Claritin-D (loratadine 10 MG / pseudoephedrine sulfate 240 MG) 24 HR Extended Release Oral Tablet

Generic Name: LORATADINE AND PSEUDOEPHEDRINE SULFATE
Brand Name: Claritin-D 24 Hour
  • Substance Name(s):
  • PSEUDOEPHEDRINE SULFATE
  • LORATADINE

WARNINGS

Warnings Do not use if you have ever had an allergic reaction to this product or any of its ingredients if you are now taking a prescription monoamine oxidase inhibitor (MAOI) (certain drugs for depression, psychiatric, or emotional conditions, or Parkinson’s disease), or for 2 weeks after stopping the MAOI drug. If you do not know if your prescription drug contains an MAOI, ask a doctor or pharmacist before taking this product. Ask a doctor before use if you have heart disease thyroid disease high blood pressure diabetes trouble urinating due to an enlarged prostate gland liver or kidney disease. Your doctor should determine if you need a different dose. When using this product do not take more than directed. Taking more than directed may cause drowsiness. Stop use and ask a doctor if an allergic reaction to this product occurs. Seek medical help right away. symptoms do not improve within 7 days or are accompanied by a fever nervousness, dizziness or sleeplessness occurs If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

INDICATIONS AND USAGE

Uses temporarily relieves these symptoms due to hay fever or other upper respiratory allergies: sneezing itchy, watery eyes runny nose itching of the nose or throat temporarily relieves nasal congestion due to the common cold, hay fever or other upper respiratory allergies reduces swelling of nasal passages temporarily relieves sinus congestion and pressure temporarily restores freer breathing through the nose

INACTIVE INGREDIENTS

Inactive ingredients carnauba wax, dibasic calcium phosphate dihydrate, ethylcellulose, hydroxypropyl cellulose, hypromellose, magnesium stearate, pharmaceutical ink, polyethylene glycol, povidone, silicon dioxide, sucrose, titanium dioxide, white wax

PURPOSE

Active ingredient (in each tablet) Purpose Loratadine 10 mg Antihistamine Pseudoephedrine sulfate 240 mg Nasal decongestant

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Ask a doctor before use if you have heart disease thyroid disease high blood pressure diabetes trouble urinating due to an enlarged prostate gland liver or kidney disease. Your doctor should determine if you need a different dose.

DOSAGE AND ADMINISTRATION

Directions do not divide, crush, chew or dissolve the tablet adults and children 12 years and over 1 tablet daily with a full glass of water; not more than 1 tablet in 24 hours children under 12 years of age ask a doctor consumers with liver or kidney disease ask a doctor

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use.

DO NOT USE

Do not use if you have ever had an allergic reaction to this product or any of its ingredients if you are now taking a prescription monoamine oxidase inhibitor (MAOI) (certain drugs for depression, psychiatric, or emotional conditions, or Parkinson’s disease), or for 2 weeks after stopping the MAOI drug. If you do not know if your prescription drug contains an MAOI, ask a doctor or pharmacist before taking this product.

STOP USE

Stop use and ask a doctor if an allergic reaction to this product occurs. Seek medical help right away. symptoms do not improve within 7 days or are accompanied by a fever nervousness, dizziness or sleeplessness occurs

ACTIVE INGREDIENTS

Active ingredient (in each tablet) Purpose Loratadine 10 mg Antihistamine Pseudoephedrine sulfate 240 mg Nasal decongestant

Zoloft (as sertraline hydrochloride) 100 MG Oral Tablet

Generic Name: SERTRALINE HYDROCHLORIDE
Brand Name: ZOLOFT
  • Substance Name(s):
  • SERTRALINE HYDROCHLORIDE

WARNINGS

Clinical Worsening and Suicide Risk Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18–24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. Table 1 Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 14 additional cases 18–24 5 additional cases Decreases Compared to Placebo 25–64 1 fewer case ≥65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms (see PRECAUTIONS and DOSAGE AND ADMINISTRATION—Discontinuation of Treatment with ZOLOFT, for a description of the risks of discontinuation of ZOLOFT). Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for ZOLOFT should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that ZOLOFT is not approved for use in treating bipolar depression. Cases of serious sometimes fatal reactions have been reported in patients receiving ZOLOFT (sertraline hydrochloride), a selective serotonin reuptake inhibitor (SSRI), in combination with a monoamine oxidase inhibitor (MAOI). Symptoms of a drug interaction between an SSRI and an MAOI include: hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, mental status changes that include confusion, irritability, and extreme agitation progressing to delirium and coma. These reactions have also been reported in patients who have recently discontinued an SSRI and have been started on an MAOI. Some cases presented with features resembling neuroleptic malignant syndrome. Therefore, ZOLOFT should not be used in combination with an MAOI, or within 14 days of discontinuing treatment with an MAOI. Similarly, at least 14 days should be allowed after stopping ZOLOFT before starting an MAOI. The concomitant use of Zoloft with MAOIs intended to treat depression is contraindicated (see CONTRAINDICATIONS and – Potential for Interaction with Monoamine Oxidase Inhibitors). Serotonin Syndrome The development of a potentially life-threatening serotonin syndrome may occur in treatment with SNRIs and SSRIs, including Zoloft, particularly with concomitant use of serotonergic drugs (including triptans) and with drugs which impair metabolism of serotonin (including MAOIs). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). If concomitant treatment of SNRIs and SSRIs, including Zoloft, with a 5-hydroxytryptamine receptor agonist (triptan) is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see PRECAUTIONS – Drug Interactions). The concomitant use of SNRIs and SSRIs, including Zoloft, with serotonin precursors (such as tryptophan) is not recommended (see PRECAUTIONS – Drug Interactions). Neuroleptic Malignant Syndrome (NMS) or NMS-Like Reactions Rare instances of neuroleptic malignant syndrome (NMS) or NMS-like reactions have been reported when a selective serotonin reuptake inhibitor (SSRI) drug, such as sertraline, or a serotonin-norepinephrine reuptake inhibitor (SNRI) was added to antipsychotic drug therapy. Additionally, a small number of such cases have been reported with SSRI's and SNRI's in the absence of antipsychotic coadministration. These serious and sometimes fatal events can include hyperthermia, muscle rigidity, autonomic instability with possible rapid fluctuation of vital signs, and mental status changes. It is uncertain whether these cases are serotonin syndrome which, in its most severe form, can resemble neuroleptic malignant syndrome. As these events may result in potentially life-threatening conditions, patients should be monitored for the emergence of NMS-like signs and symptoms, especially if sertraline and an antipsychotic drug are taken concurrently. Treatment with sertraline and any concomitant antipsychotic agent should be discontinued immediately if such events occur and supportive symptomatic treatment should be initiated.

DRUG INTERACTIONS

Drug Interactions Potential Effects of Coadministration of Drugs Highly Bound to Plasma Proteins Because sertraline is tightly bound to plasma protein, the administration of ZOLOFT (sertraline hydrochloride) to a patient taking another drug which is tightly bound to protein (e.g., warfarin, digitoxin) may cause a shift in plasma concentrations potentially resulting in an adverse effect. Conversely, adverse effects may result from displacement of protein bound ZOLOFT by other tightly bound drugs. In a study comparing prothrombin time AUC (0–120 hr) following dosing with warfarin (0.75 mg/kg) before and after 21 days of dosing with either ZOLOFT (50–200 mg/day) or placebo, there was a mean increase in prothrombin time of 8% relative to baseline for ZOLOFT compared to a 1% decrease for placebo (p<0.02). The normalization of prothrombin time for the ZOLOFT group was delayed compared to the placebo group. The clinical significance of this change is unknown. Accordingly, prothrombin time should be carefully monitored when ZOLOFT therapy is initiated or stopped. Cimetidine In a study assessing disposition of ZOLOFT (100 mg) on the second of 8 days of cimetidine administration (800 mg daily), there were significant increases in ZOLOFT mean AUC (50%), Cmax (24%) and half-life (26%) compared to the placebo group. The clinical significance of these changes is unknown. CNS Active Drugs In a study comparing the disposition of intravenously administered diazepam before and after 21 days of dosing with either ZOLOFT (50 to 200 mg/day escalating dose) or placebo, there was a 32% decrease relative to baseline in diazepam clearance for the ZOLOFT group compared to a 19% decrease relative to baseline for the placebo group (p<0.03). There was a 23% increase in Tmax for desmethyldiazepam in the ZOLOFT group compared to a 20% decrease in the placebo group (p<0.03). The clinical significance of these changes is unknown. In a placebo-controlled trial in normal volunteers, the administration of two doses of ZOLOFT did not significantly alter steady-state lithium levels or the renal clearance of lithium. Nonetheless, at this time, it is recommended that plasma lithium levels be monitored following initiation of ZOLOFT therapy with appropriate adjustments to the lithium dose. In a controlled study of a single dose (2 mg) of pimozide, 200 mg sertraline (q.d.) co-administration to steady state was associated with a mean increase in pimozide AUC and Cmax of about 40%, but was not associated with any changes in EKG. Since the highest recommended pimozide dose (10 mg) has not been evaluated in combination with sertraline, the effect on QT interval and PK parameters at doses higher than 2 mg at this time are not known. While the mechanism of this interaction is unknown, due to the narrow therapeutic index of pimozide and due to the interaction noted at a low dose of pimozide, concomitant administration of ZOLOFT and pimozide should be contraindicated (see CONTRAINDICATIONS). Results of a placebo-controlled trial in normal volunteers suggest that chronic administration of sertraline 200 mg/day does not produce clinically important inhibition of phenytoin metabolism. Nonetheless, at this time, it is recommended that plasma phenytoin concentrations be monitored following initiation of Zoloft therapy with appropriate adjustments to the phenytoin dose, particularly in patients with multiple underlying medical conditions and/or those receiving multiple concomitant medications. The effect of Zoloft on valproate levels has not been evaluated in clinical trials. In the absence of such data, it is recommended that plasma valproate levels be monitored following initiation of Zoloft therapy with appropriate adjustments to the valproate dose. The risk of using ZOLOFT in combination with other CNS active drugs has not been systematically evaluated. Consequently, caution is advised if the concomitant administration of ZOLOFT and such drugs is required. There is limited controlled experience regarding the optimal timing of switching from other drugs effective in the treatment of major depressive disorder, obsessive-compulsive disorder, panic disorder, posttraumatic stress disorder, premenstrual dysphoric disorder and social anxiety disorder to ZOLOFT. Care and prudent medical judgment should be exercised when switching, particularly from long-acting agents. The duration of an appropriate washout period which should intervene before switching from one selective serotonin reuptake inhibitor (SSRI) to another has not been established. Monoamine Oxidase Inhibitors See CONTRAINDICATIONS and WARNINGS. Drugs Metabolized by P450 3A4 In three separate in vivo interaction studies, sertraline was co-administered with cytochrome P450 3A4 substrates, terfenadine, carbamazepine, or cisapride under steady-state conditions. The results of these studies indicated that sertraline did not increase plasma concentrations of terfenadine, carbamazepine, or cisapride. These data indicate that sertraline's extent of inhibition of P450 3A4 activity is not likely to be of clinical significance. Results of the interaction study with cisapride indicate that sertraline 200 mg (q.d.) induces the metabolism of cisapride (cisapride AUC and Cmax were reduced by about 35%). Drugs Metabolized by P450 2D6 Many drugs effective in the treatment of major depressive disorder, e.g., the SSRIs, including sertraline, and most tricyclic antidepressant drugs effective in the treatment of major depressive disorder inhibit the biochemical activity of the drug metabolizing isozyme cytochrome P450 2D6 (debrisoquin hydroxylase), and, thus, may increase the plasma concentrations of co-administered drugs that are metabolized by P450 2D6. The drugs for which this potential interaction is of greatest concern are those metabolized primarily by 2D6 and which have a narrow therapeutic index, e.g., the tricyclic antidepressant drugs effective in the treatment of major depressive disorder and the Type 1C antiarrhythmics propafenone and flecainide. The extent to which this interaction is an important clinical problem depends on the extent of the inhibition of P450 2D6 by the antidepressant and the therapeutic index of the co-administered drug. There is variability among the drugs effective in the treatment of major depressive disorder in the extent of clinically important 2D6 inhibition, and in fact sertraline at lower doses has a less prominent inhibitory effect on 2D6 than some others in the class. Nevertheless, even sertraline has the potential for clinically important 2D6 inhibition. Consequently, concomitant use of a drug metabolized by P450 2D6 with ZOLOFT may require lower doses than usually prescribed for the other drug. Furthermore, whenever ZOLOFT is withdrawn from co-therapy, an increased dose of the co-administered drug may be required (see Tricyclic Antidepressant Drugs Effective in the Treatment of Major Depressive Disorder under PRECAUTIONS). Serotonergic Drugs Based on the mechanism of action of SNRIs and SSRIs, including Zoloft, and the potential for serotonin syndrome, caution is advised when SNRIs and SSRIs, including Zoloft, are coadministered with other drugs that may affect the serotonergic neutrotransmitter systems, such as triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, or St. John's Wort (see WARNINGS-Serotonin Syndrome). The concomitant use of Zoloft with other SSRIs, SNRIs or tryptophan is not recommended (see PRECAUTIONS – Drug Interactions). Triptans There have been rare post marketing reports of serotonin syndrome with use of an SNRI or an SSRI and a triptan. If concomitant treatment of SNRIs and SSRIs, including Zoloft, with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS – Serotonin Syndrome). Sumatriptan There have been rare post marketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of a selective serotonin reuptake inhibitor (SSRI) and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline) is clinically warranted, appropriate observation of the patient is advised. Tricyclic Antidepressant Drugs Effective in the Treatment of Major Depressive Disorder (TCAs) The extent to which SSRI–TCA interactions may pose clinical problems will depend on the degree of inhibition and the pharmacokinetics of the SSRI involved. Nevertheless, caution is indicated in the co-administration of TCAs with ZOLOFT, because sertraline may inhibit TCA metabolism. Plasma TCA concentrations may need to be monitored, and the dose of TCA may need to be reduced, if a TCA is co-administered with ZOLOFT (see Drugs Metabolized by P450 2D6 under PRECAUTIONS). Hypoglycemic Drugs In a placebo-controlled trial in normal volunteers, administration of ZOLOFT for 22 days (including 200 mg/day for the final 13 days) caused a statistically significant 16% decrease from baseline in the clearance of tolbutamide following an intravenous 1000 mg dose. ZOLOFT administration did not noticeably change either the plasma protein binding or the apparent volume of distribution of tolbutamide, suggesting that the decreased clearance was due to a change in the metabolism of the drug. The clinical significance of this decrease in tolbutamide clearance is unknown. Atenolol ZOLOFT (100 mg) when administered to 10 healthy male subjects had no effect on the beta-adrenergic blocking ability of atenolol. Digoxin In a placebo-controlled trial in normal volunteers, administration of ZOLOFT for 17 days (including 200 mg/day for the last 10 days) did not change serum digoxin levels or digoxin renal clearance. Microsomal Enzyme Induction Preclinical studies have shown ZOLOFT to induce hepatic microsomal enzymes. In clinical studies, ZOLOFT was shown to induce hepatic enzymes minimally as determined by a small (5%) but statistically significant decrease in antipyrine half-life following administration of 200 mg/day for 21 days. This small change in antipyrine half-life reflects a clinically insignificant change in hepatic metabolism. Drugs That Interfere With Hemostasis (Non-selective NSAIDs, Aspirin, Warfarin, etc.) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. These studies have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs or SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Zoloft is initiated or discontinued. Electroconvulsive Therapy There are no clinical studies establishing the risks or benefits of the combined use of electroconvulsive therapy (ECT) and ZOLOFT. Alcohol Although ZOLOFT did not potentiate the cognitive and psychomotor effects of alcohol in experiments with normal subjects, the concomitant use of ZOLOFT and alcohol is not recommended.

OVERDOSAGE

Human Experience Of 1,027 cases of overdose involving sertraline hydrochloride worldwide, alone or with other drugs, there were 72 deaths (circa 1999). Among 634 overdoses in which sertraline hydrochloride was the only drug ingested, 8 resulted in fatal outcome, 75 completely recovered, and 27 patients experienced sequelae after overdosage to include alopecia, decreased libido, diarrhea, ejaculation disorder, fatigue, insomnia, somnolence and serotonin syndrome. The remaining 524 cases had an unknown outcome. The most common signs and symptoms associated with non-fatal sertraline hydrochloride overdosage were somnolence, vomiting, tachycardia, nausea, dizziness, agitation and tremor. The largest known ingestion was 13.5 grams in a patient who took sertraline hydrochloride alone and subsequently recovered. However, another patient who took 2.5 grams of sertraline hydrochloride alone experienced a fatal outcome. Other important adverse events reported with sertraline hydrochloride overdose (single or multiple drugs) include bradycardia, bundle branch block, coma, convulsions, delirium, hallucinations, hypertension, hypotension, manic reaction, pancreatitis, QT-interval prolongation, serotonin syndrome, stupor and syncope. Overdose Management Treatment should consist of those general measures employed in the management of overdosage with any antidepressant. Ensure an adequate airway, oxygenation and ventilation. Monitor cardiac rhythm and vital signs. General supportive and symptomatic measures are also recommended. Induction of emesis is not recommended. Gastric lavage with a large-bore orogastric tube with appropriate airway protection, if needed, may be indicated if performed soon after ingestion, or in symptomatic patients. Activated charcoal should be administered. Due to large volume of distribution of this drug, forced diuresis, dialysis, hemoperfusion and exchange transfusion are unlikely to be of benefit. No specific antidotes for sertraline are known. In managing overdosage, consider the possibility of multiple drug involvement. The physician should consider contacting a poison control center on the treatment of any overdose. Telephone numbers for certified poison control centers are listed in the Physicians’ Desk Reference® (PDR®).

DESCRIPTION

ZOLOFT® (sertraline hydrochloride) is a selective serotonin reuptake inhibitor (SSRI) for oral administration. It has a molecular weight of 342.7. Sertraline hydrochloride has the following chemical name: (1S-cis)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-naphthalenamine hydrochloride. The empirical formula C17H17NCl2•HCl is represented by the following structural formula: Sertraline hydrochloride is a white crystalline powder that is slightly soluble in water and isopropyl alcohol, and sparingly soluble in ethanol. ZOLOFT is supplied for oral administration as scored tablets containing sertraline hydrochloride equivalent to 25, 50 and 100 mg of sertraline and the following inactive ingredients: dibasic calcium phosphate dihydrate, D & C Yellow #10 aluminum lake (in 25 mg tablet), FD & C Blue #1 aluminum lake (in 25 mg tablet), FD & C Red #40 aluminum lake (in 25 mg tablet), FD & C Blue #2 aluminum lake (in 50 mg tablet), hydroxypropyl cellulose, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate 80, sodium starch glycolate, synthetic yellow iron oxide (in 100 mg tablet), and titanium dioxide. ZOLOFT oral concentrate is available in a multidose 60 mL bottle. Each mL of solution contains sertraline hydrochloride equivalent to 20 mg of sertraline. The solution contains the following inactive ingredients: glycerin, alcohol (12%), menthol, butylated hydroxytoluene (BHT). The oral concentrate must be diluted prior to administration (see PRECAUTIONS, Information for Patients and DOSAGE AND ADMINISTRATION). Chemical Structure

CLINICAL STUDIES

Clinical Trials Major Depressive Disorder The efficacy of ZOLOFT as a treatment for major depressive disorder was established in two placebo-controlled studies in adult outpatients meeting DSM-III criteria for major depressive disorder. Study 1 was an 8-week study with flexible dosing of ZOLOFT in a range of 50 to 200 mg/day; the mean dose for completers was 145 mg/day. Study 2 was a 6-week fixed-dose study, including ZOLOFT doses of 50, 100, and 200 mg/day. Overall, these studies demonstrated ZOLOFT to be superior to placebo on the Hamilton Depression Rating Scale and the Clinical Global Impression Severity and Improvement scales. Study 2 was not readily interpretable regarding a dose response relationship for effectiveness. Study 3 involved depressed outpatients who had responded by the end of an initial 8-week open treatment phase on ZOLOFT 50–200 mg/day. These patients (N=295) were randomized to continuation for 44 weeks on double-blind ZOLOFT 50–200 mg/day or placebo. A statistically significantly lower relapse rate was observed for patients taking ZOLOFT compared to those on placebo. The mean dose for completers was 70 mg/day. Analyses for gender effects on outcome did not suggest any differential responsiveness on the basis of sex. Obsessive-Compulsive Disorder (OCD) The effectiveness of ZOLOFT in the treatment of OCD was demonstrated in three multicenter placebo-controlled studies of adult outpatients (Studies 1–3). Patients in all studies had moderate to severe OCD (DSM-III or DSM-III-R) with mean baseline ratings on the Yale–Brown Obsessive-Compulsive Scale (YBOCS) total score ranging from 23 to 25. Study 1 was an 8-week study with flexible dosing of ZOLOFT in a range of 50 to 200 mg/day; the mean dose for completers was 186 mg/day. Patients receiving ZOLOFT experienced a mean reduction of approximately 4 points on the YBOCS total score which was significantly greater than the mean reduction of 2 points in placebo-treated patients. Study 2 was a 12-week fixed-dose study, including ZOLOFT doses of 50, 100, and 200 mg/day. Patients receiving ZOLOFT doses of 50 and 200 mg/day experienced mean reductions of approximately 6 points on the YBOCS total score which were significantly greater than the approximately 3 point reduction in placebo-treated patients. Study 3 was a 12-week study with flexible dosing of ZOLOFT in a range of 50 to 200 mg/day; the mean dose for completers was 185 mg/day. Patients receiving ZOLOFT experienced a mean reduction of approximately 7 points on the YBOCS total score which was significantly greater than the mean reduction of approximately 4 points in placebo-treated patients. Analyses for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or sex. The effectiveness of ZOLOFT for the treatment of OCD was also demonstrated in a 12-week, multicenter, placebo-controlled, parallel group study in a pediatric outpatient population (children and adolescents, ages 6–17). Patients receiving ZOLOFT in this study were initiated at doses of either 25 mg/day (children, ages 6–12) or 50 mg/day (adolescents, ages 13–17), and then titrated over the next four weeks to a maximum dose of 200 mg/day, as tolerated. The mean dose for completers was 178 mg/day. Dosing was once a day in the morning or evening. Patients in this study had moderate to severe OCD (DSM-III-R) with mean baseline ratings on the Children’s Yale-Brown Obsessive-Compulsive Scale (CYBOCS) total score of 22. Patients receiving sertraline experienced a mean reduction of approximately 7 units on the CYBOCS total score which was significantly greater than the 3 unit reduction for placebo patients. Analyses for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or sex. In a longer-term study, patients meeting DSM-III-R criteria for OCD who had responded during a 52-week single-blind trial on ZOLOFT 50–200 mg/day (n=224) were randomized to continuation of ZOLOFT or to substitution of placebo for up to 28 weeks of observation for discontinuation due to relapse or insufficient clinical response. Response during the single-blind phase was defined as a decrease in the YBOCS score of ≥ 25% compared to baseline and a CGI-I of 1 (very much improved), 2 (much improved) or 3 (minimally improved). Relapse during the double-blind phase was defined as the following conditions being met (on three consecutive visits for 1 and 2, and for visit 3 for condition 3): (1) YBOCS score increased by ≥ 5 points, to a minimum of 20, relative to baseline; (2) CGI-I increased by ≥ one point; and (3) worsening of the patient’s condition in the investigator’s judgment, to justify alternative treatment. Insufficient clinical response indicated a worsening of the patient’s condition that resulted in study discontinuation, as assessed by the investigator. Patients receiving continued ZOLOFT treatment experienced a significantly lower rate of discontinuation due to relapse or insufficient clinical response over the subsequent 28 weeks compared to those receiving placebo. This pattern was demonstrated in male and female subjects. Panic Disorder The effectiveness of ZOLOFT in the treatment of panic disorder was demonstrated in three double-blind, placebo-controlled studies (Studies 1–3) of adult outpatients who had a primary diagnosis of panic disorder (DSM-III-R), with or without agoraphobia. Studies 1 and 2 were 10-week flexible dose studies. ZOLOFT was initiated at 25 mg/day for the first week, and then patients were dosed in a range of 50–200 mg/day on the basis of clinical response and toleration. The mean ZOLOFT doses for completers to 10 weeks were 131 mg/day and 144 mg/day, respectively, for Studies 1 and 2. In these studies, ZOLOFT was shown to be significantly more effective than placebo on change from baseline in panic attack frequency and on the Clinical Global Impression Severity of Illness and Global Improvement scores. The difference between ZOLOFT and placebo in reduction from baseline in the number of full panic attacks was approximately 2 panic attacks per week in both studies. Study 3 was a 12-week fixed-dose study, including ZOLOFT doses of 50, 100, and 200 mg/day. Patients receiving ZOLOFT experienced a significantly greater reduction in panic attack frequency than patients receiving placebo. Study 3 was not readily interpretable regarding a dose response relationship for effectiveness. Subgroup analyses did not indicate that there were any differences in treatment outcomes as a function of age, race, or gender. In a longer-term study, patients meeting DSM-III-R criteria for Panic Disorder who had responded during a 52-week open trial on ZOLOFT 50–200 mg/day (n=183) were randomized to continuation of ZOLOFT or to substitution of placebo for up to 28 weeks of observation for discontinuation due to relapse or insufficient clinical response. Response during the open phase was defined as a CGI-I score of 1 (very much improved) or 2 (much improved). Relapse during the double-blind phase was defined as the following conditions being met on three consecutive visits: (1) CGI-I ≥ 3; (2) meets DSM-III-R criteria for Panic Disorder; (3) number of panic attacks greater than at baseline. Insufficient clinical response indicated a worsening of the patient’s condition that resulted in study discontinuation, as assessed by the investigator. Patients receiving continued ZOLOFT treatment experienced a significantly lower rate of discontinuation due to relapse or insufficient clinical response over the subsequent 28 weeks compared to those receiving placebo. This pattern was demonstrated in male and female subjects. Posttraumatic Stress Disorder (PTSD) The effectiveness of ZOLOFT in the treatment of PTSD was established in two multicenter placebo-controlled studies (Studies 1–2) of adult outpatients who met DSM-III-R criteria for PTSD. The mean duration of PTSD for these patients was 12 years (Studies 1 and 2 combined) and 44% of patients (169 of the 385 patients treated) had secondary depressive disorder. Studies 1 and 2 were 12-week flexible dose studies. ZOLOFT was initiated at 25 mg/day for the first week, and patients were then dosed in the range of 50–200 mg/day on the basis of clinical response and toleration. The mean ZOLOFT dose for completers was 146 mg/day and 151 mg/day, respectively for Studies 1 and 2. Study outcome was assessed by the Clinician-Administered PTSD Scale Part 2 (CAPS) which is a multi-item instrument that measures the three PTSD diagnostic symptom clusters of reexperiencing/intrusion, avoidance/numbing, and hyperarousal as well as the patient-rated Impact of Event Scale (IES) which measures intrusion and avoidance symptoms. ZOLOFT was shown to be significantly more effective than placebo on change from baseline to endpoint on the CAPS, IES and on the Clinical Global Impressions (CGI) Severity of Illness and Global Improvement scores. In two additional placebo-controlled PTSD trials, the difference in response to treatment between patients receiving ZOLOFT and patients receiving placebo was not statistically significant. One of these additional studies was conducted in patients similar to those recruited for Studies 1 and 2, while the second additional study was conducted in predominantly male veterans. As PTSD is a more common disorder in women than men, the majority (76%) of patients in these trials were women (152 and 139 women on sertraline and placebo versus 39 and 55 men on sertraline and placebo; Studies 1 and 2 combined). Post hoc exploratory analyses revealed a significant difference between ZOLOFT and placebo on the CAPS, IES and CGI in women, regardless of baseline diagnosis of comorbid major depressive disorder, but essentially no effect in the relatively smaller number of men in these studies. The clinical significance of this apparent gender interaction is unknown at this time. There was insufficient information to determine the effect of race or age on outcome. In a longer-term study, patients meeting DSM-III-R criteria for PTSD who had responded during a 24-week open trial on ZOLOFT 50–200 mg/day (n=96) were randomized to continuation of ZOLOFT or to substitution of placebo for up to 28 weeks of observation for relapse. Response during the open phase was defined as a CGI-I of 1 (very much improved) or 2 (much improved), and a decrease in the CAPS-2 score of > 30% compared to baseline. Relapse during the double-blind phase was defined as the following conditions being met on two consecutive visits: (1) CGI-I ≥ 3; (2) CAPS-2 score increased by ≥ 30% and by ≥ 15 points relative to baseline; and (3) worsening of the patient’s condition in the investigator’s judgment. Patients receiving continued ZOLOFT treatment experienced significantly lower relapse rates over the subsequent 28 weeks compared to those receiving placebo. This pattern was demonstrated in male and female subjects. Premenstrual Dysphoric Disorder (PMDD) The effectiveness of ZOLOFT for the treatment of PMDD was established in two double-blind, parallel group, placebo-controlled flexible dose trials (Studies 1 and 2) conducted over 3 menstrual cycles. Patients in Study 1 met DSM-III-R criteria for Late Luteal Phase Dysphoric Disorder (LLPDD), the clinical entity now referred to as Premenstrual Dysphoric Disorder (PMDD) in DSM-IV. Patients in Study 2 met DSM-IV criteria for PMDD. Study 1 utilized daily dosing throughout the study, while Study 2 utilized luteal phase dosing for the 2 weeks prior to the onset of menses. The mean duration of PMDD symptoms for these patients was approximately 10.5 years in both studies. Patients on oral contraceptives were excluded from these trials; therefore, the efficacy of sertraline in combination with oral contraceptives for the treatment of PMDD is unknown. Efficacy was assessed with the Daily Record of Severity of Problems (DRSP), a patient-rated instrument that mirrors the diagnostic criteria for PMDD as identified in the DSM-IV, and includes assessments for mood, physical symptoms, and other symptoms. Other efficacy assessments included the Hamilton Depression Rating Scale (HAMD-17), and the Clinical Global Impression Severity of Illness (CGI-S) and Improvement (CGI-I) scores. In Study 1, involving n=251 randomized patients, ZOLOFT treatment was initiated at 50 mg/day and administered daily throughout the menstrual cycle. In subsequent cycles, patients were dosed in the range of 50–150 mg/day on the basis of clinical response and toleration. The mean dose for completers was 102 mg/day. ZOLOFT administered daily throughout the menstrual cycle was significantly more effective than placebo on change from baseline to endpoint on the DRSP total score, the HAMD-17 total score, and the CGI-S score, as well as the CGI-I score at endpoint. In Study 2, involving n=281 randomized patients, ZOLOFT treatment was initiated at 50 mg/day in the late luteal phase (last 2 weeks) of each menstrual cycle and then discontinued at the onset of menses. In subsequent cycles, patients were dosed in the range of 50–100 mg/day in the luteal phase of each cycle, on the basis of clinical response and toleration. Patients who were titrated to 100 mg/day received 50 mg/day for the first 3 days of the cycle, then 100 mg/day for the remainder of the cycle. The mean ZOLOFT dose for completers was 74 mg/day. ZOLOFT administered in the late luteal phase of the menstrual cycle was significantly more effective than placebo on change from baseline to endpoint on the DRSP total score and the CGI-S score, as well as the CGI-I score at endpoint. There was insufficient information to determine the effect of race or age on outcome in these studies. Social Anxiety Disorder The effectiveness of ZOLOFT in the treatment of social anxiety disorder (also known as social phobia) was established in two multicenter placebo-controlled studies (Study 1 and 2) of adult outpatients who met DSM-IV criteria for social anxiety disorder. Study 1 was a 12-week, multicenter, flexible dose study comparing ZOLOFT (50–200 mg/day) to placebo, in which ZOLOFT was initiated at 25 mg/day for the first week. Study outcome was assessed by (a) the Liebowitz Social Anxiety Scale (LSAS), a 24-item clinician administered instrument that measures fear, anxiety and avoidance of social and performance situations, and by (b) the proportion of responders as defined by the Clinical Global Impression of Improvement (CGI-I) criterion of CGI-I ≤ 2 (very much or much improved). ZOLOFT was statistically significantly more effective than placebo as measured by the LSAS and the percentage of responders. Study 2 was a 20-week, multicenter, flexible dose study that compared ZOLOFT (50–200 mg/day) to placebo. Study outcome was assessed by the (a) Duke Brief Social Phobia Scale (BSPS), a multi-item clinician-rated instrument that measures fear, avoidance and physiologic response to social or performance situations, (b) the Marks Fear Questionnaire Social Phobia Subscale (FQ-SPS), a 5-item patient-rated instrument that measures change in the severity of phobic avoidance and distress, and (c) the CGI-I responder criterion of ≤ 2. ZOLOFT was shown to be statistically significantly more effective than placebo as measured by the BSPS total score and fear, avoidance and physiologic factor scores, as well as the FQ-SPS total score, and to have significantly more responders than placebo as defined by the CGI-I. Subgroup analyses did not suggest differences in treatment outcome on the basis of gender. There was insufficient information to determine the effect of race or age on outcome. In a longer-term study, patients meeting DSM-IV criteria for social anxiety disorder who had responded while assigned to ZOLOFT (CGI-I of 1 or 2) during a 20-week placebo-controlled trial on ZOLOFT 50–200 mg/day were randomized to continuation of ZOLOFT or to substitution of placebo for up to 24 weeks of observation for relapse. Relapse was defined as ≥ 2 point increase in the Clinical Global Impression – Severity of Illness (CGI-S) score compared to baseline or study discontinuation due to lack of efficacy. Patients receiving ZOLOFT continuation treatment experienced a statistically significantly lower relapse rate over this 24-week study than patients randomized to placebo substitution.

