Diflucan 150 MG Oral Tablet

Generic Name: FLUCONAZOLE
Brand Name: Diflucan
  • Substance Name(s):
  • FLUCONAZOLE

WARNINGS

(1) Hepatic injury: DIFLUCAN should be administered with caution to patients with liver dysfunction. DIFLUCAN has been associated with rare cases of serious hepatic toxicity, including fatalities primarily in patients with serious underlying medical conditions. In cases of DIFLUCAN-associated hepatotoxicity, no obvious relationship to total daily dose, duration of therapy, sex, or age of the patient has been observed. DIFLUCAN hepatotoxicity has usually, but not always, been reversible on discontinuation of therapy. Patients who develop abnormal liver function tests during DIFLUCAN therapy should be monitored for the development of more severe hepatic injury. DIFLUCAN should be discontinued if clinical signs and symptoms consistent with liver disease develop that may be attributable to DIFLUCAN. (2) Anaphylaxis: In rare cases, anaphylaxis has been reported. (3) Dermatologic: Exfoliative skin disorders during treatment with DIFLUCAN have been reported. Fatal outcomes have been reported in patients with serious underlying diseases. Patients with deep seated fungal infections who develop rashes during treatment with DIFLUCAN should be monitored closely and the drug discontinued if lesions progress. Fluconazole should be discontinued in patients treated for superficial fungal infection who develop a rash that may be attributed to fluconazole. (4) Use in Pregnancy: There are no adequate and well-controlled studies of DIFLUCAN in pregnant women. Available human data do not suggest an increased risk of congenital anomalies following a single maternal dose of 150 mg. A few published case reports describe a rare pattern of distinct congenital anomalies in infants exposed to high dose maternal fluconazole (400–800 mg/day) during most or all of the first trimester. These reported anomalies are similar to those seen in animal studies. If this drug is used during pregnancy or if the patient becomes pregnant while taking the drug, the patient should be informed of the potential hazard to the fetus (See .) in utero PRECAUTIONS, Pregnancy

DRUG INTERACTIONS

Drug Interactions (See and .) DIFLUCAN is a potent inhibitor of cytochrome P450 (CYP) isoenzyme 2C9 and 2C19, and a moderate inhibitor of CYP3A4. In addition to the observed /documented interactions mentioned below, there is a risk of increased plasma concentration of other compounds metabolized by CYP2C9, CYP2C19, and CYP3A4 coadministered with fluconazole. Therefore, caution should be exercised when using these combinations and the patients should be carefully monitored. The enzyme inhibiting effect of fluconazole persists 4–5 days after discontinuation of fluconazole treatment due to the long half-life of fluconazole. Clinically or potentially significant drug interactions between DIFLUCAN and the following agents/classes have been observed. These are described in greater detail below: CLINICAL PHARMACOLOGY: Drug Interaction Studies CONTRAINDICATIONS Oral hypoglycemics Coumarin-type anticoagulants Phenytoin Cyclosporine Rifampin Theophylline Terfenadine Cisapride Astemizole Rifabutin Voriconazole Tacrolimus Short-acting benzodiazepines Tofacitinib Triazolam Oral Contraceptives Pimozide Quinidine Hydrochlorothiazide Alfentanil Amitriptyline, nortriptyline Amphotericin B Azithromycin Carbamazepine Calcium Channel Blockers Celecoxib Cyclophosphamide Fentanyl Halofantrine HMG-CoA reductase inhibitors Losartan Methadone Non-steroidal anti-inflammatory drugs Prednisone Saquinavir Sirolimus Vinca Alkaloids Vitamin A Zidovudine Oral hypoglycemics Clinically significant hypoglycemia may be precipitated by the use of DIFLUCAN with oral hypoglycemic agents; one fatality has been reported from hypoglycemia in association with combined DIFLUCAN and glyburide use. DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and glipizide and increases the plasma concentration of these agents. When DIFLUCAN is used concomitantly with these or other sulfonylurea oral hypoglycemic agents, blood glucose concentrations should be carefully monitored and the dose of the sulfonylurea should be adjusted as necessary. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Coumarin-type anticoagulants Prothrombin time may be increased in patients receiving concomitant DIFLUCAN and coumarin-type anticoagulants. In post-marketing experience, as with other azole antifungals, bleeding events (bruising, epistaxis, gastrointestinal bleeding, hematuria, and melena) have been reported in association with increases in prothrombin time in patients receiving fluconazole concurrently with warfarin. Careful monitoring of prothrombin time in patients receiving DIFLUCAN and coumarin-type anticoagulants is recommended. Dose adjustment of warfarin may be necessary. (See ) . CLINICAL PHARMACOLOGY: Drug Interaction Studies Phenytoin DIFLUCAN increases the plasma concentrations of phenytoin. Careful monitoring of phenytoin concentrations in patients receiving DIFLUCAN and phenytoin is recommended. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Cyclosporine DIFLUCAN significantly increases cyclosporine levels in renal transplant patients with or without renal impairment. Careful monitoring of cyclosporine concentrations and serum creatinine is recommended in patients receiving DIFLUCAN and cyclosporine. (See ). This combination may be used by reducing the dosage of cyclosporine depending on cyclosporine concentration. CLINICAL PHARMACOLOGY: Drug Interaction Studies Rifampin Rifampin enhances the metabolism of concurrently administered DIFLUCAN. Depending on clinical circumstances, consideration should be given to increasing the dose of DIFLUCAN when it is administered with rifampin. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Theophylline DIFLUCAN increases the serum concentrations of theophylline. Careful monitoring of serum theophylline concentrations in patients receiving DIFLUCAN and theophylline is recommended. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Terfenadine Because of the occurrence of serious cardiac dysrhythmias secondary to prolongation of the QTc interval in patients receiving azole antifungals in conjunction with terfenadine, interaction studies have been performed. One study at a 200 mg daily dose of fluconazole failed to demonstrate a prolongation in QTc interval. Another study at a 400 mg and 800 mg daily dose of fluconazole demonstrated that DIFLUCAN taken in doses of 400 mg per day or greater significantly increases plasma levels of terfenadine when taken concomitantly. The combined use of fluconazole at doses of 400 mg or greater with terfenadine is contraindicated. (See and .) The coadministration of fluconazole at doses lower than 400 mg/day with terfenadine should be carefully monitored. CONTRAINDICATIONS CLINICAL PHARMACOLOGY: Drug Interaction Studies Cisapride There have been reports of cardiac events, including torsade de pointes, in patients to whom fluconazole and cisapride were coadministered. A controlled study found that concomitant fluconazole 200 mg once daily and cisapride 20 mg four times a day yielded a significant increase in cisapride plasma levels and prolongation of QTc interval. The combined use of fluconazole with cisapride is contraindicated. (See and .) CONTRAINDICATIONS CLINICAL PHARMACOLOGY: Drug Interaction Studies Astemizole Concomitant administration of fluconazole with astemizole may decrease the clearance of astemizole. Resulting increased plasma concentrations of astemizole can lead to QT prolongation and rare occurrences of torsade de pointes. Coadministration of fluconazole and astemizole is contraindicated. Rifabutin There have been reports that an interaction exists when fluconazole is administered concomitantly with rifabutin, leading to increased serum levels of rifabutin up to 80%. There have been reports of uveitis in patients to whom fluconazole and rifabutin were coadministered. Patients receiving rifabutin and fluconazole concomitantly should be carefully monitored. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Voriconazole Avoid concomitant administration of voriconazole and fluconazole. Monitoring for adverse events and toxicity related to voriconazole is recommended; especially, if voriconazole is started within 24 h after the last dose of fluconazole. (See ) . CLINICAL PHARMACOLOGY: Drug Interaction Studies Tacrolimus Fluconazole may increase the serum concentrations of orally administered tacrolimus up to 5 times due to inhibition of tacrolimus metabolism through CYP3A4 in the intestines. No significant pharmacokinetic changes have been observed when tacrolimus is given intravenously. Increased tacrolimus levels have been associated with nephrotoxicity. Dosage of orally administered tacrolimus should be decreased depending on tacrolimus concentration. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Short-acting Benzodiazepines Following oral administration of midazolam, fluconazole resulted in substantial increases in midazolam concentrations and psychomotor effects. This effect on midazolam appears to be more pronounced following oral administration of fluconazole than with fluconazole administered intravenously. If short-acting benzodiazepines, which are metabolized by the cytochrome P450 system, are concomitantly administered with fluconazole, consideration should be given to decreasing the benzodiazepine dosage, and the patients should be appropriately monitored. (See .) CLINICAL PHARMACOLOGY: Drug Interaction Studies Tofacitinib Systemic exposure to tofacitinib is increased when tofacitinib is coadministered with fluconazole, a combined moderate CYP3A4 and potent CYP2C19 inhibitor. Reduce the dose of tofacitinib when given concomitantly with fluconazole (i.e., from 5 mg twice daily to 5 mg once daily as instructed in the XELJANZ [tofacitinib] label). (See ) ® . CLINICAL PHARMACOLOGY: Drug Interaction Studies Triazolam Fluconazole increases the AUC of triazolam (single dose) by approximately 50%, Cmax by 20–32%, and increases t½ by 25–50 % due to the inhibition of metabolism of triazolam. Dosage adjustments of triazolam may be necessary. Oral Contraceptives Two pharmacokinetic studies with a combined oral contraceptive have been performed using multiple doses of fluconazole. There were no relevant effects on hormone level in the 50 mg fluconazole study, while at 200 mg daily, the AUCs of ethinyl estradiol and levonorgestrel were increased 40% and 24%, respectively. Thus, multiple dose use of fluconazole at these doses is unlikely to have an effect on the efficacy of the combined oral contraceptive. Pimozide Although not studied or , concomitant administration of fluconazole with pimozide may result in inhibition of pimozide metabolism. Increased pimozide plasma concentrations can lead to QT prolongation and rare occurrences of torsade de pointes. Coadministration of fluconazole and pimozide is contraindicated. in vitro in vivo Quinidine Although not studied or , concomitant administration of fluconazole with quinidine may result in inhibition of quinidine metabolism. Use of quinidine has been associated with QT prolongation and rare occurrences of torsades de pointes. Coadministration of fluconazole and quinidine is contraindicated. (See . in vitro in vivo CONTRAINDICATIONS ) Hydrochlorothiazide In a pharmacokinetic interaction study, coadministration of multiple dose hydrochlorothiazide to healthy volunteers receiving fluconazole increased plasma concentrations of fluconazole by 40%. An effect of this magnitude should not necessitate a change in the fluconazole dose regimen in subjects receiving concomitant diuretics. Alfentanil A study observed a reduction in clearance and distribution volume as well as prolongation of T of alfentanil following concomitant treatment with fluconazole. A possible mechanism of action is fluconazole’s inhibition of CYP3A4. Dosage adjustment of alfentanil may be necessary. ½ Amitriptyline, nortriptyline Fluconazole increases the effect of amitriptyline and nortriptyline. 5- nortriptyline and/or S-amitriptyline may be measured at initiation of the combination therapy and after one week. Dosage of amitriptyline/nortriptyline should be adjusted, if necessary. Amphotericin B Concurrent administration of fluconazole and amphotericin B in infected normal and immunosuppressed mice showed the following results: a small additive antifungal effect in systemic infection with , no interaction in intracranial infection with , and antagonism of the two drugs in systemic infection with . The clinical significance of results obtained in these studies is unknown. C. albicans Cryptococcus neoformans A. fumigatus Azithromycin An open-label, randomized, three-way crossover study in 18 healthy subjects assessed the effect of a single 1200 mg oral dose of azithromycin on the pharmacokinetics of a single 800 mg oral dose of fluconazole as well as the effects of fluconazole on the pharmacokinetics of azithromycin. There was no significant pharmacokinetic interaction between fluconazole and azithromycin. Carbamazepine Fluconazole inhibits the metabolism of carbamazepine and an increase in serum carbamazepine of 30% has been observed. There is a risk of developing carbamazepine toxicity. Dosage adjustment of carbamazepine may be necessary depending on concentration measurements/effect. Calcium Channel Blockers Certain calcium channel antagonists (nifedipine, isradipine, amlodipine, verapamil, and felodipine) are metabolized by CYP3A4. Fluconazole has the potential to increase the systemic exposure of the calcium channel antagonists. Frequent monitoring for adverse events is recommended. Celecoxib During concomitant treatment with fluconazole (200 mg daily) and celecoxib (200 mg), the celecoxib Cmax and AUC increased by 68% and 134%, respectively. Half of the celecoxib dose may be necessary when combined with fluconazole. Cyclophosphamide Combination therapy with cyclophosphamide and fluconazole results in an increase in serum bilirubin and serum creatinine. The combination may be used while taking increased consideration to the risk of increased serum bilirubin and serum creatinine. Fentanyl One fatal case of possible fentanyl fluconazole interaction was reported. The author judged that the patient died from fentanyl intoxication. Furthermore, in a randomized crossover study with 12 healthy volunteers it was shown that fluconazole delayed the elimination of fentanyl significantly. Elevated fentanyl concentration may lead to respiratory depression. Halofantrine Fluconazole can increase halofantrine plasma concentration due to an inhibitory effect on CYP3A4. HMG-CoA reductase inhibitors The risk of myopathy and rhabdomyolysis increases when fluconazole is coadministered with HMG-CoA reductase inhibitors metabolized through CYP3A4, such as atorvastatin and simvastatin, or through CYP2C9, such as fluvastatin. If concomitant therapy is necessary, the patient should be observed for symptoms of myopathy and rhabdomyolysis and creatinine kinase should be monitored. HMG-CoA reductase inhibitors should be discontinued if a marked increase in creatinine kinase is observed or myopathy/rhabdomyolysis is diagnosed or suspected. Losartan Fluconazole inhibits the metabolism of losartan to its active metabolite (E-31 74) which is responsible for most of the angiotensin Il-receptor antagonism which occurs during treatment with losartan. Patients should have their blood pressure monitored continuously. Methadone Fluconazole may enhance the serum concentration of methadone. Dosage adjustment of methadone may be necessary. Non-steroidal anti-inflammatory drugs The Cmax and AUC of flurbiprofen were increased by 23% and 81%, respectively, when coadministered with fluconazole compared to administration of flurbiprofen alone. Similarly, the Cmax and AUC of the pharmacologically active isomer [S-(+)-ibuprofen] were increased by 15% and 82%, respectively, when fluconazole was coadministered with racemic ibuprofen (400 mg) compared to administration of racemic ibuprofen alone. Although not specifically studied, fluconazole has the potential to increase the systemic exposure of other NSAIDs that are metabolized by CYP2C9 (e.g., naproxen, lornoxicam, meloxicam, diclofenac). Frequent monitoring for adverse events and toxicity related to NSAIDs is recommended. Adjustment of dosage of NSAIDs may be needed. Prednisone There was a case report that a liver-transplanted patient treated with prednisone developed acute adrenal cortex insufficiency when a three month therapy with fluconazole was discontinued. The discontinuation of fluconazole presumably caused an enhanced CYP3A4 activity which led to increased metabolism of prednisone. Patients on long-term treatment with fluconazole and prednisone should be carefully monitored for adrenal cortex insufficiency when fluconazole is discontinued. Saquinavir Fluconazole increases the AUC of saquinavir by approximately 50%, Cmax by approximately 55%, and decreases clearance of saquinavir by approximately 50% due to inhibition of saquinavir’s hepatic metabolism by CYP3A4 and inhibition of P-glycoprotein. Dosage adjustment of saquinavir may be necessary. Sirolimus Fluconazole increases plasma concentrations of sirolimus presumably by inhibiting the metabolism of sirolimus via CYP3A4 and P-glycoprotein. This combination may be used with a dosage adjustment of sirolimus depending on the effect/concentration measurements. Vinca Alkaloids Although not studied, fluconazole may increase the plasma levels of the vinca alkaloids (e.g., vincristine and vinblastine) and lead to neurotoxicity, which is possibly due to an inhibitory effect on CYP3A4. Vitamin A Based on a case report in one patient receiving combination therapy with all-trans-retinoid acid (an acid form of vitamin A) and fluconazole, CNS related undesirable effects have developed in the form of pseudotumour cerebri, which disappeared after discontinuation of fluconazole treatment. This combination may be used but the incidence of CNS related undesirable effects should be borne in mind. Zidovudine Fluconazole increases Cmax and AUC of zidovudine by 84% and 74%, respectively, due to an approximately 45% decrease in oral zidovudine clearance. The half-life of zidovudine was likewise prolonged by approximately 128% following combination therapy with fluconazole. Patients receiving this combination should be monitored for the development of zidovudine-related adverse reactions. Dosage reduction of zidovudine may be considered. Physicians should be aware that interaction studies with medications other than those listed in the section have not been conducted, but such interactions may occur. CLINICAL PHARMACOLOGY

