Ketamine 50 MG/ML Injectable Solution [Ketalar]

Generic Name: KETAMINE HYDROCHLORIDE
Brand Name: Ketalar
  • Substance Name(s):
  • KETAMINE HYDROCHLORIDE

DRUG INTERACTIONS

7 Theophylline or Aminophylline : Do not co-administer with KETALAR as concomitant use may lower the seizure threshold ( 7.1 ).

Sympathomimetics and Vasopressin : Closely monitor vital signs when co-administered with KETALAR.

Consider dose adjustment individualized to the patient’s clinical situation ( 7.2 ).

Benzodiazepines, Opioid Analgesics, or other CNS Depressants : Concomitant use may result in profound sedation, respiratory depression, coma, or death.

Concomitant use of opioid analgesics may prolong recovery time.

( 7.3 ).

7.1 Theophylline or Aminophylline Concomitant administration of KETALAR and theophylline or aminophylline may lower the seizure threshold.

Consider using an alternative to KETALAR in patients receiving theophylline or aminophylline.

7.2 Sympathomimetics and Vasopressin Sympathomimetics and vasopressin may enhance the sympathomimetic effects of ketamine.

Closely monitor vital signs when KETALAR and sympathomimetics or vasopressin are co-administered and consider dose adjustment individualized to the patient’s clinical situation.

7.3 Benzodiazepines, Opioid Analgesics, Or Other CNS Depressants Concomitant use of ketamine with opioid analgesics, benzodiazepines, or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death [see Warnings and Precautions ( 5.8 )] .

Opioid analgesics administered concomitantly with KETALAR may prolong time to complete recovery from anesthesia.

OVERDOSAGE

10 Changes in heart rate and blood pressure, respiratory depression, and apnea may occur with overdosage or by a rapid rate of administration of KETALAR.

Monitor patients for clinically relevant changes in heart rate and blood pressure.

Assisted ventilation, including mechanical ventilation, may be required.

In cases of unintentional overdose of KETALAR (up to ten times that usually required), patients had a prolonged but complete recovery.

DESCRIPTION

11 KETALAR (ketamine hydrochloride) injection, for intravenous or intramuscular use, contains ketamine, a nonbarbiturate general anesthetic.

Ketamine hydrochloride, USP is a white crystalline powder and has a molecular formula of C 13 H 16 ClNO•HCl and a molecular weight of 274.19.

The chemical name for ketamine hydrochloride is (±)-2-( o -Chlorophenyl)-2-(methylamino)cyclohexanone hydrochloride.

The chemical structure of ketamine hydrochloride is: ketamine hydrochloride It is formulated as a slightly acidic (pH 3.5-5.5) sterile solution for intravenous or intramuscular injection.

Each milliliter (mL) of the multiple-dose vials contain either 10 mg ketamine base (equivalent to 11.53 mg ketamine hydrochloride), 50 mg ketamine base (equivalent to 57.67 mg ketamine hydrochloride) or 100 mg ketamine base (equivalent to 115.33 mg ketamine hydrochloride) and not more than 0.10 mg/mL benzethonium chloride added as a preservative in water for injection.

The 10 mg/mL solution has been made isotonic with 6.60 mg sodium chloride.

ketamine hydrochloride

CLINICAL STUDIES

14 KETALAR has been studied in over 12,000 operative and diagnostic procedures, involving over 10,000 patients in 105 separate studies.

During the course of these studies, KETALAR was administered as the sole general anesthetic, as an induction agent prior to administration of other general anesthetics, or to supplement other anesthetic agents.

KETALAR has been evaluated during the following procedures: debridement, dressing changes, and skin grafting in burn patients, as well as other superficial surgical procedures.

neurodiagnostic procedures such as myelograms and lumbar punctures.

diagnostic and operative procedures of the ear, nose, and mouth, including dental extractions.

sigmoidoscopy and minor surgery of the anus and rectum, and circumcision.

extraperitoneal procedures, such as dilatation and curettage.

orthopedic procedures such as closed reductions, manipulations, femoral pinning, amputations, and biopsies.

cardiac catheterization procedures.

HOW SUPPLIED

16 /STORAGE AND HANDLING How Supplied KETALAR injection is a clear, colorless solution supplied as the hydrochloride salt in concentrations equivalent to ketamine base, as follows: Unit of sale Strength NDC 42023-113-10 Unit of 10 200 mg in 20 mL multiple- dose vial (10 mg/mL) 10 mg ketamine base (equivalent to 11.53 mg ketamine hydrochloride) NDC 42023-114-10 Unit of 10 500 mg in 10 mL multiple- dose vial (50 mg/mL) 50 mg ketamine base (equivalent to 57.67 mg ketamine hydrochloride) NDC 42023-115-10 Unit of 10 500 mg in 5 mL multiple- dose vial (100 mg/mL) 100 mg ketamine base (equivalent to 115.33 mg ketamine hydrochloride) Storage and Handling KETALAR injection should be stored at 20°C to 25°C (68°F to 77°F); excursions permitted between 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature] .