HOW SUPPLIED

ZOLOFT (sertraline hydrochloride) capsular-shaped scored tablets, containing sertraline hydrochloride equivalent to 25, 50 and 100 mg of sertraline, are packaged in bottles. ZOLOFT 25 mg Tablets: light green film coated tablets engraved on one side with ZOLOFT and on the other side scored and engraved with 25 mg. NDC 0049-4960-30 Bottles of 30 NDC 0049-4960-50 Bottles of 50 ZOLOFT 50 mg Tablets: light blue film coated tablets engraved on one side with ZOLOFT and on the other side scored and engraved with 50 mg. NDC 0049-4900-30 Bottles of 30 NDC 0049-4900-66 Bottles of 100 NDC 0049-4900-73 Bottles of 500 NDC 0049-4900-94 Bottles of 5000 NDC 0049-4900-41 Unit Dose Packages of 100 ZOLOFT 100 mg Tablets: light yellow film coated tablets engraved on one side with ZOLOFT and on the other side scored and engraved with 100 mg. NDC 0049-4910-30 Bottles of 30 NDC 0049-4910-66 Bottles of 100 NDC 0049-4910-73 Bottles of 500 NDC 0049-4910-94 Bottles of 5000 NDC 0049-4910-41 Unit Dose Packages of 100 Store at 25°C (77°F); excursions permitted to 15° – 30°C (59° – 86°F)[see USP Controlled Room Temperature]. ZOLOFT Oral Concentrate: ZOLOFT Oral Concentrate is a clear, colorless solution with a menthol scent containing sertraline hydrochloride equivalent to 20 mg of sertraline per mL and 12% alcohol. It is supplied as a 60 mL bottle with an accompanying calibrated dropper. NDC 0049-4940-23 Bottles of 60 mL Store at 25°C (77°F); excursions permitted to 15° – 30°C (59° – 86°F) [see USP Controlled Room Temperature]. Logo

GERIATRIC USE

Geriatric Use U.S. geriatric clinical studies of ZOLOFT in major depressive disorder included 663 ZOLOFT-treated subjects ≥ 65 years of age, of those, 180 were ≥ 75 years of age. No overall differences in the pattern of adverse reactions were observed in the geriatric clinical trial subjects relative to those reported in younger subjects (see ADVERSE REACTIONS), and other reported experience has not identified differences in safety patterns between the elderly and younger subjects. As with all medications, greater sensitivity of some older individuals cannot be ruled out. There were 947 subjects in placebo-controlled geriatric clinical studies of ZOLOFT in major depressive disorder. No overall differences in the pattern of efficacy were observed in the geriatric clinical trial subjects relative to those reported in younger subjects. Other Adverse Events in Geriatric Patients. In 354 geriatric subjects treated with ZOLOFT in placebo-controlled trials, the overall profile of adverse events was generally similar to that shown in Tables 2 and 3. Urinary tract infection was the only adverse event not appearing in Tables 2 and 3 and reported at an incidence of at least 2% and at a rate greater than placebo in placebo-controlled trials. SSRIS and SNRIs, including ZOLOFT, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event (see PRECAUTIONS, Hyponatremia).

INDICATIONS AND USAGE

Major Depressive Disorder ZOLOFT (sertraline hydrochloride) is indicated for the treatment of major depressive disorder in adults. The efficacy of ZOLOFT in the treatment of a major depressive episode was established in six to eight week controlled trials of adult outpatients whose diagnoses corresponded most closely to the DSM-III category of major depressive disorder (see Clinical Trials under CLINICAL PHARMACOLOGY). A major depressive episode implies a prominent and relatively persistent depressed or dysphoric mood that usually interferes with daily functioning (nearly every day for at least 2 weeks); it should include at least 4 of the following 8 symptoms: change in appetite, change in sleep, psychomotor agitation or retardation, loss of interest in usual activities or decrease in sexual drive, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, and a suicide attempt or suicidal ideation. The antidepressant action of ZOLOFT in hospitalized depressed patients has not been adequately studied. The efficacy of ZOLOFT in maintaining an antidepressant response for up to 44 weeks following 8 weeks of open-label acute treatment (52 weeks total) was demonstrated in a placebo-controlled trial. The usefulness of the drug in patients receiving ZOLOFT for extended periods should be reevaluated periodically (see Clinical Trials under CLINICAL PHARMACOLOGY). Obsessive-Compulsive Disorder ZOLOFT is indicated for the treatment of obsessions and compulsions in patients with obsessive-compulsive disorder (OCD), as defined in the DSM-III-R; i.e., the obsessions or compulsions cause marked distress, are time-consuming, or significantly interfere with social or occupational functioning. The efficacy of ZOLOFT was established in 12-week trials with obsessive-compulsive outpatients having diagnoses of obsessive-compulsive disorder as defined according to DSM-III or DSM-III-R criteria (seeClinical Trials under CLINICAL PHARMACOLOGY). Obsessive-compulsive disorder is characterized by recurrent and persistent ideas, thoughts, impulses, or images (obsessions) that are ego-dystonic and/or repetitive, purposeful, and intentional behaviors (compulsions) that are recognized by the person as excessive or unreasonable. The efficacy of ZOLOFT in maintaining a response, in patients with OCD who responded during a 52-week treatment phase while taking ZOLOFT and were then observed for relapse during a period of up to 28 weeks, was demonstrated in a placebo-controlled trial (see Clinical Trials under CLINICAL PHARMACOLOGY). Nevertheless, the physician who elects to use ZOLOFT for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Panic Disorder ZOLOFT is indicated for the treatment of panic disorder in adults, with or without agoraphobia, as defined in DSM-IV. Panic disorder is characterized by the occurrence of unexpected panic attacks and associated concern about having additional attacks, worry about the implications or consequences of the attacks, and/or a significant change in behavior related to the attacks. The efficacy of ZOLOFT was established in three 10–12 week trials in adult panic disorder patients whose diagnoses corresponded to the DSM-III-R category of panic disorder (see Clinical Trials under CLINICAL PHARMACOLOGY). Panic disorder (DSM-IV) is characterized by recurrent unexpected panic attacks, i.e., a discrete period of intense fear or discomfort in which four (or more) of the following symptoms develop abruptly and reach a peak within 10 minutes: (1) palpitations, pounding heart, or accelerated heart rate; (2) sweating; (3) trembling or shaking; (4) sensations of shortness of breath or smothering; (5) feeling of choking; (6) chest pain or discomfort; (7) nausea or abdominal distress; (8) feeling dizzy, unsteady, lightheaded, or faint; (9) derealization (feelings of unreality) or depersonalization (being detached from oneself); (10) fear of losing control; (11) fear of dying; (12) paresthesias (numbness or tingling sensations); (13) chills or hot flushes. The efficacy of ZOLOFT in maintaining a response, in adult patients with panic disorder who responded during a 52-week treatment phase while taking ZOLOFT and were then observed for relapse during a period of up to 28 weeks, was demonstrated in a placebo-controlled trial (see Clinical Trials under CLINICAL PHARMACOLOGY). Nevertheless, the physician who elects to use ZOLOFT for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Posttraumatic Stress Disorder (PTSD) ZOLOFT (sertraline hydrochloride) is indicated for the treatment of posttraumatic stress disorder in adults. The efficacy of ZOLOFT in the treatment of PTSD was established in two 12-week placebo-controlled trials of adult outpatients whose diagnosis met criteria for the DSM-III-R category of PTSD (see Clinical Trials under CLINICAL PHARMACOLOGY). PTSD, as defined by DSM-III-R/IV, requires exposure to a traumatic event that involved actual or threatened death or serious injury, or threat to the physical integrity of self or others, and a response which involves intense fear, helplessness, or horror. Symptoms that occur as a result of exposure to the traumatic event include reexperiencing of the event in the form of intrusive thoughts, flashbacks or dreams, and intense psychological distress and physiological reactivity on exposure to cues to the event; avoidance of situations reminiscent of the traumatic event, inability to recall details of the event, and/or numbing of general responsiveness manifested as diminished interest in significant activities, estrangement from others, restricted range of affect, or sense of foreshortened future; and symptoms of autonomic arousal including hypervigilance, exaggerated startle response, sleep disturbance, impaired concentration, and irritability or outbursts of anger. A PTSD diagnosis requires that the symptoms are present for at least a month and that they cause clinically significant distress or impairment in social, occupational, or other important areas of functioning. The efficacy of ZOLOFT in maintaining a response in adult patients with PTSD for up to 28 weeks following 24 weeks of open-label treatment was demonstrated in a placebo-controlled trial. Nevertheless, the physician who elects to use ZOLOFT for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Premenstrual Dysphoric Disorder (PMDD) ZOLOFT is indicated for the treatment of premenstrual dysphoric disorder (PMDD) in adults. The efficacy of ZOLOFT in the treatment of PMDD was established in 2 placebo-controlled trials of female adult outpatients treated for 3 menstrual cycles who met criteria for the DSM-III-R/IV category of PMDD (see Clinical Trials under CLINICAL PHARMACOLOGY). The essential features of PMDD include markedly depressed mood, anxiety or tension, affective lability, and persistent anger or irritability. Other features include decreased interest in activities, difficulty concentrating, lack of energy, change in appetite or sleep, and feeling out of control. Physical symptoms associated with PMDD include breast tenderness, headache, joint and muscle pain, bloating and weight gain. These symptoms occur regularly during the luteal phase and remit within a few days following onset of menses; the disturbance markedly interferes with work or school or with usual social activities and relationships with others. In making the diagnosis, care should be taken to rule out other cyclical mood disorders that may be exacerbated by treatment with an antidepressant. The effectiveness of ZOLOFT in long-term use, that is, for more than 3 menstrual cycles, has not been systematically evaluated in controlled trials. Therefore, the physician who elects to use ZOLOFT for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Social Anxiety Disorder ZOLOFT (sertraline hydrochloride) is indicated for the treatment of social anxiety disorder, also known as social phobia in adults. The efficacy of ZOLOFT in the treatment of social anxiety disorder was established in two placebo-controlled trials of adult outpatients with a diagnosis of social anxiety disorder as defined by DSM-IV criteria (see Clinical Trials under CLINICAL PHARMACOLOGY). Social anxiety disorder, as defined by DSM-IV, is characterized by marked and persistent fear of social or performance situations involving exposure to unfamiliar people or possible scrutiny by others and by fears of acting in a humiliating or embarrassing way. Exposure to the feared social situation almost always provokes anxiety and feared social or performance situations are avoided or else are endured with intense anxiety or distress. In addition, patients recognize that the fear is excessive or unreasonable and the avoidance and anticipatory anxiety of the feared situation is associated with functional impairment or marked distress. The efficacy of ZOLOFT in maintaining a response in adult patients with social anxiety disorder for up to 24 weeks following 20 weeks of ZOLOFT treatment was demonstrated in a placebo-controlled trial. Physicians who prescribe ZOLOFT for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see Clinical Trials under CLINICAL PHARMACOLOGY).

PEDIATRIC USE

Pediatric Use The efficacy of ZOLOFT for the treatment of obsessive-compulsive disorder was demonstrated in a 12-week, multicenter, placebo-controlled study with 187 outpatients ages 6–17 (see Clinical Trials under CLINICAL PHARMACOLOGY). Safety and effectiveness in the pediatric population other than pediatric patients with OCD have not been established (see BOX WARNING and WARNINGS-Clinical Worsening and Suicide Risk). Two placebo controlled trials (n=373) in pediatric patients with MDD have been conducted with Zoloft, and the data were not sufficient to support a claim for use in pediatric patients. Anyone considering the use of Zoloft in a child or adolescent must balance the potential risks with the clinical need. The safety of ZOLOFT use in children and adolescents with OCD, ages 6–18, was evaluated in a 12-week, multicenter, placebo-controlled study with 187 outpatients, ages 6–17, and in a flexible dose, 52 week open extension study of 137 patients, ages 6–18, who had completed the initial 12-week, double-blind, placebo-controlled study. ZOLOFT was administered at doses of either 25 mg/day (children, ages 6–12) or 50 mg/day (adolescents, ages 13–18) and then titrated in weekly 25 mg/day or 50 mg/day increments, respectively, to a maximum dose of 200 mg/day based upon clinical response. The mean dose for completers was 157 mg/day. In the acute 12 week pediatric study and in the 52 week study, ZOLOFT had an adverse event profile generally similar to that observed in adults. Sertraline pharmacokinetics were evaluated in 61 pediatric patients between 6 and 17 years of age with major depressive disorder or OCD and revealed similar drug exposures to those of adults when plasma concentration was adjusted for weight (see Pharmacokinetics under CLINICAL PHARMACOLOGY). Approximately 600 patients with major depressive disorder or OCD between 6 and 17 years of age have received ZOLOFT in clinical trials, both controlled and uncontrolled. The adverse event profile observed in these patients was generally similar to that observed in adult studies with ZOLOFT (see ADVERSE REACTIONS). As with other SSRIs, decreased appetite and weight loss have been observed in association with the use of ZOLOFT. In a pooled analysis of two 10-week, double-blind, placebo-controlled, flexible dose (50–200 mg) outpatient trials for major depressive disorder (n=373), there was a difference in weight change between sertraline and placebo of roughly 1 kilogram, for both children (ages 6–11) and adolescents (ages 12–17), in both cases representing a slight weight loss for sertraline compared to a slight gain for placebo. At baseline the mean weight for children was 39.0 kg for sertraline and 38.5 kg for placebo. At baseline the mean weight for adolescents was 61.4 kg for sertraline and 62.5 kg for placebo. There was a bigger difference between sertraline and placebo in the proportion of outliers for clinically important weight loss in children than in adolescents. For children, about 7% had a weight loss > 7% of body weight compared to none of the placebo patients; for adolescents, about 2% had a weight loss > 7% of body weight compared to about 1% of the placebo patients. A subset of these patients who completed the randomized controlled trials (sertraline n=99, placebo n=122) were continued into a 24-week, flexible-dose, open-label, extension study. A mean weight loss of approximately 0.5 kg was seen during the first eight weeks of treatment for subjects with first exposure to sertraline during the open-label extension study, similar to mean weight loss observed among sertraline treated subjects during the first eight weeks of the randomized controlled trials. The subjects continuing in the open label study began gaining weight compared to baseline by week 12 of sertraline treatment. Those subjects who completed 34 weeks of sertraline treatment (10 weeks in a placebo controlled trial + 24 weeks open label, n=68) had weight gain that was similar to that expected using data from age-adjusted peers. Regular monitoring of weight and growth is recommended if treatment of a pediatric patient with an SSRI is to be continued long term. Safety and effectiveness in pediatric patients below the age of 6 have not been established. The risks, if any, that may be associated with ZOLOFT’s use beyond 1 year in children and adolescents with OCD or major depressive disorder have not been systematically assessed. The prescriber should be mindful that the evidence relied upon to conclude that sertraline is safe for use in children and adolescents derives from clinical studies that were 10 to 52 weeks in duration and from the extrapolation of experience gained with adult patients. In particular, there are no studies that directly evaluate the effects of long-term sertraline use on the growth, development, and maturation of children and adolescents. Although there is no affirmative finding to suggest that sertraline possesses a capacity to adversely affect growth, development or maturation, the absence of such findings is not compelling evidence of the absence of the potential of sertraline to have adverse effects in chronic use (see WARNINGS – Clinical Worsening and Suicide Risk ).

PREGNANCY

Pregnancy–Pregnancy Category C Reproduction studies have been performed in rats and rabbits at doses up to 80 mg/kg/day and 40 mg/kg/day, respectively. These doses correspond to approximately 4 times the maximum recommended human dose (MRHD) on a mg/m2 basis. There was no evidence of teratogenicity at any dose level. When pregnant rats and rabbits were given sertraline during the period of organogenesis, delayed ossification was observed in fetuses at doses of 10 mg/kg (0.5 times the MRHD on a mg/m2 basis) in rats and 40 mg/kg (4 times the MRHD on a mg/m2 basis) in rabbits. When female rats received sertraline during the last third of gestation and throughout lactation, there was an increase in the number of stillborn pups and in the number of pups dying during the first 4 days after birth. Pup body weights were also decreased during the first four days after birth. These effects occurred at a dose of 20 mg/kg (1 times the MRHD on a mg/m2 basis). The no effect dose for rat pup mortality was 10 mg/kg (0.5 times the MRHD on a mg/m2 basis). The decrease in pup survival was shown to be due to in utero exposure to sertraline. The clinical significance of these effects is unknown. There are no adequate and well-controlled studies in pregnant women. ZOLOFT (sertraline hydrochloride) should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

Nursing Mothers It is not known whether, and if so in what amount, sertraline or its metabolites are excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when ZOLOFT is administered to a nursing woman.

BOXED WARNING

Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Zoloft or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Zoloft is not approved for use in pediatric patients except for patients with obsessive compulsive disorder (OCD). (See Warnings: Clinical Worsening and Suicide Risk, Precautions: Information for Patients, and Precautions: Pediatric Use)

INFORMATION FOR PATIENTS

Information for Patients Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with Zoloft and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions: is available for ZOLOFT. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking ZOLOFT. Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication. Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of SNRIs and SSRIs, including Zoloft, and triptans, tramadol, or other serotonergic agents. Patients should be told that although ZOLOFT has not been shown to impair the ability of normal subjects to perform tasks requiring complex motor and mental skills in laboratory experiments, drugs that act upon the central nervous system may affect some individuals adversely. Therefore, patients should be told that until they learn how they respond to ZOLOFT they should be careful doing activities when they need to be alert, such as driving a car or operating machinery. Patients should be cautioned about the concomitant use of Zoloft and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents has been associated with an increased risk of bleeding. Patients should be told that although ZOLOFT has not been shown in experiments with normal subjects to increase the mental and motor skill impairments caused by alcohol, the concomitant use of ZOLOFT and alcohol is not advised. Patients should be told that while no adverse interaction of ZOLOFT with over-the-counter (OTC) drug products is known to occur, the potential for interaction exists. Thus, the use of any OTC product should be initiated cautiously according to the directions of use given for the OTC product. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. Patients should be advised to notify their physician if they are breast feeding an infant. ZOLOFT oral concentrate is contraindicated with ANTABUSE (disulfiram) due to the alcohol content of the concentrate. ZOLOFT Oral Concentrate contains 20 mg/mL of sertraline (as the hydrochloride) as the active ingredient and 12% alcohol. ZOLOFT Oral Concentrate must be diluted before use. Just before taking, use the dropper provided to remove the required amount of ZOLOFT Oral Concentrate and mix with 4 oz (1/2 cup) of water, ginger ale, lemon/lime soda, lemonade or orange juice ONLY. Do not mix ZOLOFT Oral Concentrate with anything other than the liquids listed. The dose should be taken immediately after mixing. Do not mix in advance. At times, a slight haze may appear after mixing; this is normal. Note that caution should be exercised for persons with latex sensitivity, as the dropper dispenser contains dry natural rubber.