OVERDOSAGE

There have been reports of overdose with fluconazole accompanied by hallucination and paranoid behavior. In the event of overdose, symptomatic treatment (with supportive measures and gastric lavage if clinically indicated) should be instituted. Fluconazole is largely excreted in urine. A three-hour hemodialysis session decreases plasma levels by approximately 50%. In mice and rats receiving very high doses of fluconazole, clinical effects in both species included decreased motility and respiration, ptosis, lacrimation, salivation, urinary incontinence, loss of righting reflex, and cyanosis; death was sometimes preceded by clonic convulsions.

DESCRIPTION

DIFLUCAN (fluconazole), the first of a new subclass of synthetic triazole antifungal agents, is available as tablets for oral administration, as a powder for oral suspension. ® Fluconazole is designated chemically as 2,4-difluoro-α,α -bis(1H-1,2,4-triazol-1-ylmethyl) benzyl alcohol with an empirical formula of C H F N O and molecular weight of 306.3. The structural formula is: 1 13 12 2 6 Fluconazole is a white crystalline solid which is slightly soluble in water and saline. DIFLUCAN Tablets contain 50, 100, 150, or 200 mg of fluconazole and the following inactive ingredients: microcrystalline cellulose, dibasic calcium phosphate anhydrous, povidone, croscarmellose sodium, FD&C Red No. 40 aluminum lake dye, and magnesium stearate. DIFLUCAN for Oral Suspension contains 350 mg or 1400 mg of fluconazole and the following inactive ingredients: sucrose, sodium citrate dihydrate, citric acid anhydrous, sodium benzoate, titanium dioxide, colloidal silicon dioxide, xanthan gum, and natural orange flavor. After reconstitution with 24 mL of distilled water or Purified Water (USP), each mL of reconstituted suspension contains 10 mg or 40 mg of fluconazole. Chemical Structure

CLINICAL STUDIES

Cryptococcal meningitis In a multicenter study comparing DIFLUCAN (200 mg/day) to amphotericin B (0.3 mg/kg/day) for treatment of cryptococcal meningitis in patients with AIDS, a multivariate analysis revealed three pretreatment factors that predicted death during the course of therapy: abnormal mental status, cerebrospinal fluid cryptococcal antigen titer greater than 1:1024, and cerebrospinal fluid white blood cell count of less than 20 cells/mm . Mortality among high risk patients was 33% and 40% for amphotericin B and DIFLUCAN patients, respectively (p=0.58), with overall deaths 14% (9 of 63 subjects) and 18% (24 of 131 subjects) for the 2 arms of the study (p=0.48). Optimal doses and regimens for patients with acute cryptococcal meningitis and at high risk for treatment failure remain to be determined. (Saag, . N Engl J Med 1992; 326:83–9.) 3 et al Vaginal candidiasis Two adequate and well-controlled studies were conducted in the U.S. using the 150 mg tablet. In both, the results of the fluconazole regimen were comparable to the control regimen (clotrimazole or miconazole intravaginally for 7 days) both clinically and statistically at the one month post-treatment evaluation. The therapeutic cure rate, defined as a complete resolution of signs and symptoms of vaginal candidiasis (clinical cure), along with a negative KOH examination and negative culture for (microbiologic eradication), was 55% in both the fluconazole group and the vaginal products group. Candida Fluconazole PO 150 mg tablet Vaginal Product qhs × 7 days Enrolled 448 422 Evaluable at Late Follow-up 347 (77%) 327 (77%) Clinical cure 239/347 (69%) 235/327 (72%) Mycologic eradication 213/347 (61%) 196/327 (60%) Therapeutic cure 190/347 (55%) 179/327 (55%) Approximately three-fourths of the enrolled patients had acute vaginitis (<4 episodes/12 months) and achieved 80% clinical cure, 67% mycologic eradication, and 59% therapeutic cure when treated with a 150 mg DIFLUCAN tablet administered orally. These rates were comparable to control products. The remaining one-fourth of enrolled patients had recurrent vaginitis (≥4 episodes/12 months) and achieved 57% clinical cure, 47% mycologic eradication, and 40% therapeutic cure. The numbers are too small to make meaningful clinical or statistical comparisons with vaginal products in the treatment of patients with recurrent vaginitis. Substantially more gastrointestinal events were reported in the fluconazole group compared to the vaginal product group. Most of the events were mild to moderate. Because fluconazole was given as a single dose, no discontinuations occurred. Parameter Fluconazole PO Vaginal Products Evaluable patients 448 422 With any adverse event 141 (31%) 112 (27%) Nervous System 90 (20%) 69 (16%) Gastrointestinal 73 (16%) 18 (4%) With drug-related event 117 (26%) 67 (16%) Nervous System 61 (14%) 29 (7%) Headache 58 (13%) 28 (7%) Gastrointestinal 68 (15%) 13 (3%) Abdominal pain 25 (6%) 7 (2%) Nausea 30 (7%) 3 (1%) Diarrhea 12 (3%) 2 (<1%) Application site event 0 (0%) 19 (5%) Taste Perversion 6 (1%) 0 (0%) Pediatric Studies Oropharyngeal candidiasis An open-label, comparative study of the efficacy and safety of DIFLUCAN (2–3 mg/kg/day) and oral nystatin (400,000 I.U. 4 times daily) in immunocompromised children with oropharyngeal candidiasis was conducted. Clinical and mycological response rates were higher in the children treated with fluconazole. Clinical cure at the end of treatment was reported for 86% of fluconazole treated patients compared to 46% of nystatin treated patients. Mycologically, 76% of fluconazole treated patients had the infecting organism eradicated compared to 11% for nystatin treated patients. Fluconazole Nystatin Enrolled 96 90 Clinical Cure 76/88 (86%) 36/78 (46%) Mycological eradication Subjects without follow-up cultures for any reason were considered nonevaluable for mycological response. 55/72 (76%) 6/54 (11%) The proportion of patients with clinical relapse 2 weeks after the end of treatment was 14% for subjects receiving DIFLUCAN and 16% for subjects receiving nystatin. At 4 weeks after the end of treatment, the percentages of patients with clinical relapse were 22% for DIFLUCAN and 23% for nystatin.

HOW SUPPLIED

NDC:54569-3954-0 in a BOTTLE of 1 TABLETS DIFLUCAN Tablets Pink trapezoidal tablets containing 50, 100, or 200 mg of fluconazole are packaged in bottles or unit dose blisters. The 150 mg fluconazole tablets are pink and oval shaped, packaged in a single dose unit blister. DIFLUCAN Tablets are supplied as follows: DIFLUCAN 50 mg Tablets: Engraved with “DIFLUCAN” and “50” on the front and “ROERIG” on the back. NDC 0049-3410-30 Bottles of 30 DIFLUCAN 100 mg Tablets: Engraved with “DIFLUCAN” and “100” on the front and “ROERIG” on the back. NDC 0049-3420-30 Bottles of 30 NDC 0049-3420-41 Unit dose package of 100 DIFLUCAN 150 mg Tablets: Engraved with “DIFLUCAN” and “150” on the front and “ROERIG” on the back. NDC 0049-3500-79 Unit dose package of 1 DIFLUCAN 200 mg Tablets: Engraved with “DIFLUCAN” and “200” on the front and “ROERIG” on the back. NDC 0049-3430-30 Bottles of 30 NDC 0049-3430-41 Unit dose package of 100 Storage Store tablets below 86°F (30°C). DIFLUCAN for Oral Suspension DIFLUCAN for Oral Suspension is supplied as an orange-flavored powder to provide 35 mL per bottle as follows: NDC 0049-3440-19 Fluconazole 350 mg per bottle NDC 0049-3450-19 Fluconazole 1400 mg per bottle Storage Store dry powder below 86°F (30°C). Store reconstituted suspension between 86°F (30°C) and 41°F (5°C) and discard unused portion after 2 weeks. Protect from freezing.

GERIATRIC USE

Geriatric Use In non-AIDS patients, side effects possibly related to fluconazole treatment were reported in fewer patients aged 65 and older (9%, n =339) than for younger patients (14%, n=2240). However, there was no consistent difference between the older and younger patients with respect to individual side effects. Of the most frequently reported (>1%) side effects, rash, vomiting, and diarrhea occurred in greater proportions of older patients. Similar proportions of older patients (2.4%) and younger patients (1.5%) discontinued fluconazole therapy because of side effects. In post-marketing experience, spontaneous reports of anemia and acute renal failure were more frequent among patients 65 years of age or older than in those between 12 and 65 years of age. Because of the voluntary nature of the reports and the natural increase in the incidence of anemia and renal failure in the elderly, it is however not possible to establish a casual relationship to drug exposure. Controlled clinical trials of fluconazole did not include sufficient numbers of patients aged 65 and older to evaluate whether they respond differently from younger patients in each indication. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. Fluconazole is primarily cleared by renal excretion as unchanged drug. Because elderly patients are more likely to have decreased renal function, care should be taken to adjust dose based on creatinine clearance. It may be useful to monitor renal function. (See .) and CLINICAL PHARMACOLOGY DOSAGE AND ADMINISTRATION

MECHANISM OF ACTION

Mechanism of Action Fluconazole is a highly selective inhibitor of fungal cytochrome P450 dependent enzyme lanosterol 14-α-demethylase. This enzyme functions to convert lanosterol to ergosterol. The subsequent loss of normal sterols correlates with the accumulation of 14-α-methyl sterols in fungi and may be responsible for the fungistatic activity of fluconazole. Mammalian cell demethylation is much less sensitive to fluconazole inhibition.

INDICATIONS AND USAGE

DIFLUCAN (fluconazole) is indicated for the treatment of: Vaginal candidiasis (vaginal yeast infections due to ). Candida Oropharyngeal and esophageal candidiasis. In open noncomparative studies of relatively small numbers of patients, DIFLUCAN was also effective for the treatment of urinary tract infections, peritonitis, and systemic infections including candidemia, disseminated candidiasis, and pneumonia. Candida Candida Cryptococcal meningitis. Before prescribing DIFLUCAN (fluconazole) for AIDS patients with cryptococcal meningitis, please see section. Studies comparing DIFLUCAN to amphotericin B in non-HIV infected patients have not been conducted. CLINICAL STUDIES Prophylaxis. DIFLUCAN is also indicated to decrease the incidence of candidiasis in patients undergoing bone marrow transplantation who receive cytotoxic chemotherapy and/or radiation therapy. Specimens for fungal culture and other relevant laboratory studies (serology, histopathology) should be obtained prior to therapy to isolate and identify causative organisms. Therapy may be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, anti-infective therapy should be adjusted accordingly.

