretic action of hydrochlorothiazide reduces plasma volume, with consequent increases in plasma renin activity, increases in aldosterone secretion, increases in urinary potassium loss, and decreases in serum potassium. The renin-aldosterone link is mediated by angiotensin II, so coadministration of an angiotensin II receptor antagonist tends to reverse the potassium loss associated with these diuretics. The mechanism of the antihypertensive effect of thiazides is unknown.

INDICATIONS AND USAGE

1 Losartan potassium and hydrochlorothiazide is a combination of losartan, an angiotensin II receptor blocker (ARB) and hydrochlorothiazide, a diuretic indicated for: •Treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. (1.1) •Reduction of the risk of stroke in patients with hypertension and left ventricular hypertrophy. There is evidence that this benefit does not apply to Black patients. (1.2) 1.1 Hypertension Losartan potassium and hydrochlorothiazide tablets are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure lowers the risk of fatal and non-fatal cardiovascular (CV) events, primarily strokes and myocardial infarction. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including losartan and hydrochlorothiazide. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than 1 drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy. This fixed dose combination is not indicated for initial therapy of hypertension, except when the hypertension is severe enough that the value of achieving prompt blood pressure control exceeds the risk of initiating combination therapy in these patients [see Clinical Studies (14) and Dosage and Administration (2.1)]. Losartan potassium and hydrochlorothiazide tablets may be administered with other antihypertensive agents. 1.2 Hypertensive Patients with Left Ventricular Hypertrophy Losartan potassium and hydrochlorothiazide tablets are indicated to reduce the risk of stroke in patients with hypertension and left ventricular hypertrophy, but there is evidence that this benefit does not apply to Black patients [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3), and Dosage and Administration (2.2)].

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of losartan potassium and hydrochlorothiazide in pediatric patients have not been established. Neonates with a history of in utero exposure to losartan potassium and hydrochlorothiazide: If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusion or dialysis may be required as means of reversing hypotension and/or substituting for disordered renal function.