DOSAGE AND ADMINISTRATION

Initial Treatment Dosage for Adults Major Depressive Disorder and Obsessive-Compulsive Disorder ZOLOFT treatment should be administered at a dose of 50 mg once daily. Panic Disorder, Posttraumatic Stress Disorder and Social Anxiety Disorder ZOLOFT treatment should be initiated with a dose of 25 mg once daily. After one week, the dose should be increased to 50 mg once daily. While a relationship between dose and effect has not been established for major depressive disorder, OCD, panic disorder, PTSD or social anxiety disorder, patients were dosed in a range of 50–200 mg/day in the clinical trials demonstrating the effectiveness of ZOLOFT for the treatment of these indications. Consequently, a dose of 50 mg, administered once daily, is recommended as the initial therapeutic dose. Patients not responding to a 50 mg dose may benefit from dose increases up to a maximum of 200 mg/day. Given the 24 hour elimination half-life of ZOLOFT, dose changes should not occur at intervals of less than 1 week. Premenstrual Dysphoric Disorder ZOLOFT treatment should be initiated with a dose of 50 mg/day, either daily throughout the menstrual cycle or limited to the luteal phase of the menstrual cycle, depending on physician assessment. While a relationship between dose and effect has not been established for PMDD, patients were dosed in the range of 50–150 mg/day with dose increases at the onset of each new menstrual cycle (see Clinical Trials under CLINICAL PHARMACOLOGY). Patients not responding to a 50 mg/day dose may benefit from dose increases (at 50 mg increments/menstrual cycle) up to 150 mg/day when dosing daily throughout the menstrual cycle, or 100 mg/day when dosing during the luteal phase of the menstrual cycle. If a 100 mg/day dose has been established with luteal phase dosing, a 50 mg/day titration step for three days should be utilized at the beginning of each luteal phase dosing period. ZOLOFT should be administered once daily, either in the morning or evening. Dosage for Pediatric Population (Children and Adolescents) Obsessive-Compulsive Disorder ZOLOFT treatment should be initiated with a dose of 25 mg once daily in children (ages 6–12) and at a dose of 50 mg once daily in adolescents (ages 13–17). While a relationship between dose and effect has not been established for OCD, patients were dosed in a range of 25–200 mg/day in the clinical trials demonstrating the effectiveness of ZOLOFT for pediatric patients (6–17 years) with OCD. Patients not responding to an initial dose of 25 or 50 mg/day may benefit from dose increases up to a maximum of 200 mg/day. For children with OCD, their generally lower body weights compared to adults should be taken into consideration in advancing the dose, in order to avoid excess dosing. Given the 24 hour elimination half-life of ZOLOFT, dose changes should not occur at intervals of less than 1 week. ZOLOFT should be administered once daily, either in the morning or evening. Maintenance/Continuation/Extended Treatment Major Depressive Disorder It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacologic therapy beyond response to the acute episode. Systematic evaluation of ZOLOFT has demonstrated that its antidepressant efficacy is maintained for periods of up to 44 weeks following 8 weeks of initial treatment at a dose of 50–200 mg/day (mean dose of 70 mg/day) (see Clinical Trials under CLINICAL PHARMACOLOGY). It is not known whether the dose of ZOLOFT needed for maintenance treatment is identical to the dose needed to achieve an initial response. Patients should be periodically reassessed to determine the need for maintenance treatment. Posttraumatic Stress Disorder It is generally agreed that PTSD requires several months or longer of sustained pharmacological therapy beyond response to initial treatment. Systematic evaluation of ZOLOFT has demonstrated that its efficacy in PTSD is maintained for periods of up to 28 weeks following 24 weeks of treatment at a dose of 50–200 mg/day (see Clinical Trials under CLINICAL PHARMACOLOGY). It is not known whether the dose of ZOLOFT needed for maintenance treatment is identical to the dose needed to achieve an initial response. Patients should be periodically reassessed to determine the need for maintenance treatment. Social Anxiety Disorder Social anxiety disorder is a chronic condition that may require several months or longer of sustained pharmacological therapy beyond response to initial treatment. Systematic evaluation of ZOLOFT has demonstrated that its efficacy in social anxiety disorder is maintained for periods of up to 24 weeks following 20 weeks of treatment at a dose of 50–200 mg/day (see Clinical Trials under CLINICAL PHARMACOLOGY). Dosage adjustments should be made to maintain patients on the lowest effective dose and patients should be periodically reassessed to determine the need for long-term treatment. Obsessive-Compulsive Disorder and Panic Disorder It is generally agreed that OCD and Panic Disorder require several months or longer of sustained pharmacological therapy beyond response to initial treatment. Systematic evaluation of continuing ZOLOFT for periods of up to 28 weeks in patients with OCD and Panic Disorder who have responded while taking ZOLOFT during initial treatment phases of 24 to 52 weeks of treatment at a dose range of 50–200 mg/day has demonstrated a benefit of such maintenance treatment (see Clinical Trials under CLINICAL PHARMACOLOGY). It is not known whether the dose of ZOLOFT needed for maintenance treatment is identical to the dose needed to achieve an initial response. Nevertheless, patients should be periodically reassessed to determine the need for maintenance treatment. Premenstrual Dysphoric Disorder The effectiveness of ZOLOFT in long-term use, that is, for more than 3 menstrual cycles, has not been systematically evaluated in controlled trials. However, as women commonly report that symptoms worsen with age until relieved by the onset of menopause, it is reasonable to consider continuation of a responding patient. Dosage adjustments, which may include changes between dosage regimens (e.g., daily throughout the menstrual cycle versus during the luteal phase of the menstrual cycle), may be needed to maintain the patient on the lowest effective dosage and patients should be periodically reassessed to determine the need for continued treatment. Switching Patients to or from a Monoamine Oxidase Inhibitor At least 14 days should elapse between discontinuation of an MAOI and initiation of therapy with ZOLOFT. In addition, at least 14 days should be allowed after stopping ZOLOFT before starting an MAOI (see CONTRAINDICATIONS and WARNINGS). Special Populations Dosage for Hepatically Impaired Patients The use of sertraline in patients with liver disease should be approached with caution. The effects of sertraline in patients with moderate and severe hepatic impairment have not been studied. If sertraline is administered to patients with liver impairment, a lower or less frequent dose should be used (see CLINICAL PHARMACOLOGY and PRECAUTIONS). Treatment of Pregnant Women During the Third Trimester Neonates exposed to ZOLOFT and other SSRIs or SNRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see PRECAUTIONS). When treating pregnant women with ZOLOFT during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. The physician may consider tapering ZOLOFT in the third trimester. Discontinuation of Treatment with Zoloft Symptoms associated with discontinuation of ZOLOFT and other SSRIs and SNRIs, have been reported (see PRECAUTIONS). Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. ZOLOFT Oral Concentrate ZOLOFT Oral Concentrate contains 20 mg/mL of sertraline (as the hydrochloride) as the active ingredient and 12% alcohol. ZOLOFT Oral Concentrate must be diluted before use. Just before taking, use the dropper provided to remove the required amount of ZOLOFT Oral Concentrate and mix with 4 oz (1/2 cup) of water, ginger ale, lemon/lime soda, lemonade or orange juice ONLY. Do not mix ZOLOFT Oral Concentrate with anything other than the liquids listed. The dose should be taken immediately after mixing. Do not mix in advance. At times, a slight haze may appear after mixing; this is normal. Note that caution should be exercised for patients with latex sensitivity, as the dropper dispenser contains dry natural rubber. ZOLOFT Oral Concentrate is contraindicated with ANTABUSE (disulfiram) due to the alcohol content of the concentrate.

glimepiride 1 MG Oral Tablet

Generic Name: GLIMEPIRIDE
Brand Name: Glimepiride
  • Substance Name(s):
  • GLIMEPIRIDE

DRUG INTERACTIONS

7 Certain medications may affect glucose metabolism, requiring glimepiride tablets dose adjustment and close monitoring of blood glucose ( 7.1). Miconazole: Severe hypoglycemia can occur when glimepiride and oral miconazole are used concomitantly. ( 7.2). Cytochrome P450 2C9 interactions: Inhibitors and inducers of cytochrome P450 2C9 may affect glycemic control by altering glimepiride plasma concentrations ( 7.3). Colesevelam: Coadministration may reduce glimepiride absorption. Glimepiride should be administered at least 4 hours prior to colesevelam ( 2.1, 7.4). 7.1 Drugs Affecting Glucose Metabolism A number of medications affect glucose metabolism and may require glimepiride tablets dose adjustment and particularly close monitoring for hypoglycemia or worsening glycemic control. The following are examples of medications that may increase the glucose-lowering effect of sulfonylureas including glimepiride, increasing the susceptibility to and/or intensity of hypoglycemia: oral anti-diabetic medications, pramlintide acetate, insulin, angiotensin converting enzyme (ACE) inhibitors, H 2 receptor antagonists, fibrates, propoxyphene, pentoxifylline, somatostatin analogs, anabolic steroids and androgens, cyclophosphamide, phenyramidol, guanethidine, fluconazole, sulfinpyrazone, tetracyclines, clarithromycin, disopyramide, quinolones, and those drugs that are highly protein-bound, such as fluoxetine, nonsteroidal anti-inflammatory drugs, salicylates, sulfonamides, chloramphenicol, coumarins, probenecid and monoamine oxidase inhibitors. When these medications are administered to a patient receiving glimepiride, monitor the patient closely for hypoglycemia. When these medications are withdrawn from a patient receiving glimepiride, monitor the patient closely for worsening glycemic control. The following are examples of medications that may reduce the glucose-lowering effect of sulfonylureas including glimepiride, leading to worsening glycemic control: danazol, glucagon, somatropin, protease inhibitors, atypical antipsychotic medications (e.g., olanzapine and clozapine), barbiturates, diazoxide, laxatives, rifampin, thiazides and other diuretics, corticosteroids, phenothiazines, thyroid hormones, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics (e.g., epinephrine, albuterol, terbutaline), and isoniazid. When these medications are administered to a patient receiving glimepiride, monitor the patient closely for worsening glycemic control. When these medications are withdrawn from a patient receiving glimepiride, monitor the patient closely for hypoglycemia. Beta-blockers, clonidine, and reserpine may lead to either potentiation or weakening of glimepiride’s glucose-lowering effect. Both acute and chronic alcohol intake may potentiate or weaken the glucose-lowering action of glimepiride in an unpredictable fashion. The signs of hypoglycemia may be reduced or absent in patients taking sympatholytic drugs such as beta-blockers, clonidine, guanethidine, and reserpine. 7.2 Miconazole A potential interaction between oral miconazole and sulfonylureas leading to severe hypoglycemia has been reported. Whether this interaction also occurs with other dosage forms of miconazole is not known. 7.3 Cytochrome P450 2C9 Interactions There may be an interaction between glimepiride and inhibitors (e.g., fluconazole) and inducers (e.g., rifampin) of cytochrome P450 2C9. Fluconazole may inhibit the metabolism of glimepiride, causing increased plasma concentrations of glimepiride which may lead to hypoglycemia. Rifampin may induce the metabolism of glimepiride, causing decreased plasma concentrations of glimepiride which may lead to worsening glycemic control. 7.4 Concomitant Administration of Colesevelam Colesevelam can reduce the maximum plasma concentration and total exposure of glimepiride when the two are coadministered. However, absorption is not reduced when glimepiride is administered 4 hours prior to colesevelam. Therefore, glimepiride should be administered at least 4 hours prior to colesevelam.

OVERDOSAGE

10 An overdosage of glimepiride tablets, as with other sulfonylureas, can produce severe hypoglycemia. Mild episodes of hypoglycemia can be treated with oral glucose. Severe hypoglycemic reactions constitute medical emergencies requiring immediate treatment. Severe hypoglycemia with coma, seizure, or neurological impairment can be treated with glucagon or intravenous glucose. Continued observation and additional carbohydrate intake may be necessary because hypoglycemia may recur after apparent clinical recovery [see Warnings and Precautions ( 5.1) ].

DESCRIPTION

11 Glimepiride tablets USP, are an oral sulfonylurea that contains the active ingredient glimepiride USP. Chemically, glimepiride USP is identified as 1-[[p-[2-(3-ethyl-4-methyl-2-oxo-3-pyrroline-1-carboxamido) ethyl]phenyl]sulfonyl]-3-(trans-4-methylcyclohexyl)urea (C 24H 34N 4O 5S) with a molecular weight of 490.62. Glimepiride USP is a white to almost white, soluble in dimethyl formamide, sparingly soluble in methylene chloride, practically insoluble in water. The structural formula is: Glimepiride tablets meets USP drug release test 2. Glimepiride tablets USP, contain the active ingredient glimepiride USP and the following inactive ingredients: lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone and sodium starch glycolate. In addition, glimepiride 1 mg tablets contain ferric oxide red, glimepiride 2 mg tablets contain lake blend green (contains D&C yellow # 10 aluminium lake and FD&C blue #1/ brilliant blue FCF aluminium lake) and glimepiride 4 mg tablets contain lake blend blue (contains D&C yellow # 10 aluminium lake and FD&C blue # 1/ brilliant blue FCF aluminium lake). Glimepiride structural formula

CLINICAL STUDIES

14 14.1 Monotherapy A total of 304 patients with type 2 diabetes already treated with sulfonylurea therapy participated in a 14-week, multicenter, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of glimepiride monotherapy. Patients discontinued their sulfonylurea therapy then entered a 3-week placebo washout period followed by randomization into 1 of 4 treatment groups: placebo (n=74), glimepiride tablets 1 mg (n=78), glimepiride tablets 4 mg (n=76) and glimepiride tablets 8 mg (n=76). All patients randomized to glimepiride tablets started 1 mg daily. Patients randomized to glimepiride tablets 4 mg or 8 mg had blinded, forced titration of the glimepiride tablets dose at weekly intervals, first to 4 mg and then to 8 mg, as long as the dose was tolerated, until the randomized dose was reached. Patients randomized to the 4 mg dose reached the assigned dose at Week 2. Patients randomized to the 8 mg dose reached the assigned dose at Week 3. Once the randomized dose level was reached, patients were to be maintained at that dose until Week 14. Approximately 66% of the placebo-treated patients completed the trial compared to 81% of patients treated with glimepiride 1 mg and 92% of patients treated with glimepiride 4 mg or 8 mg. Compared to placebo, treatment with glimepiride tablets 1 mg, 4 mg and 8 mg daily provided statistically significant improvements in HbA 1C compared to placebo (Table 3). Table 3. 14-week Monotherapy Trial Comparing Glimepiride to Placebo in Patients Previously Treated With Sulfonylurea Therapy a Placebo (N=74) Glimepiride 1 mg (N=78) 4 mg (N=76) 8 mg (N=76) HbA 1C (%) n=59 n=65 n=65 n=68 Baseline (mean) 8 7.9 7.9 8 Change from Baseline (adjusted mean b) 1.5 0.3 -0.3 -0.4 Difference from Placebo (adjusted mean b) 95% confidence interval -1.2* (-1.5, -0.8) -1.8* (-2.1, -1.4) -1.8* (-2.2, -1.5) Mean Baseline Weight (kg) n=67 n=76 n=75 n=73 Baseline (mean) 85.7 84.3 86.1 85.5 Change from Baseline (adjusted mean b) -2.3 -0.2 0.5 1 Difference from Placebo (adjusted mean b) 95% confidence interval 2* (1.4, 2.7) 2.8* (2.1, 3.5) 3.2* (2.5, 4) aIntent-to-treat population using last observation on study bLeast squares mean adjusted for baseline value *p<0.001 A total of 249 patients who were treatment-naïve or who had received limited treatment with antidiabetic therapy in the past were randomized to receive 22 weeks of treatment with either glimepiride (n=123) or placebo (n=126) in a multicenter, randomized, double-blind, placebo-controlled, dose-titration trial. The starting dose of glimepiride tablets was 1 mg daily and was titrated upward or downward at 2-week intervals to a goal FPG of 90 to 150 mg/dL. Blood glucose levels for both FPG and PPG were analyzed in the laboratory. Following 10 weeks of dose adjustment, patients were maintained at their optimal dose (1, 2, 3, 4, 6 or 8 mg) for the remaining 12 weeks of the trial. Treatment with glimepiride provided statistically significant improvements in HbA 1C and FPG compared to placebo (Table 4). Table 4. 22-Week Monotherapy Trial Comparing Glimepiride to Placebo in Patients Who Were Treatment-Naïve or Who Had No Recent Treatment with Antidiabetic Therapy a Placebo (N=126) Glimepiride (N=123) HbA 1C (%) n=97 n=106 Baseline (mean) 9.1 9.3 Change from Baseline (adjusted mean b) -1.1* -2.2* Difference from Placebo (adjusted mean b) 95% confidence interval -1.1* (-1.5, -0.8) Body Weight (kg) n=122 n=119 Baseline (mean) 86.5 87.1 Change from Baseline (adjusted mean b) -0.9 1.8 Difference from Placebo (adjusted mean b) 95% confidence interval 2.7 (1.9, 3.6) aIntent to treat population using last observation on study bLeast squares mean adjusted for baseline value *p<0.0001

HOW SUPPLIED

16 /STORAGE AND HANDLING Glimepiride tablets USP, are available in the following strengths and package sizes: Glimepiride tablets USP, 1 mg are peach, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “320” separating “3” and “20” with bisect line scoring on the other side and are supplied in unit dose packages of 30 (5 x 6) NDC 68084-788-25 Glimepiride tablets USP, 2 mg are green, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “321” separating “3” and “21” with bisect line scoring on the other side and are supplied in unit dose packages of 100 (10 x 10) NDC 68084-326-01 Glimepiride tablets USP, 4 mg are blue, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “322” separating “3” and “22” with bisect line scoring on the other side and are supplied in unit dose packages of 100 (10 x 10) NDC 68084-327-01 Store at 20°-25°C (68°-77°F) [see USP Controlled Room Temperature]. FOR YOUR PROTECTION: Do not use if blister is torn or broken.

GERIATRIC USE

8.5 Geriatric Use In clinical trials of glimepiride, 1053 of 3491 patients (30%) were >65 years of age. No overall differences in safety or effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out. There were no significant differences in glimepiride pharmacokinetics between patients with type 2 diabetes ≤65 years (n=49) and those >65 years (n=42) [see Clinical Pharmacology ( 12.3) ]. Glimepiride is substantially excreted by the kidney. Elderly patients are more likely to have renal impairment. In addition, hypoglycemia may be difficult to recognize in the elderly [see Dosage and Administration ( 2.1) and Warnings and Precautions ( 5.1) ]. Use caution when initiating glimepiride and increasing the dose of glimepiride tablets in this patient population.

DOSAGE FORMS AND STRENGTHS

3 Glimepiride tablets USP, are formulated as tablets of: Glimepiride tablets USP, 1 mg are peach, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “320” separating “3” and “20” with bisect line scoring on the other side. Glimepiride tablets USP, 2 mg are green, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “321” separating “3” and “21” with bisect line scoring on the other side. Glimepiride tablets USP, 4 mg are blue, oval, flat beveled edged, uncoated tablets debossed “RDY” on one side and “322” separating “3” and “22” with bisect line scoring on the other side. Tablets (scored): 1 mg, 2 mg, 4 mg ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action Glimepiride primarily lowers blood glucose by stimulating the release of insulin from pancreatic beta cells. Sulfonylureas bind to the sulfonylurea receptor in the pancreatic beta-cell plasma membrane, leading to closure of the ATP-sensitive potassium channel, thereby stimulating the release of insulin.

INDICATIONS AND USAGE

1 Glimepiride tablets are indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus [see Clinical Studies ( 14.1) ]. Glimepiride tablets are a sulfonylurea indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus ( 1.1). Important Limitations of Use: Not for treating type 1 diabetes mellitus or diabetic ketoacidosis ( 1.1). 1.1 Important Limitations of Use Glimepiride tablets should not be used for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis, as it would not be effective in these settings.

PEDIATRIC USE

8.4 Pediatric Use The pharmacokinetics, efficacy and safety of glimepiride have been evaluated in pediatric patients with type 2 diabetes as described below. Glimepiride tablets are not recommended in pediatric patients because of its adverse effects on body weight and hypoglycemia. The pharmacokinetics of a 1 mg single dose of glimepiride was evaluated in 30 patients with type 2 diabetes (male = 7; female = 23) between ages 10 and 17 years. The mean (± SD) AUC (0-last) (339±203 ng•hr/mL), C max (102±48 ng/mL) and t 1/2 (3.1±1.7 hours) for glimepiride were comparable to historical data from adults (AUC (0-last) 315±96 ng•hr/mL, C max 103±34 ng/mL and t 1/2 5.3±4.1 hours). The safety and efficacy of glimepiride in pediatric patients was evaluated in a single-blind, 24-week trial that randomized 272 patients (8 to 17 years of age) with type 2 diabetes to glimepiride (n=135) or metformin (n=137). Both treatment-naïve patients (those treated with only diet and exercise for at least 2 weeks prior to randomization) and previously treated patients (those previously treated or currently treated with other oral antidiabetic medications for at least 3 months) were eligible to participate. Patients who were receiving oral antidiabetic agents at the time of study entry discontinued these medications before randomization without a washout period. Glimepiride was initiated at 1 mg, and then titrated up to 2, 4 or 8 mg (mean last dose 4 mg) through Week 12, targeting a self-monitored fasting fingerstick blood glucose < 126 mg/dL. Metformin was initiated at 500 mg twice daily and titrated at Week 12 up to 1000 mg twice daily (mean last dose 1365 mg). After 24 weeks, the overall mean treatment difference in HbA 1c between glimepiride and metformin was 0.2%, favoring metformin (95% confidence interval -0.3% to +0.6%). Based on these results, the trial did not meet its primary objective of showing a similar reduction in HbA 1c with glimepiride compared to metformin. Table 2. Change from Baseline in HbA 1C and Body Weight in Pediatric Patients Taking Glimepiride or Metformin Metformin Glimepiride Treatment-Naïve Patients* N=69 N=72 HbA 1C (%) Baseline (mean) 8.2 8.3 Change from baseline (adjusted LS mean) + -1.2 -1 Adjusted Treatment Difference** (95%CI) 0.2 (-0.3; 0.6) Previously Treated Patients* N=57 N=55 HbA 1C (%) Baseline (mean) 9 8.7 Change from baseline (adjusted LS mean) + -0.2 0.2 Adjusted Treatment Difference** (95%CI) 0.4 (-0.4; 1.2) Body Weight (kg)* N=126 N=129 Baseline (mean) 67.3 66.5 Change from baseline (adjusted LS mean)+ 0.7 2 Adjusted Treatment Difference** (95% CI) 1.3 (0.3; 2.3) * Intent-to-treat population using last-observation-carried-forward for missing data (Glimepiride, n=127; metformin, n=126) + adjusted for baseline HbA 1c and Tanner Stage ** Difference is glimepiride – metformin with positive differences favoring metformin The profile of adverse reactions in pediatric patients treated with glimepiride was similar to that observed in adults [see Adverse Reactions ( 6) ]. Hypoglycemic events documented by blood glucose values <36 mg/dL were observed in 4% of pediatric patients treated with glimepiride and in 1% of pediatric patients treated with metformin. One patient in each treatment group experienced a severe hypoglycemic episode (severity was determined by the investigator based on observed signs and symptoms).

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are no adequate and well-controlled studies of glimepiride in pregnant women. In animal studies there was no increase in congenital anomalies, but an increase in fetal deaths occurred in rats and rabbits at glimepiride doses 50 times (rats) and 0.1 times (rabbits) the maximum recommended human dose (based on body surface area). This fetotoxicity, observed only at doses inducing maternal hypoglycemia, is believed to be directly related to the pharmacologic (hypoglycemic) action of glimepiride and has been similarly noted with other sulfonylureas. Glimepiride should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Because data suggest that abnormal blood glucose during pregnancy is associated with a higher incidence of congenital abnormalities, diabetes treatment during pregnancy should maintain blood glucose as close to normal as possible. Nonteratogenic Effects: Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers receiving a sulfonylurea at the time of delivery.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether glimepiride tablets are excreted in human milk. During pre- and post-natal studies in rats, significant concentrations of glimepiride were present in breast milk and the serum of the pups. Offspring of rats exposed to high levels of glimepiride during pregnancy and lactation developed skeletal deformities consisting of shortening, thickening, and bending of the humerus during the postnatal period. These skeletal deformations were determined to be the result of nursing from mothers exposed to glimepiride. Based on these animal data and the potential for hypoglycemia in a nursing infant, a decision should be made whether to discontinue nursing or discontinue glimepiride, taking into account the importance of glimepiride to the mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Hypoglycemia: May be severe. Ensure proper patient selection, dosing, and instructions, particularly in at-risk populations (e.g., elderly, renally impaired) and when used with other anti-diabetic medications ( 5.1). Hypersensitivity Reactions: Postmarketing reports include anaphylaxis, angioedema and Stevens-Johnson Syndrome. Promptly discontinue glimepiride, assess for other causes, institute appropriate monitoring and treatment, and initiate alternative treatment for diabetes ( 5.2). Hemolytic Anemia: Can occur if glucose 6-phosphate dehydrogenase (G6PD) deficient. Consider a non-sulfonylurea alternative. ( 5.3). Potential Increased Risk of Cardiovascular Mortality with Sulfonylureas: Inform patient of risks, benefits and treatment alternatives ( 5.4). Macrovascular Outcomes: No clinical studies establishing conclusive evidence of macrovascular risk reduction with glimepiride or any other anti-diabetic drug ( 5.5). 5.1 Hypoglycemia All sulfonylureas, including glimepiride, can cause severe hypoglycemia [see Adverse Reactions ( 6.1) ]. The patient’s ability to concentrate and react may be impaired as a result of hypoglycemia. These impairments may present a risk in situations where these abilities are especially important, such as driving or operating other machinery. Severe hypoglycemia can lead to unconsciousness or convulsions and may result in temporary or permanent impairment of brain function or death. Patients must be educated to recognize and manage hypoglycemia. Use caution when initiating and increasing glimepiride tablets doses in patients who may be predisposed to hypoglycemia (e.g., the elderly, patients with renal impairment, patients on other anti-diabetic medications). Debilitated or malnourished patients, and those with adrenal, pituitary, or hepatic impairment are particularly susceptible to the hypoglycemic action of glucose-lowering medications. Hypoglycemia is also more likely to occur when caloric intake is deficient, after severe or prolonged exercise, or when alcohol is ingested. Early warning symptoms of hypoglycemia may be different or less pronounced in patients with autonomic neuropathy, the elderly, and in patients who are taking beta-adrenergic blocking medications or other sympatholytic agents. These situations may result in severe hypoglycemia before the patient is aware of the hypoglycemia. 5.2 Hypersensitivity Reactions There have been postmarketing reports of hypersensitivity reactions in patients treated with glimepiride, including serious reactions such as anaphylaxis, angioedema, and Stevens-Johnson Syndrome. If a hypersensitivity reaction is suspected, promptly discontinue glimepiride, assess for other potential causes for the reaction, and institute alternative treatment for diabetes. 5.3 Hemolytic Anemia Sulfonylureas can cause hemolytic anemia in patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency. Because glimepiride tablets are a sulfonylurea, use caution in patients with G6PD deficiency and consider the use of a non-sulfonylurea alternative. There are also postmarketing reports of hemolytic anemia in patients receiving glimepiride who did not have known G6PD deficiency [see Adverse Reactions ( 6.2) ]. 5.4 Increased Risk of Cardiovascular Mortality with Sulfonylureas The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term, prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with non-insulin-dependent diabetes. The study involved 823 patients who were randomly assigned to one of four treatment groups UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2-1/2 times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of glimepiride and of alternative modes of therapy. Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure. 5.5 Macrovascular Outcomes There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with glimepiride or any other anti-diabetic drug.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.1 Information for Patients Inform patients about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of blood glucose. Inform patients about the potential side effects of glimepiride including hypoglycemia and weight gain. Explain the symptoms and treatment of hypoglycemia as well as conditions that predispose to hypoglycemia. Patients should be informed that the ability to concentrate and react may be impaired as a result of hypoglycemia. This may present a risk in situations where these abilities are especially important, such as driving or operating other machinery. Patients with diabetes should be advised to inform their healthcare provider if they are pregnant, contemplating pregnancy, breastfeeding, or contemplating breastfeeding. Rx only PACKAGING INFORMATION American Health Packaging unit dose blisters (see How Supplied section) contain drug product from Dr. Reddy’s Laboratories Limited as follows: (1 mg / 30 UD) NDC 68084-788-25 packaged from NDC 55111-320 (2 mg / 100 UD) NDC 68084-326-01 packaged from NDC 55111-321 (4 mg / 100 UD) NDC 68084-327-01 packaged from NDC 55111-322 Distributed by: American Health Packaging Columbus, OH 43217 8232601/1215OS

DOSAGE AND ADMINISTRATION

2 Recommended starting dose is 1 or 2 mg once daily. Increase in 1 or 2 mg increments no more frequently than every 1 to 2 weeks based on glycemic response. Maximum recommended dose is 8 mg once daily ( 2.1). Administer with breakfast or first meal of the day ( 2.1). Use 1 mg starting dose and titrate slowly in patients at increased risk for hypoglycemia (e.g., elderly, patients with renal impairment) ( 2.1). 2.1 Recommended Dosing Glimepiride tablets should be administered with breakfast or the first main meal of the day. The recommended starting dose of glimepiride tablets are 1 mg or 2 mg once daily. Patients at increased risk for hypoglycemia (e.g., the elderly or patients with renal impairment) should be started on 1 mg once daily [see Warnings and Precautions ( 5.1) and Use in Specific Populations ( 8.5, 8.6) ]. After reaching a daily dose of 2 mg, further dose increases can be made in increments of 1 mg or 2 mg based upon the patient’s glycemic response. Uptitration should not occur more frequently than every 1 to 2 weeks. A conservative titration scheme is recommended for patients at increased risk for hypoglycemia [see Warnings and Precautions ( 5.1) and Use in Specific Populations ( 8.5, 8.6) ]. The maximum recommended dose is 8 mg once daily. Patients being transferred to glimepiride tablets from longer half-life sulfonylureas (e.g., chlorpropamide) may have overlapping drug effect for 1 to 2 weeks and should be appropriately monitored for hypoglycemia. When colesevelam is coadministered with glimepiride, maximum plasma concentration and total exposure to glimepiride is reduced. Therefore, glimepiride tablets should be administered at least 4 hours prior to colesevelam.

Losartan K+ 100 MG Oral Tablet

Generic Name: LOSARTAN POTASSIUM
Brand Name: Losortan Potassium
  • Substance Name(s):
  • LOSARTAN POTASSIUM

WARNINGS

Fetal/Neonatal Morbidity and Mortality: Drugs that act directly on the renin-angiotensin system can cause fetal and neonatal morbidity and death when administered to pregnant women. Several dozen cases have been reported in the world literature in patients who were taking angiotensin converting enzyme inhibitors. When pregnancy is detected, losartan potassium tablets should be discontinued as soon as possible. The use of drugs that act directly on the renin-angiotensin system during the second and third trimesters of pregnancy has been associated with fetal and neonatal injury, including hypotension, neonatal skull hypoplasia, anuria, reversible or irreversible renal failure, and death. Oligohydramnios has also been reported, presumably resulting from decreased fetal renal function; oligohydramnios in this setting has been associated with fetal limb contractures, craniofacial deformation, and hypoplastic lung development. Prematurity, intrauterine growth retardation, and patent ductus arteriosus have also been reported, although it is not clear whether these occurrences were due to exposure to the drug. These adverse effects do not appear to have resulted from intrauterine drug exposure that has been limited to the first trimester. Mothers whose embryos and fetuses are exposed to an angiotensin II receptor antagonist only during the first trimester should be so informed. Nonetheless, when patients become pregnant, physicians should have the patient discontinue the use of losartan potassium tablets as soon as possible. Rarely (probably less often than once in every thousand pregnancies), no alternative to an angiotensin II receptor antagonist will be found. In these rare cases, the mothers should be apprised of the potential hazards to their fetuses, and serial ultrasound examinations should be performed to assess the intra-amniotic environment. If oligohydramnios is observed, losartan potassium tablets should be discontinued unless it is considered life-saving for the mother. Contraction stress testing (CST), a non-stress test (NST), or biophysical profiling (BPP) may be appropriate, depending upon the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Infants with histories of in utero exposure to an angiotensin II receptor antagonist should be closely observed for hypotension, oliguria, and hyperkalemia. If oliguria occurs, attention should be directed toward support of blood pressure and renal perfusion. Exchange transfusion or dialysis may be required as means of reversing hypotension and/or substituting for disordered renal function. Losartan potassium has been shown to produce adverse effects in rat fetuses and neonates, including decreased body weight, delayed physical and behavioral development, mortality and renal toxicity. With the exception of neonatal weight gain (which was affected at doses as low as 10 mg/kg/day), doses associated with these effects exceeded 25 mg/kg/day (approximately three times the maximum recommended human dose of 100 mg on a mg/m2 basis). These findings are attributed to drug exposure in late gestation and during lactation. Significant levels of losartan and its active metabolite were shown to be present in rat fetal plasma during late gestation and in rat milk. Hypotension — Volume-Depleted Patients: In patients who are intravascularly volume-depleted (e.g., those treated with diuretics), symptomatic hypotension may occur after initiation of therapy with losartan potassium tablets. These conditions should be corrected prior to administration of losartan potassium tablets, or a lower starting dose should be used (see DOSAGE AND ADMINISTRATION).