PEDIATRIC USE

Pediatric Use An open-label, randomized, controlled trial has shown DIFLUCAN to be effective in the treatment of oropharyngeal candidiasis in children 6 months to 13 years of age. (See .) CLINICAL STUDIES The use of DIFLUCAN in children with cryptococcal meningitis, esophagitis, or systemic infections is supported by the efficacy shown for these indications in adults and by the results from several small noncomparative pediatric clinical studies. In addition, pharmacokinetic studies in children (see ) have established a dose proportionality between children and adults. (See .) Candida Candida CLINICAL PHARMACOLOGY DOSAGE AND ADMINISTRATION In a noncomparative study of children with serious systemic fungal infections, most of which were candidemia, the effectiveness of DIFLUCAN was similar to that reported for the treatment of candidemia in adults. Of 17 subjects with culture-confirmed candidemia, 11 of 14 (79%) with baseline symptoms (3 were asymptomatic) had a clinical cure; 13/15 (87%) of evaluable patients had a mycologic cure at the end of treatment but two of these patients relapsed at 10 and 18 days, respectively, following cessation of therapy. The efficacy of DIFLUCAN for the suppression of cryptococcal meningitis was successful in 4 of 5 children treated in a compassionate-use study of fluconazole for the treatment of life-threatening or serious mycosis. There is no information regarding the efficacy of fluconazole for primary treatment of cryptococcal meningitis in children. The safety profile of DIFLUCAN in children has been studied in 577 children ages 1 day to 17 years who received doses ranging from 1 to 15 mg/kg/day for 1 to 1,616 days. (See .) ADVERSE REACTIONS Efficacy of DIFLUCAN has not been established in infants less than 6 months of age. (See .) A small number of patients (29) ranging in age from 1 day to 6 months have been treated safely with DIFLUCAN. CLINICAL PHARMACOLOGY

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Single 150 mg tablet use for Vaginal Candidiasis There are no adequate and well-controlled studies of Diflucan in pregnant women. Available human data do not suggest an increased risk of congenital anomalies following a single maternal dose of 150 mg. Pregnancy Category D All other indications A few published case reports describe a rare pattern of distinct congenital anomalies in infants exposed to high dose maternal fluconazole (400–800 mg/day) during most or all of the first trimester. These reported anomalies are similar to those seen in animal studies. If this drug is used during pregnancy, or if the patient becomes pregnant while taking the drug, the patient should be informed of the potential hazard to the fetus. (See .) in utero WARNINGS, Use in Pregnancy Human Data Several published epidemiologic studies do not suggest an increased risk of congenital anomalies associated with low dose exposure to fluconazole in pregnancy (most subjects received a single oral dose of 150 mg). A few published case reports describe a distinctive and rare pattern of birth defects among infants whose mothers received high-dose (400–800 mg/day) fluconazole during most or all of the first trimester of pregnancy. The features seen in these infants include: brachycephaly, abnormal facies, abnormal calvarial development, cleft palate, femoral bowing, thin ribs and long bones, arthrogryposis, and congenital heart disease. These effects are similar to those seen in animal studies. Animal Data Fluconazole was administered orally to pregnant rabbits during organogenesis in two studies at doses of 5, 10, and 20 mg/kg and at 5, 25, and 75 mg/kg, respectively. Maternal weight gain was impaired at all dose levels (approximately 0.25 to 4 times the 400 mg clinical dose based on BSA), and abortions occurred at 75 mg/kg (approximately 4 times the 400 mg clinical dose based on BSA); no adverse fetal effects were observed. In several studies in which pregnant rats received fluconazole orally during organogenesis, maternal weight gain was impaired and placental weights were increased at 25 mg/kg. There were no fetal effects at 5 or 10 mg/kg; increases in fetal anatomical variants (supernumerary ribs, renal pelvis dilation) and delays in ossification were observed at 25 and 50 mg/kg and higher doses. At doses ranging from 80 to 320 mg/kg (approximately 2 to 8 times the 400 mg clinical dose based on BSA), embryolethality in rats was increased and fetal abnormalities included wavy ribs, cleft palate, and abnormal cranio-facial ossification. These effects are consistent with the inhibition of estrogen synthesis in rats and may be a result of known effects of lowered estrogen on pregnancy, organogenesis, and parturition

NUSRING MOTHERS

Nursing Mothers Fluconazole is secreted in human milk at concentrations similar to maternal plasma concentrations. Caution should be exercised when DIFLUCAN is administered to a nursing woman.

DOSAGE AND ADMINISTRATION

Dosage and Administration in Adults Single Dose Vaginal candidiasis The recommended dosage of DIFLUCAN for vaginal candidiasis is 150 mg as a single oral dose. Multiple Dose SINCE ORAL ABSORPTION IS RAPID AND ALMOST COMPLETE, THE DAILY DOSE OF DIFLUCAN (FLUCONAZOLE) IS THE SAME FOR ORAL (TABLETS AND SUSPENSION) AND INTRAVENOUS ADMINISTRATION. In general, a loading dose of twice the daily dose is recommended on the first day of therapy to result in plasma concentrations close to steady-state by the second day of therapy. The daily dose of DIFLUCAN for the treatment of infections other than vaginal candidiasis should be based on the infecting organism and the patient’s response to therapy. Treatment should be continued until clinical parameters or laboratory tests indicate that active fungal infection has subsided. An inadequate period of treatment may lead to recurrence of active infection. Patients with AIDS and cryptococcal meningitis or recurrent oropharyngeal candidiasis usually require maintenance therapy to prevent relapse. Oropharyngeal candidiasis The recommended dosage of DIFLUCAN for oropharyngeal candidiasis is 200 mg on the first day, followed by 100 mg once daily. Clinical evidence of oropharyngeal candidiasis generally resolves within several days, but treatment should be continued for at least 2 weeks to decrease the likelihood of relapse. Esophageal candidiasis The recommended dosage of DIFLUCAN for esophageal candidiasis is 200 mg on the first day, followed by 100 mg once daily. Doses up to 400 mg/day may be used, based on medical judgment of the patient’s response to therapy. Patients with esophageal candidiasis should be treated for a minimum of three weeks and for at least two weeks following resolution of symptoms. Systemic Candida infections For systemic infections including candidemia, disseminated candidiasis, and pneumonia, optimal therapeutic dosage and duration of therapy have not been established. In open, noncomparative studies of small numbers of patients, doses of up to 400 mg daily have been used. Candida Urinary tract infections and peritonitis For the treatment of urinary tract infections and peritonitis, daily doses of 50–200 mg have been used in open, noncomparative studies of small numbers of patients. Candida Cryptococcal meningitis The recommended dosage for treatment of acute cryptococcal meningitis is 400 mg on the first day, followed by 200 mg once daily. A dosage of 400 mg once daily may be used, based on medical judgment of the patient’s response to therapy. The recommended duration of treatment for initial therapy of cryptococcal meningitis is 10–12 weeks after the cerebrospinal fluid becomes culture negative. The recommended dosage of DIFLUCAN for suppression of relapse of cryptococcal meningitis in patients with AIDS is 200 mg once daily. Prophylaxis in patients undergoing bone marrow transplantation The recommended DIFLUCAN daily dosage for the prevention of candidiasis in patients undergoing bone marrow transplantation is 400 mg, once daily. Patients who are anticipated to have severe granulocytopenia (less than 500 neutrophils per cu mm) should start DIFLUCAN prophylaxis several days before the anticipated onset of neutropenia, and continue for 7 days after the neutrophil count rises above 1000 cells per cu mm. Dosage and Administration in Children The following dose equivalency scheme should generally provide equivalent exposure in pediatric and adult patients: Pediatric Patients Adults 3 mg/kg 100 mg 6 mg/kg 200 mg 12 mg/kg Some older children may have clearances similar to that of adults. Absolute doses exceeding 600 mg/day are not recommended. 400 mg Experience with DIFLUCAN in neonates is limited to pharmacokinetic studies in premature newborns. (See .) Based on the prolonged half-life seen in premature newborns (gestational age 26 to 29 weeks), these children, in the first two weeks of life, should receive the same dosage (mg/kg) as in older children, but administered every 72 hours. After the first two weeks, these children should be dosed once daily. No information regarding DIFLUCAN pharmacokinetics in full-term newborns is available. CLINICAL PHARMACOLOGY Oropharyngeal candidiasis The recommended dosage of DIFLUCAN for oropharyngeal candidiasis in children is 6 mg/kg on the first day, followed by 3 mg/kg once daily. Treatment should be administered for at least 2 weeks to decrease the likelihood of relapse. Esophageal candidiasis For the treatment of esophageal candidiasis, the recommended dosage of DIFLUCAN in children is 6 mg/kg on the first day, followed by 3 mg/kg once daily. Doses up to 12 mg/kg/day may be used, based on medical judgment of the patient’s response to therapy. Patients with esophageal candidiasis should be treated for a minimum of three weeks and for at least 2 weeks following the resolution of symptoms. Systemic Candida infections For the treatment of candidemia and disseminated infections, daily doses of 6–12 mg/kg/day have been used in an open, noncomparative study of a small number of children. Candida Cryptococcal meningitis For the treatment of acute cryptococcal meningitis, the recommended dosage is 12 mg/kg on the first day, followed by 6 mg/kg once daily. A dosage of 12 mg/kg once daily may be used, based on medical judgment of the patient’s response to therapy. The recommended duration of treatment for initial therapy of cryptococcal meningitis is 10–12 weeks after the cerebrospinal fluid becomes culture negative. For suppression of relapse of cryptococcal meningitis in children with AIDS, the recommended dose of DIFLUCAN is 6 mg/kg once daily. Dosage In Patients With Impaired Renal Function Fluconazole is cleared primarily by renal excretion as unchanged drug. There is no need to adjust single dose therapy for vaginal candidiasis because of impaired renal function. In patients with impaired renal function who will receive multiple doses of DIFLUCAN, an initial loading dose of 50 to 400 mg should be given. After the loading dose, the daily dose (according to indication) should be based on the following table: Creatinine Clearance (mL/min) Percent of Recommended Dose >50 100% ≤50 (no dialysis) 50% Regular dialysis 100% after each dialysis Patients on regular dialysis should receive 100% of the recommended dose after each dialysis; on non-dialysis days, patients should receive a reduced dose according to their creatinine clearance. These are suggested dose adjustments based on pharmacokinetics following administration of multiple doses. Further adjustment may be needed depending upon clinical condition. When serum creatinine is the only measure of renal function available, the following formula (based on sex, weight, and age of the patient) should be used to estimate the creatinine clearance in adults: Males: 72 × serum creatinine (mg/100 mL) Weight (kg) × (140 – age) Females: 0.85 × above value Although the pharmacokinetics of fluconazole has not been studied in children with renal insufficiency, dosage reduction in children with renal insufficiency should parallel that recommended for adults. The following formula may be used to estimate creatinine clearance in children: K × serum creatinine (mg/100 mL) linear length or height (cm) (Where K=0.55 for children older than 1 year and 0.45 for infants.) Administration DIFLUCAN is administered orally. DIFLUCAN can be taken with or without food. Directions for Mixing the Oral Suspension Prepare a suspension at time of dispensing as follows: tap bottle until all the powder flows freely. To reconstitute, add 24 mL of distilled water or Purified Water (USP) to fluconazole bottle and shake vigorously to suspend powder. Each bottle will deliver 35 mL of suspension. The concentrations of the reconstituted suspensions are as follows: Fluconazole Content per Bottle Concentration of Reconstituted Suspension 350 mg 10 mg/mL 1400 mg 40 mg/mL Note: Shake oral suspension well before using. Store reconstituted suspension between 86°F (30°C) and 41°F (5°C) and discard unused portion after 2 weeks. Protect from freezing.

Diltiazem Hydrochloride 60 MG Oral Tablet

Generic Name: DILTIAZEM HYDROCHLORIDE
Brand Name: Diltiazem Hydrochloride
  • Substance Name(s):
  • DILTIAZEM HYDROCHLORIDE

WARNINGS

1. Cardiac Conduction. Diltiazem prolongs AV node refractory periods without significantly prolonging sinus node recovery time, except in patients with sick sinus syndrome. This effect may rarely result in abnormally slow heart rates (particularly in patients with sick sinus syndrome) or second- or third-degree AV block (six of 1243 patients for 0.48%). Concomitant use of diltiazem with beta-blockers or digitalis may result in additive effects on cardiac conduction. A patient with Prinzmetal’s angina developed periods of asystole (2 to 5 seconds) after a single dose of 60 mg of diltiazem (see ADVERSE REACTIONS). 2. Congestive Heart Failure. Although diltiazem has a negative inotropic effect in isolated animal tissue preparations, hemodynamic studies in humans with normal ventricular function have not shown a reduction in cardiac index nor consistent negative effects on contractility (dp/dt). Experience with the use of diltiazem alone or in combination with beta-blockers in patients with impaired ventricular function is very limited. Caution should be exercised when using the drug in such patients. 3. Hypotension. Decreases in blood pressure associated with diltiazem therapy may occasionally result in symptomatic hypotension. 4. Acute Hepatic Injury. In rare instances, significant elevations in enzymes such as alkaline phosphatase, LDH, SGOT, SGPT, and other phenomena consistent with acute hepatic injury have been noted. These reactions have been reversible upon discontinuation of drug therapy. The relationship to diltiazem is uncertain in most cases, but probable in some (see PRECAUTIONS).