Protect from light.

RECENT MAJOR CHANGES

Warnings and Precautions ( 5.6 ) 8/2020

GERIATRIC USE

8.5 Geriatric Use Clinical studies of ketamine hydrochloride did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects.

Other reported clinical experience has not identified differences in responses between the elderly and younger patients.

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 KETALAR injection is a clear, colorless, sterile solution available in multiple-dose vials containing either 10 mg ketamine base (equivalent to 11.53 mg ketamine hydrochloride), 50 mg ketamine base (equivalent to 57.67 mg ketamine hydrochloride) or 100 mg ketamine base (equivalent to 115.33 mg ketamine hydrochloride).

200 mg/20 mL (10 mg/mL) 500 mg/10 mL (50 mg/mL) 500 mg/5 mL (100 mg/mL) Injection: 200 mg/20 mL (10 mg/mL), 500 mg/10 mL (50 mg/mL), and 500 mg/5 mL (100 mg/mL) multiple-dose vials ( 3 ).

MECHANISM OF ACTION

12.1 Mechanism of Action KETALAR, a racemic mixture of ketamine, is a non-selective, non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor.

The major circulating metabolite of ketamine (norketamine) demonstrated activity at the same receptor with less affinity.

Norketamine is about 1/3 as active as ketamine in reducing halothane requirements (MAC) of the rat.

INDICATIONS AND USAGE

1 KETALAR (ketamine hydrochloride) injection is indicated: as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation.

for the induction of anesthesia prior to the administration of other general anesthetic agents.

as a supplement to other anesthetic agents.

KETALAR is a general anesthetic indicated: as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation ( 1 ) for the induction of anesthesia prior to the administration of other general anesthetic agents ( 1 ) as a supplement to other anesthetic agents ( 1 ).

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in pediatric patients below the age of 16 have not been established.

Published juvenile animal studies demonstrate that the administration of anesthetic and sedation drugs, such as KETALAR, that either block NMDA receptors or potentiate the activity of GABA during the period of rapid brain growth or synaptogenesis, results in widespread neuronal and oligodendrocyte cell loss in the developing brain and alterations in synaptic morphology and neurogenesis.

Based on comparisons across species, the window of vulnerability to these changes is believed to correlate with exposures in the third trimester of gestation through the first several months of life, but may extend out to approximately 3 years of age in humans.

In primates, exposure to 3 hours of ketamine that produced a light surgical plane of anesthesia did not increase neuronal cell loss, however, treatment regimens of 5 hours or longer of isoflurane increased neuronal cell loss.

Data from isoflurane-treated rodents and ketamine-treated primates suggest that the neuronal and oligodendrocyte cell losses are associated with prolonged cognitive deficits in learning and memory.

The clinical significance of these nonclinical findings is not known, and healthcare providers should balance the benefits of appropriate anesthesia in neonates and young children who require procedures with the potential risks suggested by the nonclinical data [see Warnings and Precautions ( 5.5 ), Use in Specific Populations ( 8.1 ), and Nonclinical Toxicology ( 13.2 )] .

PREGNANCY

8.1 Pregnancy Risk Summary There are no adequate and well-controlled studies of KETALAR in pregnant women.

In animal reproduction studies in rats developmental delays (hypoplasia of skeletal tissues) were noted at 0.3 times the human intramuscular dose of 10 mg/kg.

In rabbits, developmental delays and increased fetal resorptions were noted at 0.6 times the human dose.

Published studies in pregnant primates demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity during the period of peak brain development increases neuronal apoptosis in the developing brain of the offspring when used for longer than 3 hours.

There are no data on pregnancy exposures in primates corresponding to periods prior to the third trimester in humans.

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown.

All pregnancies have a background risk of birth defect, loss, or other adverse outcomes.

In the U.S.

general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Clinical Considerations KETALAR use in pregnancy, including obstetrics (either vaginal or abdominal delivery), is not recommended because safe use has not been established [see Warnings and Precautions ( 5.5 ), Use in Specific Populations ( 8.4 ) and Nonclinical Toxicology ( 13.2 )] .