OVERDOSAGE

Significant lethality was observed in mice and rats after oral administration of 1000 mg/kg and 2000 mg/kg, respectively, about 44 and 170 times the maximum recommended human dose on a mg/m2 basis. Limited data are available in regard to overdosage in humans. The most likely manifestation of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. If symptomatic hypotension should occur, supportive treatment should be instituted. Neither losartan nor its active metabolite can be removed by hemodialysis.

DESCRIPTION

Losartan potassium is an angiotensin II receptor (type AT1) antagonist. Losartan potassium, a non-peptide molecule, is chemically described as 2-butyl-4-chloro-1-[p-(o-1H-tetrazol-5-ylphenyl)benzyl]imidazole-5-methanol monopotassium salt. Its molecular formula is C22H22ClKN6O, and its structural formula is: Losartan potassium USP, is off-white to creamish-yellow powder with a molecular weight of 461.01. It is soluble in water. Oxidation of the 5-hydroxymethyl group on the imidazole ring results in the active metabolite of losartan. Each losartan potassium tablet intended for oral administration contains 25 mg or 50 mg or 100 mg of losartan potassium. In addition, each tablet contains the following inactive ingredients: colloidal silica anhydrous, hydroxypropyl cellulose (low substituted), hypromellose, lactose monohydrate, magnesium stearate, maize starch (corn starch), microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, talc and titanium dioxide. Losartan potassium 25 mg, 50 mg and 100 mg tablets contain potassium in the following amounts: 2.12 mg (0.054 mEq), 4.24 mg (0.108 mEq) and 8.48 mg (0.216 mEq), respectively.

INDICATIONS AND USAGE

Hypertension: Losartan potassium tablets are indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents, including diuretics. Hypertensive Patients with Left Ventricular Hypertrophy: Losartan potassium tablets are indicated to reduce the risk of stroke in patients with hypertension and left ventricular hypertrophy, but there is evidence that this benefit does not apply to Black patients (see PRECAUTIONS, Race and CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Reduction in the Risk of Stroke, Race). Nephropathy in Type 2 Diabetic Patients Losartan potassium tablets are indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria (urinary albumin to creatinine ratio ≥ 300 mg/g) in patients with type 2 diabetes and a history of hypertension. In this population, losartan potassium reduces the rate of progression of nephropathy as measured by the occurrence of doubling of serum creatinine or end stage renal disease (need for dialysis or renal transplantation) (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects).

BOXED WARNING

USE IN PREGNANCY When used in pregnancy during the second and third trimesters, drugs that act directly on the renin-angiotensin system can cause injury and even death to the developing fetus. When pregnancy is detected, losartan potassium tablets should be discontinued as soon as possible (see WARNINGS, Fetal/Neonatal Morbidity and Mortality).

DOSAGE AND ADMINISTRATION

Adult Hypertensive Patients: Losartan potassium tablets may be administered with other antihypertensive agents, and with or without food. Dosing must be individualized. The usual starting dose of losartan potassium tablets is 50 mg once daily, with 25 mg used in patients with possible depletion of intravascular volume (e.g., patients treated with diuretics) (see WARNINGS, Hypotension — Volume-Depleted Patients) and patients with a history of hepatic impairment (see PRECAUTIONS, General). Losartan potassium tablets can be administered once or twice daily with total daily doses ranging from 25 mg to 100 mg. If the antihypertensive effect measured at trough using once-a-day dosing is inadequate, a twice-a-day regimen at the same total daily dose or an increase in dose may give a more satisfactory response. The effect of losartan is substantially present within one week but in some studies the maximal effect occurred in 3-6 weeks (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Hypertension). If blood pressure is not controlled by losartan potassium tablets alone, a low dose of a diuretic may be added. Hydrochlorothiazide has been shown to have an additive effect (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Hypertension). No initial dosage adjustment is necessary for elderly patients or for patients with renal impairment, including patients on dialysis. Pediatric Hypertensive patient ≥ 6 years of age: The usual recommended starting dose is 0.7 mg/kg once daily (up to 50 mg total) administered as a tablet or a suspension (see Preparation of Suspension). Dosage should be adjusted according to blood pressure response. Doses above 1.4 mg/kg (or in excess of 100 mg) daily have not been studied in pediatric patients (see CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations and Pharmacodynamics and Clinical Effects and WARNINGS, Hypotension — Volume-Depleted Patients,). Losartan potassium tablets are not recommended in pediatric patients <6 years of age or in pediatric patients with glomerular filtration rate <30 mL/min/1.73 m2 (see CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations, Pharmacodynamics and Clinical Effects, and PRECAUTIONS). Preparation of Suspension (for 200 mL of a 2.5 mg/mL suspension): Add 10 mL of Purified Water USP to an 8 ounce (240 mL) amber polyethylene terephthalate (PET) bottle containing ten 50 mg losartan potassium tablets. Immediately shake for at least 2 minutes. Let the concentrate stand for 1 hour and then shake for 1 minute to disperse the tablet contents. Separately prepare a 50/50 volumetric mixture of Ora-Plus™*** and Ora-Sweet SF™***. Add 190 mL of the 50/50 Ora-Plus™ /Ora-Sweet SF™ mixture to the tablet and water slurry in the PET bottle and shake for 1 minute to disperse the ingredients. The suspension should be refrigerated at 2-8°C (36-46°F) and can be stored for up to 4 weeks. Shake the suspension prior to each use and return promptly to the refrigerator. Hypertensive Patients with Left Ventricular Hypertrophy: The usual starting dose is 50 mg of losartan potassium tablets once daily. Hydrochlorothiazide 12.5 mg daily should be added and/or the dose of losartan potassium tablets should be increased to 100 mg once daily followed by an increase in hydrochlorothiazide to 25 mg once daily based on blood pressure response (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Reduction in the Risk of Stroke). Nephropathy in Type 2 Diabetic Patients The usual starting dose is 50 mg once daily. The dose should be increased to 100 mg once daily based on blood pressure response (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Nephropathy in Type 2 Diabetic Patients). Losartan potassium may be administered with insulin and other commonly used hypoglycemic agents (e.g., sulfonylureas, glitazones and glucosidase inhibitors).

Ciprofloxacin 500 MG Oral Tablet

Generic Name: CIPROFLOXACIN HYDROCHLORIDE
Brand Name: Ciprofloxacin Hydrochloride
  • Substance Name(s):
  • CIPROFLOXACIN HYDROCHLORIDE

WARNINGS

Tendinopathy and Tendon Rupture Fluoroquinolones, including Ciprofloxacin Tablets, are associated with an increased risk of tendinitis and tendon rupture in all ages. This adverse reaction most frequently involves the Achilles tendon, and rupture of the Achilles tendon may require surgical repair. Tendinitis and tendon rupture in the rotater cuff (the shoulder), the hand, the biceps, the thumb, and other tendon sites have also been reported. The risk of developing fluoroquinolone-associated tendinitis and tendon rupture is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. Factors, in addition to age and corticosteroid use, that may independently increase the risk of tendon rupture include strenuous physical activity, renal failure, and previous tendon disorders such as rheumatoid arthritis. Tendinitis and tendon rupture have also occurred in patients taking fluoroquinolones who do not have the above risk factors. Tendon rupture can occur during or after completion of therapy; cases occurring up to several months after completion of therapy have been reported. Ciprofloxacin Tablets should be discontinued if the patient experiences pain, swelling, inflammation or rupture of a tendon. Patients should be advised to rest at the first sign of tendinitis or tendon rupture, and to contact their healthcare provider regarding changing to a non-quinolone antimicrobial drug. Pregnant Women THE SAFETY AND EFFECTIVENESS OF CIPROFLOXACIN IN PREGNANT AND LACTATING WOMEN HAVE NOT BEEN ESTABLISHED. (See PRECAUTIONS: Pregnancy, and Nursing Mothers subsections.)

DRUG INTERACTIONS

In a pharmacokinetic study, systemic exposure of tizanidine (4 mg single dose) was significantly increased (Cmax 7-fold, AUC 10-fold) when the drug was given concomitantly with ciprofloxacin (500 mg bid for 3 days). The hypotensive and sedative effects of tizanidine were also potentiated. Concomitant administration of tizanidine and ciprofloxacin is contraindicated. As with some other quinolones, concurrent administration of ciprofloxacin with theophylline may lead to elevated serum concentrations of theophylline and prolongation of its elimination half-life. This may result in increased risk of theophylline-related adverse reactions. (See WARNINGS .) If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate. Some quinolones, including ciprofloxacin, have also been shown to interfere with the metabolism of caffeine. This may lead to reduced clearance of caffeine and a prolongation of its serum half-life. Concurrent administration of a quinolone, including ciprofloxacin, with multivalent cation-containing products such as magnesium/aluminum antacids, sucralfate,Videx® (didanosine) chewable/buffered tablets or pediatric powder, other highly buffered drugs, or products containing calcium, iron, or zinc may substantially decrease its absorption, resulting in serum and urine levels considerably lower than desired. (See DOSAGE AND ADMINISTRATION for concurrent administration of these agents with ciprofloxacin.) Histamine H2-receptor antagonists appear to have no significant effect on the bioavailability of ciprofloxacin. Altered serum levels of phenytoin (increased and decreased) have been reported in patients receiving concomitant ciprofloxacin. The concomitant administration of ciprofloxacin with the sulfonylurea glyburide has, on rare occasions, resulted in severe hypoglycemia. Some quinolones, including ciprofloxacin, have been associated with transient elevations in serum creatinine in patients receiving cyclosporine concomitantly. Quinolones, including ciprofloxacin, have been reported to enhance the effects of the oral anticoagulant warfarin or its derivatives. When these products are administered concomitantly, prothrombin time or other suitable coagulation tests should be closely monitored. Probenecid interferes with renal tubular secretion of ciprofloxacin and produces an increase in the level of ciprofloxacin in the serum. This should be considered if patients are receiving both drugs concomi­tantly. Renal tubular transport of methotrexate may be inhibited by concomitant administration of ciprofloxacin potentially leading to increased plasma levels of methotrexate. This might increase the risk of methotrexate associated toxic reactions. Therefore, patients under methotrexate therapy should be carefully monitored when concomitant ciprofloxacin therapy is indicated. Metoclopramide significantly accelerates the absorption of oral ciprofloxacin resulting in shorter time to reach maximum plasma concentrations. No significant effect was observed on the bioavailability of ciprofloxacin. Non-steroidal anti-inflammatory drugs (but not acetyl salicylic acid) in combination of very high doses of quinolones have been shown to provoke convulsions in pre-clinical studies. Carcinogenesis, Mutagenesis, Impairment of FertilityEight in vitro mutagenicity tests have been conducted with ciprofloxacin, and the test results are listed below: Salmonella/Microsome Test (Negative) E. coli DNA Repair Assay (Negative) Mouse Lymphoma Cell Forward Mutation Assay (Positive) Chinese Hamster V79 Cell HGPRT Test (Negative) Syrian Hamster Embryo Cell Transformation Assay (Negative) Saccharomyces cerevisiaePoint Mutation Assay (Negative) Saccharomyces cerevisiaeMitotic Crossover and Gene Conversion Assay (Negative) Rat Hepatocyte DNA Repair Assay (Positive) Thus, 2 of the 8 tests were positive, but results of the following 3 in vivo test systems gave negative results: Rat Hepatocyte DNA Repair Assay Micronucleus Test (Mice) Dominant Lethal Test (Mice) Long-term carcinogenicity studies in rats and mice resulted in no carcinogenic or tumorigenic effects due to ciprofloxacin at daily oral dose levels up to 250 and 750 mg/kg to rats and mice, respectively (approximately 1.7- and 2.5-times the highest recommended therapeutic dose based upon mg/m2). Results from photo co-carcinogenicity testing indicate that ciprofloxacin does not reduce the time to appearance of UV-induced skin tumors as compared to vehicle control. Hairless (Skh-1) mice were exposed to UVA light for 3.5 hours five times every two weeks for up to 78 weeks while concurrently being administered ciprofloxacin. The time to development of the first skin tumors was 50 weeks in mice treated concomitantly with UVA and ciprofloxacin (mouse dose approximately equal to maxi­mum recommended human dose based upon mg/m2), as opposed to 34 weeks when animals were treated with both UVA and vehicle. The times to development of skin tumors ranged from 16 to 32 weeks in mice treated concomitantly with UVA and other quinolones.4 In this model, mice treated with ciprofloxacin alone did not develop skin or systemic tumors. There are no data from similar models using pigmented mice and/or fully haired mice. The clinical significance of these findings to humans is unknown. Fertility studies performed in rats at oral doses of ciprofloxacin up to 100 mg/kg (approximately 0.7-times the highest recommended therapeutic dose based upon mg/m2) revealed no evidence of impairment.

OVERDOSAGE

In the event of acute overdosage, reversible renal toxicity has been reported in some cases. The stomach should be emptied by inducing vomiting or by gastric lavage. The patient should be carefully observed and given supportive treatment, including monitoring of renal function and administration of magnesium, aluminum, or calcium containing antacids which can reduce the absorption of ciprofloxacin. Adequate hydration must be maintained. Only a small amount of ciprofloxacin (greater then 10%) is removed from the body after hemodialysis or peritoneal dialysis. Single doses of ciprofloxacin were relatively non-toxic via the oral route of administration in mice, rats, and dogs. No deaths occurred within a 14-day post treatment observation period at the highest oral doses tested; up to 5000 mg/kg in either rodent species, or up to 2500 mg/kg in the dog. Clinical signs observed included hypoactivity and cyanosis in both rodent species and severe vomiting in dogs. In rabbits, significant mortality was seen at doses of ciprofloxacin less then 2500 mg/kg. Mortality was delayed in these animals, occurring 10 to 14 days after dosing. In mice, rats, rabbits and dogs, significant toxicity including tonic/clonic convulsions was observed at intravenous doses of ciprofloxacin between 125 and 300 mg/kg.

DESCRIPTION

Ciprofloxacin Tablets, USP is a synthetic broad spectrum antimicrobial agent for oral administration. Ciprofloxacin hydrochloride, USP, a fluoroquinolone, is the monohydrochloride monohydrate salt of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid. It is a faintly yellowish to light yellow crystalline substance with a empirical weight of 385.8. Its molecular formula is C17H18FN3O3•HCl•H2O and its chemical structure is as follows: Ciprofloxacin film-coated tablets are available in 250 mg, 500 mg, and 750 mg (ciprofloxacin equivalent) strengths. Ciprofloxacin tablets are white to slightly yellowish.

CLINICAL STUDIES

Complicated Urinary Tract Infection and Pyelonephritis – Efficacy in Pediatric PatientsNOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues. Ciprofloxacin, administered I.V. and/or orally, was compared to a cephalosporin for treatment of complicated urinary tract infections (cUTI) and pyelonephritis in pediatric patients 1 to 17 years of age (mean age of 6 ± 4 years). The trial was conducted in the U.S., Canada, Argentina, Peru, Costa Rica, Mexico, South Africa, and Germany. The duration of therapy was 10 to 21 days (mean duration of treatment was 11 days with a range of 1 to 88 days). The primary objective of the study was to assess musculoskeletal and neurological safety. Patients were evaluated for clinical success and bacteriological eradication of the baseline organism(s) with no new infection or superinfection at 5 to 9 days post-therapy (Test of Cure or TOC). The Per Protocol population had a causative organism(s) with protocol specified colony count(s) at baseline, no protocol violation, and no premature discontinuation or loss to follow-up (among other criteria). The clinical success and bacteriologic eradication rates in the Per Protocol population were similar between ciprofloxacin and the comparator group as shown below. Clinical Success and Bacteriologic Eradication at Test of Cure (5 to 9 Days Post-Therapy) Ciprofloxacin Comparator * Patients with baseline pathogen(s) eradicated and no new infections or superinfections/total number of patients. There were 5.5% (6/211) ciprofloxacin and 9.5% (22/231) comparator patients with superinfections or new infections. Randomized Patients 337 352 Per Protocol Patients 211 231 Clinical Response at 5 to 9 Days Post-Treatment 95.7% (202/211) 92.6% (214/231) 95% CI [-1.3%, 7.3%] Bacteriologic Eradication by Patient at 5 to 9 Days Post-Treatment* 84.4% (178/211) 78.3% (181/231) 95% CI [-1.3%, 13.1%] Bacteriologic Eradication of the Baseline Pathogen at 5 to 9 Days Post-Treatment Escherichia coli 156/178 (88%) 161/179 (90%) INHALATIONAL ANTHRAX IN ADULTS AND PEDIATRICS – ADDITIONAL INFORMATION The mean serum concentrations of ciprofloxacin associated with a statistically significant improvement in survival in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving oral and intravenous regimens. (See DOSAGE AND ADMINISTRATION .) Ciprofloxacin pharmacokinetics have been evaluated in various human populations. The mean peak serum concentration achieved at steady-state in human adults receiving 500 mg orally every 12 hours is 2.97 μg/mL, and 4.56 μg/mL following 400 mg intravenously every 12 hours. The mean trough serum concentration at steady-state for both of these regimens is 0.2 μg/mL. In a study of 10 pediatric patients between 6 and 16 years of age, the mean peak plasma concentration achieved is 8.3 μg/mL and trough concentrations range from 0.09 to 0.26 μg/mL, following two 30-minute intravenous infusions of 10 mg/kg administered 12 hours apart. After the second intravenous infusion patients switched to 15 mg/kg orally every 12 hours achieve a mean peak concentration of 3.6 μg/mL after the initial oral dose. Long-term safety data, including effects on cartilage, following the administration of ciprofloxacin to pediatric patients are limited. (For additional information, see PRECAUTIONS, Pediatric Use .) Ciprofloxacin serum concentrations achieved in humans serve as a surrogate endpoint reasonably likely to predict clinical benefit and provide the basis for this indication.5 A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 11 LD50 (~5.5 x 105 spores (range 5 to 30 LD50) of B. anthracis was conducted. The minimal inhibitory concentration (MIC) of ciprofloxacin for the anthrax strain used in this study was 0.08 μg/mL. In the animals studied, mean serum concentrations of ciprofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady-state ranged from 0.98 to 1.69 μg/mL. Mean steady-state trough concentrations at 12 hours post-dose ranged from 0.12 to 0.19 μg/mL.6 Mortality due to anthrax for animals that received a 30-day regimen of oral ciprofloxacin beginning 24 hours post-exposure was significantly lower (1/9), compared to the placebo group (9/10) [p=0.001]. The one ciprofloxacin-treated animal that died of anthrax did so following the 30-day drug administration period.7 More than 9300 persons were recommended to complete a minimum of 60 days of antibiotic prophylaxis against possible inhalational exposure to B. anthracis during 2001. Ciprofloxacin was recommended to most of those individuals for all or part of the prophylaxis regimen. Some persons were also given anthrax vaccine or were switched to alternative antibiotics. No one who received ciprofloxacin or other therapies as prophylactic treatment subsequently developed inhalational anthrax. The number of persons who received ciprofloxacin as all or part of their post-exposure prophylaxis regimen is unknown. Among the persons surveyed by the Centers for Disease Control and Prevention, over 1000 reported receiving ciprofloxacin as sole post-exposure prophylaxis for inhalational anthrax. Gastrointestinal adverse events (nausea, vomiting, diarrhea, or stomach pain), neurological adverse events (problems sleeping, nightmares, headache, dizziness or lightheadedness) and musculoskeletal adverse events (muscle or tendon pain and joint swelling or pain) were more frequent than had been previously reported in controlled clinical trials. This higher incidence, in the absence of a control group, could be explained by a reporting bias, concurrent medical conditions, other concomitant medications, emotional stress or other confounding factors, and/or a longer treatment period with ciprofloxacin. Because of these factors and limitations in the data collection, it is difficult to evaluate whether the reported symptoms were drug-related.

HOW SUPPLIED

Ciprofloxacin Tablets USP, are available as white, round, film-coated tablets containing 250 mg ciprofloxacin. The 250 mg tablet is coded with “WW927” on one side. Ciprofloxacin Tablets, USP area also available as white, capsule shaped, film-coated tablets containing 500 mg or 750 mg ciprofloxacin. The 500 mg tablet is coded with “WW928” on one side. The 750 mg tablet is coded with “WW929” on one side. Ciprofloxacin Tablets, USP 250 mg and 500 mg are available in bottles of 30’s, 100’s and 500’s. Ciprofloxacin Tablets, USP 750 mg are available in bottles of 50’s and 100’s and Unit Dose Boxes of 100 tablets. Strength Tablet Identification Bottles of 30’s: 250 mg WW927 500 mg WW928 Bottles of 50’s: 750 mg WW929 Bottles of 100’s: 250 mg WW927 500 mg WW928 750 mg WW929 Bottles of 500’s: 250 mg WW927 500 mg WW928 Unit Dose Boxes of 100 250 mg WW927 500 mg WW928 750 mg WW929 Store at 20-25°C (68-77°F) [See USP Controlled Room Temperature]. Dispense in a well-closed container as defined in the USP using a child-resistant closure.

GERIATRIC USE

Geriatric patients are at increased risk for developing severe tendon disorders including tendon rupture when being treated with a fluoroquinolone such as Ciprofloxacin Tablets. This risk is further increased in patients receiving concomitant corticosteroid therapy. Tendinitis or tendon rupture can involve the Achilles, hand, shoulder, or other tendon sites and can occur during or after completion of therapy; cases occurring up to several months after fluoroquinolone treatment have been reported. Caution should be used when prescribing Ciprofloxacin Tablets to elderly patients especially those on corticosteroids. Patients should be informed of this potential side effect and advised to discontinue Ciprofloxacin Tablets and contact their healthcare provider if any symptoms of tendinitis or tendon rupture occur (See Boxed Warning , WARNINGS, and ADVERSE REACTIONS/Post-Marketing Adverse Event Reports ). In a retrospective analysis of 23 multiple-dose controlled clinical trials of ciprofloxacin encompassing over 3500 ciprofloxacin treated patients, 25% of patients were greater than or equal to 65 years of age and 10% were greater than or equal to 75 years of age. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals on any drug therapy cannot be ruled out. Ciprofloxacin is known to be substantially excreted by the kidney, and the risk of adverse reactions may be greater in patients with impaired renal function. No alteration of dosage is necessary for patients greater than 65 years of age with normal renal function. However, since some older individuals experience reduced renal function by virtue of their advanced age, care should be taken in dose selection for elderly patients, and renal function monitoring may be useful in these patients. (See CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION .) In general, elderly patients may be more susceptible to drug-associated effects on the QT interval. Therefore, precaution should be taken when using Ciprofloxacin Tablets with concomitant drugs that can result in prolongation of the QT interval (e.g., class IA or class III antiarrhythmics) or in patients with risk factors for torsade de pointes (e.g., known QT prolongation, uncorrected hypokalemia).