PREGNANCY

8.1 Pregnancy Teratogenic Effects Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue losartan as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin‑-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue losartan potassium and hydrochlorothiazide, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to losartan potassium and hydrochlorothiazide for hypotension, oliguria, and hyperkalemia [see Use in Specific Populations (8.4)]. There was no evidence of teratogenicity in rats or rabbits treated with a maximum losartan potassium dose of 10 mg/kg/day in combination with 2.5 mg/kg/day of hydrochlorothiazide. At these dosages, respective exposures (AUCs) of losartan, its active metabolite, and hydrochlorothiazide in rabbits were approximately 5, 1.5, and 1 times those achieved in humans with 100 mg losartan in combination with 25 mg hydrochlorothiazide. AUC values for losartan, its active metabolite and hydrochlorothiazide, extrapolated from data obtained with losartan administered to rats at a dose of 50 mg/kg/day in combination with 12.5 mg/kg/day of hydrochlorothiazide, were approximately 6, 2, and 2 times greater than those achieved in humans with 100 mg of losartan in combination with 25 mg of hydrochlorothiazide. Fetal toxicity in rats, as evidenced by a slight increase in supernumerary ribs, was observed when females were treated prior to and throughout gestation with 10 mg/kg/day losartan in combination with 2.5 mg/kg/day hydrochlorothiazide. As also observed in studies with losartan alone, adverse fetal and neonatal effects, including decreased body weight, renal toxicity, and mortality, occurred when pregnant rats were treated during late gestation and/or lactation with 50 mg/kg/day losartan in combination with 12.5 mg/kg/day hydrochlorothiazide. Respective AUCs for losartan, its active metabolite and hydrochlorothiazide at these dosages in rats were approximately 35, 10 and 10 times greater than those achieved in humans with the administration of 100 mg of losartan in combination with 25 mg hydrochlorothiazide. When hydrochlorothiazide was administered without losartan to pregnant mice and rats during their respective periods of major organogenesis, at doses up to 3000 and 1000 mg/kg/day, respectively, there was no evidence of harm to the fetus. Thiazides cross the placental barrier and appear in cord blood. There is a risk of fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether losartan is excreted in human milk, but significant levels of losartan and its active metabolite were shown to be present in rat milk. Thiazides appear in human milk. Because of the potential for adverse effects on the nursing infant, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: FETAL TOXICITY When pregnancy is detected, discontinue losartan potassium and hydrochlorothiazide tablets as soon as possible. Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus [see Warnings and Precautions (5.1)]. WARNING: FETAL TOXICITY See full prescribing information for complete boxed warning. When pregnancy is detected, discontinue losartan potassium and hydrochlorothiazide tablets as soon as possible. Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Hypotension: Correct volume or salt depletion prior to administration of losartan potassium and hydrochlorothiazide. (5.2) •Monitor renal function and potassium in susceptible patients. (5.3) •Observe for clinical signs of fluid or electrolyte imbalance. (5.5) •Acute angle-closure glaucoma. (5.6) •Exacerbation of systemic lupus erythematosus. (5.7) 5.1 Fetal Toxicity Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue losartan potassium and hydrochlorothiazide as soon as possible. Thiazides cross the placental barrier and appear in cord blood. Adverse reactions include fetal or neonatal jaundice, thrombocytopenia [see Use in Specific Populations (8.1)]. 5.2 Hypotension in Volume- or Salt-Depleted Patients In patients with an activated renin-angiotensin system, such as volume- or salt-depleted patients (e.g., those being treated with high doses of diuretics), symptomatic hypotension may occur after initiation of treatment with losartan potassium and hydrochlorothiazide. Correct volume or salt depletion prior to administration of losartan potassium and hydrochlorothiazide. Do not use losartan potassium and hydrochlorothiazide as initial therapy in patients with intravascular volume depletion. 5.3 Impaired Renal Function Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-‑angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure, or volume depletion) may be at particular risk of developing acute renal failure on losartan potassium and hydrochlorothiazide. Monitor renal function periodically in these patients. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on losartan potassium and hydrochlorothiazide [see Drug Interactions (7.3) and Use in Specific Populations (8.8)]. 5.4 Hypersensitivity Hypersensitivity reactions to hydrochlorothiazide may occur in patients with or without a history of allergy or bronchial asthma, but are more likely in patients with such a history. 5.5 Electrolyte and Metabolic Effects In double-blind clinical trials of various doses of losartan potassium and hydrochlorothiazide, the incidence of hypertensive patients who developed hypokalemia (serum potassium 5.7 mEq/L) was 0.4% versus 0% for placebo. Losartan potassium and hydrochlorothiazide contains hydrochlorothiazide which can cause hypokalemia, hyponatremia and hypomagnesemia. Hypomagnesemia can result in hypokalemia which may be difficult to treat despite potassium repletion. Losartan potassium and hydrochlorothiazide also contains losartan which can cause hyperkalemia. Monitor serum electrolytes periodically [see Drug Interactions (7.1)]. Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides. Hyperuricemia may occur or frank gout may be precipitated in patients receiving thiazide therapy. Because losartan decreases uric acid, losartan in combination with hydrochlorothiazide attenuates the diuretic-induced hyperuricemia. Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels. 5.6 Acute Myopia and Secondary Angle-Closure Glaucoma Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy. 5.7 Systemic Lupus Erythematosus Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus. 5.8 Postsympathectomy Patients The antihypertensive effects of the drug may be enhanced in the postsympathectomy patient.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Patient Information). Pregnancy: Advise female patients of childbearing age about the consequences of exposure to losartan potassium and hydrochlorothiazide during pregnancy. Discuss treatment options with women planning to become pregnant. Tell patients to report pregnancies to their physicians as soon as possible [see Warnings and Precautions (5.1) and Use in Specific Populations (8.1)]. Symptomatic Hypotension: Advise patients that lightheadedness can occur, especially during the first days of therapy, and to report this symptom to a healthcare provider. Inform patients that dehydration from inadequate fluid intake, excessive perspiration, vomiting, or diarrhea may lead to an excessive fall in blood pressure. If syncope occurs advise patients to contact their healthcare provider [see Warnings and Precautions (5.2)]. Potassium Supplements: Advise patients not to use potassium supplements or salt substitutes containing potassium without consulting their healthcare provider [see Drug Interactions (7.1)]. Acute myopia and secondary angle-closure glaucoma: Advise patients to discontinue losartan potassium and hydrochlorothiazide tablets and seek immediate medical attention if they experience symptoms of Acute Myopia or Secondary Angle-Closure Glaucoma [see Warnings and Precautions (5.6)].