Data Animal Data Pregnant rats were treated intramuscularly with 20 mg/kg ketamine (0.3 times the human dose of 10 mg/kg IM based on body surface area) on either Gestation Days 6 to 10 or Gestation Days 11 to 15.

Ketamine treatment produced an increased incidence of hypoplastic skull, phalanges, and sternebrae in the pups.

Pregnant rabbits were treated intramuscularly with 20 mg/kg ketamine (0.6 times the human dose of 10 mg/kg IM based on body surface area) on either Gestation Days 6 to 10 or Gestation Days 11 to 15.

An increase in resorptions and skeletal hypoplasia of the fetuses were noted.

Additional pregnant rabbits were treated intramuscularly with a single dose 60 mg/kg (1.9 times the human dose of 10 mg/kg IM based on body surface area) on Gestation Day 6 only.

Skeletal hypoplasia was reported in the fetuses.

In a study where pregnant rats were treated intramuscularly with 20 mg/kg ketamine (0.3 times the human dose of 10 mg/kg IM based on body surface area) from Gestation Day 18 to 21.

There was a slight increase in incidence of delayed parturition by one day in treated dams of this group.

No adverse effects on the litters or pups were noted; however, learning and memory assessments were not completed.

Three pregnant beagle dogs were treated intramuscularly with 25 mg/kg ketamine (1.3 times the human dose of 10 mg/kg IM based on body surface area) twice weekly for the three weeks of the first, second, and third trimesters of pregnancy, respectively, without the development of adverse effects in the pups.

In a published study in primates, administration of an anesthetic dose of ketamine for 24 hours on Gestation Day 122 increased neuronal apoptosis in the developing brain of the fetus.

In other published studies, administration of either isoflurane or propofol for 5 hours on Gestation Day 120 resulted in increased neuronal and oligodendrocyte apoptosis in the developing brain of the offspring.

With respect to brain development, this time period corresponds to the third trimester of gestation in the human.

The clinical significance of these findings is not clear; however, studies in juvenile animals suggest neuroapoptosis correlates with long-term cognitive deficits [see Warnings and Precautions ( 5.5 ), Use in Specific Populations ( 8.4 ), and Nonclinical Toxicology ( 13.2 )] .

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Hemodynamic Instability: Monitor vital signs and cardiac function during KETALAR administration.

( 5.1 ) Emergence Reactions: Postoperative confusional states may occur during the recovery period.

Reduce by minimizing verbal, tactile, and visual stimulation of the patient.

( 5.2 ) Risk of Respiratory Depression: May occur with overdosage or too rapid a rate of administration.

Maintain adequate oxygenation and ventilation.

( 5.3 ) Risks of KETALAR alone for Procedures of the Pharynx, Larynx, or Bronchial Tree : Pharyngeal and laryngeal reflexes are not suppressed with KETALAR when it is used alone.Avoid use as a sole anesthetic agent in surgery or diagnostic procedures of the pharynx, larynx, or bronchial tree.

Muscle relaxants may be required.

( 5.4 ) Pediatric Neurotoxicity: Long-term cognitive deficits may occur when used for longer than 3 hours in children ≤3 years ( 5.5 ) 5.1 Hemodynamic Instability Transient increases in blood pressure, heart rate, and cardiac index are frequently observed following administration of KETALAR.

Decreases in blood pressure and heart rate, arrhythmias, and cardiac decompensation have also been observed.

Monitor vital signs and cardiac function during KETALAR administration.

KETALAR is contraindicated in patients for whom a significant elevation of blood pressure would constitute a serious hazard [see Contraindications ( 4 )] .

5.2 Emergence Reactions Emergence delirium (postoperative confusional states or agitation) has occurred in approximately 12% of patients during the recovery period, and the duration is generally a few hours.

The neuropsychological manifestations vary in severity between pleasant dream-like states, vivid imagery, hallucinations, and emergence delirium.

In some cases, these states have been accompanied by confusion, excitement, and irrational behavior, which have been recalled as unpleasant experiences.

No residual psychological effects are known to have resulted from use of KETALAR during induction and maintenance of anesthesia.

Intramuscular administration results in a lower incidence of emergence reactions.

The incidence of psychological manifestations during emergence, particularly dream-like observations and emergence delirium, may be reduced by using lower recommended dosages of KETALAR in conjunction with an intravenous benzodiazepine during induction and maintenance of anesthesia [see Dosage and Administration ( 2.3 )] .

Also, these reactions may be reduced if verbal, tactile, and visual stimulation of the patient is minimized during the recovery period.

This does not preclude the monitoring of vital signs.