INDICATIONS AND USAGE

Ciprofloxacin Tablets, USP are indicated for the treatment of infections caused by susceptible strains of the designated microorganisms in the conditions and patient populations listed below. Please see DOSAGE AND ADMINISTRATION for specific recommendations. Adult Patients Urinary Tract Infections caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Serratia marcescens, Proteus mirabilis, Providencia rettgeri, Morganella morganii, Citrobacter diversus, Citrobacter freundii, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus epidermidis, Staphylococcus saprophyticus, or Enterococcus faecalis. Acute Uncomplicated Cystitis in females caused by Escherichia coli or Staphylococcus saprophyticus. Chronic Bacterial Prostatitis caused by Escherichia coli or Proteus mirabilis. Lower Respiratory Tract Infections caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, Haemophilus influenzae, Haemophilus parainfluenzae, or penicillin-susceptible Streptococcus pneumoniae. Also, Moraxella catarrhalis for the treatment of acute exacerbations of chronic bronchitis. NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the treatment of presumed or confirmed pneumonia secondary to Streptococcus pneumoniae. Acute Sinusitis caused by Haemophilus influenzae, penicillin-susceptible Streptococcus pneumoniae, or Moraxella catarrhalis. Skin and Skin Structure Infections caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, Providencia stuartii, Morganella morganii, Citrobacter freundii, Pseudomonas aeruginosa, methicillin susceptible Staphylococcus aureus, methicillin susceptible Staphylococcus epidermidis, or Streptococcus pyogenes. Bone and Joint Infections caused by Enterobacter cloacae, Serratia marcescens, or Pseudomonas aeruginosa. Complicated Intra-Abdominal Infections (used in combination with metronidazole) caused by Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, or Bacteroides fragilis. Infectious Diarrhea caused by Escherichia coli (enterotoxigenic strains), Campylobacter jejuni, Shigella boydii † , Shigella dysenteriae, Shigella flexneri or Shigella sonnei † when antibacterial therapy is indicated. Typhoid Fever (Enteric Fever) caused by Salmonella typhi. NOTE: The efficacy of ciprofloxacin in the eradication of the chronic typhoid carrier state has not been demonstrated. Uncomplicated cervical and urethral gonorrhea due to Neisseria gonorrhoeae. Pediatric patients (1 to 17 years of age)Complicated Urinary Tract Infections and Pyelonephritis due to Escherichia coli. NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues. (See WARNINGS, PRECAUTIONS, Pediatric Use , ADVERSE REACTIONS and CLINICAL STUDIES .) Ciprofloxacin, like other fluoroquinolones, is associated with arthropathy and histopathological changes in weight-bearing joints of juvenile animals. (See ANIMAL PHARMACOLOGY .) Adult and Pediatric PatientsInhalational anthrax (post-exposure): To reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis. Ciprofloxacin serum concentrations achieved in humans served as a surrogate endpoint reasonably likely to predict clinical benefit and provided the initial basis for approval of this indication.5 Supportive clinical information for ciprofloxacin for anthrax post-exposure prophylaxis was obtained during the anthrax bioterror attacks of October 2001. (See also, INHALATIONAL ANTHRAX – ADDITIONAL INFORMATION ). †Although treatment of infections due to this organism in this organ system demonstrated a clinically significant outcome, efficacy was studied in fewer than 10 patients. If anaerobic organisms are suspected of contributing to the infection, appropriate therapy should be administered. Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing infection and to determine their susceptibility to ciprofloxacin. Therapy with Ciprofloxacin Tablets may be initiated before results of these tests are known; once results become available appropriate therapy should be continued. As with other drugs, some strains of Pseudomonas aeruginosa may develop resistance fairly rapidly during treatment with ciprofloxacin. Culture and susceptibility testing performed periodically during therapy will provide information not only on the therapeutic effect of the antimicrobial agent but also on the possible emergence of bacterial resistance. To reduce the development of drug-resistant bacteria and maintain the effectiveness of Ciprofloxacin Tablets and other antibacterial drugs, Ciprofloxacin Tablets should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

PEDIATRIC USE

Ciprofloxacin should be used in pediatric patients (less than 18 years of age) only for infections listed in the INDICATIONS AND USAGE section. An increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues, has been observed. (See ADVERSE REACTIONS .) In pre-clinical studies, oral administration of ciprofloxacin caused lameness in immature dogs. Histopathological examination of the weight-bearing joints of these dogs revealed permanent lesions of the cartilage. Related quinolone-class drugs also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in immature animals of various species. (See ANIMAL PHARMACOLOGY .) Cytochrome P450 (CYP450)Ciprofloxacin is an inhibitor of the hepatic CYP1A2 enzyme pathway. Coadministration of ciprofloxacin and other drugs primarily metabolized by CYP1A2 (e.g., theophylline, methylxanthines, tizanidine) results in increased plasma concentrations of the coadministered drug and could lead to clinically significant pharmacodynamic side effects of the coadministered drug. Central Nervous System DisordersConvulsions, increased intracranial pressure, and toxic psychosis have been reported in patients receiving quinolones, including ciprofloxacin. Ciprofloxacin may also cause central nervous system (CNS) events including: dizziness, confusion, tremors, hallucinations, depression, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving ciprofloxacin, the drug should be discontinued and appropriate measures instituted. As with all quinolones, ciprofloxacin should be used with caution in patients with known or suspected CNS disorders that may predispose to seizures or lower the seizure threshold (e.g., severe cerebral arteriosclerosis, epilepsy), or in the presence of other risk factors that may predispose to seizures or lower the seizure threshold (e.g., certain drug therapy, renal dysfunction). (See PRECAUTIONS: General, Information for Patients, Drug Interactions and ADVERSE REACTIONS .) Theophylline SERIOUS AND FATAL REACTIONS HAVE BEEN REPORTED IN PATIENTS RECEIVING CONCURRENT ADMINISTRATION OF CIPROFLOXACIN AND THEOPHYLLINE. These reactions have included cardiac arrest, seizure, status epilepticus, and respiratory failure. Although similar serious adverse effects have been reported in patients receiving theophylline alone, the possibility that these reactions may be potentiated by ciprofloxacin cannot be eliminated. If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate. Hypersensitivity ReactionsSerious and occasionally fatal hypersensitivity (anaphylactic) reactions, some following the first dose, have been reported in patients receiving quinolone therapy. Some reactions were accompanied by cardiovascular collapse, loss of consciousness, tingling, pharyngeal or facial edema, dyspnea, urticaria, and itching. Only a few patients had a history of hypersensitivity reactions. Serious anaphylactic reactions require immediate emergency treatment with epinephrine. Oxygen, intravenous steroids, and airway management, including intubation, should be administered as indicated. Other serious and sometimes fatal events, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with quinolones, including ciprofloxacin. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following: fever, rash, or severe dermatologic reactions (e.g., toxic epidermal necrolysis, Stevens-Johnson syndrome); vasculitis; arthralgia; myalgia; serum sickness; allergic pneumonitis; interstitial nephritis; acute renal insufficiency or failure; hepatitis; jaundice; acute hepatic necrosis or failure; anemia, including hemolytic and aplastic; thrombocytopenia, including thrombotic thrombocytopenic purpura; leukopenia; agranulocytosis; pancytopenia; and/or other hematologic abnormalities. The drug should be discontinued immediately at the first appearance of a skin rash, jaundice, or any other sign of hypersensitivity and supportive measures instituted (See PRECAUTIONS: Information for Patients and ADVERSE REACTIONS ). Pseudomembranous Colitis Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Ciprofloxacin Tablets, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile . C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. Peripheral NeuropathyRare cases of sensory or sensorimotor axonal polyneuropathy affecting small and/or large axons resulting in paresthesias, hypoesthesias, dysesthesias and weakness have been reported in patients receiving quinolones, including ciprofloxacin. Ciprofloxacin should be discontinued if the patient experiences symptoms of neuropathy including pain, burning, tingling, numbness, and/or weakness, or is found to have deficits in light touch, pain, temperature, position sense, vibratory sensation, and/or motor strength in order to prevent the development of an irreversible condition. SyphilisCiprofloxacin has not been shown to be effective in the treatment of syphilis. Antimicrobial agents used in high dose for short periods of time to treat gonorrhea may mask or delay the symptoms of incubating syphilis. All patients with gonorrhea should have a serologic test for syphilis at the time of diagnosis. Patients treated with ciprofloxacin should have a follow-up serologic test for syphilis after three months.

PREGNANCY

Teratogenic effects Pregnancy Category C There are no adequate and well-controlled studies in pregnant women. An expert review of published data on experiences with ciprofloxacin use during pregnancy by TERIS — the Teratogen Information System — concluded that therapeutic doses during pregnancy are unlikely to pose a substantial teratogenic risk (quantity and quality of data=fair), but the data are insufficient to state that there is no risk.8 A controlled prospective observational study followed 200 women exposed to fluoroquinolones (52.5% exposed to ciprofloxacin and 68% first trimester exposures) during gestation.9 In utero exposure to fluoroquinolones during embryogenesis was not associated with increased risk of major malformations. The reported rates of major congenital malformations were 2.2% for the fluoroquinolone group and 2.6% for the control group (background incidence of major malformations is 1 – 5%). Rates of spontaneous abortions, prematurity and low birth weight did not differ between the groups and there were no clinically significant musculoskeletal dysfunctions up to one year of age in the ciprofloxacin exposed children. Another prospective follow-up study reported on 549 pregnancies with fluoroquinolone exposure (93% first trimester exposures).10 There were 70 ciprofloxacin exposures, all within the first trimester. The malformation rates among live-born babies exposed to ciprofloxacin and to fluoroquinolones overall were both within background incidence ranges. No specific patterns of congenital abnormalities were found. The study did not reveal any clear adverse reactions due to in utero exposure to ciprofloxacin. No differences in the rates of prematurity, spontaneous abortions, or birth weight were seen in women exposed to ciprofloxacin during pregnancy.8,9 However, these small post-marketing epidemiology studies, of which most experience is from short term, first trimester exposure, are insufficient to evaluate the risk for less common defects or to permit reliable and definitive conclusions regarding the safety of ciprofloxacin in pregnant women and their developing fetuses. Ciprofloxacin should not be used during pregnancy unless the potential benefit justifies the potential risk to both fetus and mother (see WARNINGS ). Reproduction studies have been performed in rats and mice using oral doses up to 100 mg/kg (0.6 and 0.3 times the maximum daily human dose based upon body surface area, respectively) and have revealed no evidence of harm to the fetus due to ciprofloxacin. In rabbits, oral ciprofloxacin dose levels of 30 and 100 mg/kg (approximately 0.4- and 1.3-times the highest recommended therapeutic dose based upon mg/m2) produced gastrointestinal toxicity resulting in maternal weight loss and an increased incidence of abortion, but no teratogenicity was observed at either dose level. After intravenous administration of doses up to 20 mg/kg (approximately 0.3-times the highest recommended therapeutic dose based upon mg/m2) no maternal toxicity was produced and no embryotoxicity or teratogenicity was observed. (See WARNINGS .)

NUSRING MOTHERS

NURSING MOTHERS Ciprofloxacin is excreted in human milk. The amount of ciprofloxacin absorbed by the nursing infant is unknown. Because of the potential for serious adverse reactions in infants nursing from mothers taking ciprofloxacin, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING Fluoroquinolones, including Ciprofloxacin Tablets, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants (See WARNINGS).

INFORMATION FOR PATIENTS

Patients should be advised: to contact their healthcare provider if they experience pain, swelling, or inflammation of a tendon, or weakness or inability to use one of their joints; rest and refrain from exercise; and discontinue Ciprofloxacin Tablets treatment. The risk of severe tendon disorder with fluoroquinolones is higher in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. that antibacterial drugs including Ciprofloxacin Tablets should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Ciprofloxacin Tablets are prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Ciprofloxacin Tablets or other antibacterial drugs in the future. that ciprofloxacin may be taken with or without meals and to drink fluids liberally. As with other quinolones, concurrent administration of ciprofloxacin with magnesium/aluminum antacids, or sucralfate, Videx® (didanosine) chewable/buffered tablets or pediatric powder, other highly buffered drugs, or with other products containing calcium, iron or zinc should be avoided. Ciprofloxacin may be taken two hours before or six hours after taking these products. Ciprofloxacin should not be taken with dairy products (like milk or yogurt) or calcium-fortified juices alone since absorption of ciprofloxacin may be significantly reduced; however, ciprofloxacin may be taken with a meal that contains these products. that ciprofloxacin may be associated with hypersensitivity reactions, even following a single dose, and to discontinue the drug at the first sign of a skin rash or other allergic reaction. that photosensitivity/phototoxicity has been reported in patients receiving quinolones. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking quinolones. If patients need to be outdoors while using quinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn-like reaction or skin eruption occurs, patients should contact their physician. that peripheral neuropathies have been associated with ciprofloxacin use. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness and/or weakness develop, they should discontinue treatment and contact their physicians. that ciprofloxacin may cause dizziness and lightheadedness; therefore, patients should know how they react to this drug before they operate an automobile or machinery or engage in activities requiring mental alertness or coordination. that ciprofloxacin increases the effects of tizanidine (Zanaflex®). Patients should not use ciprofloxacin if they are already taking tizanidine. that ciprofloxacin may increase the effects of theophylline and caffeine. There is a possibility of caffeine accumulation when products containing caffeine are consumed while taking quinolones. that convulsions have been reported in patients receiving quinolones, including ciprofloxacin, and to notify their physician before taking this drug if there is a history of this condition. that ciprofloxacin has been associated with an increased rate of adverse events involving joints and surrounding tissue structures (like tendons) in pediatric patients (less than 18 years of age). Parents should inform their child’s physician if the child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child’s physician of any joint-related problems that occur during or following ciprofloxacin therapy. (See WARNINGS, PRECAUTIONS, Pediatric Use and ADVERSE REACTIONS .) that diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

INACTIVE INGREDIENTS

INACTIVE INGREDIENT The inactive ingredients are colloidal silicon dioxide, corn starch, hydrogenated vegetable oil, hypromellose, magnesium stearate, microcrystalline cellulose, polyacrylate dispersion (methylacrylate and ethylacrylate copolymer), polyethylene glycol, purified water, simethicone emulsion, sodium starch glycolate, talc, and titanium dioxide.

DOSAGE AND ADMINISTRATION

– ADULTSCiprofloxacin Tablets should be administered orally to adults as described in the Dosage Guidelines table. The determination of dosage for any particular patient must take into consideration the severity and nature of the infection, the susceptibility of the causative organism, the integrity of the patient’s host-defense mechanisms, and the status of renal function and hepatic function. The duration of treatment depends upon the severity of infection. The usual duration is 7 to 14 days; however, for severe and complicated infections more prolonged therapy may be required. Ciprofloxacin should be administered at least 2 hours before or 6 hours after magnesium/aluminum antacids, or sucralfate, Videx® (didanosine) chewable/buffered tablets or pediatric powder for oral solution, other highly buffered drugs, or other products containing calcium, iron or zinc. ADULT DOSAGE GUIDELINES Infection Severity Dose Frequency Usual Durations† Urinary Tract Acute Uncomplicated 250 mg q 12 h 3 Days Mild/Moderate 250 mg q 12 h 7 to 14 Days Severe/Complicated 500 mg q 12 h 7 to 14 Days Chronic Bacterial Prostatitis Mild/Moderate 500 mg q 12 h 28 Days Lower Respiratory Tract Mild/Moderate 500 mg q 12 h 7 to 14 days Severe/Complicated 750 mg q 12 h 7 to 14 days Acute Sinusitis Mild/Moderate 500 mg q 12 h 10 days Skin and Skin Structure Mild/Moderate 500 mg q 12 h 7 to 14 Days Severe/Complicated 750 mg q 12 h 7 to 14 Days Bone and Joint Mild/Moderate 500 mg q 12 h lessthen4 to 6 weeks Severe/Complicated 750 mg q 12 h lessthen 4 to 6 weeks Intra-Abdominal* Complicated 500 mg q 12 h 7 to 14 Days Infectious Diarrhea Mild/Moderate/Severe 500 mg q 12 h 5 to 7 Days Typhoid Fever Mild/Moderate 500 mg q 12 h 10 Days Urethral and Cervical Gonococcal Infections Uncomplicated 250 mg single dose single dose Inhalational anthrax(post-exposure)** 500 mg q 12 h 60 Days * used in conjunction with metronidazole † Generally ciprofloxacin should be continued for at least 2 days after the signs and symptoms of infection have disappeared, except for inhalational anthrax (post-exposure). ** Drug administration should begin as soon as possible after suspected or confirmed exposure. This indication is based on a surrogate endpoint, ciprofloxacin serum concentrations achieved in humans, reasonably likely to predict clinical benefit.4 For a discussion of ciprofloxacin serum concentrations in various human populations, see INHALATIONAL ANTHRAX – ADDITIONAL INFORMATION . Conversion of I.V. to Oral Dosing in Adults Patients whose therapy is started with ciprofloxacin I.V. may be switched to Ciprofloxacin Tablets when clinically indicated at the discretion of the physician (See CLINICAL PHARMACOLOGY and table below for the equivalent dosing regimens). Equivalent AUC Dosing Regimens Ciprofloxacin Oral Dosage Equivalent Ciprofloxacin I.V. Dosage 250 mg Tablet q 12 h 200 mg I.V. q 12 h 500 mg Tablet q 12 h 400 mg I.V. q 12 h 750 mg Tablet q 12 h 400 mg I.V. q 8 h Adults with Impaired Renal Function Ciprofloxacin is eliminated primarily by renal excretion; however, the drug is also metabolized and partially cleared through the biliary system of the liver and through the intestine. These alternative pathways of drug elimination appear to compensate for the reduced renal excretion in patients with renal impairment. Nonetheless, some modification of dosage is recommended, particularly for patients with severe renal dysfunction. The following table provides dosage guidelines for use in patients with renal impairment: RECOMMENDED STARTING AND MAINTENANCE DOSES FOR PATIENTS WITH IMPAIRED RENAL FUNCTION Creatinine Clearance (mL/min) Dose less then 50 See Usual Dosage. 30 – 50 250 – 500 mg q 12 h 5 – 29 250 – 500 mg q 18 h Patients on hemodialysis or Peritoneal dialysis 250 – 500 mg q 24 h (after dialysis) When only the serum creatinine concentration is known, the following formula may be used to estimate creatinine clearance. Weight (kg) x (140 – age) Men: Creatinine clearance (mL/min) = 72 x serum creatinine (mg/dL) Women: 0.85 x the value calculated for men. The serum creatinine should represent a steady state of renal function. In patients with severe infections and severe renal impairment, a unit dose of 750 mg may be administered at the intervals noted above. Patients should be carefully monitored. – PEDIATRICSCiprofloxacin Tablets should be administered orally as described in the Dosage Guidelines table. An increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues, has been observed. (See ADVERSE REACTIONS and CLINICAL STUDIES .) Dosing and initial route of therapy (i.e., I.V. or oral) for complicated urinary tract infection or pyelonephritis should be determined by the severity of the infection. In the clinical trial, pediatric patients with moderate to severe infection were initiated on 6 to 10 mg/kg I.V. every 8 hours and allowed to switch to oral therapy (10 to 20 mg/kg every 12 hours), at the discretion of the physician. PEDIATRIC DOSAGE GUIDELINES Infection Route of Administration Dose (mg/kg) Frequency Total Duration Complicated Urinary Tract or Pyelonephritis Intravenous 6 to 10 mg/kg (maximum 400 mg per dose; not to be exceeded even in patients weighing > 51 kg) Every 8 hours 10-21 days* (patients from 1 to 17 years of age) Oral 10 mg/kg to 20 mg/kg (maximum 750 mg per dose; not to be exceeded even in patients weighing > 51 kg) Every 12 hours Inhalational Anthrax (Post-Exposure)** Intravenous 10 mg/kg (maximum 400 mg per dose) Every 12 hours 60 days Oral 15 mg/kg (maximum 500 mg per dose) Every 12 hours * The total duration of therapy for complicated urinary tract infection and pyelonephritis in the clinical trial was determined by the physician. The mean duration of treatment was 11 days (range 10 to 21 days). ** Drug administration should begin as soon as possible after suspected or confirmed exposure to Bacillus anthracis spores. This indication is based on a surrogate endpoint, ciprofloxacin serum concentrations achieved in humans, reasonably likely to predict clinical benefit.5 For a discussion of ciprofloxacin serum concentrations in various human populations, see INHALATIONAL ANTHRAX – ADDITIONAL INFORMATION . Pediatric patients with moderate to severe renal insufficiency were excluded from the clinical trial of complicated urinary tract infection and pyelonephritis. No information is available on dosing adjustments necessary for pediatric patients with moderate to severe renal insufficiency (i.e., creatinine clearance of greater then 50 mL/min/1.73m2).

Atenolol 100 MG Oral Tablet

Generic Name: ATENOLOL
Brand Name: Atenolol
  • Substance Name(s):
  • ATENOLOL

WARNINGS

Cardiac Failure Sympathetic stimulation is necessary in supporting circulatory function in congestive heart failure, and beta blockade carries the potential hazard of further depressing myocardial contractility and precipitating more severe failure. In patients with acute myocardial infarction, cardiac failure which is not promptly and effectively controlled by 80 mg of intravenous furosemide or equivalent therapy is a contraindication to beta-blocker treatment. In Patients Without a History of Cardiac Failure Continued depression of the myocardium with beta-blocking agents over a period of time can, in some cases, lead to cardiac failure. At the first sign or symptom of impending cardiac failure, patients should be treated appropriately according to currently recommended guidelines, and the response observed closely. If cardiac failure continues despite adequate treatment, atenolol should be withdrawn. (See DOSAGE AND ADMINISTRATION.) Cessation of Therapy With Atenolol Patients with coronary artery disease, who are being treated with atenolol, should be advised against abrupt discontinuation of therapy. Severe exacerbation of angina and the occurrence of myocardial infarction and ventricular arrhythmias have been reported in angina patients following the abrupt discontinuation of therapy with beta blockers. The last two complications may occur with or without preceding exacerbation of the angina pectoris. As with other beta blockers, when discontinuation of atenolol is planned, the patients should be carefully observed and advised to limit physical activity to a minimum. If the angina worsens or acute coronary insufficiency develops, it is recommended that atenolol be promptly reinstituted, at least temporarily. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue atenolol therapy abruptly even in patients treated only for hypertension. (See DOSAGE AND ADMINISTRATION.) Concomitant Use of Calcium Channel Blockers Bradycardia and heart block can occur and the left ventricular end diastolic pressure can rise when beta blockers are administered with verapamil or diltiazem. Patients with preexisting conduction abnormalities or left ventricular dysfunction are particularly susceptible (see PRECAUTIONS). Bronchospastic Diseases PATIENTS WITH BRONCHOSPASTIC DISEASE SHOULD, IN GENERAL, NOT RECEIVE BETA BLOCKERS. Because of its relative beta1 selectivity, however, atenolol may be used with caution in patients with bronchospastic disease who do not respond to, or cannot tolerate, other antihypertensive treatment. Since beta1 selectivity is not absolute, the lowest possible dose of atenolol should be used with therapy initiated at 50 mg and a beta2-stimulating agent (bronchodilator) should be made available. If dosage must be increased, dividing the dose should be considered in order to achieve lower peak blood levels. Major Surgery Chronically administered beta-blocking therapy should not be routinely withdrawn prior to major surgery, however the impaired ability of the heart to respond to reflex adrenergic stimuli may augment the risks of general anesthesia and surgical procedures. Diabetes and Hypoglycemia Atenolol should be used with caution in diabetic patients if a beta-blocking agent is required. Beta blockers may mask tachycardia occurring with hypoglycemia, but other manifestations such as dizziness and sweating may not be significantly affected. At recommended doses atenolol does not potentiate insulin-induced hypoglycemia and, unlike nonselective beta blockers, does not delay recovery of blood glucose to normal levels. Thyrotoxicosis Beta-adrenergic blockade may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Abrupt withdrawal of beta blockade might precipitate a thyroid storm; therefore, patients suspected of developing thyrotoxicosis from whom atenolol therapy is to be withdrawn should be monitored closely. (See DOSAGE AND ADMINISTRATION.) Untreated Pheochromocytoma Atenolol should not be given to patients with untreated pheochromocytoma. Pregnancy and Fetal Injury Atenolol can cause fetal harm when administered to a pregnant woman. Atenolol crosses the placental barrier and appears in cord blood. Administration of atenolol, starting in the second trimester of pregnancy, has been associated with the birth of infants that are small for gestational age. No studies have been performed on the use of atenolol in the first trimester and the possibility of fetal injury cannot be excluded. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Neonates born to mothers who are receiving atenolol at parturition or breast-feeding may be at risk for hypoglycemia and bradycardia. Caution should be exercised when atenolol is administered during pregnancy or to a woman who is breast-feeding. (See PRECAUTIONS: Nursing Mothers.) Atenolol has been shown to produce a dose related increase in embryo/fetal resorptions in rats at doses equal to or greater than 50 mg/kg/day or 25 or more times the maximum recommended human antihypertensive dose.* Although similar effects were not seen in rabbits, the compound was not evaluated in rabbits at doses above 25 mg/kg/day or 12.5 times the maximum recommended human antihypertensive dose.* * Based on the maximum dose of 100 mg/day in a 50 kg patient.

DRUG INTERACTIONS

Drug Interactions Catecholamine-depleting drugs (e.g., reserpine) may have an additive effect when given with beta-blocking agents. Patients treated with atenolol plus a catecholamine depletor should therefore be closely observed for evidence of hypotension and/or marked bradycardia which may produce vertigo, syncope, or postural hypotension. Calcium channel blockers may also have an additive effect when given with atenolol (see WARNINGS). Disopyramide is a Type l antiarrhythmic drug with potent negative inotropic and chronotropic effects. Disopyramide has been associated with severe bradycardia, asystole and heart failure when administered with beta-blockers. Amiodarone is an antiarrhythmic agent with negative chronotropic properties that may be additive to those seen with beta-blockers. Beta blockers may exacerbate the rebound hypertension which can follow the withdrawal of clonidine. If the two drugs are coadministered, the beta blocker should be withdrawn several days before the gradual withdrawal of clonidine. If replacing clonidine by beta-blocker therapy, the introduction of beta blockers should be delayed for several days after clonidine administration has stopped. Concomitant use of prostaglandin synthase inhibiting drugs, e.g., indomethacin, may decrease the hypotensive effects of beta-blockers. Information on concurrent usage of atenolol and aspirin is limited. Data from several studies, i.e., TIMI-II, ISIS-2, currently do not suggest any clinical interaction between aspirin and beta blockers in the acute myocardial infarction setting. While taking beta blockers, patients with a history of anaphylactic reaction to a variety of allergens may have a more severe reaction on repeated challenge, either accidental, diagnostic or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat the allergic reaction. Both digitalis glycosides and beta-blockers slow atrioventricular conduction and decrease heart rate. Concomitant use can increase the risk of bradycardia.

OVERDOSAGE

Overdosage with atenolol has been reported with patients surviving acute doses as high as 5 g. One death was reported in a man who may have taken as much as 10 g acutely. The predominant symptoms reported following atenolol overdose are lethargy, disorder of respiratory drive, wheezing, sinus pause and bradycardia. Additionally, common effects associated with overdosage of any beta-adrenergic blocking agent and which might also be expected in atenolol overdose are congestive heart failure, hypotension, bronchospasm and/or hypoglycemia. Treatment of overdose should be directed to the removal of any unabsorbed drug by induced emesis, gastric lavage, or administration of activated charcoal. Atenolol can be removed from the general circulation by hemodialysis. Other treatment modalities should be employed at the physician’s discretion and may include: Bradycardia: Atropine intravenously. If there is no response to vagal blockade, give isoproterenol cautiously. In refractory cases, a transvenous cardiac pacemaker may be indicated. Heart Block (second or third degree): Isoproterenol or transvenous cardiac pacemaker. Cardiac Failure: Digitalize the patient and administer a diuretic. Glucagon has been reported to be useful. Hypotension: Vasopressors such as dopamine or norepinephrine (levarterenol). Monitor blood pressure continuously. Bronchospasm: A beta2 stimulant such as isoproterenol or terbutaline and/or aminophylline. Hypoglycemia: Intravenous glucose. Based on the severity of symptoms, management may require intensive support care and facilities for applying cardiac and respiratory support.

DESCRIPTION

Atenolol, USP, a synthetic, beta1-selective (cardioselective) adrenoreceptor blocking agent, may be chemically described as Benzeneacetamide, 4-[2′-hydroxy-3′-[(1-methylethyl)amino]propoxy]-. The molecular and structural formulas are: Atenolol (free base) has a molecular weight of 266.34. It is a relatively polar hydrophilic compound with a water solubility of 26.5 mg/mL at 37°C and a log partition coefficient (octanol/water) of 0.23. It is freely soluble in 1N HCl (300 mg/mL at 25°C) and less soluble in chloroform (3 mg/mL at 25°C). Each tablet for oral administration contains 25 mg, 50 mg or 100 mg of atenolol, USP and the following inactive ingredients: colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose, sodium lauryl sulfate and sodium starch glycolate. Structural Formula

HOW SUPPLIED

Atenolol Tablets, USP are available containing 25 mg, 50 mg or 100 mg of atenolol, USP. The 25 mg tablets are white to off-white, round, unscored tablets debossed with A2 on one side of the tablet and M on the other side. The 50 mg tablets are white, round, scored tablets debossed with 231 above the score on one side of the tablet and M on the other side. The 100 mg tablets are white, round, unscored tablets debossed with M on one side of the tablet and 757 on the other side. They are available as follows: NDC 0615-3533-39 blistercards of 30 tablets Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A. REVISED JANUARY 2013 ATEN:R25 Mylan Logo symbol

GERIATRIC USE

Geriatric Use Hypertension and Angina Pectoris Due to Coronary Atherosclerosis Clinical studies of atenolol did not include sufficient number of patients aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Acute Myocardial Infarction Of the 8,037 patients with suspected acute myocardial infarction randomized to atenolol in the ISIS-1 trial (see CLINICAL PHARMACOLOGY), 33% (2,644) were 65 years of age and older. It was not possible to identify significant differences in the efficacy and safety between older and younger patients; however, elderly patients with systolic blood pressure < 120 mm Hg seemed less likely to benefit (see INDICATIONS AND USAGE). In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Evaluation of patients with hypertension or myocardial infarction should always include assessment of renal function.

INDICATIONS AND USAGE

Hypertension Atenolol tablets are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure lowers the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including atenolol tablets. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure or diabetic kidney disease). These considerations may guide selection of therapy. Atenolol tablets may be administered with other antihypertensive agents. Angina Pectoris Due to Coronary Atherosclerosis Atenolol tablets are indicated for the long-term management of patients with angina pectoris. Acute Myocardial Infarction Atenolol tablets are indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Treatment can be initiated as soon as the patient’s clinical condition allows. (See DOSAGE AND ADMINISTRATION, CONTRAINDICATIONS, and WARNINGS.) In general, there is no basis for treating patients like those who were excluded from the ISIS-1 trial (blood pressure less than 100 mm Hg systolic, heart rate less than 50 bpm) or have other reasons to avoid beta blockade. As noted above, some subgroups (e.g., elderly patients with systolic blood pressure below 120 mm Hg) seemed less likely to benefit.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

Usage in Pregnancy Teratogenic Effects Pregnancy Category D See WARNINGS: Pregnancy and Fetal Injury.

NUSRING MOTHERS

Nursing Mothers Atenolol is excreted in human breast milk at a ratio of 1.5 to 6.8 when compared to the concentration in plasma. Caution should be exercised when atenolol is administered to a nursing woman. Clinically significant bradycardia has been reported in breast fed infants. Premature infants, or infants with impaired renal function, may be more likely to develop adverse effects. Neonates born to mothers who are receiving atenolol at parturition or breast-feeding may be at risk for hypoglycemia and bradycardia. Caution should be exercised when atenolol is administered during pregnancy or to a woman who is breast-feeding. (See WARNINGS: Pregnancy and Fetal Injury.)