DRUG INTERACTIONS

Drug Interactions Due to the potential for additive effects, caution and careful titration are warranted in patients receiving diltiazem concomitantly with any agents known to affect cardiac contractility and/or conduction (see WARNINGS). Pharmacologic studies indicate that there may be additive effects in prolonging AV conduction when using beta-blockers or digitalis concomitantly with diltiazem (see WARNINGS). As with all drugs, care should be exercised when treating patients with multiple medications. Diltiazem is both a substrate and an inhibitor of the cytochrome P-450 3A4 enzyme system. Other drugs that are specific substrates, inhibitors, or inducers of this enzyme system may have a significant impact on the efficacy and side effect profile of diltiazem. Patients taking other drugs that are substrates of CYP450 3A4, especially patients with renal and/or hepatic impairment, may require dosage adjustment when starting or stopping concomitantly administered diltiazem in order to maintain optimum therapeutic blood levels. Anesthetics The depression of cardiac contractility, conductivity, and automaticity, as well as the vascular dilation associated with anesthetics, may be potentiated by calcium channel blockers. When used concomitantly, anesthetics and calcium blockers should be titrated carefully. Benzodiazepines Studies showed that diltiazem increased the AUC of midazolam and triazolam by 3 to 4 fold and the Cmax by 2 fold, compared to placebo. The elimination half-life of midazolam and triazolam also increased (1.5 to 2.5 fold) during coadministration with diltiazem. These pharmacokinetic effects seen during diltiazem coadministration can result in increased clinical effects (e.g., prolonged sedation) of both midazolam and triazolam. Beta-Blockers Controlled and uncontrolled domestic studies suggest that concomitant use of diltiazem and beta-blockers is usually well tolerated. Available data are not sufficient, however, to predict the effects of concomitant treatment, particularly in patients with left ventricular dysfunction or cardiac conduction abnormalities. Administration of diltiazem concomitantly with propranolol in five normal volunteers resulted in increased propranolol levels in all subjects, and bioavailability of propranolol was increased approximately 50%. In vitro, propranolol appears to be displaced from its binding sites by diltiazem. If combination therapy is initiated or withdrawn in conjunction with propranolol, an adjustment in the propranolol dose may be warranted (see WARNINGS). Buspirone In nine healthy subjects, diltiazem significantly increased the mean buspirone AUC 5.5 fold and Cmax 4.1 fold compared to placebo. The T1/2 and Tmax of buspirone were not significantly affected by diltiazem. Enhanced effects and increased toxicity of buspirone may be possible during concomitant administration with diltiazem. Subsequent dose adjustments may be necessary during coadministration, and should be based on clinical assessment. Carbamazepine Concomitant administration of diltiazem with carbamazepine has been reported to result in elevated serum levels of carbamazepine (40% to 72% increase) resulting in toxicity in some cases. Patients receiving these drugs concurrently should be monitored for a potential drug interaction. Cimetidine A study in six healthy volunteers has shown a significant increase in peak diltiazem plasma levels (58%) and area-under-the-curve (53%) after a 1 week course of cimetidine at 1200 mg per day and a single dose of diltiazem 60 mg. Ranitidine produced smaller, nonsignificant increases. The effect may be mediated by cimetidine’s known inhibition of hepatic cytochrome P-450, the enzyme system responsible for the first-pass metabolism of diltiazem. Patients currently receiving diltiazem therapy should be carefully monitored for a change in pharmacological effect when initiating and discontinuing therapy with cimetidine. An adjustment in the diltiazem dose may be warranted. Clonidine Sinus bradycardia resulting in hospitalization and pacemaker insertion has been reported in association with the use of clonidine concurrently with diltiazem. Monitor heart rate in patients receiving concomitant diltiazem and clonidine. Cyclosporine A pharmacokinetic interaction between diltiazem and cyclosporine has been observed during studies involving renal and cardiac transplant patients. In renal and cardiac transplant recipients, a reduction of cyclosporine trough dose ranging from 15% to 48% was necessary to maintain concentrations similar to those seen prior to the addition of diltiazem. If these agents are to be administered concurrently, cyclosporine concentrations should be monitored, especially when diltiazem therapy is initiated, adjusted, or discontinued. The effect of cyclosporine on diltiazem plasma concentrations has not been evaluated. Digitalis Administration of diltiazem with digoxin in 24 healthy male subjects increased plasma digoxin concentrations approximately 20%. Another investigator found no increase in digoxin levels in 12 patients with coronary artery disease. Since there have been conflicting results regarding the effect of digoxin levels, it is recommended that digoxin levels be monitored when initiating, adjusting, and discontinuing diltiazem therapy to avoid possible over- or under-digitalization (see WARNINGS). Quinidine Diltiazem significantly increases the AUC (0→∞) of quinidine by 51%, T1/ 2 by 36%, and decreases its CLoral by 33%. Monitoring for quinidine adverse effects may be warranted and the dose adjusted accordingly. Rifampin Coadministration of rifampin with diltiazem lowered the diltiazem plasma concentrations to undetectable levels. Coadministration of diltiazem with rifampin or any known CYP3A4 inducer should be avoided when possible, and alternative therapy considered. Statins Diltiazem is an inhibitor of CYP3A4 and has been shown to increase significantly the AUC of some statins. The risk of myopathy and rhabdomyolysis with statins metabolized by CYP3A4 may be increased with concomitant use of diltiazem. When possible, use a non-CYP3A4-metabolized statin together with diltiazem; otherwise, dose adjustments for both diltiazem and the statin should be considered along with close monitoring for signs and symptoms of any statin related adverse events. In a healthy volunteer cross-over study (N = 10), coadministration of a single 20 mg dose of simvastatin at the end of a 14 day regimen with 120 mg BID diltiazem SR resulted in a 5 fold increase in mean simvastatin AUC versus simvastatin alone. Subjects with increased average steady-state exposures of diltiazem showed a greater fold increase in simvastatin exposure. Computer-based simulations showed that at a daily dose of 480 mg of diltiazem, an 8 to 9 fold mean increase in simvastatin AUC can be expected. If coadministration of simvastatin with diltiazem is required, limit the daily doses of simvastatin to 10 mg and diltiazem to 240 mg. In a ten-subject randomized, open label, 4 way cross-over study, co-administration of diltiazem (120 mg BID diltiazem SR for 2 weeks) with a single 20 mg dose of lovastatin resulted in 3 to 4 fold increase in mean lovastatin AUC and Cmax versus lovastatin alone. In the same study, there was no significant change in 20 mg single dose pravastatin AUC and Cmax during diltiazem coadministration. Diltiazem plasma levels were not significantly affected by lovastatin or pravastatin.

OVERDOSAGE

The oral LD50s in mice and rats range from 415 to 740 mg/kg and from 560 to 810 mg/kg, respectively. The intravenous LD50s in these species were 60 and 38 mg/kg, respectively. The oral LD50 in dogs is considered to be in excess of 50 mg/kg, while lethality was seen in monkeys at 360 mg/kg. The toxic dose in man is not known. Due to extensive metabolism, blood levels after a standard dose of diltiazem can vary over tenfold, limiting the usefulness of blood levels in overdose cases. There have been reports of diltiazem overdose in amounts ranging from < 1 g to 18 g. Of cases with known outcome, most patients recovered and in cases with a fatal outcome, the majority involved multiple drug ingestion. Events observed following diltiazem overdose included bradycardia, hypotension, heart block, and cardiac failure. Most reports of overdose described some supportive medical measure and/or drug treatment. Bradycardia frequently responded favorably to atropine, as did heart block, although cardiac pacing was also frequently utilized to treat heart block. Fluids and vasopressors were used to maintain blood pressure, and in cases of cardiac failure, inotropic agents were administered. In addition, some patients received treatment with ventilatory support, gastric lavage, activated charcoal, and/or intravenous calcium. The effectiveness of intravenous calcium administration to reverse the pharmacological effects of diltiazem overdose has been inconsistent. In a few reported cases, overdose with calcium channel blockers associated with hypotension and bradycardia that was initially refractory to atropine became more responsive to atropine after the patients received intravenous calcium. In some cases intravenous calcium has been administered (1 g calcium chloride or 3 g calcium gluconate) over 5 minutes and repeated every 10 to 20 minutes as necessary. Calcium gluconate has also been administered as a continuous infusion at a rate of 2 g per hour for 10 hours. Infusions of calcium for 24 hours or more may be required. Patients should be monitored for signs of hypercalcemia. In the event of overdose or exaggerated response, appropriate supportive measures should be employed in addition to gastrointestinal decontamination. Diltiazem does not appear to be removed by peritoneal or hemodialysis. Limited data suggest that plasmapheresis or charcoal hemoperfusion may hasten diltiazem elimination following overdose. Based on the known pharmacological effects of diltiazem and/or reported clinical experiences, the following measures may be considered: Bradycardia: Administer atropine (0.6 to 1 mg). If there is no response to vagal blockade, administer isoproterenol cautiously. High-Degree AV Block: Treat as for bradycardia above. Fixed high-degree AV block should be treated with cardiac pacing. Cardiac Failure: Administer inotropic agents (isoproterenol, dopamine, or dobutamine) and diuretics. Hypotension: Vasopressors (e.g., dopamine or norepinephrine). Actual treatment and dosage should depend on the severity of the clinical situation and the judgment and experience of the treating physician.

DESCRIPTION

Diltiazem hydrochloride tablets USP are a calcium ion cellular influx inhibitor (slow channel blocker or calcium antagonist). Chemically, diltiazem hydrochloride, USP is 1,5-Benzothiazepin-4(5H)one,3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-,monohydrochloride,(+)-cis-. The structural formula is: C22H26N2O4S•HCl M.W. 450.98 Diltiazem hydrochloride, USP is a white to off-white crystalline powder with a bitter taste. It is soluble in water, methanol, and chloroform. Each tablet for oral administration contains 30 mg, 60 mg, 90 mg, or 120 mg of diltiazem hydrochloride, USP. Each tablet also contains the following inactive ingredients: hypromellose, lactose monohydrate, magnesium stearate, polyethylene glycol, polysorbate 80, povidone, titanium dioxide and FD&C yellow #6 aluminum lake. Diltiazem hydrochloride tablets meet USP Dissolution Test 1.

HOW SUPPLIED

Diltiazem hydrochloride tablets USP are available as: 30 mg – faint orange, round, film-coated, biconvex, unscored tablets, debossed with “93” and “318” on one side and plain on the other side. Available in bottles of 100 and 500. 60 mg – orange, round, film-coated, biconvex tablets, scored in half on one side, debossed with “93” and “319” on each side of the score and plain on the other side. Available in bottles of 100 and 500. 90 mg – faint orange, oblong, film-coated tablets, scored in half on one side, debossed with “93” and “320” on each side of the score and plain on the other side. Available in bottles of 100. 120 mg – orange, oblong, film-coated tablets, scored in half on one side, debossed with “93” and “321” on each side of the score and plain on the other side. Available in bottles of 100. Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP, with a child-resistant closure (as required). KEEP THIS AND ALL MEDICATIONS OUT OF THE REACH OF CHILDREN. Manufactured In India By: PIRAMAL ENTERPRISES LIMITED Pithampur, Madhya Pradesh, India Manufactured For: TEVA PHARMACEUTICALS USA Sellersville, PA 18960 Rev. M 8/2012

INDICATIONS AND USAGE

Diltiazem hydrochloride tablets USP are indicated for the management of chronic stable angina and angina due to coronary artery spasm.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Reproduction studies have been conducted in mice, rats, and rabbits. Administration of doses ranging from five to ten times greater (on a mg/kg basis) than the daily recommended therapeutic dose has resulted in embryo and fetal lethality. These doses, in some studies, have been reported to cause skeletal abnormalities. In the perinatal/postnatal studies, there was some reduction in early individual pup weights and survival rates. There was an increased incidence of stillbirths at doses of 20 times the human dose or greater. There are no well-controlled studies in pregnant women; therefore, use diltiazem in pregnant women only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

Nursing Mothers Diltiazem is excreted in human milk. One report suggests that concentrations in breast milk may approximate serum levels. If use of diltiazem is deemed essential, an alternative method of infant feeding should be instituted.