5.3 Respiratory Depression Respiratory depression may occur with overdosage or a rapid rate of administration of KETALAR.

Maintain adequate oxygenation and ventilation.

5.4 Risks of Ketalar Alone for Procedures of the Pharynx, Larynx, or Bronchial Tree KETALAR does not suppress pharyngeal and laryngeal reflexes.

Avoid KETALAR administration as a sole anesthetic agent during procedures of the pharynx, larynx, or bronchial tree, including mechanical stimulation of the pharynx.

Muscle relaxants may be required for successful completion of procedures of the pharynx, larynx, or bronchial tree.

5.5 Pediatric Neurotoxicity Published animal studies demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity increase neuronal apoptosis in the developing brain and result in long-term cognitive deficits when used for longer than 3 hours.

The clinical significance of these findings is not clear.

However, based on the available data, the window of vulnerability to these changes is believed to correlate with exposures in the third trimester of gestation through the first several months of life, but may extend out to approximately three years of age in humans [see Use in Specific Populations ( 8.1 , 8.4 ), Nonclinical Toxicology ( 13.2 )].

Some published studies in children suggest that similar deficits may occur after repeated or prolonged exposures to anesthetic agents early in life and may result in adverse cognitive or behavioral effects.

These studies have substantial limitations, and it is not clear if the observed effects are due to the anesthetic/sedation drug administration or other factors such as the surgery or underlying illness.

Anesthetic and sedation drugs are a necessary part of the care of children needing surgery, other procedures, or tests that cannot be delayed, and no specific medications have been shown to be safer than any other.

Decisions regarding the timing of any elective procedures requiring anesthesia should take into consideration the benefits of the procedure weighed against the potential risks.

5.6 Drug-Induced Liver Injury Ketamine administration is associated with hepatobiliary dysfunction (most often a cholestatic pattern), with recurrent use (e.g., misuse/abuse or medically supervised unapproved indications).

Obtain baseline LFTs, including alkaline phosphatase and gamma glutamyl transferase, in patients receiving ketamine as part of a treatment plan that utilizes recurrent dosing.

Monitor those receiving recurrent ketamine at periodic intervals during treatment.

5.7 Increase in Cerebrospinal Fluid Pressure An increase in intracranial pressure has been reported following administration of ketamine hydrochloride.

Patients with elevated intracranial pressure should be in a monitored setting with frequent neurologic assessments.

5.8 Drug Interactions Theophylline or Aminophylline : Concomitant administration of KETALAR and theophylline or aminophylline may lower the seizure threshold [see Drug Interactions ( 7.1 )] .

Consider using an alternative to KETALAR in patients receiving theophylline or aminophylline.

Sympathomimetics and Vasopressin : Sympathomimetics and vasopressin may enhance the sympathomimetic effects of ketamine [see Drug Interactions ( 7.2 )] .

Closely monitor vital signs when KETALAR and sympathomimetics or vasopressin are co-administered and consider dose adjustment individualized to the patient’s clinical situation.

Benzodiazepines, Opioid Analgesics, or Other CNS Depressants Concomitant use of ketamine with opioid analgesics, benzodiazepines, or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death [see Drug Interactions ( 7.3 )] .

Closely monitor neurological status and respiratory parameters, including respiratory rate and pulse oximetry, when KETALR and opioid analgesics, benzodiazepines, or other CNS depressants are co-administered.

Consider dose adjustment individualized to the patient’s clinical situation.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Studies conducted in young animals and children suggest repeated or prolonged use of general anesthetic or sedation drugs in children younger than 3 years may have negative effects on their developing brains.

Discuss with parents and caregivers the benefits, risks, and timing and duration of surgery or procedures requiring anesthetic and sedation drugs [see Warnings and Precautions ( 5.5 )] .

Due to the residual anesthetic effects and the potential for drowsiness, advise patients not to drive an automobile, operate hazardous machinery, or engage in hazardous activities within 24 hours of receiving KETALAR.

DOSAGE AND ADMINISTRATION

2 See Full Prescribing Information for important dosage and administration instructions.

( 2 ) Induction of anesthesia: — Intravenous route : Initially, 1 to 4.5 mg/kg administered slowly (over a period of 60 seconds).

Alternatively, administer a dose of 1 to 2 mg/kg at a rate of 0.5 mg/kg/min.

( 2.2 ) — Intramuscular route : Initially, 6.5 to 13 mg/kg.

( 2.2 ) Maintenance of anesthesia: Increments of one-half to the full induction dose may be repeated as needed ( 2.2 ).