BOXED WARNING

Cessation of Therapy With Atenolol Patients with coronary artery disease, who are being treated with atenolol, should be advised against abrupt discontinuation of therapy. Severe exacerbation of angina and the occurrence of myocardial infarction and ventricular arrhythmias have been reported in angina patients following the abrupt discontinuation of therapy with beta blockers. The last two complications may occur with or without preceding exacerbation of the angina pectoris. As with other beta blockers, when discontinuation of atenolol is planned, the patients should be carefully observed and advised to limit physical activity to a minimum. If the angina worsens or acute coronary insufficiency develops, it is recommended that atenolol be promptly reinstituted, at least temporarily. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue atenolol therapy abruptly even in patients treated only for hypertension. (See DOSAGE AND ADMINISTRATION.)

DOSAGE AND ADMINISTRATION

Hypertension The initial dose of atenolol is 50 mg given as one tablet a day either alone or added to diuretic therapy. The full effect of this dose will usually be seen within one to two weeks. If an optimal response is not achieved, the dosage should be increased to atenolol 100 mg given as one tablet a day. Increasing the dosage beyond 100 mg a day is unlikely to produce any further benefit. Atenolol tablets may be used alone or concomitantly with other antihypertensive agents including thiazide-type diuretics, hydralazine, prazosin, and alpha-methyldopa. Angina Pectoris The initial dose of atenolol is 50 mg given as one tablet a day. If an optimal response is not achieved within one week, the dosage should be increased to atenolol 100 mg given as one tablet a day. Some patients may require a dosage of 200 mg once a day for optimal effect. Twenty-four hour control with once daily dosing is achieved by giving doses larger than necessary to achieve an immediate maximum effect. The maximum early effect on exercise tolerance occurs with doses of 50 mg to 100 mg, but at these doses the effect at 24 hours is attenuated, averaging about 50% to 75% of that observed with once a day oral doses of 200 mg. Acute Myocardial Infarction In patients with definite or suspected acute myocardial infarction, treatment with atenolol I.V. injection should be initiated as soon as possible after the patient’s arrival in the hospital and after eligibility is established. Such treatment should be initiated in a coronary care or similar unit immediately after the patient’s hemodynamic condition has stabilized. Treatment should begin with the intravenous administration of 5 mg atenolol over 5 minutes followed by another 5 mg intravenous injection 10 minutes later. Atenolol I.V. injection should be administered under carefully controlled conditions including monitoring of blood pressure, heart rate, and electrocardiogram. Dilutions of atenolol I.V. injection in Dextrose Injection USP, Sodium Chloride Injection USP, or Sodium Chloride and Dextrose Injection may be used. These admixtures are stable for 48 hours if they are not used immediately. In patients who tolerate the full intravenous dose (10 mg), atenolol tablets 50 mg should be initiated 10 minutes after the last intravenous dose followed by another 50 mg oral dose 12 hours later. Thereafter, atenolol tablets can be given orally either 100 mg once daily or 50 mg twice a day for a further 6 to 9 days or until discharge from the hospital. If bradycardia or hypotension requiring treatment or any other untoward effects occur, atenolol tablets should be discontinued. (See full prescribing information prior to initiating therapy with atenolol tablets.) Data from other beta blocker trials suggest that if there is any question concerning the use of IV beta blocker or clinical estimate that there is a contraindication, the IV beta blocker may be eliminated and patients fulfilling the safety criteria may be given atenolol tablets 50 mg twice daily or 100 mg once a day for at least seven days (if the IV dosing is excluded). Although the demonstration of efficacy of atenolol is based entirely on data from the first seven postinfarction days, data from other beta blocker trials suggest that treatment with beta blockers that are effective in the postinfarction setting may be continued for one to three years if there are no contraindications. Atenolol tablets are an additional treatment to standard coronary care unit therapy. Elderly Patients or Patients with Renal Impairment Atenolol is excreted by the kidneys; consequently dosage should be adjusted in cases of severe impairment of renal function. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy. Evaluation of patients with hypertension or myocardial infarction should always include assessment of renal function. Atenolol excretion would be expected to decrease with advancing age. No significant accumulation of atenolol occurs until creatinine clearance falls below 35 mL/min/1.73 m2. Accumulation of atenolol and prolongation of its half-life were studied in subjects with creatinine clearance between 5 and 105 mL/min. Peak plasma levels were significantly increased in subjects with creatinine clearances below 30 mL/min. The following maximum oral dosages are recommended for elderly, renally-impaired patients and for patients with renal impairment due to other causes: Creatinine Clearance (mL/min/1.73m2) Atenolol Elimination Half-Life (hrs) Maximum Dosage 15 to 35 16 to 27 50 mg daily 27 25 mg daily Some renally-impaired or elderly patients being treated for hypertension may require a lower starting dose of atenolol: 25 mg given as one tablet a day. If this 25 mg dose is used, assessment of efficacy must be made carefully. This should include measurement of blood pressure just prior to the next dose (“trough” blood pressure) to ensure that the treatment effect is present for a full 24 hours. Although a similar dosage reduction may be considered for elderly and/or renally-impaired patients being treated for indications other than hypertension, data are not available for these patient populations. Patients on hemodialysis should be given 25 mg or 50 mg after each dialysis; this should be done under hospital supervision as marked falls in blood pressure can occur. Cessation of Therapy in Patients with Angina Pectoris If withdrawal of atenolol tablets therapy is planned, it should be achieved gradually and patients should be carefully observed and advised to limit physical activity to a minimum.

Pravastatin Sodium 10 MG Oral Tablet

Generic Name: PRAVASTATIN SODIUM
Brand Name: pravastatin sodium
  • Substance Name(s):
  • PRAVASTATIN SODIUM

DRUG INTERACTIONS

7. For the concurrent therapy of either cyclosporine, fibrates, niacin (nicotinic acid), or erythromycin, the risk of myopathy increases [see Warnings and Precautions ( 5.1) and Clinical Pharmacology ( 12.3) ]. Concomitant lipid-lowering therapies: use with fibrates or lipid-modifying doses (≥1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with pravastatin sodium. ( 7) Cyclosporine: combination increases exposure. Limit pravastatin to 20 mg once daily. ( 2.5, 7.1) Clarithromycin: combination increases exposure. Limit pravastatin to 40 mg once daily. ( 2.6, 7.2) 7.1 Cyclosporine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of cyclosporine. Limit pravastatin to 20 mg once daily for concomitant use with cyclosporine [see Dosage and Administration ( 2.5) , Warnings and Precautions ( 5.1) , and Clinical Pharmacology ( 12.3) ]. 7.2 Clarithromycin The risk of myopathy/rhabdomyolysis is increased with concomitant administration of clarithromycin. Limit pravastatin to 40 mg once daily for concomitant use with clarithromycin [see Dosage and Administration ( 2.6) , Warnings and Precautions ( 5.1) , and Clinical Pharmacology ( 12.3) ]. 7.3 Colchicine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of colchicine [see Warnings and Precautions ( 5.1) ]. 7.4 Gemfibrozil Due to an increased risk of myopathy/rhabdomyolysis when HMG-CoA reductase inhibitors are coadministered with gemfibrozil, concomitant administration of pravastatin sodium with gemfibrozil should be avoided [see Warnings and Precautions ( 5.1) ]. 7.5 Other Fibrates Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concurrent administration of other fibrates, pravastatin sodium should be administered with caution when used concomitantly with other fibrates [see Warnings and Precautions ( 5.1) ]. 7.6 Niacin The risk of skeletal muscle effects may be enhanced when pravastatin is used in combination with niacin; a reduction in pravastatin sodium dosage should be considered in this setting [see Warnings and Precautions ( 5.1) ].

OVERDOSAGE

10. To date, there has been limited experience with overdosage of pravastatin. If an overdose occurs, it should be treated symptomatically with laboratory monitoring and supportive measures should be instituted as required.

DESCRIPTION

11. Pravastatin sodium is one of a class of lipid-lowering compounds, the statins, which reduce cholesterol biosynthesis. These agents are competitive inhibitors of HMG-CoA reductase, the enzyme catalyzing the early rate-limiting step in cholesterol biosynthesis, conversion of HMG-CoA to mevalonate. Pravastatin sodium is designated chemically as 1-Naphthalene-heptanoic acid, 1,2,6,7,8,8a-hexahydro-β,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-, monosodium salt, [1S-[1α(βS*,δS*),2α,6α,8β(R*),8aα]]-. Structural formula: Pravastatin sodium, USP is white to yellowish white powder or crystalline powder, hygroscopic in nature. It is a relatively polar hydrophilic compound with a partition coefficient (octanol/water) of 0.59 at a pH of 7. It is freely soluble in water and in methanol. Soluble in ethanol. Each pravastatin sodium tablet, USP intended for oral administration contains 10 mg or 20 mg or 40 mg or 80 mg of pravastatin sodium. In addition, each tablet contains the following inactive ingredients: croscarmellose sodium, lactose anhydrous, magnesium stearate, microcrystalline cellulose, polyoxyl 35 castor oil and sodium carbonate anhydrous. Pravastatin Sodium Tablets, USP

CLINICAL STUDIES

14. 14.1 Prevention of Coronary Heart Disease In the Pravastatin Primary Prevention Study (WOS), 3 the effect of pravastatin sodium on fatal and nonfatal CHD was assessed in 6595 men 45 to 64 years of age, without a previous MI, and with LDL-C levels between 156 to 254 mg/dL (4 to 6.7 mmol/L). In this randomized, doubleblind, placebo-controlled study, patients were treated with standard care, including dietary advice, and either pravastatin sodium 40 mg daily (N=3302) or placebo (N=3293) and followed for a median duration of 4.8 years. Median (25 th, 75 th percentile) percent changes from baseline after 6 months of pravastatin treatment in Total-C, LDL-C, TG, and HDL-C were −20.3 (−26.9, −11.7), −27.7 (−36, −16.9), −9.1 (−27.6, 12.5), and 6.7 (−2.1, 15.6), respectively. Pravastatin sodium significantly reduced the rate of first coronary events (either CHD death or nonfatal MI) by 31% (248 events in the placebo group [CHD death=44, nonfatal MI=204] versus 174 events in the pravastatin sodium group [CHD death=31, nonfatal MI=143], p=0.0001 [see figure below]). The risk reduction with pravastatin sodium was similar and significant throughout the entire range of baseline LDL cholesterol levels. This reduction was also similar and significant across the age range studied with a 40% risk reduction for patients younger than 55 years and a 27% risk reduction for patients 55 years and older. The Pravastatin Primary Prevention Study included only men, and therefore it is not clear to what extent these data can be extrapolated to a similar population of female patients. Pravastatin sodium also significantly decreased the risk for undergoing myocardial revascularization procedures (coronary artery bypass graft [CABG] surgery or percutaneous transluminal coronary angioplasty [PTCA]) by 37% (80 vs 51 patients, p=0.009) and coronary angiography by 31% (128 vs 90, p=0.007). Cardiovascular deaths were decreased by 32% (73 vs 50, p=0.03) and there was no increase in death from non-cardiovascular causes. Pravastatin Sodium Tablets, USP 14.2 Secondary Prevention of Cardiovascular Events In the LIPID4 study, the effect of pravastatin, 40 mg daily, was assessed in 9014 patients (7498 men; 1516 women; 3514 elderly patients [age ≥65 years]; 782 diabetic patients) who had experienced either an MI `(5754 patients) or had been hospitalized for unstable angina pectoris (3260 patients) in the preceding 3 to 36 months. Patients in this multicenter, double-blind, placebo-controlled study participated for an average of 5.6 years (median of 5.9 years) and at randomization had Total-C between 114 and 563 mg/dL (mean 219 mg/dL), LDL-C between 46 and 274 mg/dL (mean 150 mg/dL), TG between 35 and 2710 mg/dL (mean 160 mg/dL), and HDL-C between 1 and 103 mg/dL (mean 37 mg/dL). At baseline, 82% of patients were receiving aspirin and 76% were receiving antihypertensive medication. Treatment with pravastatin significantly reduced the risk for total mortality by reducing coronary death (see Table 5). The risk reduction due to treatment with pravastatin on CHD mortality was consistent regardless of age. Pravastatin significantly reduced the risk for total mortality (by reducing CHD death) and CHD events (CHD mortality or nonfatal MI) in patients who qualified with a history of either MI or hospitalization for unstable angina pectoris. Table 5 LIPID – Primary and Secondary Endpoints Number (%) of Subjects Event Pravastatin 40 mg (N=4512) Placebo (N=4502) Risk Reduction p-value Primary Endpoint CHD mortality 287 (6.4) 373 (8.3) 24% 0.0004 Secondary Endpoints Total mortality 498 (11.0) 633 (14.1) 23% <0.0001 CHD mortality or nonfatal MI 557 (12.3) 715 (15.9) 24% <0.0001 Myocardial revascularization procedures (CABG or PTCA) 584 (12.9) 706 (15.7) 20% <0.0001 Stroke All-cause 169 (3.7) 204 (4.5) 19% 0.0477 Non-hemorrhagic 154 (3.4) 196 (4.4) 23% 0.0154 Cardiovascular mortality 331 (7.3) 433 (9.6) 25% <0.0001 In the CARE5 study, the effect of pravastatin, 40 mg daily, on CHD death and nonfatal MI was assessed in 4159 patients (3583 men and 576 women) who had experienced a MI in the preceding 3 to 20 months and who had normal (below the 75th percentile of the general population) plasma total cholesterol levels. Patients in this double-blind, placebo-controlled study participated for an average of 4.9 years and had a mean baseline Total-C of 209 mg/dL. LDL-C levels in this patient population ranged from 101 to 180 mg/dL (mean 139 mg/dL). At baseline, 84% of patients were receiving aspirin and 82% were taking antihypertensive medications. Median (25th , 75th percentile) percent changes from baseline after 6 months of pravastatin treatment in Total-C, LDL-C, TG, and HDL-C were −22.0 (−28.4, −14.9), −32.4 (−39.9, −23.7), −11.0 (−26.5, 8.6), and 5.1 (−2.9, 12.7), respectively. Treatment with pravastatin significantly reduced the rate of first recurrent coronary events (either CHD death or nonfatal MI), the risk of undergoing revascularization procedures (PTCA, CABG), and the risk for stroke or TIA (see Table 6). Table 6 CARE – Primary and Secondary Endpoints Number (%) of Subjects Event Pravastatin 40 mg (N=2081) Placebo (N=2078) Risk Reduction p-value Primary Endpoint CHD mortality or nonfatal MI The risk reduction due to treatment with pravastatin was consistent in both sexes. 212 (10.2) 274 (13.2) 24% 0.003 Secondary Endpoints Myocardial revascularization procedures (CABG or PTCA) 294 (14.1) 391 (18.8) 27% 200 mg/dL and LDL-C 95 th percentile for age and sex and one parent with either a clinical or molecular diagnosis of familial hypercholesterolemia. The mean baseline LDL-C value was 239 mg/dL and 237 mg/dL in the pravastatin (range: 151 to 405 mg/dL) and placebo (range: 154 to 375 mg/dL) groups, respectively. Pravastatin significantly decreased plasma levels of LDL-C, Total-C, and ApoB in both children and adolescents (see Table 10). The effect of pravastatin treatment in the 2 age groups was similar. Table 10 Lipid-Lowering Effects of Pravastatin in Pediatric Patients with Heterozygous Familial Hypercholesterolemia: Least-Squares Mean % Change from Baseline at Month 24 (Last Observation Carried Forward: Intent-to-Treat) a Pravastatin 20 mg (Aged 8 to 13 years) N=65 Pravastatin 40 mg (Aged 14 to 18 years) N=41 Combined Pravastatin (Aged 8 to 18 years) N=106 Combined Placebo (Aged 8 to 18 years) N=108 95% CI of the Difference Between Combined Pravastatin and Placebo a The above least-squares mean values were calculated based on log-transformed lipid values. b Significant at p ≤ 0.0001 when compared with placebo. LDL-C −26.04 b −21.07 b −24.07 b −1.52 (−26.74, −18.86) TC −20.75 b −13.08 b −17.72 b −0.65 (−20.40, −13.83) HDL-C 1.04 13.71 5.97 3.13 (−1.71, 7.43) TG −9.58 −0.30 −5.88 −3.27 (−13.95, 10.01) ApoB (N) −23.16 b (61) −18.08 b (39) −21.11 b (100) −0.97 (106) (−24.29, −16.18) The mean achieved LDL-C was 186 mg/dL (range: 67 to 363 mg/dL) in the pravastatin group compared to 236 mg/dL (range: 105 to 438 mg/dL) in the placebo group. The safety and efficacy of pravastatin doses above 40 mg daily have not been studied in children. The long-term efficacy of pravastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

HOW SUPPLIED

16. /STORAGE AND HANDLING 16.1 How Supplied Pravastatin Sodium Tablets USP, 10 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC46’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-500-01 Pravastatin Sodium Tablets USP, 20 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC45’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-501-01 Pravastatin Sodium Tablets USP, 40 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC44’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-502-01 Pravastatin Sodium Tablets USP, 80 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC43’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 30 (5 x 6) NDC 68084-746-25 16.2 Storage Store at 20° to 25° C (68° to 77° F) [See USP Controlled Room Temperature]. Protect from light and moisture

GERIATRIC USE

8.5 Geriatric Use Two secondary prevention trials with pravastatin (CARE and LIPID) included a total of 6593 subjects treated with pravastatin 40 mg for periods ranging up to 6 years. Across these 2 studies, 36.1% of pravastatin subjects were aged 65 and older and 0.8% were aged 75 and older. The beneficial effect of pravastatin in elderly subjects in reducing cardiovascular events and in modifying lipid profiles was similar to that seen in younger subjects. The adverse event profile in the elderly was similar to that in the overall population. Other reported clinical experience has not identified differences in responses to pravastatin between elderly and younger patients. Mean pravastatin AUCs are slightly (25% to 50%) higher in elderly subjects than in healthy young subjects, but mean maximum plasma concentration (C max), time to maximum plasma concentration (T max), and half-life (t ½) values are similar in both age groups and substantial accumulation of pravastatin would not be expected in the elderly [see Clinical Pharmacology ( 12.3) ]. Since advanced age (≥ 65 years) is a predisposing factor for myopathy, pravastatin sodium should be prescribed with caution in the elderly [see Warnings and Precautions ( 5.1) and Clinical Pharmacology ( 12.3) ].

DOSAGE FORMS AND STRENGTHS

3. Pravastatin sodium tablets, USP are supplied as: 10 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC46’ on one side and plain on the other side. 20 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC45’ on one side and plain on the other side. 40 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC44’ on one side and plain on the other side. 80 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC43’ on one side and plain on the other side. Tablets: 10 mg, 20 mg, 40 mg and 80 mg. ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action Pravastatin is a reversible inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate, an early and rate limiting step in the biosynthetic pathway for cholesterol. In addition, pravastatin reduces VLDL and TG and increases HDL-C.

INDICATIONS AND USAGE

1. Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. Pravastatin sodium tablet, USP is an HMG-CoA reductase inhibitor (statin) indicated as an adjunctive therapy to diet to: Reduce the risk of MI, revascularization, and cardiovascular mortality in hypercholesterolemic patients without clinically evident CHD. ( 1.1) Reduce the risk of total mortality by reducing coronary death, MI, revascularization, stroke/TIA, and the progression of coronary atherosclerosis in patients with clinically evident CHD. ( 1.1) Reduce elevated Total-C, LDL-C, ApoB, and TG levels and to increase HDL-C in patients with primary hypercholesterolemia and mixed dyslipidemia. ( 1.2) Reduce elevated serum TG levels in patients with hypertriglyceridemia. ( 1.2) Treat patients with primary dysbetalipoproteinemia who are not responding to diet. ( 1.2) Treat children and adolescent patients ages 8 years and older with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy. ( 1.2) Limitations of use: Pravastatin sodium tablets, USP have not been studied in Fredrickson Types I and V dyslipidemias. ( 1.3) 1.1 Prevention of Cardiovascular Disease In hypercholesterolemic patients without clinically evident coronary heart disease (CHD), pravastatin sodium tablets, USP are indicated to: reduce the risk of myocardial infarction (MI). reduce the risk of undergoing myocardial revascularization procedures. reduce the risk of cardiovascular mortality with no increase in death from non-cardiovascular causes. In patients with clinically evident CHD, pravastatin sodium tablet is indicated to: reduce the risk of total mortality by reducing coronary death. reduce the risk of MI. reduce the risk of undergoing myocardial revascularization procedures. reduce the risk of stroke and stroke/transient ischemic attack (TIA). slow the progression of coronary atherosclerosis. 1.2 Hyperlipidemia Pravastatin sodium tablet is indicated: as an adjunct to diet to reduce elevated total cholesterol (Total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and triglyceride (TG) levels and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hypercholesterolemia and mixed dyslipidemia ( Fredrickson Types IIa and IIb). 1 as an adjunct to diet for the treatment of patients with elevated serum TG levels ( Fredrickson Type IV). for the treatment of patients with primary dysbetalipoproteinemia ( Fredrickson Type III) who do not respond adequately to diet. as an adjunct to diet and lifestyle modification for treatment of heterozygous familial hypercholesterolemia (HeFH) in children and adolescent patients ages 8 years and older if after an adequate trial of diet the following findings are present: LDL-C remains ≥ 190 mg/dL or LDL-C remains ≥ 160 mg/dL and: there is a positive family history of premature cardiovascular disease (CVD) or two or more other CVD risk factors are present in the patient. 1.3 Limitations of Use Pravastatin sodium has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of pravastatin sodium in children and adolescents from 8 to 18 years of age have been evaluated in a placebo-controlled study of 2 years duration. Patients treated with pravastatin had an adverse experience profile generally similar to that of patients treated with placebo with influenza and headache commonly reported in both treatment groups. [See Adverse Reactions ( 6.4) .] Doses greater than 40 mg have not been studied in this population. Children and adolescent females of childbearing potential should be counseled on appropriate contraceptive methods while on pravastatin therapy [see Contraindications ( 4.3) and Use in Specific Populations ( 8.1) ]. For dosing information [see Dosage and Administration ( 2.3) .] Doubleblind, placebo-controlled pravastatin studies in children less than 8 years of age have not been conducted.

PREGNANCY

4.3 Pregnancy Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. Cholesterol and other products of cholesterol biosynthesis are essential components for fetal development (including synthesis of steroids and cell membranes). Since statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, they are contraindicated during pregnancy and in nursing mothers. PRAVASTATIN SHOULD BE ADMINISTERED TO WOMEN OF CHILDBEARING AGE ONLY WHEN SUCH PATIENTS ARE HIGHLY UNLIKELY TO CONCEIVE AND HAVE BEEN INFORMED OF THE POTENTIAL HAZARDS. If the patient becomes pregnant while taking this class of drug, therapy should be discontinued immediately and the patient apprised of the potential hazard to the fetus [see Use in Specific Populations ( 8.1) ].

NUSRING MOTHERS

4.4 Nursing Mothers A small amount of pravastatin is excreted in human breastmilk. Because statins have the potential for serious adverse reactions in nursing infants, women who require pravastatin sodium treatment should not breastfeed their infants [see Use in Specific Populations ( 8.3) ].

WARNING AND CAUTIONS

5. WARNINGS AND PRECAUTIONS Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): predisposing factors include advanced age (≥65), uncontrolled hypothyroidism, and renal impairment. Patients should be advised to promptly report to their physician any unexplained and/or persistent muscle pain, tenderness, or weakness. Pravastatin therapy should be discontinued if myopathy is diagnosed or suspected. ( 5.1, 8.5) Liver enzyme abnormalities: persistent elevations in hepatic transaminases can occur. Check liver enzyme tests before initiating therapy and as clinically indicated thereafter. ( 5.2) 5.1 Skeletal Muscle Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with pravastatin and other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects. Uncomplicated myalgia has also been reported in pravastatin-treated patients [see Adverse Reactions (6)]. Myopathy, defined as muscle aching or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values to greater than 10 times the upper limit of normal (ULN), was rare ( 6 months) stable liver disease, due primarily to hepatitis C or non-alcoholic fatty liver disease, were treated with 80 mg pravastatin or placebo for up to 9 months. The primary safety endpoint was the proportion of subjects with at least one ALT ≥ 2 times the upper limit of normal for those with normal ALT (≤ the upper limit of normal) at baseline or a doubling of the baseline ALT for those with elevated ALT (> the upper limit of normal) at baseline. By Week 36, 12 out of 160 (7.5%) subjects treated with pravastatin met the prespecified safety ALT endpoint compared to 20 out of 160 (12.5%) subjects receiving placebo. Conclusions regarding liver safety are limited since the study was not large enough to establish similarity between groups (with 95% confidence) in the rates of ALT elevation. It is recommended that liver function tests be performed prior to the initiation of therapy and when clinically indicated. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of pravastatin [see Contraindications ( 4.2) ]. Caution should be exercised when pravastatin is administered to patients who have a recent (< 6 months) history of liver disease, have signs that may suggest liver disease (e.g., unexplained aminotransferase elevations, jaundice), or are heavy users of alcohol. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including pravastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with pravastatin sodium, promptly interrupt therapy. If an alternate etiology is not found do not restart pravastatin sodium. 5.3 Endocrine Function Statins interfere with cholesterol synthesis and lower circulating cholesterol levels and, as such, might theoretically blunt adrenal or gonadal steroid hormone production. Results of clinical trials with pravastatin in males and post-menopausal females were inconsistent with regard to possible effects of the drug on basal steroid hormone levels. In a study of 21 males, the mean testosterone response to human chorionic gonadotropin was significantly reduced (p < 0.004) after 16 weeks of treatment with 40 mg of pravastatin. However, the percentage of patients showing a ≥ 50% rise in plasma testosterone after human chorionic gonadotropin stimulation did not change significantly after therapy in these patients. The effects of statins on spermatogenesis and fertility have not been studied in adequate numbers of patients. The effects, if any, of pravastatin on the pituitary-gonadal axis in pre-menopausal females are unknown. Patients treated with pravastatin who display clinical evidence of endocrine dysfunction should be evaluated appropriately. Caution should also be exercised if a statin or other agent used to lower cholesterol levels is administered to patients also receiving other drugs (e.g., ketoconazole, spironolactone, cimetidine) that may diminish the levels or activity of steroid hormones. In a placebo-controlled study of 214 pediatric patients with HeFH, of which 106 were treated with pravastatin (20 mg in the children aged 8 to 13 years and 40 mg in the adolescents aged 14 to 18 years) for 2 years, there were no detectable differences seen in any of the endocrine parameters (ACTH, cortisol, DHEAS, FSH, LH, TSH, estradiol [girls] or testosterone [boys]) relative to placebo. There were no detectable differences seen in height and weight changes, testicular volume changes, or Tanner score relative to placebo.