DOSAGE AND ADMINISTRATION

Exertional Angina Pectoris Due to Atherosclerotic Coronary Artery Disease or Angina Pectoris at Rest Due to Coronary Artery Spasm Dosage must be adjusted to each patient’s needs. Starting with 30 mg four times daily, before meals and at bedtime, dosage should be increased gradually (given in divided doses three or four times daily) at 1 to 2 day intervals until optimum response is obtained. Although individual patients may respond to any dosage level, the average optimum dosage range appears to be 180 to 360 mg/day. There are no available data concerning dosage requirements in patients with impaired renal or hepatic function. If the drug must be used in such patients, titration should be carried out with particular caution. Concomitant Use With Other Cardiovascular Agents Sublingual NTG may be taken as required to abort acute anginal attacks during diltiazem hydrochloride tablet therapy. Prophylactic Nitrate Therapy: Diltiazem hydrochloride tablets may be safely coadministered with short- and long-acting nitrates, but there have been no controlled studies to evaluate the antianginal effectiveness of this combination. Beta-blockers. (See WARNINGS and PRECAUTIONS.)

valsartan 80 MG / hydrochlorothiazide 12.5 MG Oral Tablet

Generic Name: VALSARTAN AND HYDROCHLOROTHIAZIDE
Brand Name: Valsartan and Hydrochlorothiazide
  • Substance Name(s):
  • HYDROCHLOROTHIAZIDE
  • VALSARTAN

DRUG INTERACTIONS

7 Valsartan-Hydrochlorothiazide: Lithium: Increases in serum lithium concentrations and lithium toxicity have been reported during concomitant administration of lithium with angiotensin II receptor antagonists or thiazides. Monitor lithium levels in patients taking valsartan and hydrochlorothiazide. Valsartan: No clinically significant pharmacokinetic interactions were observed when valsartan was coadministered with amlodipine, atenolol, cimetidine, digoxin, furosemide, glyburide, hydrochlorothiazide or indomethacin. The valsartan-atenolol combination was more antihypertensive than either component, but it did not lower the heart rate more than atenolol alone. Coadministration of valsartan and warfarin did not change the pharmacokinetics of valsartan or the time-course of the anticoagulant properties of warfarin. CYP 450 Interactions: In vitro metabolism studies indicate that CYP 450 mediated drug interactions between valsartan and coadministered drugs are unlikely because of the low extent of metabolism [see Clinical Pharmacology (12.3)]. Transporters: The results from an in vitro study with human liver tissue indicate that valsartan is a substrate of the hepatic uptake transporter OATP1B1 and the hepatic efflux transporter MRP2. Coadministration of inhibitors of the uptake transporter (rifampin, cyclosporine) or efflux transporter (ritonavir) may increase the systemic exposure to valsartan. Non-Steroidal Anti-Inflammatory Agents including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors): In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs, including selective COX-2 inhibitors, with angiotensin II receptor antagonists, including valsartan, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving valsartan and NSAID therapy. The antihypertensive effect of angiotensin II receptor antagonists, including valsartan may be attenuated by NSAIDs including selective COX-2 inhibitors. Potassium: Concomitant use of valsartan with other agents that block the renin-angiotensin system, potassium sparing diuretics (e.g., spironolactone, triamterene, amiloride), potassium supplements, or salt substitutes containing potassium may lead to increases in serum potassium and in heart failure patients to increases in serum creatinine. If co-medication is considered necessary, monitoring of serum potassium is advisable. Dual Blockade of the Renin-Angiotensin System (RAS): Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Closely monitor blood pressure, renal function and electrolytes in patients on valsartan and hydrochlorothiazide and other agents that affect the RAS. Do not coadminister aliskiren with valsartan and hydrochlorothiazide in patients with diabetes. Avoid use of aliskiren with valsartan and hydrochlorothiazide in patients with renal impairment (GFR < 60 mL/min). Hydrochlorothiazide: When administered concurrently, the following drugs may interact with thiazide diuretics: Antidiabetic Drugs (oral agents and insulin): Dosage adjustment of the antidiabetic drug may be required. Nonsteroidal Anti-inflammatory Drugs (NSAIDS and COX-2 selective inhibitors): When valsartan and hydrochlorothiazide and non-steroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained. Carbamazepine: May lead to symptomatic hyponatremia. Ion exchange resins: Staggering the dosage of hydrochlorothiazide and ion exchange resins (e.g., cholestyramine, colestipol) such that hydrochlorothiazide is administered at least 4 hours before or 4 to 6 hours after the administration of resins would potentially minimize the interaction [see Clinical Pharmacology (12.3)]. Cyclosporine: Concomitant treatment with cyclosporine may increase the risk of hyperuricemia and gout-type complications. •Antidiabetic drugs: Dosage adjustment of antidiabetic may be required. (7) •Cholestyramine and colestipol: Reduced absorption of thiazides. (12.3) •Lithium: Increased risk of lithium toxicity. Monitor serum lithium concentrations during concurrent use. (7) •Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): May increase risk of renal impairment. Can reduce diuretic, natriuretic and antihypertensive effects of diuretics. (7) •Dual inhibition of the renin-angiotesin system: Increased risk of renal impairment, hypotension and hyperkalemia. (7)

OVERDOSAGE

10 Valsartan and Hydrochlorothiazide: Limited data are available related to overdosage in humans. The most likely manifestations of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. Depressed level of consciousness, circulatory collapse and shock have been reported. If symptomatic hypotension should occur, supportive treatment should be instituted. Valsartan is not removed from the plasma by dialysis. The degree to which hydrochlorothiazide is removed by hemodialysis has not been established. The most common signs and symptoms observed in patients are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. In rats and marmosets, single oral doses of valsartan up to 1524 and 762 mg/kg in combination with hydrochlorothiazide at doses up to 476 and 238 mg/kg, respectively, were very well tolerated without any treatment-related effects. These no adverse effect doses in rats and marmosets, respectively, represent 46.5 and 23 times the maximum recommended human dose (MRHD) of valsartan and 188 and 113 times the MRHD of hydrochlorothiazide on a mg/m2 basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60 kg patient.) Valsartan: Valsartan was without grossly observable adverse effects at single oral doses up to 2000 mg/kg in rats and up to 1000 mg/kg in marmosets, except for salivation and diarrhea in the rat and vomiting in the marmoset at the highest dose (60 and 31 times, respectively, the MRHD on a mg/m2 basis). (Calculations assume an oral dose of 320 mg/day and a 60 kg patient.) Hydrochlorothiazide: The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in both mice and rats, which represents 2,027 and 4,054 times, respectively, the MRHD on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60 kg patient.)

DESCRIPTION

11 Valsartan and hydrochlorothiazide tablets, USP is a combination of valsartan, an orally active, specific angiotensin II receptor blocker (ARB) acting on the AT1 receptor subtype, and hydrochlorothiazide, a diuretic. Valsartan, a nonpeptide molecule, is chemically described as N-[p-(o-1H-Tetrazol-5-ylphenyl)benzyl-N-Valeryl-L-valine. Its molecular formula is C24H29N5O3, its molecular weight is 435.5, and its structural formula is Valsartan, USP is a white to practically white fine powder. It is soluble in ethanol and methanol and slightly soluble in water. Hydrochlorothiazide, USP is a white, or practically white, practically odorless, crystalline powder. It is slightly soluble in water; freely soluble in sodium hydroxide solution, in n-butylamine, and in dimethylformamide; sparingly soluble in methanol; and insoluble in ether, in chloroform, and in dilute mineral acids. Hydrochlorothiazide is chemically described as 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Hydrochlorothiazide is a thiazide diuretic. Its molecular formula is C7H8ClN3O4S2, its molecular weight is 297.73, and its structural formula is Valsartan and hydrochlorothiazide tablets are formulated for oral administration to contain valsartan and hydrochlorothiazide 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg and 320 mg/25 mg. The inactive ingredients of the tablets are colloidal silicon dioxide, crospovidone, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polydextrose, polyethylene glycol, povidone, pregelatinized starch (corn), sodium lauryl sulfate, titanium dioxide and triacetin. The 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg and 320 mg/12.5 mg tablets also contain red iron oxide and yellow iron oxide. The 320 mg/25 mg tablet also contains FD&C Blue No. 2 Aluminum Lake and FD&C Yellow No. 6 Aluminum Lake. Valsartan Structural Formula Hydrochlorothiazide Structural Formula

CLINICAL STUDIES

14 14.1 Hypertension Valsartan and Hydrochlorothiazide In controlled clinical trials including over 7,600 patients, 4,372 patients were exposed to valsartan (80 mg, 160 mg and 320 mg) and concomitant hydrochlorothiazide (12.5 mg and 25 mg). Two factorial trials compared various combinations of 80 mg/12.5 mg, 80 mg/25 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg and 320 mg/25 mg with their respective components and placebo. The combination of valsartan and hydrochlorothiazide resulted in additive placebo-adjusted decreases in systolic and diastolic blood pressure at trough of 14 to 21/8 to 11 mmHg at 80 mg/12.5 mg to 320 mg/25 mg, compared to 7 to 10/4 to 5 mmHg for valsartan 80 mg to 320 mg and 5 to 11/2 to 5 mmHg for hydrochlorothiazide 12.5 mg to 25 mg, alone. Three other controlled trials investigated the addition of hydrochlorothiazide to patients who did not respond adequately to valsartan 80 mg to valsartan 320 mg, resulted in the additional lowering of systolic and diastolic blood pressure by approximately 4 to 12/2 to 5 mmHg. The maximal antihypertensive effect was attained 4 weeks after the initiation of therapy, the first time point at which blood pressure was measured in these trials. In long-term follow-up studies (without placebo control) the effect of the combination of valsartan and hydrochlorothiazide appeared to be maintained for up to 2 years. The antihypertensive effect is independent of age or gender. The overall response to the combination was similar for Black and non-Black patients. There was essentially no change in heart rate in patients treated with the combination of valsartan and hydrochlorothiazide in controlled trials. There are no trials of the valsartan and hydrochlorothiazide combination tablet demonstrating reductions in cardiovascular risk in patients with hypertension, but the hydrochlorothiazide component and several ARBs, which are the same pharmacological class as the valsartan component, have demonstrated such benefits. Valsartan The antihypertensive effects of valsartan were demonstrated principally in seven placebo-controlled, 4- to 12-week trials (one in patients over 65) of dosages from 10 to 320 mg/day in patients with baseline diastolic blood pressures of 95 to 115. The studies allowed comparison of once daily and twice daily regimens of 160 mg/day; comparison of peak and trough effects; comparison (in pooled data) of response by gender, age and race; and evaluation of incremental effects of hydrochlorothiazide. Administration of valsartan to patients with essential hypertension results in a significant reduction of sitting, supine, and standing systolic and diastolic blood pressure, usually with little or no orthostatic change. In most patients, after administration of a single oral dose, onset of antihypertensive activity occurs at approximately 2 hours, and maximum reduction of blood pressure is achieved within 6 hours. The antihypertensive effect persists for 24 hours after dosing, but there is a decrease from peak effect at lower doses (40 mg) presumably reflecting loss of inhibition of angiotensin II. At higher doses, however (160 mg), there is little difference in peak and trough effect. During repeated dosing, the reduction in blood pressure with any dose is substantially present within 2 weeks, and maximal reduction is generally attained after 4 weeks. In long-term follow-up studies (without placebo control) the effect of valsartan appeared to be maintained for up to 2 years. The antihypertensive effect is independent of age, gender or race. The latter finding regarding race is based on pooled data and should be viewed with caution, because antihypertensive drugs that affect the renin-angiotensin system (that is, ACE inhibitors and angiotensin II blockers) have generally been found to be less effective in low-renin hypertensives (frequently Blacks) than in high-renin hypertensives (frequently Whites). In pooled, randomized, controlled trials of valsartan that included a total of 140 Blacks and 830 Whites, valsartan and an ACE-inhibitor control were generally at least as effective in Blacks as Whites. The explanation for this difference from previous findings is unclear. Abrupt withdrawal of valsartan has not been associated with a rapid increase in blood pressure. The seven studies of valsartan monotherapy included over 2,000 patients randomized to various doses of valsartan and about 800 patients randomized to placebo. Doses below 80 mg were not consistently distinguished from those of placebo at trough, but doses of 80 mg, 160 mg and 320 mg produced dose related decreases in systolic and diastolic blood pressure, with the difference from placebo of approximately 6 to 9/3 to 5 mmHg at 80 mg to 160 mg and 9/6 mmHg at 320 mg. Patients with an inadequate response to 80 mg once daily were titrated to either 160 mg once daily or 80 mg twice daily, which resulted in a comparable response in both groups. In another 4-week study, 1,876 patients randomized to valsartan 320 mg once daily had an incremental blood pressure reduction 3/1 mmHg lower than did 1,900 patients randomized to valsartan 160 mg once daily. In controlled trials, the antihypertensive effect of once daily valsartan 80 mg was similar to that of once daily enalapril 20 mg or once daily lisinopril 10 mg. There was essentially no change in heart rate in valsartan-treated patients in controlled trials. 14.2 Initial Therapy – Hypertension The safety and efficacy of valsartan and hydrochlorothiazide as initial therapy for patients with severe hypertension (defined as a sitting diastolic blood pressure ≥ 110 mmHg and systolic blood pressure ≥ 140 mmHg off all antihypertensive therapy) was studied in a 6-week multicenter, randomized, double-blind study. Patients were randomized to either valsartan and hydrochlorothiazide 160 mg/12.5 mg once daily or to valsartan (160 mg once daily) and followed for blood pressure response. Patients were force-titrated at 2 week intervals. Patients on combination therapy were subsequently titrated to 160 mg/25 mg followed by 320 mg/25 mg valsartan and hydrochlorothiazide. Patients on monotherapy were subsequently titrated to 320 mg valsartan followed by a titration to 320 mg valsartan to maintain the blind. The study randomized 608 patients, including 261 (43%) females, 147 (24%) Blacks and 75 (12%) ≥ 65 years of age. The mean blood pressure at baseline for the total population was 168/112 mmHg. The mean age was 52 years. After 4 weeks of therapy, reductions in systolic and diastolic blood pressure were 9/5 mmHg greater in the group treated with valsartan and hydrochlorothiazide compared to valsartan. Similar trends were seen when the patients were grouped according to gender, race or age.

HOW SUPPLIED

16 /STORAGE AND HANDLING Valsartan and Hydrochlorothiazide Tablets, USP are available containing 80 mg/12.5 mg, 160 mg/12.5 mg or 160 mg/25 mg of valsartan, USP and hydrochlorothiazide, USP The 80 mg/12.5 mg tablets are an orange film-coated, round, unscored tablets, debossed with M on one side of the tablet and V21 on the other side. They are available as follows: NDC 51079-192-03 – Unit dose blister packages of 30 (3 cards of 10 tablets each). The 160 mg/12.5 mg tablets are an orange film-coated, round, unscored tablets, debossed with M on one side of the tablet and V22 on the other side. They are available as follows: NDC 51079-193-03 – Unit dose blister packages of 30 (3 cards of 10 tablets each). The 160 mg/25 mg tablets are an orange film-coated, oval, unscored tablets, debossed with M on one side of the tablet and V23 on the other side. They are available as follows: NDC 51079-194-03 – Unit dose blister packages of 30 (3 cards of 10 tablets each). Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] Protect from light, moisture and heat. PHARMACIST: Dispense the Patient Information Leaflet with each prescription.