Adjust the dose according to the patient’s anesthetic needs and whether an additional anesthetic agent is employed.

( 2.2 ) Supplement to other anesthetic agents : The regimen of a reduced dose of KETALAR supplemented with diazepam can be used to produce balanced anesthesia by combination with other agents.

( 2.2 ) 2.1 Important Dosage and Administration Information KETALAR should be administered by or under the direction of physicians experienced in the administration of general anesthetics, maintenance of a patent airway, and oxygenation and ventilation.

Continuously monitor vital signs in patients receiving KETALAR.

Emergency airway equipment must be immediately available.

Do not administer the 100 mg/mL concentration of KETALAR intravenously without proper dilution [see Dosage and Administration ( 2.3 )] .

Must be used immediately after dilution.

While some degree of airway protection may be afforded due to active laryngeal-pharyngeal reflexes, vomiting and aspiration may occur with KETALAR.

KETALAR is not recommended for use in patients who have not followed nil per os guidelines.

Due to the potential for salivation during KETALAR administration, administer an antisialagogue prior to induction of anesthesia.

In individuals with a history of chronic ketamine use for off-label indications, there have been case reports of genitourinary pain that may be related to the ketamine treatment, not the underlying condition [see Adverse Reactions ( 6 )] .

Consider cessation of ketamine if genitourinary pain continues in the setting of other genitourinary symptoms.

2.2 Recommended Dosage and Administration The KETALAR dosage must be individualized and titrated to the desired clinical effect.

If a longer duration of effect is desired, additional increments can be administered intravenously or intramuscularly to maintain anesthesia.

However, a higher total dose will result in a longer time to complete recovery.

Induction of Anesthesia Intravenous Route: The initial dose of KETALAR administered intravenously may range from 1 mg/kg to 4.5 mg/kg.

The average amount required to produce 5 to 10 minutes of surgical anesthesia within 30 seconds following injection is 2 mg/kg.

Administer KETALAR slowly (i.e., over a period of 60 seconds).

Rapid administration may result in respiratory depression and enhanced vasopressor response.

The induction dose may be administered as an intravenous infusion at a rate of 0.5 mg/kg/min.

Intramuscular Route : The initial dose of KETALAR administered intramuscularly may range from 6.5 to 13 mg/kg.

A dose of 9 to 13 mg/kg usually produces surgical anesthesia within 3 to 4 minutes following injection, with the anesthetic effect usually lasting 12 to 25 minutes.

Administer a benzodiazepine, if clinically indicated, for the prevention of neuropsychological manifestations during emergence from anesthesia.

Maintenance of Anesthesia Adjust the maintenance dose according to the patient’s anesthetic needs and whether an additional anesthetic agent is administered.

Repeat increments of one-half to the full induction dose as needed for maintenance of anesthesia.

Purposeless and tonic-clonic movements of extremities may occur during the course of ketamine anesthesia.

These movements do not imply a light plane and are not indicative of the need for additional doses of the anesthetic.

KETALAR given by slow microdrip infusion technique at a dose of 0.1 to 0.5 mg/minute will maintain general anesthesia in adult patients induced with KETALAR.

Augment KETALAR with an intravenous benzodiazepine for the prevention of neuropsychological manifestations during emergence.

Supplement to Other Anesthetic Agents KETALAR can be administered to supplement other general and local anesthetic agents.

Continuously monitor patients for changes in respiratory and hemodynamic parameters.

A reduced dose of KETALAR can be used to produce balanced anesthesia when used in combination with other anesthetic agents.

2.3 Preparation of Dilution KETALAR is a clear, colorless sterile solution.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

Discard if product is discolored or contains particulate matter.

Induction of Anesthesia : Do not intravenously inject the 100 mg/mL concentration of KETALAR without proper dilution.

Dilute KETALAR with an equal volume of either Sterile Water for injection, USP, 0.9% Sodium Chloride Injection, USP (Normal Saline), or 5% Dextrose in Water.

Use immediately after dilution.

Maintenance of Anesthesia : To prepare a dilute solution containing 1 mg of ketamine per mL, aseptically transfer 10 mL from a 50 mg per mL vial or 5 mL from a 100 mg per mL vial to 500 mL of 5% Dextrose Injection, USP or 0.9% Sodium Chloride Injection, USP (Normal Saline) and mix well.

The resultant solution will contain 1 mg of ketamine per mL.

Use immediately after dilution.

When fluid restriction is required, KETALAR can be added to a 250 mL infusion as described above to provide a KETALAR concentration of 2 mg/mL.

KETALAR 10 mg/mL vials are not recommended for dilution.