INFORMATION FOR PATIENTS

17. PATIENT COUNSELING INFORMATION Patients should be advised to report promptly unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing pravastatin [see Warnings and Precautions ( 5.1) ]. It is recommended that liver enzyme tests be performed before the initiation of pravastatin sodium, and thereafter when clinically indicated. All patients treated with pravastatin sodium should be advised to promptly report any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine, or jaundice [see Warnings and Precautions ( 5.2) ]. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

DOSAGE AND ADMINISTRATION

2. Adults: the recommended starting dose is 40 mg once daily. Use 80 mg dose only for patients not reaching LDL-C goal with 40 mg. ( 2.2) Significant renal impairment: the recommended starting dose is 10 mg once daily. ( 2.2) Children (ages 8 to 13 years, inclusive): the recommended starting dose is 20 mg once daily. ( 2.3) Adolescents (ages 14 to 18 years): the recommended starting dose is 40 mg once daily. ( 2.3) 2.1 General Dosing Information The patient should be placed on a standard cholesterol-lowering diet before receiving pravastatin sodium tablets and should continue on this diet during treatment with pravastatin sodium tablets [see NCEP Treatment Guidelines for details on dietary therapy]. 2.2 Adult Patients The recommended starting dose is 40 mg once daily. If a daily dose of 40 mg does not achieve desired cholesterol levels, 80 mg once daily is recommended. In patients with significant renal impairment, a starting dose of 10 mg daily is recommended. Pravastatin sodium tablets can be administered orally as a single dose at any time of the day, with or without food. Since the maximal effect of a given dose is seen within 4 weeks, periodic lipid determinations should be performed at this time and dosage adjusted according to the patient’s response to therapy and established treatment guidelines. 2.3 Pediatric Patients Children (Ages 8 to 13 Years, Inclusive) The recommended dose is 20 mg once daily in children 8 to 13 years of age. Doses greater than 20 mg have not been studied in this patient population. Adolescents (Ages 14 to 18 Years) The recommended starting dose is 40 mg once daily in adolescents 14 to 18 years of age. Doses greater than 40 mg have not been studied in this patient population. Children and adolescents treated with pravastatin should be reevaluated in adulthood and appropriate changes made to their cholesterol-lowering regimen to achieve adult goals for LDL-C [see Indications and Usage ( 1.2) ]. 2.4 Concomitant Lipid-Altering Therapy Pravastatin sodium tablets may be used with bile acid resins. When administering a bile-acid-binding resin (e.g., cholestyramine, colestipol) and pravastatin, pravastatin sodium tablets should be given either 1 hour or more before or at least 4 hours following the resin. [See Clinical Pharmacology ( 12.3) .] 2.5 Dosage in Patients Taking Cyclosporine In patients taking immunosuppressive drugs such as cyclosporine concomitantly with pravastatin, therapy should begin with 10 mg of pravastatin sodium once-a-day at bedtime and titration to higher doses should be done with caution. Most patients treated with this combination received a maximum pravastatin sodium dose of 20 mg/day. In patients taking cyclosporine, therapy should be limited to 20 mg of pravastatin sodium once daily [see Warnings and Precautions ( 5.1) and Drug Interactions ( 7.1) ]. 2.6 Dosage in Patients Taking Clarithromycin In patients taking clarithromycin, therapy should be limited to 40 mg of pravastatin sodium once daily [see Drug Interactions ( 7.2) ].

gabapentin 100 MG Oral Capsule

Generic Name: GABAPENTIN
Brand Name: Gabapentin
  • Substance Name(s):
  • GABAPENTIN

DRUG INTERACTIONS

7 •Morphine increases gabapentin concentrations; dose adjustment may be needed (5.4, 7.2) 7.1 Other Antiepileptic Drugs Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly co-administered antiepileptic drugs [see Clinical Pharmacology (12.3)]. 7.2 Opioids Hydrocodone Co-administration of gabapentin with hydrocodone decreases hydrocodone exposure [see Clinical Pharmacology (12.3)].The potential for alteration in hydrocodone exposure and effect should be considered when gabapentin is started or discontinued in a patient taking hydrocodone. Morphine When gabapentin is administered with morphine, patients should be observed for signs of central nervous system (CNS) depression, such as somnolence, sedation and respiratory depression [see Clinical Pharmacology (12.3)]. 7.3 MAALOX® (aluminum hydroxide, magnesium hydroxide) The mean bioavailability of gabapentin was reduced by about 20% with concomitant use of an antacid (Maalox®) containing magnesium and aluminum hydroxides. It is recommended that gabapentin be taken at least 2 hours following Maalox administration [see Clinical Pharmacology (12.3)]. 7.4 Drug/Laboratory Test Interactions Because false positive readings were reported with the Ames N-Multistix SG® dipstick test for urinary protein when gabapentin was added to other antiepileptic drugs, the more specific sulfosalicylic acid precipitation procedure is recommended to determine the presence of urine protein.

OVERDOSAGE

10 A lethal dose of gabapentin was not identified in mice and rats receiving single oral doses as high as 8000 mg/kg. Signs of acute toxicity in animals included ataxia, labored breathing, ptosis, sedation, hypoactivity, or excitation. Acute oral overdoses of gabapentin up to 49 grams have been reported. In these cases, double vision, slurred speech, drowsiness, lethargy, and diarrhea were observed. All patients recovered with supportive care. Coma, resolving with dialysis, has been reported in patients with chronic renal failure who were treated with gabapentin. Gabapentin can be removed by hemodialysis. Although hemodialysis has not been performed in the few overdose cases reported, it may be indicated by the patient’s clinical state or in patients with significant renal impairment. If overexposure occurs, call your poison control center at 1-800-222-1222.

DESCRIPTION

11 The active ingredient in gabapentin capsules, USP is gabapentin, USP which has the chemical name 1-(aminomethyl)cyclohexaneacetic acid. The molecular formula of gabapentin is C9H17NO2 and the molecular weight is 171.24. The structural formula of gabapentin is: Gabapentin, USP is a white to off-white crystalline solid with a pKa1 of 3.7 and a pKa2 of 10.7. It is freely soluble in water and both basic and acidic aqueous solutions. The log of the partition coefficient (n-octanol/0.05M phosphate buffer) at pH 7.4 is –1.25. Each gabapentin, USP capsule contains 100 mg, 300 mg, or 400 mg of gabapentin and the following inactive ingredients: magnesium stearate, pregelatinized starch (corn), starch (corn) and talc. The 100 mg capsule shell contains gelatin, sodium lauryl sulfate and titanium dioxide. The 300 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, and iron oxide yellow. The 400 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, FD&C Yellow No.6 and FD&C Blue No.1. chem structure

CLINICAL STUDIES

14 14.1 Postherpetic Neuralgia Gabapentin was evaluated for the management of postherpetic neuralgia (PHN) in two randomized, double-blind, placebo-controlled, multicenter studies. The intent-to-treat (ITT) population consisted of a total of 563 patients with pain for more than 3 months after healing of the herpes zoster skin rash (Table 6). TABLE 6. Controlled PHN Studies: Duration, Dosages, and Number of Patients Study Study Duration Gabapentin (mg/day)a Target Dose Patients Receiving Gabapentin Patients Receiving Placebo 1 8 weeks 3600 113 116 2 7 weeks 1800, 2400 223 111 Total 336 227 a Given in 3 divided doses (TID) Each study included a 7 -or 8-week double-blind phase (3 or 4 weeks of titration and 4 weeks of fixed dose). Patients initiated treatment with titration to a maximum of 900 mg/day gabapentin over 3 days. Dosages were then to be titrated in 600 to 1200 mg/day increments at 3-to 7-day intervals to the target dose over 3 to 4 weeks. Patients recorded their pain in a daily diary using an 11-point numeric pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). A mean pain score during baseline of at least 4 was required for randomization. Analyses were conducted using the ITT population (all randomized patients who received at least one dose of study medication). Both studies demonstrated efficacy compared to placebo at all doses tested. The reduction in weekly mean pain scores was seen by Week 1 in both studies, and were maintained to the end of treatment. Comparable treatment effects were observed in all active treatment arms.Pharmacokinetic/pharmacodynamic modeling provided confirmatory evidence of efficacy across all doses. Figures 1 and 2 show pain intensity scores over time for Studies 1 and 2. Figure 1. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 1 Figure 2. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 2 The proportion of responders (those patients reporting at least 50% improvement in endpoint pain score compared with baseline) was calculated for each study (Figure 3). Figure 3. Proportion of Responders (patients with ≥50% reduction in pain score) at Endpoint: Controlled PHN Studies figure 1 figure 2 figure 3 14.2 Epilepsy for Partial Onset Seizures (Adjunctive Therapy) The effectiveness of gabapentin as adjunctive therapy (added to other antiepileptic drugs) was established in multicenter placebo-controlled, double-blind, parallel-group clinical trials in adult and pediatric patients (3 years and older) with refractory partial seizures. Evidence of effectiveness was obtained in three trials conducted in 705 patients (age 12 years and above) and one trial conducted in 247 pediatric patients (3 to 12 years of age). The patients enrolled had a history of at least 4 partial seizures per month in spite of receiving one or more antiepileptic drugs at therapeutic levels and were observed on their established antiepileptic drug regimen during a 12-week baseline period (6 weeks in the study of pediatric patients). In patients continuing to have at least 2 (or 4 in some studies) seizures per month, gabapentin or placebo was then added on to the existing therapy during a 12-week treatment period. Effectiveness was assessed primarily on the basis of the percent of patients with a 50% or greater reduction in seizure frequency from baseline to treatment (the “responder rate”) and a derived measure called response ratio, a measure of change defined as (T -B)/(T + B), in which B is the patient’s baseline seizure frequency and T is the patient’s seizure frequency during treatment. Response ratio is distributed within the range -1 to +1. A zero value indicates no change while complete elimination of seizures would give a value of -1; increased seizure rates would give positive values. A response ratio of -0.33 corresponds to a 50% reduction in seizure frequency. The results given below are for all partial seizures in the intent-to-treat (all patients who received any doses of treatment) population in each study, unless otherwise indicated. One study compared gabapentin 1200 mg/day, in three divided doses, with placebo. Responder rate was 23% (14/61) in the gabapentin group and 9% (6/66) in the placebo group; the difference between groups was statistically significant. Response ratio was also better in the gabapentin group (-0.199) than in the placebo group (-0.044), a difference that also achieved statistical significance. A second study compared primarily gabapentin 1200 mg/day, in three divided doses (N=101), with placebo (N=98). Additional smaller gabapentin dosage groups (600 mg/day, N=53; 1800 mg/day, N=54) were also studied for information regarding dose response. Responder rate was higher in the gabapentin 1200 mg/day group (16%) than in the placebo group (8%), but the difference was not statistically significant. The responder rate at 600 mg (17%) was also not significantly higher than in the placebo, but the responder rate in the 1800 mg group (26%) was statistically significantly superior to the placebo rate. Response ratio was better in the gabapentin 1200 mg/day group (-0.103) than in the placebo group (-0.022); but this difference was also not statistically significant (p = 0.224). A better response was seen in the gabapentin 600 mg/day group (-0.105) and 1800 mg/day group (-0.222) than in the 1200 mg/day group, with the 1800 mg/day group achieving statistical significance compared to the placebo group. A third study compared gabapentin 900 mg/day, in three divided doses (N=111), and placebo (N=109). An additional gabapentin 1200 mg/day dosage group (N=52) provided dose-response data. A statistically significant difference in responder rate was seen in the gabapentin 900 mg/day group (22%) compared to that in the placebo group (10%). Response ratio was also statistically significantly superior in the gabapentin 900 mg/day group (-0.119) compared to that in the placebo group (-0.027), as was response ratio in 1200 mg/day gabapentin (-0.184) compared to placebo. Analyses were also performed in each study to examine the effect of gabapentin on preventing secondarily generalized tonic-clonic seizures. Patients who experienced a secondarily generalized tonic-clonic seizure in either the baseline or in the treatment period in all three placebo-controlled studies were included in these analyses. There were several response ratio comparisons that showed a statistically significant advantage for gabapentin compared to placebo and favorable trends for almost all comparisons. Analysis of responder rate using combined data from all three studies and all doses (N=162, gabapentin; N=89, placebo) also showed a significant advantage for gabapentin over placebo in reducing the frequency of secondarily generalized tonic-clonic seizures. In two of the three controlled studies, more than one dose of gabapentin was used. Within each study, the results did not show a consistently increased response to dose. However, looking across studies, a trend toward increasing efficacy with increasing dose is evident (see Figure 4). Figure 4. Responder Rate in Patients Receiving Gabapentin Expressed as a Difference from Placebo by Dose and Study: Adjunctive Therapy Studies in Patients ≥12 Years of Age with Partial Seizures In the figure, treatment effect magnitude, measured on the Y axis in terms of the difference in the proportion of gabapentin and placebo-assigned patients attaining a 50% or greater reduction in seizure frequency from baseline, is plotted against the daily dose of gabapentin administered (X axis). Although no formal analysis by gender has been performed, estimates of response (Response Ratio) derived from clinical trials (398 men, 307 women) indicate no important gender differences exist. There was no consistent pattern indicating that age had any effect on the response to gabapentin. There were insufficient numbers of patients of races other than Caucasian to permit a comparison of efficacy among racial groups. A fourth study in pediatric patients age 3 to 12 years compared 25 to 35 mg/kg/day gabapentin (N=118) with placebo (N=127). For all partial seizures in the intent-to-treat population, the response ratio was statistically significantly better for the gabapentin group (-0.146) than for the placebo group (-0.079). For the same population, the responder rate for gabapentin (21%) was not significantly different from placebo (18%). A study in pediatric patients age 1 month to 3 years compared 40 mg/kg/day gabapentin (N=38) with placebo (N=38) in patients who were receiving at least one marketed antiepileptic drug and had at least one partial seizure during the screening period (within 2 weeks prior to baseline). Patients had up to 48 hours of baseline and up to 72 hours of double-blind video EEG monitoring to record and count the occurrence of seizures. There were no statistically significant differences between treatments in either the response ratio or responder rate. figure 4

HOW SUPPLIED

16 /STORAGE AND HANDLING Gabapentin capsules, USP are supplied as follows: 100 mg capsules: White-White, opaque hard gelatin capsules printed with “IP 101” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-591-10 300 mg capsules: Buff-Buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-236-10 400 mg capsules: Light caramel-Light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-984-10 Store gabapentin capsules at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Dispense in tight (USP), child-resistant containers.

RECENT MAJOR CHANGES

•Warnings and Precautions: Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) 9/2015

GERIATRIC USE

8.5 Geriatric Use The total number of patients treated with gabapentin in controlled clinical trials in patients with postherpetic neuralgia was 336, of which 102 (30%) were 65 to 74 years of age, and 168 (50%) were 75 years of age and older. There was a larger treatment effect in patients 75 years of age and older compared with younger patients who received the same dosage. Since gabapentin is almost exclusively eliminated by renal excretion, the larger treatment effect observed in patients ≥75 years may be a consequence of increased gabapentin exposure for a given dose that results from an age-related decrease in renal function. However, other factors cannot be excluded. The types and incidence of adverse reactions were similar across age groups except for peripheral edema and ataxia, which tended to increase in incidence with age. Clinical studies of gabapentin in epilepsy did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients [see Dosage and Administration (2.4), Adverse Reactions (6), and Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: •100 mg: white-white, opaque hard gelatin capsules printed with “IP 101” on both cap and body. •300 mg: buff-buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. •400 mg: light caramel-light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. •Capsules: 100 mg, 300 mg, and 400 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action The precise mechanisms by which gabapentin produces its analgesic and antiepileptic actions are unknown. Gabapentin is structurally related to the neurotransmitter gamma-aminobutyric acid (GABA) but has no effect on GABA binding, uptake, or degradation. In vitro studies have shown that gabapentin binds with high-affinity to the α2δ subunit of voltage-activated calcium channels; however, the relationship of this binding to the therapeutic effects of gabapentin is unknown.

INDICATIONS AND USAGE

1 Gabapentin capsules, USP are indicated for: •Management of postherpetic neuralgia in adults •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy Gabapentin capsules are indicated for: •Postherpetic neuralgia in adults (1) •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy (1)

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of gabapentin in the management of postherpetic neuralgia in pediatric patients have not been established. Effectiveness as adjunctive therapy in the treatment of partial seizures in pediatric patients below the age of 3 years has not been established [see Clinical Studies (14.2)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C: There are no adequate and well-controlled studies in pregnant women. In nonclinical studies in mice, rats, and rabbits, gabapentin was developmentally toxic when administered to pregnant animals at doses similar to or lower than those used clinically. Gabapentin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. When pregnant mice received oral doses of gabapentin (500, 1000, or 3000 mg/kg/day) during the period of organogenesis, embryo-fetal toxicity (increased incidences of skeletal variations) was observed at the two highest doses. The no-effect dose for embryo-fetal developmental toxicity in mice was 500 mg/kg/day or approximately ½ of the maximum recommended human dose (MRHD) of 3600 mg/kg on a body surface area (mg/m2) basis. In studies in which rats received oral doses of gabapentin (500 to 2000 mg/kg/day), during pregnancy, adverse effect on offspring development (increased incidences of hydroureter and/or hydronephrosis) were observed at all doses. The lowest effect dose for developmental toxicity in rats is approximately equal to the MRHD on a mg/m2 basis. When pregnant rabbits were treated with gabapentin during the period of organogenesis, an increase in embryo-fetal mortality was observed at all doses tested (60, 300, or 1500 mg/kg). The lowest effect dose for embryo-fetal developmental toxicity in rabbits is less than the MRHD on a mg/m2 basis. In a published study, gabapentin (400 mg/kg/day) was administered by intraperitoneal injection to neonatal mice during the first postnatal week, a period of synaptogenesis in rodents (corresponding to the last trimester of pregnancy in humans). Gabapentin caused a marked decrease in neuronal synapse formation in brains of intact mice and abnormal neuronal synapse formation in a mouse model of synaptic repair. Gabapentin has been shown in vitro to interfere with activity of the α2δ subunit of voltage-activated calcium channels, a receptor involved in neuronal synaptogenesis. The clinical significance of these findings is unknown. To provide information regarding the effects of in utero exposure to gabapentin, physicians are advised to recommend that pregnant patients taking gabapentin enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

NUSRING MOTHERS

8.3 Nursing Mothers Gabapentin is secreted into human milk following oral administration. A nursed infant could be exposed to a maximum dose of approximately 1 mg/kg/day of gabapentin. Because the effect on the nursing infant is unknown, gabapentin should be used in women who are nursing only if the benefits clearly outweigh the risks.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Drug Reaction with Eosinophilia and Systemic Symptoms (Multiorgan hypersensitivity): discontinue gabapentin if an alternative etiology cannot be established (5.1) •Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) • Driving impairment: warn patients not to drive until they have gained sufficient experience with gabapentin to assess whether it will impair their ability to drive (5.3) • Somnolence/Sedation and Dizziness: gabapentin may impair the patient’s ability to operate complex machinery (5.4) •Increased seizure frequency may occur in patients with seizure disorders if gabapentin is abruptly discontinued (5.5) • Suicidal Behavior and Ideation: monitor for suicidal thoughts and behavior (5.6) • Neuropsychiatric Adverse Reactions in Children 3 to 12 Years of Age: monitor for such events (5.7) 5.1 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, has occurred with gabapentin. Some of these reactions have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Gabapentin should be discontinued if an alternative etiology for the signs or symptoms cannot be established. 5.2 Anaphylaxis and Angioedema Gabapentin can cause anaphylaxis and angioedema after the first dose or at any time during treatment. Signs and symptoms in reported cases have included difficulty breathing, swelling of the lips, throat, and tongue, and hypotension requiring emergency treatment. Patients should be instructed to discontinue gabapentin and seek immediate medical care should they experience signs or symptoms of anaphylaxis or angioedema. 5.3 Effects on Driving and Operating Heavy Machinery Patients taking gabapentin should not drive until they have gained sufficient experience to assess whether gabapentin impairs their ability to drive. Driving performance studies conducted with a prodrug of gabapentin (gabapentin enacarbil tablet, extended release) indicate that gabapentin may cause significant driving impairment. Prescribers and patients should be aware that patients’ ability to assess their own driving competence, as well as their ability to assess the degree of somnolence caused by gabapentin, can be imperfect. The duration of driving impairment after starting therapy with gabapentin is unknown. Whether the impairment is related to somnolence [see Warnings and Precautions (5.4)] or other effects of gabapentin is unknown. Moreover, because gabapentin causes somnolence and dizziness [see Warnings and Precautions (5.4)], patients should be advised not to operate complex machinery until they have gained sufficient experience on gabapentin to assess whether gabapentin impairs their ability to perform such tasks. 5.4 Somnolence/Sedation and Dizziness During the controlled epilepsy trials in patients older than 12 years of age receiving doses of gabapentin up to 1800 mg daily, somnolence, dizziness, and ataxia were reported at a greater rate in patients receiving gabapentin compared to placebo: i.e., 19% in drug versus 9% in placebo for somnolence, 17% in drug versus 7% in placebo for dizziness, and 13% in drug versus 6% in placebo for ataxia. In these trials somnolence, ataxia and fatigue were common adverse reactions leading to discontinuation of gabapentin in patients older than 12 years of age, with 1.2%, 0.8% and 0.6% discontinuing for these events, respectively. During the controlled trials in patients with post-herpetic neuralgia, somnolence and dizziness were reported at a greater rate compared to placebo in patients receiving gabapentin, in dosages up to 3600 mg per day: i.e., 21% in gabapentin-treated patients versus 5% in placebo-treated patients for somnolence and 28% in gabapentin-treated patients versus 8% in placebo-treated patients for dizziness. Dizziness and somnolence were among the most common adverse reactions leading to discontinuation of gabapentin. Patients should be carefully observed for signs of central nervous system (CNS) depression, such as somnolence and sedation, when gabapentin is used with other drugs with sedative properties because of potential synergy. In addition, patients who require concomitant treatment with morphine may experience increases in gabapentin concentrations and may require dose adjustment [see Drug Interactions (7.2) ]. 5.5 Withdrawal Precipitated Seizure, Status Epilepticus Antiepileptic drugs should not be abruptly discontinued because of the possibility of increasing seizure frequency. In the placebo-controlled epilepsy studies in patients >12 years of age, the incidence of status epilepticus in patients receiving gabapentin was 0.6% (3 of 543) vs. 0.5% in patients receiving placebo (2 of 378). Among the 2074 patients >12 years of age treated with gabapentin across all epilepsy studies (controlled and uncontrolled), 31 (1.5%) had status epilepticus. Of these, 14 patients had no prior history of status epilepticus either before treatment or while on other medications. Because adequate historical data are not available, it is impossible to say whether or not treatment with gabapentin is associated with a higher or lower rate of status epilepticus than would be expected to occur in a similar population not treated with gabapentin. 5.6 Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including gabapentin, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono-and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 2 shows absolute and relative risk by indication for all evaluated AEDs. TABLE 2. Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1000 Patients Drug Patients with Events Per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1000 Patients Epilepsy 1 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing gabapentin or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. 5.7 Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age) Gabapentin use in pediatric patients with epilepsy 3 to 12 years of age is associated with the occurrence of central nervous system related adverse reactions. The most significant of these can be classified into the following categories: 1) emotional lability (primarily behavioral problems), 2) hostility, including aggressive behaviors, 3) thought disorder, including concentration problems and change in school performance, and 4) hyperkinesia (primarily restlessness and hyperactivity). Among the gabapentin-treated patients, most of the reactions were mild to moderate in intensity. In controlled clinical epilepsy trials in pediatric patients 3 to 12 years of age, the incidence of these adverse reactions was: emotional lability 6% (gabapentin-treated patients) vs. 1.3% (placebo-treated patients); hostility 5.2% vs. 1.3%; hyperkinesia 4.7% vs. 2.9%; and thought disorder 1.7% vs. 0%. One of these reactions, a report of hostility, was considered serious. Discontinuation of gabapentin treatment occurred in 1.3% of patients reporting emotional lability and hyperkinesia and 0.9% of gabapentin-treated patients reporting hostility and thought disorder. One placebo-treated patient (0.4%) withdrew due to emotional lability. 5.8 Tumorigenic Potential In an oral carcinogenicity study, gabapentin increased the incidence of pancreatic acinar cell tumors in rats [see Nonclinical Toxicology (13.1)]. The clinical significance of this finding is unknown. Clinical experience during gabapentin’s premarketing development provides no direct means to assess its potential for inducing tumors in humans. In clinical studies in adjunctive therapy in epilepsy comprising 2085 patient-years of exposure in patients >12 years of age, new tumors were reported in 10 patients (2 breast, 3 brain, 2 lung, 1 adrenal, 1 non-Hodgkin’s lymphoma, 1 endometrial carcinoma in situ), and preexisting tumors worsened in 11 patients (9 brain, 1 breast, 1 prostate) during or up to 2 years following discontinuation of gabapentin. Without knowledge of the background incidence and recurrence in a similar population not treated with gabapentin, it is impossible to know whether the incidence seen in this cohort is or is not affected by treatment. 5.9 Sudden and Unexplained Death in Patients with Epilepsy During the course of premarketing development of gabapentin, 8 sudden and unexplained deaths were recorded among a cohort of 2203 epilepsy patients treated (2103 patient-years of exposure) with gabapentin. Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night. This represents an incidence of 0.0038 deaths per patient-year. Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving gabapentin (ranging from 0.0005 for the general population of epileptics to 0.003 for a clinical trial population similar to that in the gabapentin program, to 0.005 for patients with refractory epilepsy). Consequently, whether these figures are reassuring or raise further concern depends on comparability of the populations reported upon to the gabapentin cohort and the accuracy of the estimates provided.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Administration Information Inform patients that gabapentin is taken orally with or without food. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Prior to initiation of treatment with gabapentin, instruct patients that a rash or other signs or symptoms of hypersensitivity (such as fever or lymphadenopathy) may herald a serious medical event and that the patient should report any such occurrence to a physician immediately [see Warnings and Precautions (5.1)]. Anaphylaxis and Angioedema Advise patients to discontinue gabapentin and seek medical care if they develop signs or symptoms of anaphylaxis or angioedema [see Warnings and Precautions (5.2)]. Dizziness and Somnolence and Effects on Driving and Operating Heavy Machinery Advise patients that gabapentin may cause dizziness, somnolence, and other symptoms and signs of CNS depression. Other drugs with sedative properties may increase these symptoms. Accordingly, although patients’ ability to determine their level of impairment can be unreliable, advise them neither to drive a car nor to operate other complex machinery until they have gained sufficient experience on gabapentin to gauge whether or not it affects their mental and/or motor performance adversely. Inform patients that it is not known how long this effect lasts [see Warnings and Precautions (5.3) and Warnings and Precautions (5.4)]. Suicidal Thinking and Behavior Counsel the patient, their caregivers, and families that AEDs, including gabapentin, may increase the risk of suicidal thoughts and behavior. Advise patients of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Instruct patients to report behaviors of concern immediately to healthcare providers [see Warnings and Precautions (5.6)]. Use in Pregnancy Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breast feeding or intend to breast feed during therapy [see Use in Specific Populations (8.1) and (8.3)]. Encourage patients to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 [see Use in Specific Populations (8.1)]. This product’s label may have been updated. For full prescribing information, please visit www.amneal.com. *Trademarks are the property of their respective owners. Manufactured by: Amneal Pharmaceuticals 400 Crossing Boulevard, 3rd Floor Bridgewater, NJ 08807 Distributed by: McKesson Packaging Services a business unit of McKesson Corporation 7101 Weddington Rd., Concord, NC 28027 IS-4015283 November 2015