DOSAGE AND ADMINISTRATION

2 Hypertension •Usual starting dose: 50 mg/12.5 mg once daily. (2.1) •Titrate as needed to a maximum dose of 100 mg/25 mg. (2.1) Hypertensive Patients with Left Ventricular Hypertrophy •Not controlled on monotherapy: Initiate with 50 mg/12.5 mg. Titrate as needed to a maximum of 100 mg/25 mg. (2.2) 2.1 Hypertension The usual starting dose of losartan potassium and hydrochlorothiazide tablets is 50 mg/12.5 mg (losartan 50 mg/hydrochlorothiazide 12.5 mg) once daily. The dosage can be increased after 3 weeks of therapy to a maximum of 100 mg/25 mg (losartan 100 mg/hydrochlorothiazide 25 mg) once daily as needed to control blood pressure [see Clinical Studies (14.2)]. Initiate a patient whose blood pressure is not adequately controlled with losartan 50 mg monotherapy with losartan potassium and hydrochlorothiazide tablets 50 mg/12.5 mg once daily. If blood pressure remains uncontrolled after about 3 weeks of therapy, the dosage may be increased to two tablets of losartan potassium and hydrochlorothiazide 50 mg/12.5 mg once daily or one tablet of losartan potassium and hydrochlorothiazide 100 mg/25 mg once daily. Initiate a patient whose blood pressure is not adequately controlled with losartan 100 mg monotherapy with losartan potassium and hydrochlorothiazide tablets 100 mg/12.5 mg once daily. If blood pressure remains uncontrolled after about 3 weeks of therapy, increase the dose to two tablets of losartan potassium and hydrochlorothiazide 50 mg/12.5 mg once daily or one tablet of losartan potassium and hydrochlorothiazide 100 mg/25 mg once daily. Initiate a patient whose blood pressure is inadequately controlled with hydrochlorothiazide 25 mg once daily, or is controlled but who experiences hypokalemia with this regimen, on losartan potassium and hydrochlorothiazide tablets 50 mg/12.5 mg once daily, reducing the dose of hydrochlorothiazide without reducing the overall expected antihypertensive response. Evaluate the clinical response to losartan potassium and hydrochlorothiazide tablets 50 mg/12.5 mg and, if blood pressure remains uncontrolled after about 3 weeks of therapy, increase the dose to two tablets of losartan potassium and hydrochlorothiazide 50 mg/12.5 mg once daily or one tablet of losartan potassium and hydrochlorothiazide 100 mg/25 mg once daily. 2.2 Hypertensive Patients with Left Ventricular Hypertrophy In patients whose blood pressure is not adequately controlled on 50 mg losartan potassium, initiate treatment with losartan potassium and hydrochlorothiazide tablets 50 mg/12.5 mg. If additional blood pressure reduction is needed, increase the dose to losartan potassium and hydrochlorothiazide tablets 100 mg/12.5 mg, followed by losartan potassium and hydrochlorothiazide tablets 100 mg/25 mg. For further blood pressure reduction add other antihypertensives [see Clinical Studies (14)].