GERIATRIC USE

8.5 Geriatric Use In the controlled clinical trials of valsartan and hydrochlorothiazide, 764 (17.5%) patients treated with valsartan and hydrochlorothiazide were ≥ 65 years and 118 (2.7%) were ≥ 75 years. No overall difference in the efficacy or safety of valsartan and hydrochlorothiazide was observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3 80 mg/12.5 mg tablets, debossed with M on one side of the tablet and V21 on the other side. 160 mg/12.5 mg tablets, debossed with M on one side of the tablet and V22 on the other side. 160 mg/25 mg tablets, debossed with M on one side of the tablet and V23 on the other side. 320 mg/12.5 mg tablets, debossed with M on one side of the tablet and V24 on the other side. 320 mg/25 mg tablets, debossed with M on one side of the tablet and V25 on the other side. Tablets (valsartan and HCTZ): 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg, 320 mg/25 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis. There is also an AT2 receptor found in many tissues, but AT2 is not known to be associated with cardiovascular homeostasis. Valsartan has much greater affinity (about 20,000-fold) for the AT1 receptor than for the AT2 receptor. The primary metabolite of valsartan is essentially inactive with an affinity for the AT1 receptor about one 200th that of valsartan itself. Blockade of the renin-angiotensin system with ACE inhibitors, which inhibit the biosynthesis of angiotensin II from angiotensin I, is widely used in the treatment of hypertension. ACE inhibitors also inhibit the degradation of bradykinin, a reaction also catalyzed by ACE. Because valsartan does not inhibit ACE (kininase II) it does not affect the response to bradykinin. Whether this difference has clinical relevance is not yet known. Valsartan does not bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation. Blockade of the angiotensin II receptor inhibits the negative regulatory feedback of angiotensin II on renin secretion, but the resulting increased plasma renin activity and angiotensin II circulating levels do not overcome the effect of valsartan on blood pressure. Hydrochlorothiazide is a thiazide diuretic. Thiazides affect the renal tubular mechanisms of electrolyte reabsorption, directly increasing excretion of sodium and chloride in approximately equivalent amounts. Indirectly, the diuretic action of hydrochlorothiazide reduces plasma volume, with consequent increases in plasma renin activity, increases in aldosterone secretion, increases in urinary potassium loss and decreases in serum potassium. The renin-aldosterone link is mediated by angiotensin II, so coadministration of an angiotensin II receptor antagonist tends to reverse the potassium loss associated with these diuretics. The mechanism of the antihypertensive effect of thiazides is unknown.

INDICATIONS AND USAGE

1 Valsartan and hydrochlorothiazide tablets are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including hydrochlorothiazide and the ARB class to which valsartan principally belongs. There are no controlled trials demonstrating risk reduction with valsartan and hydrochlorothiazide tablets. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality have also been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure or diabetic kidney disease). These considerations may guide selection of therapy. Add-On Therapy: Valsartan and hydrochlorothiazide tablets may be used in patients whose blood pressure is not adequately controlled on monotherapy. Replacement Therapy: Valsartan and hydrochlorothiazide tablets may be substituted for the titrated components. Initial Therapy: Valsartan and hydrochlorothiazide tablets may be used as initial therapy in patients who are likely to need multiple drugs to achieve blood pressure goals. The choice of valsartan and hydrochlorothiazide tablets as initial therapy for hypertension should be based on an assessment of potential benefits and risks. Patients with stage 2 hypertension are at a relatively high risk for cardiovascular events (such as strokes, heart attacks and heart failure), kidney failure and vision problems, so prompt treatment is clinically relevant. The decision to use a combination as initial therapy should be individualized and should be shaped by considerations such as baseline blood pressure, the target goal and the incremental likelihood of achieving goal with a combination compared to monotherapy. Individual blood pressure goals may vary based upon the patient’s risk. Data from the high dose multifactorial trial [see Clinical Studies (14.1)] provides estimates of the probability of reaching a target blood pressure with valsartan and hydrochlorothiazide tablets compared to valsartan or hydrochlorothiazide monotherapy. The figures below provide estimates of the likelihood of achieving systolic or diastolic blood pressure control with valsartan and hydrochlorothiazide tablets 320 mg/25 mg, based upon baseline systolic or diastolic blood pressure. The curve of each treatment group was estimated by logistic regression modeling. The estimated likelihood at the right tail of each curve is less reliable due to small numbers of subjects with high baseline blood pressures. Figure 1. Probability of Achieving Systolic Blood Pressure < 140 mm/Hg at Week 8 Figure 2. Probability of Achieving Diastolic Blood Pressure < 90 mm/Hg at Week 8 Figure 3. Probability of Achieving Systolic Blood Pressure < 130 mm/Hg at Week 8 Figure 4. Probability of Achieving Diastolic Blood Pressure < 80 mm/Hg at Week 8 For example, a patient with a baseline blood pressure of 160/100 mmHg has about a 41% likelihood of achieving a goal of < 140 mmHg (systolic) and 60% likelihood of achieving < 90 mmHg (diastolic) on valsartan alone and the likelihood of achieving these goals on HCTZ alone is about 50% (systolic) or 57% (diastolic). The likelihood of achieving these goals on valsartan and hydrochlorothiazide tablets rises to about 84% (systolic) or 80% (diastolic). The likelihood of achieving these goals on placebo is about 23% (systolic) or 36% (diastolic). Valsartan and hydrochlorothiazide is the combination tablet of valsartan, an angiotensin II receptor blocker (ARB) and hydrochlorothiazide (HCTZ), a diuretic. Valsartan and hydrochlorothiazide tablets are indicated for the treatment of hypertension, to lower blood pressure: •In patients not adequately controlled with monotherapy (1) •As initial therapy in patients likely to need multiple drugs to achieve their blood pressure goals (1) Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. Figure 1. Probability of Achieving Systolic Blood Pressure  140 mm/Hg at Week 8 Figure 2. Probability of Achieving Diastolic Blood Pressure  90 mm/Hg at Week 8 Figure 3. Probability of Achieving Systolic Blood Pressure  130 mm/Hg at Week 8 Figure 4. Probability of Achieving Diastolic Blood Pressure  80 mm/Hg at Week 8

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of valsartan and hydrochlorothiazide in pediatric patients have not been established. Neonates with a history of in utero exposure to valsartan and hydrochlorothiazide: If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.