DOSAGE AND ADMINISTRATION

2 •Postherpetic Neuralgia (2.1) •Dose can be titrated up as needed to a dose of 1800 mg/day •Day 1: Single 300 mg dose •Day 2: 600 mg/day (i.e., 300 mg two times a day) •Day 3: 900 mg/day (i.e., 300 mg three times a day) •Epilepsy with Partial Onset Seizures (2.2) •Patients 12 years of age and older: starting dose is 300 mg three times daily; may be titrated up to 600 mg three times daily •Patients 3 to 11 years of age: starting dose range is 10 to 15 mg/kg/day, given in three divided doses; recommended dose in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses; the recommended dose in patients 5 to 11 years of age is 25 to 35 mg/kg/day, given in three divided doses. The recommended dose is reached by upward titration over a period of approximately 3 days • Dose should be adjusted in patients with reduced renal function (2.3, 2.4) 2.1 Dosage for Postherpetic Neuralgia In adults with postherpetic neuralgia, gabapentin capsules, USP may be initiated on Day 1 as a single 300 mg dose, on Day 2 as 600 mg/day (300 mg two times a day), and on Day 3 as 900 mg/day (300 mg three times a day). The dose can subsequently be titrated up as needed for pain relief to a dose of 1800 mg/day (600 mg three times a day). In clinical studies, efficacy was demonstrated over a range of doses from 1800 mg/day to 3600 mg/day with comparable effects across the dose range; however, in these clinical studies, the additional benefit of using doses greater than 1800 mg/day was not demonstrated. 2.2 Dosage for Epilepsy with Partial Onset Seizures Patients 12 years of age and above The starting dose is 300 mg three times a day. The recommended maintenance dose of gabapentin capsules, USP is 300 mg to 600 mg three times a day. Dosages up to 2400 mg/day have been well tolerated in long-term clinical studies. Doses of 3600 mg/day have also been administered to a small number of patients for a relatively short duration, and have been well tolerated. Administer gabapentin capsules, USP three times a day using 300 mg or 400 mg capsules. The maximum time between doses should not exceed 12 hours. Pediatric Patients Age 3 to 11 years The starting dose range is 10 mg/kg/day to 15 mg/kg/day, given in three divided doses, and the recommended maintenance dose reached by upward titration over a period of approximately 3 days. The recommended maintenance dose of gabapentin capsules, USP in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses. The recommended maintenance dose of gabapentin capsules, USP in patients 5 to 11 years of age is 25 mg/kg/day to 35 mg/kg/day, given in three divided doses. Gabapentin capsules, USP may be administered as the oral solution, capsule, or tablet, or using combinations of these formulations. Dosages up to 50 mg/kg/day have been well tolerated in a long-term clinical study. The maximum time interval between doses should not exceed 12 hours. 2.3 Dosage Adjustment in Patients with Renal Impairment Dosage adjustment in patients 12 years of age and older with renal impairment or undergoing hemodialysis is recommended, as follows (see dosing recommendations above for effective doses in each indication): TABLE 1. Gabapentin Capsules, USP Dosage Based on Renal Function Renal Function Creatinine Clearance (mL/min) Total Daily Dose Range (mg/day) Dose Regimen (mg) ≥ 60 900 to 3600 300 TID 400 TID 600 TID 800 TID 1200 TID >30 to 59 400 to 1400 200 BID 300 BID 400 BID 500 BID 700 BID >15 to 29 200 to 700 200 QD 300 QD 400 QD 500 QD 700 QD 15a 100 to 300 100 QD 125 QD 150 QD 200 QD 300 QD Post-Hemodialysis Supplemental Dose (mg)b Hemodialysis 125b 150 b 200 b 250 b 350 b TID = Three times a day; BID = Two times a day; QD = Single daily dose a For patients with creatinine clearance <15 mL/min, reduce daily dose in proportion to creatinine clearance (e.g., patients with a creatinine clearance of 7.5 mL/min should receive one-half the daily dose that patients with a creatinine clearance of 15 mL/min receive). b Patients on hemodialysis should receive maintenance doses based on estimates of creatinine clearance as indicated in the upper portion of the table and a supplemental post-hemodialysis dose administered after each 4 hours of hemodialysis as indicated in the lower portion of the table. Creatinine clearance (CLCr) is difficult to measure in outpatients. In patients with stable renal function, creatinine clearance can be reasonably well estimated using the equation of Cockcroft and Gault: The use of gabapentin capsules, USP in patients less than 12 years of age with compromised renal function has not been studied. formula 2.4 Dosage in Elderly Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients. 2.5 Administration Information Administer gabapentin capsules, USP orally with or without food. Gabapentin capsules, USP should be swallowed whole with water. If the gabapentin capsules, USP dose is reduced, discontinued, or substituted with an alternative medication, this should be done gradually over a minimum of 1 week (a longer period may be needed at the discretion of the prescriber).

tiZANidine HCl 4 MG Oral Tablet

Generic Name: TIZANIDINE
Brand Name: tizanidine
  • Substance Name(s):
  • TIZANIDINE HYDROCHLORIDE

DRUG INTERACTIONS

7 7.1 Fluvoxamine Concomitant use of fluvoxamine and tizanidine is contraindicated. Changes in pharmacokinetics of tizanidine when administered with fluvoxamine resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment [see Contraindications (4) and Clinical Pharmacology (12.3)]. 7.2 Ciprofloxacin Concomitant use of ciprofoxacin and tizanidine is contraindicated. Changes in pharmacokinetics of tizanidine when administered with ciprofloxacin resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment [See Contraindications (4) and Clinical Pharmacology (12.3)] 7.3 CYP1A2 Inhibitors other than Fluvoxamine and Ciprofloxacin Because of potential drug interactions, concomitant use of tizanidine with other CYP1A2 inhibitors, such as zileuton, fluoroquinolones other than strong CYP1A2 inhibitors (which are contraindicated), antiarrythmics (amiodarone, mexiletine, propafenone, and verapamil), cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine) should be avoided. If their use is clinically necessary, therapy should be initiated with 2 mg dose and increased in 2 to 4 mg steps daily based on patient response to therapy. If adverse reactions such as hypotension, bradycardia, or excessive drowsiness occur, reduce or discontinue tizanidine therapy [see Warnings and Precautions (5.5) and Clinical Pharmacology (12.3)] 7.4 Oral Contraceptives Concomitant use of tizanidine with oral contraceptives is not recommended. However, if concomitant use is clinically necessary, initiate tizanidine with a single 2 mg dose and increase in 2 to 4 mg steps daily based on patient response to therapy. If adverse reactions such as hypotension, bradycardia, or excessive drowsiness occur, reduce or discontinue tizanidine therapy [see Clinical Pharmacology (12.3)] 7.5 Alcohol Alcohol increases the overall amount of drug in the bloodstream after a dose of tizanidine. This was associated with an increase in adverse reactions of tizanidine. The CNS depressant effects of tizanidine and alcohol are additive [see Clinical Pharmacology (12.3)] 7.6 Other CNS Depressants The sedative effects of tizanidine with CNS depressants (e.g., benzodiazepines, opioids, tricyclic antidepressants) may be additive. Monitor patients who take tizanidine with another CNS depressant for symptoms of excess sedation [see Clinical Pharmacology (12.3)] 7.7 α2-adrenergic Agonists Because hypotensive effects may be cumulative, it is not recommended that tizanidine be used with other α2-adrenergic agonists [see Warnings and Precautions (5.1)]

OVERDOSAGE

10 A review of the safety surveillance database revealed cases of intentional and accidental tizanidine overdose. Some of the cases resulted in fatality and many of the intentional overdoses were with multiple drugs including CNS depressants. The clinical manifestations of tizanidine overdose were consistent with its known pharmacology. In the majority of cases a decrease in sensorium was observed including lethargy, somnolence, confusion and coma. Depressed cardiac function is also observed including most often bradycardia and hypotension. Respiratory depression is another common feature of tizanidine overdose. Should overdose occur, basic steps to ensure the adequacy of an airway and the monitoring of cardiovascular and respiratory systems should be undertaken. Tizanidine is a lipid-soluble drug, which is only slightly soluble in water and methanol. Therefore, dialysis is not likely to be an efficient method of removing drug from the body. In general, symptoms resolve within one to three days following discontinuation of tizanidine and administration of appropriate therapy. Due to the similar mechanism of action, symptoms and management of tizanidine overdose are similar to that following clonidine overdose. For the most recent information concerning the management of overdose, contact a poison control center.

DESCRIPTION

11 Tizanidine hydrochloride is a centrally acting α2-adrenergic agonist. Tizanidine HCl (tizanidine) is a white to off-white, fine crystalline powder, which is odorless or with a faint characteristic odor. Tizanidine is slightly soluble in water and methanol; solubility in water decreases as the pH increases. Its chemical name is 5-chloro-4-(2-imidazolin-2-ylamino)-2,1,3-benzothiadiazole hydrochloride. Tizanidine’s molecular formula is C9H8ClN5S-HCl, its molecular weight is 290.2 and its structural formula is: Tizanidine Tablets, USP are supplied as 2, and 4 mg tablets for oral administration. Tizanidine Tablets, USP are composed of the active ingredient, tizanidine hydrochloride (2.288 mg equivalent to 2 mg tizanidine base, and 4.576 mg equivalent to 4 mg tizanidine base), and the inactive ingredients, anhydrous lactose, colloidal silicon dioxide, microcrystalline cellulose and stearic acid. Meets USP Dissolution Test 2

CLINICAL STUDIES

14 Tizanidine’s capacity to reduce increased muscle tone associated with spasticity was demonstrated in two adequate and well controlled studies in patients with multiple sclerosis or spinal cord injury (Studies 1 and 2). Single-Dose Study in Patients with Multiple Sclerosis with Spasticity In Study 1, patients with multiple sclerosis were randomized to receive single oral doses of drug or placebo. Patients and assessors were blind to treatment assignment and efforts were made to reduce the likelihood that assessors would become aware indirectly of treatment assignment (e.g., they did not provide direct care to patients and were prohibited from asking questions about side effects). In all, 140 patients received placebo, 8 mg or 16 mg of tizanidine. Response was assessed by physical examination; muscle tone was rated on a 5 point scale (Ashworth score), with a score of 0 used to describe normal muscle tone. A score of 1 indicated a slight spastic catch while a score of 2 indicated more marked muscle resistance. A score of 3 was used to describe considerable increase in tone, making passive movement difficult. A muscle immobilized by spasticity was given a score of 4. Spasm counts were also collected. Assessments were made at 1, 2, 3 and 6 hours after treatment. A statistically significant reduction of the Ashworth score for tizanidine compared to placebo was detected at 1, 2 and 3 hours after treatment. Figure 2 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale. The greatest reduction in muscle tone was 1 to 2 hours after treatment. By 6 hours after treatment, muscle tone in the 8 and 16 mg tizanidine groups was indistinguishable from muscle tone in placebo treated patients. Within a given patient, improvement in muscle tone was correlated with plasma concentration. Plasma concentrations were variable from patient to patient at a given dose. Although 16 mg produced a larger effect, adverse events including hypotension were more common and more severe than in the 8 mg group. There were no differences in the number of spasms occurring in each group. Seven-Week Study in Patients with Spinal Cord Injury with Spasticity In a 7-week study (Study 2), 118 patients with spasticity secondary to spinal cord injury were randomized to either placebo or tizanidine. Steps similar to those taken in the first study were employed to ensure the integrity of blinding. Patients were titrated over 3 weeks up to a maximum tolerated dose or 36 mg daily given in three unequal doses (e.g., 10 mg given in the morning and afternoon and 16 mg given at night). Patients were then maintained on their maximally tolerated dose for 4 additional weeks (i.e., maintenance phase). Throughout the maintenance phase, muscle tone was assessed on the Ashworth scale within a period of 2.5 hours following either the morning or afternoon dose. The number of daytime spasms was recorded daily by patients. At endpoint (the protocol-specified time of outcome assessment), there was a statistically significant reduction in muscle tone and frequency of spasms in the tizanidine treated group compared to placebo. The reduction in muscle tone was not associated with a reduction in muscle strength (a desirable outcome) but also did not lead to any consistent advantage of tizanidine treated patients on measures of activities of daily living. Figure 3 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.2 Tizanidine Tablets Tizanidine Tablets, USP 2 mg are available for oral administration as white to off-white, round, scored tablets, imprinted “APO” over “TI-2” on one side and plain with a bisect score on the other side. They are supplied as follows: Bottles of 100 (NDC 60505-0251-1) Bottles of 150 (NDC 60505-0251-3) Bottles of 1000 (NDC 60505-0251-2) Tizanidine Tablets, USP 4 mg are available for oral administration as white to off-white, round, scored tablets, imprinted “APO” over “TI-4” on one side and plain with a quadrisect score on the other side. They are supplied as follows: Bottles of 100 (NDC 60505-0252-1) Bottles of 150 (NDC 60505-0252-3) Bottles of 1000 (NDC 60505-0252-2) Store at 20° to 25°C (68° to 77°F); excursions permitted from 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Dispense in a tight, light-resistant container [see USP].

DOSAGE FORMS AND STRENGTHS

3 Tablets 2 mg – white to off-white, round, scored tablets, imprinted “APO” over “TI-2” on one side and plain with a bisect score on the other side. 4 mg- white to off-white, round, scored tablets, imprinted “APO” over “TI-4” on one side and plain with a quadrisect score on the other side. Tablets 2 mg and 4 mg (3)

INDICATIONS AND USAGE

1 Tizanidine is a central alpha-2-adrenergic agonist indicated for the management of spasticity. Because of the short duration of therapeutic effect, treatment with tizanidine should be reserved for those daily activities and times when relief of spasticity is most important [see Dosage and Administration (2.1)]. Tizanidine is a central alpha-2-adrenergic agonist indicated for the management of spasticity. Because of the short duration of therapeutic effect, treatment with tizanidine should be reserved for those daily activities and times when relief of spasticity is most important. (1)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Hypotension: monitor for signs and symptoms of hypotension, in particular in patients receiving concurrent antihypertensives; tizanidine should not be used with other α2-adrenergic agonists (5.1, 7.7) Risk of liver injury: monitor ALTs; discontinue tizanidine if liver injury occurs (5.2) Sedation: Tizanidine may interfere with everyday activities; sedative effects of tizanidine, alcohol, and other CNS depressants are additive (5.3, 7.5, 7.6) Hallucinations: consider discontinuation of tizanidine (5.4) Less potent inhibitors of CYP1A2: may cause hypotension, bradycardia, or excessive drowsiness, use caution if tizanidine is used with less potent inhibitors of CYP1A2, e.g., zileuton, other fluoroquinolones, antiarrythmics , cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine (5.5, 7.3, 12.3) Renal impairment (creatinine clearance < 25 mL/min): use tizanidine with caution, and monitor closely for dry mouth, somnolence, asthenia and dizziness as indicators of potential overdose (5.7) 5.1 Hypotension Tizanidine is an α2-adrenergic agonist that can produce hypotension. Syncope has been reported in the post marketing setting. The chance of significant hypotension may possibly be minimized by titration of the dose and by focusing attention on signs and symptoms of hypotension prior to dose advancement. In addition, patients moving from a supine to fixed upright position may be at increased risk for hypotension and orthostatic effects. Monitor for hypotension when tizanidine is used in patients receiving concurrent antihypertensive therapy. It is not recommended that tizanidine be used with other α2-adrenergic agonists. Clinically significant hypotension (decreases in both systolic and diastolic pressure) has been reported with concomitant administration of either fluvoxamine or ciprofloxacin and single doses of 4 mg of tizanidine. Therefore, concomitant use of tizanidine with fluvoxamine or with ciprofloxacin, potent inhibitors of CYP1A2, is contraindicated [see Contraindications (4) and Drug Interactions (7.1, 7.2)]. 5.2 Risk of Liver Injury Tizanidine may cause hepatocellular liver injury. Tizanidine should be used with caution in patients with any hepatic impairment. Monitoring of aminotransferase levels is recommended for baseline and 1 month after maximum dose is achieved, or if hepatic injury is suspected [see Dosage and Administration (2.3) and Use in Specific Populations (8.7)]. 5.3 Sedation Tizanidine can cause sedation, which may interfere with everyday activity. In the multiple dose studies, the prevalence of patients with sedation peaked following the first week of titration and then remained stable for the duration of the maintenance phase of the study. The CNS depressant effects of tizanidine with alcohol and other CNS depressants (e.g., benzodiazepines, opioids, tricyclic antidepressants) may be additive. Monitor patients who take tizanidine with another CNS depressant for symptoms of excess sedation [see Drug Interactions (7.5, 7.6)]. 5.4 Hallucinosis/Psychotic-Like Symptoms Tizanidine use has been associated with hallucinations. Formed, visual hallucinations or delusions have been reported in 5 of 170 patients (3%) in two North American controlled clinical studies. Most of the patients were aware that the events were unreal. One patient developed psychosis in association with the hallucinations. One patient among these 5 continued to have problems for at least 2 weeks following discontinuation of tizanidine. Consider discontinuing tizanidine in patients who develop hallucinations. 5.5 Interaction with CYP1A2 Inhibitors Because of potential drug interactions, tizanidine is contraindicated in patients taking potent CYP1A2 inhibitors, such as fluvoxamine or ciprofloxacin. Adverse reactions such as hypotension, bradycardia, or excessive drowsiness can occur when tizanidine is taken with other CYP1A2 inhibitors, such as zileuton, fluoroquinolones other than ciprofloxacin (which is contraindicated), antiarrythmics (amiodarone, mexiletine, propafenone), cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine). Concomitant use should be avoided unless the necessity for tizanidine therapy is clinically evident. In such a case, use with caution [see Drug Interactions (7.3) and Clinical Pharmacology (12.3)]. 5.6 Hypersensitivity Reactions Tizanidine can cause anaphylaxis. Signs and symptoms including respiratory compromise, urticaria, and angioedema of the throat and tongue have been reported. Patients should be informed of the signs and symptoms of severe allergic reactions and instructed to discontinue tizanidine and seek immediate medical care should these signs and symptoms occur [see Contraindications (4)]. 5.7 Increased Risk of Adverse Reactions in Patients with Renal Impairment Tizanidine should be used with caution in patients with renal insufficiency (creatinine clearance < 25 mL/min), as clearance is reduced by more than 50%. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased. These patients should be monitored closely for the onset or increase in severity of the common adverse events (dry mouth, somnolence, asthenia and dizziness) as indicators of potential overdose [see Dosage and Administration (2.2) and Use in Specific Populations (8.6)]. 5.8 Withdrawal Adverse Reactions Withdrawal adverse reactions include rebound hypertension, tachycardia, and hypertonia. To minimize the risk of these reactions, particularly in patients who have been receiving high doses (20 to 28 mg daily) for long periods of time (9 weeks or more) or who may be on concomitant treatment with narcotics, the dose should be decreased slowly (2 to 4 mg per day) [see Dosage and Administration (2.2)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Serious Drug Interactions Advise patients they should not take tizanidine if they are taking fluvoxamine or ciprofloxacin because of the increased risk of serious adverse reactions including severe lowering of blood pressure and sedation. Instruct patients to inform their physicians or pharmacists when they start or stop taking any medication because of the risks associated with interaction between tizanidine and other medicines. Tizanidine Dosing Tell patients to take tizanidine exactly as prescribed (consistently either with or without food) and not to switch between tablets and capsules. Inform patients that they should not take more tizanidine than prescribed because of the risk of adverse events at single doses greater than 8 mg or total daily doses greater than 36 mg. Tell patients that they should not suddenly discontinue tizanidine, because rebound hypertension and tachycardia may occur. Effects of Tizanidine Warn patients that they may experience hypotension and to be careful when changing from a lying or sitting to a standing position. Tell patients that tizanidine may cause them to become sedated or somnolent and they should be careful when performing activities that require alertness, such as driving a vehicle or operating machinery. Tell patients that the sedation may be additive when tizanidine is taken in conjunction with drugs (baclofen, benzodiazepines) or substances (e.g., alcohol) that act as CNS depressants. Remind patients that if they depend on their spasticity to sustain posture and balance in locomotion, or whenever spasticity is utilized to obtain increased function, that tizanidine decreases spasticity and caution should be used. APOTEX INC. Tizanidine Tablets, USP 2 mg and 4 mg Manufactured by Manufactured for Apotex Inc. Apotex Corp. Toronto, Ontario Weston, Florida Canada M9L 1T9 33326 Revised: October 2015 Rev. 5

DOSAGE AND ADMINISTRATION

2 Recommended starting dose: 2 mg; dose can be repeated at 6 to 8 hour intervals, up to a maximum of 3 doses in 24 hours (2.1) Dosage can be increased by 2 mg to 4 mg per dose, with 1 to 4 days between increases; total daily dose should not exceed 36 mg (2.1) Tizanidine pharmacokinetics differs between tablets and capsules, and when taken with or without food. These differences could result in a change in tolerability and control of symptoms (2.1, 12.3) To discontinue tizanidine, decrease dose slowly to minimize the risk of withdrawal and rebound hypertension, tachycardia, and hypertonia (2.2) 2.1 Dosing Information Tizanidine tablets may be prescribed with or without food. Once the formulation has been selected and the decision to take with or without food has been made, this regimen should not be altered. Food has complex effects on tizanidine pharmacokinetics, which differ with the different formulations. Tizanidine capsules and tizanidine tablets are bioequivalent to each other under fasting conditions (more than 3 hours after a meal), but not under fed conditions (within 30 minutes of a meal). These pharmacokinetic differences may result in clinically significant differences when switching administration of tablet and capsules and when switching administration between the fed or fasted state. These changes may result in increased adverse events, or delayed or more rapid onset of activity, depending upon the nature of the switch. For this reason, the prescriber should be thoroughly familiar with the changes in kinetics associated with these different conditions [see Clinical Pharmacology (12.3)]. The recommended starting dose is 2 mg. Because the effect of tizanidine peaks at approximately 1 to 2 hours post-dose and dissipates between 3 to 6 hours post-dose, treatment can be repeated at 6 to 8 hour intervals, as needed, to a maximum of three doses in 24 hours. Dosage can be gradually increased by 2 mg to 4 mg at each dose, with 1 to 4 days between dosage increases, until a satisfactory reduction of muscle tone is achieved. The total daily dose should not exceed 36 mg. Single doses greater than 16 mg have not been studied. 2.2 Dosing in Patients with Renal Impairment Tizanidine should be used with caution in patients with renal insufficiency (creatinine clearance < 25 mL/min), as clearance is reduced by more than 50%. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased [see Warnings and Precautions (5.7)]. 2.3 Dosing in Patients with Hepatic Impairment Tizanidine should be used with caution in patients with any hepatic impairment. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased. Monitoring of aminotransferase levels is recommended for baseline and 1 month after maximum dose is achieved, or if hepatic injury is suspected [see Use in Specific Populations (8.7)]. 2.4 Drug Discontinuation If therapy needs to be discontinued, particularly in patients who have been receiving high doses (20 mg to 36 mg daily) for long periods (9 weeks or more) or who may be on concomitant treatment with narcotics, the dose should be decreased slowly (2 mg to 4 mg per day) to minimize the risk of withdrawal and rebound hypertension, tachycardia, and hypertonia [see Drug Abuse and Dependence (9.3)].

Cyclobenzaprine hydrochloride 10 MG Oral Tablet

Generic Name: CYCLOBENZAPRINE HYDROCHLORIDE
Brand Name: CYCLOBENZAPRINE HYDROCHLORIDE
  • Substance Name(s):
  • CYCLOBENZAPRINE HYDROCHLORIDE

WARNINGS

Serotonin Syndrome The development of a potentially life-threatening serotonin syndrome has been reported with Cyclobenzaprine Hydrochloride when used in combination with other drugs, such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), tramadol, bupropion, meperidine, verapamil, or (MAO) inhibitors. The concomitant use of Cyclobenzaprine Hydrochloride with MAO inhibitors is contraindicated (see CONTRAINDICATIONS). Serotonin syndrome symptoms may include mental status changes (e.g., confusion, agitation, hallucinations), autonomic instability (e.g., diaphoresis, tachycardia, labile blood pressure, hyperthermia), neuromuscular abnormalities (e.g., tremor, ataxia, hyperreflexia, clonus, muscle rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Treatment with Cyclobenzaprine Hydrochloride and any concomitant serotonergic agents should be discontinued immediately if the above reactions occur and supportive symptomatic treatment should be initiated. If concomitant treatment with Cyclobenzaprine Hydrochloride and other serotonergic drugs is clinically warranted, careful observation is advised, particularly during treatment initiation or dose increases (see PRECAUTIONS, Drug Interactions). Cyclobenzaprine is closely related to the tricyclic antidepressants, e.g., amitriptyline and imipramine. In short term studies for indications other than muscle spasm associated with acute musculoskeletal conditions, and usually at doses somewhat greater than those recommended for skeletal muscle spasm, some of the more serious central nervous system reactions noted with the tricyclic antidepressants have occurred (see , below, and ADVERSE REACTIONS). Tricyclic antidepressants have been reported to produce arrhythmias, sinus tachycardia, prolongation of the conduction time leading to myocardial infarction and stroke. Cyclobenzaprine HCl may enhance the effects of alcohol, barbiturates, and other CNS depressants.

OVERDOSAGE

Although rare, deaths may occur from overdosage with cyclobenzaprine HCl. Multiple drug ingestion (including alcohol) is common in deliberate cyclobenzaprine overdose. As management of overdose is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. Signs and symptoms of toxicity may develop rapidly after cyclobenzaprine overdose; therefore, hospital monitoring is required as soon as possible. The acute oral LD50 of cyclobenzaprine HCl is approximately 338 and 425 mg/kg in mice and rats, respectively. Manifestations The most common effects associated with cyclobenzaprine overdose are drowsiness and tachycardia. Less frequent manifestations include tremor, agitation, coma, ataxia, hypertension, slurred speech, confusion, dizziness, nausea, vomiting, and hallucinations. Rare but potentially critical manifestations of overdose are cardiac arrest, chest pain, cardiac dysrhythmias, severe hypotension, seizures, and neuroleptic malignant syndrome. Changes in the electrocardiogram, particularly in QRS axis or width, are clinically significant indicators of cyclobenzaprine toxicity. Other potential effects of overdosage include any of the symptoms listed under ADVERSE REACTIONS. Management General As management of overdose is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. In order to protect against the rare but potentially critical manifestations described above, obtain an ECG and immediately initiate cardiac monitoring. Protect the patient’s airway, establish an intravenous line and initiate gastric decontamination. Observation with cardiac monitoring and observation for signs of CNS or respiratory depression, hypotension, cardiac dysrhythmias and/or conduction blocks, and seizures is necessary. If signs of toxicity occur at any time during this period, extended monitoring is required. Monitoring of plasma drug levels should not guide management of the patient. Dialysis is probably of no value because of low plasma concentrations of the drug. Gastrointestinal Decontamination All patients suspected of an overdose with cyclobenzaprine HCl should receive gastrointestinal decontamination. This should include large volume gastric lavage followed by activated charcoal. If consciousness is impaired, the airway should be secured prior to lavage and emesis is contraindicated. Cardiovascular A maximal limb-lead QRS duration of ≥0.10 seconds may be the best indication of the severity of the overdose. Serum alkalinization, to a pH of 7.45 to 7.55, using intravenous sodium bicarbonate and hyperventilation (as needed), should be instituted for patients with dysrhythmias and/or QRS widening. A pH > 7.60 or a pCO2< 20 mmHg is undesirable. Dysrhythmias unresponsive to sodium bicarbonate therapy/hyperventilation may respond to lidocaine, bretylium or phenytoin. Type 1A and 1C antiarrhythmics are generally contraindicated (e.g., quinidine, disopyramide, and procainamide). CNS In patients with CNS depression, early intubation is advised because of the potential for abrupt deterioration. Seizures should be controlled with benzodiazepines or, if these are ineffective, other anticonvulsants (e.g. phenobarbital, phenytoin). Physostigmine is not recommended except to treat life-threatening symptoms that have been unresponsive to other therapies, and then only in close consultation with a poison control center. Psychiatric Follow-Up Since overdosage is often deliberate, patients may attempt suicide by other means during the recovery phase. Psychiatric referral may be appropriate. Pediatric Management The principles of management of child and adult overdosages are similar. It is strongly recommended that the physician contact the local poison control center for specific pediatric treatment.

DESCRIPTION

Cyclobenzaprine hydrochloride is a white, crystalline tricyclic amine salt. It has a melting point of 217°C, and a pKa of 8.47 at 25°C. It is freely soluble in water and alcohol, sparingly soluble in isopropanol, and insoluble in hydrocarbon solvents. If aqueous solutions are made alkaline, the free base separates. Cyclobenzaprine HCl is designated chemically as 3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-1-propanamine hydrochloride. Cyclobenzaprine hydrochloride tablets, USP are available for oral administration as 5 mg, 7.5 mg and 10 mg tablets. Cyclobenzaprine hydrochloride 5 mg, 7.5 mg and 10 mg tablets contain the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, dibasic calcium phosphate, hydroxypropyl cellulose, hypromellose, polyethylene glycol, magnesium stearate, microcrystalline cellulose, and titanium dioxide.

INDICATIONS AND USAGE

INDICATIONS & USAGE Cyclobenzaprine HCl is indicated as an adjunct to rest and physical therapy for relief of muscle spasm associated with acute, painful musculoskeletal conditions. Improvement is manifested by relief of muscle spasm and its associated signs and symptoms, namely, pain, tenderness, limitation of motion, and restriction in activities of daily living. Cyclobenzaprine HCl should be used only for short periods (up to two or three weeks) because adequate evidence of effectiveness for more prolonged use is not available and because muscle spasm associated with acute, painful musculoskeletal conditions is generally of short duration and specific therapy for longer periods is seldom warranted. Cyclobenzaprine HCl has not been found effective in the treatment of spasticity associated with cerebral or spinal cord disease, or in children with cerebral palsy.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION For most patients, the recommended dose of cyclobenzaprine HCl is 5 mg three times a day. Based on individual patient response, the dose may be increased to either 7.5 mg or 10 mg three times a day. Use of cyclobenzaprine HCl for periods longer than two or three weeks is not recommended. (See INDICATIONS AND USAGE.) Less frequent dosing should be considered for hepatically impaired or elderly patients (see PRECAUTIONS, Impaired Hepatic Function, and Use in the Elderly).