PREGNANCY

8.1 Pregnancy Teratogenic Effects. Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure and death. When pregnancy is detected, discontinue valsartan and hydrochlorothiazide as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue valsartan and hydrochlorothiazide, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to valsartan and hydrochlorothiazide for hypotension, oliguria and hyperkalemia [see Use in Specific Populations (8.4)]. Hydrochlorothiazide Thiazides can cross the placenta, and concentrations reached in the umbilical vein approach those in the maternal plasma. Hydrochlorothiazide, like other diuretics, can cause placental hypoperfusion. It accumulates in the amniotic fluid, with reported concentrations up to 19 times higher than in umbilical vein plasma. Use of thiazides during pregnancy is associated with a risk of fetal or neonatal jaundice or thrombocytopenia. Since they do not prevent or alter the course of EPH (Edema, Proteinuria, Hypertension) gestosis (pre-eclampsia), these drugs should not be used to treat hypertension in pregnant women. The use of hydrochlorothiazide for other indications (e.g., heart disease) in pregnancy should be avoided.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether valsartan is excreted in human milk. Valsartan was excreted into the milk of lactating rats; however, animal breast milk drug levels may not accurately reflect human breast milk levels. Hydrochlorothiazide is excreted in human breast milk. Because many drugs are excreted into human milk and because of the potential for adverse reactions in nursing infants from valsartan and hydrochlorothiazide, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: FETAL TOXICITY • When pregnancy is detected, discontinue valsartan and hydrochlorothiazide tablets as soon as possible. (5.1) • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1) WARNING: FETAL TOXICITY See full prescribing information for complete boxed warning. • When pregnancy is detected, discontinue valsartan and hydrochlorothiazide tablets as soon as possible. (5.1) • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Hypotension: Correct volume depletion prior to initiation (5.2) •Observe for signs of fluid or electrolyte imbalance (5.9) •Monitor renal function and potassium in susceptible patients (5.3, 5.7) •Exacerbation or activation of systemic lupus erythematosus (5.5) •Acute angle-closure glaucoma (5.8) 5.1 Fetal Toxicity Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure and death. When pregnancy is detected, discontinue valsartan and hydrochlorothiazide as soon as possible [see Use in Specific Populations (8.1)]. Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults. 5.2 Hypotension in Volume- and/or Salt-Depleted Patients Excessive reduction of blood pressure was rarely seen (0.7%) in patients with uncomplicated hypertension treated with valsartan and hydrochlorothiazide in controlled trials. In patients with an activated renin-angiotensin system, such as volume- and/or salt-depleted patients receiving high doses of diuretics, symptomatic hypotension may occur. This condition should be corrected prior to administration of valsartan and hydrochlorothiazide, or the treatment should start under close medical supervision. If hypotension occurs, the patient should be placed in the supine position and, if necessary, given an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further treatment, which usually can be continued without difficulty once the blood pressure has stabilized. 5.3 Impaired Renal Function Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure or volume depletion) may be at particular risk of developing acute renal failure on valsartan and hydrochlorothiazide. Monitor renal function periodically in these patients. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on valsartan and hydrochlorothiazide [see Drug Interactions (7)]. 5.4 Hypersensitivity Reaction Hydrochlorothiazide Hypersensitivity reactions to hydrochlorothiazide may occur in patients with or without a history of allergy or bronchial asthma, but are more likely in patients with such a history. 5.5 Systemic Lupus Erythematosus Hydrochlorothiazide Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus. 5.6 Lithium Interaction Increases in serum lithium concentrations and lithium toxicity have been reported with concomitant use of valsartan or thiazide diuretics. Monitor lithium levels in patients receiving valsartan and hydrochlorothiazide and lithium [see Drug Interactions (7)]. 5.7 Potassium Abnormalities Valsartan and Hydrochlorothiazide In the controlled trials of various doses of valsartan and hydrochlorothiazide the incidence of hypertensive patients who developed hypokalemia (serum potassium 5.7 mEq/L) was 0.4%. Hydrochlorothiazide can cause hypokalemia and hyponatremia. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. Monitor serum electrolytes periodically. If hypokalemia is accompanied by clinical signs (e.g., muscular weakness, paresis or ECG alterations), valsartan and hydrochlorothiazide should be discontinued. Correction of hypokalemia and any coexisting hypomagnesemia is recommended prior to the initiation of thiazides. Some patients with heart failure have developed increases in potassium with valsartan therapy. These effects are usually minor and transient, and they are more likely to occur in patients with preexisting renal impairment. Dosage reduction and/or discontinuation of the diuretic and/or valsartan may be required [see Adverse Reactions (6.1)]. 5.8 Acute Myopia and Secondary Angle-Closure Glaucoma Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy. 5.9 Metabolic Disturbances Hydrochlorothiazide Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides. Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients. Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving valsartan and hydrochlorothiazide.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Information for Patients: Pregnancy:Female patients of childbearing age should be told about the consequences of exposure to valsartan and hydrochlorothiazide during pregnancy. Discuss treatment options with women planning to become pregnant. Patients should be asked to report pregnancies to their physicians as soon as possible. Symptomatic Hypotension: A patient receiving valsartan and hydrochlorothiazide should be cautioned that lightheadedness can occur, especially during the first days of therapy, and that it should be reported to the prescribing physician. The patients should be told that if syncope occurs, valsartan and hydrochlorothiazide should be discontinued until the physician has been consulted. All patients should be cautioned that inadequate fluid intake, excessive perspiration, diarrhea or vomiting can lead to an excessive fall in blood pressure, with the same consequences of lightheadedness and possible syncope. Potassium Supplements: A patient receiving valsartan and hydrochlorothiazide should be told not to use potassium supplements or salt substitutes containing potassium without consulting the prescribing physician. FDA-Approved Patient Labeling PATIENT INFORMATION LEAFLET VALSARTAN AND HYDROCHLOROTHIAZIDE TABLETS, USP (val sar’ tan) (hye” droe klor” oh thye’ a zide) 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg and 320 mg/25 mg Read the Patient Information that comes with valsartan and hydrochlorothiazide tablets before you start taking it and each time you get a refill. There may be new information. This leaflet does not take the place of talking with your doctor about your condition and treatment. If you have any questions about valsartan and hydrochlorothiazide tablets, ask your doctor or pharmacist. What is the most important information I should know about valsartan and hydrochlorothiazide tablets? Valsartan and hydrochlorothiazide tablets can cause harm or death to an unborn baby. Talk to your doctor about other ways to lower your blood pressure if you plan to become pregnant. If you get pregnant while taking valsartan and hydrochlorothiazide tablets, tell your doctor right away. What are valsartan and hydrochlorothiazide tablets? Valsartan and hydrochlorothiazide tablets contains two prescription medicines: 1. valsartan, an angiotensin receptor blocker (ARB) 2. hydrochlorothiazide (HCTZ), a water pill (diuretic) Valsartan and hydrochlorothiazide tablets may be used to lower high blood pressure (hypertension) in adults- •when one medicine to lower your high blood pressure is not enough •as the first medicine to lower high blood pressure if your doctor decides you are likely to need more than one medicine. Valsartan and hydrochlorothiazide tablets has not been studied in children under 18 years of age. Who should not take valsartan and hydrochlorothiazide tablets? Do not take valsartan and hydrochlorothiazide tablets if you: • are allergic to any of the ingredients in valsartan and hydrochlorothiazide tablets. See the end of this leaflet for a complete list of ingredients in valsartan and hydrochlorothiazide tablets. •make less urine due to kidney problems •are allergic to medicines that contain sulfonamides. What should I tell my doctor before taking valsartan and hydrochlorothiazide tablets? Tell your doctor about all your medical conditions including if you: • are pregnant or plan to become pregnant. See “What is the most important information I should know about valsartan and hydrochlorothiazide tablets?” • are breast-feeding. Valsartan and hydrochlorothiazide passes into breast milk. You should choose either to take valsartan and hydrochlorothiazide tablets or breast-feed, but not both. • have liver problems • have kidney problems • have or had gallstones • have Lupus • have low levels of potassium (with or without symptoms such as muscle weakness, muscle spasms, abnormal heart rhythm) or magnesium in your blood • have high levels of calcium in your blood (with or without symptoms such as nausea, vomiting, constipation, stomach pain, frequent urination, thirst, muscle weakness and twitching). • have high levels of uric acid in the blood. • have ever had a reaction called angioedema to another blood pressure medication. Angioedema causes swelling of the face, lips, tongue, throat, and may cause difficulty breathing. Tell your doctor about all the medicines you take including prescription and non-prescription medicines, vitamins and herbal supplements. Some of your other medicines and valsartan and hydrochlorothiazide tablets could affect each other, causing serious side effects. Especially, tell your doctor if you take: •other medicines for high blood pressure or a heart problem •water pills (diuretics) •potassium supplements. Your doctor may check the amount of potassium in your blood periodically. •a salt substitute. Your doctor may check the amount of potassium in your blood periodically. •antidiabetic medicines including insulin •narcotic pain medicines •sleeping pills •lithium, a medicine used in some types of depression (Eskalith®*, Lithobid®*, Lithium Carbonate, Lithium Citrate) •aspirin or other medicines called Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), like ibuprofen or naproxen •digoxin or other digitalis glycosides (a heart medicine) •muscle relaxants (medicines used during operations) •certain cancer medicines, like cyclophosphamide or methotrexate •certain antibiotics (rifamycin group), a drug used to protect against transplant rejection (cyclosporin) or an antiretroviral drug used to treat HIV/AIDS infection (ritonavir). These drugs may increase the effect of valsartan. Ask your doctor if you are not sure if you are taking one of these medicines. Know the medicines you take. Keep a list of your medicines with you to show to your doctor and pharmacist when a new medicine is prescribed. Talk to your doctor or pharmacist before you start taking any new medicine. Your doctor or pharmacist will know what medicines are safe to take together. How should I take valsartan and hydrochlorothiazide tablets? •Take valsartan and hydrochlorothiazide tablets exactly as prescribed by your doctor. Your doctor may change your dose if needed. •Take valsartan and hydrochlorothiazide tablets once each day. •Valsartan and hydrochlorothiazide tablets can be taken with or without food. •If you miss a dose, take it as soon as you remember. If it is close to your next dose, do not take the missed dose. Just take the next dose at your regular time. •If you take too much valsartan and hydrochlorothiazide, call your doctor or Poison Control Center, or go to the nearest hospital emergency room. What should I avoid while taking valsartan and hydrochlorothiazide tablets? You should not take valsartan and hydrochlorothiazide tablets during pregnancy. See “What is the most important information I should know about valsartan and hydrochlorothiazide tablets?” What are the possible side effects of valsartan and hydrochlorothiazide tablets? Valsartan and hydrochlorothiazide tablets may cause serious side effects including: • Harm to an unborn baby causing injury and even death. See “What is the most important information I should know about valsartan and hydrochlorothiazide tablets?” • Low blood pressure (hypotension). Low blood pressure is most likely to happen if you: •take water pills •are on a low salt diet •get dialysis treatments •have heart problems •get sick with vomiting or diarrhea •drink alcohol Lie down if you feel faint or dizzy. Call your doctor right away. • Allergic reactions. People with and without allergy problems or asthma who take valsartan and hydrochlorothiazide tablets may get allergic reactions. • Worsening of Lupus. Hydrochlorothiazide, one of the medicines in valsartan and hydrochlorothiazide tablets may cause Lupus to become active or worse. • Fluid and electrolyte (salt) problems. Tell your doctor about any of the following signs and symptoms of fluid and electrolyte problems: •dry mouth •thirst •lack of energy (lethargic) •weakness •drowsiness •restlessness •confusion •seizures •muscle pain or cramps •muscle fatigue •very low urine output •fast heartbeat •nausea and vomiting • Kidney problems. Kidney problems may become worse in people that already have kidney disease. Some people will have changes on blood tests for kidney function and may need a lower dose of valsartan and hydrochlorothiazide tablets. Call your doctor if you get swelling in your feet, ankles, or hands, or unexplained weight gain. If you have heart failure, your doctor should check your kidney function before prescribing valsartan and hydrochlorothiazide tablets. • Skin rash. Call your doctor right away if you have an unusual skin rash. • Eye Problems. One of the medicines in valsartan and hydrochlorothiazide tablets can cause eye problems that may lead to vision loss. Symptoms of eye problems can happen within hours to weeks of starting valsartan and hydrochlorothiazide tablets. Tell your doctor right away if you have: •decrease in vision •eye pain Other side effects were generally mild and brief. They generally have not caused patients to stop taking valsartan and hydrochlorothiazide tablets. Tell your doctor if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of valsartan and hydrochlorothiazide tablets. For a complete list, ask your doctor or pharmacist. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. How do I store valsartan and hydrochlorothiazide tablets? •Store valsartan and hydrochlorothiazide tablets at 20° to 25°C (68° to 77°F). •Keep valsartan and hydrochlorothiazide tablets in a closed container in a dry place. Keep valsartan and hydrochlorothiazide tablets and all medicines out of the reach of children. General information about valsartan and hydrochlorothiazide tablets Medicines are sometimes prescribed for conditions that are not mentioned in patient information leaflets. Do not use valsartan and hydrochlorothiazide tablets for a condition for which it was not prescribed. Do not give valsartan and hydrochlorothiazide tablets to other people, even if they have the same symptoms you have. It may harm them. This leaflet summarizes the most important information about valsartan and hydrochlorothiazide tablets. If you would like more information, talk with your doctor. You can ask your doctor or pharmacist for information about valsartan and hydrochlorothiazide tablets that is written for health professionals. For more information about valsartan and hydrochlorothiazide tablets, call Mylan Pharmaceuticals Inc. at 1-877-446-3679 (1-877-4-INFO-RX). What are the ingredients in valsartan and hydrochlorothiazide tablets? Active ingredients: Valsartan and hydrochlorothiazide Inactive ingredients: colloidal silicon dioxide, crospovidone, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polydextrose, polyethylene glycol, povidone, pregelatinized starch(corn), sodium lauryl sulfate, titanium dioxide and triacetin. The 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg and 320 mg/12.5 mg tablets also contain red iron oxide and yellow iron oxide. The 320 mg/25 mg tablet also contains FD&C Blue No. 2 Aluminum Lake and FD&C Yellow No. 6 Aluminum Lake. What is high blood pressure (hypertension)? Blood pressure is the force in your blood vessels when your heart beats and when your heart rests. You have high blood pressure when the force is too much. Valsartan and hydrochlorothiazide tablets can help your blood vessels relax and reduce the amount of water in your body so your blood pressure is lower. Medicines that lower blood pressure lower your risk of having a stroke or heart attack. High blood pressure makes the heart work harder to pump blood throughout the body and causes damage to the blood vessels. If high blood pressure is not treated, it can lead to stroke, heart attack, heart failure, kidney failure, and vision problems. * Registered trademarks are property of their respective owners. Manufactured by: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A. Distributed by: Mylan Institutional Inc. Rockford, IL 61103 U.S.A. S-11364 R1 9/14

DOSAGE AND ADMINISTRATION

2 •Dose once daily. Titrate as needed to a maximum dose of 320 mg/25 mg (2) •May be used as add-on/switch therapy for patients not adequately controlled on any of the components (valsartan or HCTZ) (2) •May be substituted for titrated components (2.3) 2.1 General Considerations The usual starting dose is valsartan and hydrochlorothiazide tablets 160 mg/12.5 mg once daily. The dosage can be increased after 1 to 2 weeks of therapy to a maximum of one 320 mg/25 mg tablet once daily as needed to control blood pressure [see Clinical Studies (14.2)]. Maximum antihypertensive effects are attained within 2 to 4 weeks after a change in dose. 2.2 Add-On Therapy A patient whose blood pressure is not adequately controlled with valsartan (or another ARB) alone or hydrochlorothiazide alone may be switched to combination therapy with valsartan and hydrochlorothiazide tablets. A patient who experiences dose-limiting adverse reactions on either component alone may be switched to valsartan and hydrochlorothiazide tablets containing a lower dose of that component in combination with the other to achieve similar blood pressure reductions. The clinical response to valsartan and hydrochlorothiazide tablets should be subsequently evaluated and if blood pressure remains uncontrolled after 3 to 4 weeks of therapy, the dose may be titrated up to a maximum of 320 mg/25 mg. 2.3 Replacement Therapy Valsartan and hydrochlorothiazide tablets may be substituted for the titrated components. 2.4 Initial Therapy Valsartan and hydrochlorothiazide tablets are not recommended as initial therapy in patients with intravascular volume depletion [see Warnings and Precautions (5.2)]. 2.5 Use with Other Antihypertensive Drugs Valsartan and hydrochlorothiazide tablets may be administered with other antihypertensive agents.

Simvastatin 20 MG Oral Tablet

Generic Name: SIMVASTATIN
Brand Name: simvastatin
  • Substance Name(s):
  • SIMVASTATIN

DRUG INTERACTIONS

7. Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis ( 2.3, 2.4, 4, 5.1, 7.1, 7.2, 7.3, 12.3) Interacting Agents Prescribing Recommendations Strong CYP3A4 inhibitors (e.g. itraconazole, ketoconazole, posaconazole, voriconazole, erythromycin, clarithromycin, telithromycin, HIV protease inhibitors, boceprevir, telaprevir, nefazodone cobicistat-containing products), gemfibrozil, cyclosporine, danazol Contraindicated with simvastatin Verapamil, diltiazem, dronedarone Do not exceed 10 mg simvastatin daily Amiodarone, amlodipine, ranolazine Do not exceed 20 mg simvastatin daily Lomitapide For patients with HoFH, do not exceed 20 mg simvastatin daily For patients with HoFH who have been taking 80 mg simvastatin chronically (e.g., for 12 months or more) without evidence of muscle toxicity, do not exceed 40 mg simvastatin when taking lomitapide. Grapefruit juice Avoid grapefruit juice Other Lipid-lowering Medications: Use with other fibrate products or lipid-modifying doses (≥1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with simvastatin. ( 5.1, 7.2, 7.4) Coumarin anticoagulants: Concomitant use with simvastatin tablets prolongs INR. Achieve stable INR prior to starting simvastatin tablets. Monitor INR frequently until stable upon initiation or alteration of simvastatin tablets therapy. ( 7.6) 7.1 Strong CYP3A4 Inhibitors, Cyclosporine, or Danazol Strong CYP3A4 inhibitors: Simvastatin, like several other inhibitors of HMG-CoA reductase, is a substrate of CYP3A4. Simvastatin is metabolized by CYP3A4 but has no CYP3A4 inhibitory activity; therefore it is not expected to affect the plasma concentrations of other drugs metabolized by CYP3A4. Elevated plasma levels of HMG-CoA reductase inhibitory activity increases the risk of myopathy and rhabdomyolysis, particularly with higher doses of simvastatin. [See Warnings and Precautions (5.1) and Clinical Pharmacology (12.3).] Concomitant use of drugs labeled as having a strong inhibitory effect on CYP3A4 is contraindicated [see Contraindications (4)] . If treatment with itraconazole, ketoconazole, posaconazole, voriconazole, erythromycin, clarithromycin or telithromycin is unavoidable, therapy with simvastatin must be suspended during the course of treatment. Cyclosporine or Danazol: The risk of myopathy, including rhabdomyolysis is increased by concomitant administration of cyclosporine or danazol. Therefore, concomitant use of these drugs is contraindicated. [see Contraindications (4), Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)] . 7.2 Lipid-Lowering Drugs That Can Cause Myopathy When Given Alone Gemfibrozil: Contraindicated with simvastatin [see Contraindications (4) and Warnings and Precautions (5.1)] . Other fibrates: Caution should be used when prescribing with simvastatin [ see Warnings and Precautions (5.1)] . 7.3 Amiodarone, Dronedarone, Ranolazine, or Calcium Channel Blockers The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine [see Dosage and Administration (2.3) and Warnings and Precautions (5.1) and Table 3 in Clinical Pharmacology (12.3)]. 7.4 Niacin Cases of myopathy/rhabdomyolysis have been observed with simvastatin coadministered with lipid-modifying doses (≥ 1 g/day niacin) of niacin-containing products. In particular, caution should be used when treating Chinese patients with simvastatin doses exceeding 20 mg/day coadministered with lipid-modifying doses of niacin-containing products. Because the risk for myopathy is dose-related, Chinese patients should not receive simvastatin 80 mg coadministered with lipid-modifying doses of niacin-containing products. [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)] . 7.5 Digoxin In one study, concomitant administration of digoxin with simvastatin resulted in a slight elevation in digoxin concentrations in plasma. Patients taking digoxin should be monitored appropriately when simvastatin is initiated [see Clinical Pharmacology (12.3)] . 7.6 Coumarin Anticoagulants In two clinical studies, one in normal volunteers and the other in hypercholesterolemic patients, simvastatin 20 to 40 mg/day modestly potentiated the effect of coumarin anticoagulants: the prothrombin time, reported as International Normalized Ratio (INR), increased from a baseline of 1.7 to 1.8 and from 2.6 to 3.4 in the volunteer and patient studies, respectively. With other statins, clinically evident bleeding and/or increased prothrombin time has been reported in a few patients taking coumarin anticoagulants concomitantly. In such patients, prothrombin time should be determined before starting simvastatin and frequently enough during early therapy to ensure that no significant alteration of prothrombin time occurs. Once a stable prothrombin time has been documented, prothrombin times can be monitored at the intervals usually recommended for patients on coumarin anticoagulants. If the dose of simvastatin is changed or discontinued, the same procedure should be repeated. Simvastatin therapy has not been associated with bleeding or with changes in prothrombin time in patients not taking anticoagulants. 7.7 Colchicine Cases of myopathy, including rhabdomyolysis, have been reported with simvastatin coadministered with colchicine, and caution should be exercised when prescribing simvastatin with colchicine.

OVERDOSAGE

10. Significant lethality was observed in mice after a single oral dose of 9 g/m 2. No evidence of lethality was observed in rats or dogs treated with doses of 30 and 100 g/m 2, respectively. No specific diagnostic signs were observed in rodents. At these doses the only signs seen in dogs were emesis and mucoid stools. A few cases of overdosage with simvastatin tablets have been reported; the maximum dose taken was 3.6 g. All patients recovered without sequelae. Supportive measures should be taken in the event of an overdose. The dialyzability of simvastatin and its metabolites in man is not known at present.

DESCRIPTION

11. Simvastatin is a lipid-lowering agent that is derived synthetically from a fermentation product of Aspergillus terreus. After oral ingestion, simvastatin, which is an inactive lactone, is hydrolyzed to the corresponding β-hydroxyacid form. This is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate-limiting step in the biosynthesis of cholesterol. Simvastatin is butanoic acid, 2,2-dimethyl-,1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2 H-pyran-2-yl)-ethyl]-1-naphthalenyl ester, [1 S-[1α,3α,7β,8β(2 S*,4 S*),-8aβ]]. The empirical formula of simvastatin is C 25H 38O 5 and its molecular weight is 418.57. Its structural formula is: Simvastatin is a white to off-white, nonhygroscopic, crystalline powder that is practically insoluble in water, and freely soluble in chloroform, methanol and ethanol. Simvastatin tablets USP for oral administration contain either 5 mg, 10 mg, 20 mg, 40 mg or 80 mg of simvastatin and the following inactive ingredients: microcrystalline cellulose, hydroxypropyl cellulose, hypromellose E5, croscarmellose sodium, ferric oxide red, lactose monohydrate, magnesium stearate, maize starch, talc, titanium dioxide, butylated hydroxyanisole , ascorbic acid, citric acid monohydrate, and triethyl citrate. Simvastatin

CLINICAL STUDIES

14. 14.1 Clinical Studies in Adults Reductions in Risk of CHD Mortality and Cardiovascular Events In 4S, the effect of therapy with simvastatin tablets on total mortality was assessed in 4,444 patients with CHD and baseline total cholesterol 212 to 309 mg/dL (5.5 to 8.0 mmol/L). In this multicenter, randomized, double-blind, placebo-controlled study, patients were treated with standard care, including diet, and either simvastatin tablets 20 to 40 mg/day (n=2,221) or placebo (n=2,223) for a median duration of 5.4 years. Over the course of the study, treatment with simvastatin tablets led to mean reductions in total-C, LDL-C and TG of 25%, 35%, and 10%, respectively, and a mean increase in HDL-C of 8%. Simvastatin tablets significantly reduced the risk of mortality by 30% (p=0.0003, 182 deaths in the simvastatin tablets group vs 256 deaths in the placebo group). The risk of CHD mortality was significantly reduced by 42% (p=0.00001, 111 vs 189 deaths). There was no statistically significant difference between groups in non-cardiovascular mortality. Simvastatin tablets significantly decreased the risk of having major coronary events (CHD mortality plus hospital-verified and silent non-fatal myocardial infarction [MI]) by 34% (p<0.00001, 431 vs 622 patients with one or more events). The risk of having a hospital-verified non-fatal MI was reduced by 37%. Simvastatin tablets significantly reduced the risk for undergoing myocardial revascularization procedures (coronary artery bypass grafting or percutaneous transluminal coronary angioplasty) by 37% (p<0.00001, 252 vs 383 patients). Simvastatin tablets significantly reduced the risk of fatal plus non-fatal cerebrovascular events (combined stroke and transient ischemic attacks) by 28% (p=0.033, 75 vs 102 patients). Simvastatin tablets reduced the risk of major coronary events to a similar extent across the range of baseline total and LDL cholesterol levels. Because there were only 53 female deaths, the effect of simvastatin tablets on mortality in women could not be adequately assessed. However, simvastatin tablets significantly lessened the risk of having major coronary events by 34% (60 vs 91 women with one or more event). The randomization was stratified by angina alone (21% of each treatment group) or a previous MI. Because there were only 57 deaths among the patients with angina alone at baseline, the effect of simvastatin tablets on mortality in this subgroup could not be adequately assessed. However, trends in reduced coronary mortality, major coronary events and revascularization procedures were consistent between this group and the total study cohort. Additionally, simvastatin tablets resulted in similar decreases in relative risk for total mortality, CHD mortality, and major coronary events in elderly patients (≥65 years) , compared with younger patients. The Heart Protection Study (HPS) was a large, multi-center, placebo-controlled, double-blind study with a mean duration of 5 years conducted in 20,536 patients (10,269 on simvastatin tablets 40 mg and 10,267 on placebo). Patients were allocated to treatment using a covariate adaptive method D.R. Taves, Minimization: a new method of assigning patients to treatment and control groups. Clin. Pharmacol. Ther. 15 (1974), pp. 443-453 which took into account the distribution of 10 important baseline characteristics of patients already enrolled and minimized the imbalance of those characteristics across the groups. Patients had a mean age of 64 years (range 40 to 80 years), were 97% Caucasian and were at high risk of developing a major coronary event because of existing CHD (65%), diabetes (Type 2, 26%; Type 1, 3%), history of stroke or other cerebrovascular disease (16%), peripheral vessel disease (33%), or hypertension in males ≥65 years (6%). At baseline, 3,421 patients (17%) had LDL-C levels below 100 mg/dL, of whom 953 (5%) had LDL-C levels below 80 mg/dL; 7,068 patients (34%) had levels between 100 and 130 mg/dL; and 10,047 patients (49%) had levels greater than 130 mg/dL. The HPS results showed that simvastatin tablets 40 mg/day significantly reduced: total and CHD mortality; non-fatal MI, stroke, and revascularization procedures (coronary and non-coronary) (see Table 4). Table 4: Summary of Heart Protection Study Results Endpoint Simvastatin Tablets (N=10,269) n(%) n = number of patients with indicated event Placebo (N=10,267) n (%) Risk Reduction (%) (95% CI) p-Value Primary Mortality 1,328 (12.9) 1,507 (14.7) 13 (6 to 19) p=0.0003 CHD mortality 587 (5.7) 707 (6.9) 18 (8 to 26) p=0.0005 Secondary Non-fatal MI 357 (3.5) 574 (5.6) 38 (30 to 46) p<0.0001 Stroke 444 (4.3) 585 (5.7) 25 (15 to 34) p<0.0001 Tertiary Coronary revascularization 513 (5) 725 (7.1) 30 (22 to 38) p<0.0001 Peripheral and other non-coronary revascularization 450 (4.4) 532 (5.2) 16 (5 to 26) p=0.006 Two composite endpoints were defined in order to have sufficient events to assess relative risk reductions across a range of baseline characteristics (see Figure 1). A composite of major coronary events (MCE) was comprised of CHD mortality and non-fatal MI (analyzed by time-to-first event; 898 patients treated with simvastatin tablets had events and 1,212 patients on placebo had events). A composite of major vascular events (MVE) was comprised of MCE, stroke and revascularization procedures including coronary, peripheral and other non-coronary procedures (analyzed by time-to-first event; 2,033 patients treated with simvastatin tablets had events and 2,585 patients on placebo had events). Significant relative risk reductions were observed for both composite endpoints (27% for MCE and 24% for MVE, p 200 mg/dL, respectively. Patients with TG > 350 mg/dL were excluded 664 -36 -47 8 -24 Multi-Center Combined Hyperlipidemia Study mean baseline LDL-C 156 mg/dL and median baseline TG 391 mg/dL. (Mean % Change at Week 6) Placebo 125 1 2 3 -4 Simvastatin Tablets 40 mg q.p.m. 123 -25 -29 13 -28 Simvastatin Tablets 80 mg q.p.m. 124 -31 -36 16 -33 Hypertriglyceridemia (Frederickson type IV) The results of a subgroup analysis in 74 patients with type lV hyperlipidemia from a 130-patient, double-blind, placebo-controlled, 3-period crossover study are presented in Table 6. Table 6: Six-week, Lipid-lowering Effects of Simvastatin in Type lV Hyperlipidemia Median Percent Change (25 th and 75 th percentile) from Baseline The median baseline values (mg/dL) for the patients in this study were: total-C = 254, LDL-C = 135, HDL-C = 36, TG = 404, VLDL-C = 83, and non-HDL-C = 215 TREATMENT N Total-C LDL-C HDL-C TG VLDL-C Non-HDL-C Placebo 74 +2 (-7, +7) +1 (-8, +14) +3 (-3, +10) -9 (-25, +13) -7 (-25, +11) +1 (-9, +8) Simvastatin Tablets 40 mg/day 74 -25 (-34, -19) -28 (-40, -17) +11 (+5, +23) -29 (-43, -16) -37 (-54, -23) -32 (-42, -23) Simvastatin Tablets 80 mg/day 74 -32 (-38, -24) -37 (-46, -26) +15 (+5, +23) -34 (-45, -18) -41 (-57, -28) -38 (-49, -32) Dysbetalipoproteinemia (Fredrickson type lll) The results of a subgroup analysis in 7 patients with type lll hyperlipidemia (dysbetalipoproteinemia) (apo E2/2) (VLDL-C/TG>0.25) from a 130-patient, double-blind, placebo-controlled, 3-period crossover study are presented in Table 7. Table 7: Six-week, Lipid-lowering Effects of Simvastatin in Type lll Hyperlipidemia Median Percent Change (min, max) from Baseline The median baseline values (mg/dL) were: total-C = 324, LDL-C = 121, HDL-C = 31, TG = 411, VLDL-C = 170, and non-HDL-C = 291. TREATMENT N Total-C LDL-C + IDL HDL-C TG VLDL-C+IDL Non-HDL-C Placebo 7 -8 (-24, +34) -8(-27, +23) -2(-21, +16) +4(-22, +90) -4(-28, +78) -8 (-26, -39) Simvastatin Tablets 40 mg/day 7 -50 (-66, -39) -50(-60, -31) +7(-8, +23) -41(-74, -16) -58(-90, -37) -57(-72, -44) Simvastatin Tablets 80 mg/day 7 -52 (-55, -41) -51(-57, -28) +7(-5, +29) -38(-58, +2) -60 (-72, -39) -59 (-61, -46) Homozygous Familial Hypercholesterolemia In a controlled clinical study, 12 patients 15 to 39 years of age with homozygous familial hypercholesterolemia received simvastatin 40 mg/day in a single dose or in 3 divided doses, or 80 mg/day in 3 divided doses. In 11 patients with reductions in LDL-C, the mean LDL-C changes for the 40- and 80-mg doses were 14% (range 8% to 23%, median 12%) and 30% (range 14% to 46%, median 29%), respectively. One patient had an increase of 15% in LDL-C. Another patient with absent LDL-C receptor function had an LDL-C reduction of 41% with the 80-mg dose. Endocrine Function In clinical studies, simvastatin did not impair adrenal reserve or significantly reduce basal plasma cortisol concentration. Small reductions from baseline in basal plasma testosterone in men were observed in clinical studies with simvastatin, an effect also observed with other statins and the bile acid sequestrant cholestyramine. There was no effect on plasma gonadotropin levels. In a placebo-controlled, 12-week study there was no significant effect of simvastatin 80 mg on the plasma testosterone response to human chorionic gonadotropin. In another 24-week study, simvastatin 20 to 40 mg had no detectable effect on spermatogenesis. In 4S, in which 4,444 patients were randomized to simvastatin 20 to 40 mg/day or placebo for a median duration of 5.4 years, the incidence of male sexual adverse events in the two treatment groups was not significantly different. Because of these factors, the small changes in plasma testosterone are unlikely to be clinically significant. The effects, if any, on the pituitary-gonadal axis in pre-menopausal women are unknown. Simvastatin 14.2 Clinical Studies in Adolescents In a double-blind, placebo-controlled study, 175 patients (99 adolescent boys and 76 post-menarchal girls) 10 to 17 years of age (mean age 14.1 years) with heterozygous familial hypercholesterolemia (HeFH) were randomized to simvastatin (n=106) or placebo (n=67) for 24 weeks (base study). Inclusion in the study required a baseline LDL-C level between 160 and 400 mg/dL and at least one parent with an LDL-C level >189 mg/dL. The dosage of simvastatin (once daily in the evening) was 10 mg for the first 8 weeks, 20 mg for the second 8 weeks, and 40 mg thereafter. In a 24-week extension, 144 patients elected to continue therapy with simvastatin 40 mg or placebo. Simvastatin tablets significantly decreased plasma levels of total-C, LDL-C, and Apo B (see Table 8). Results from the extension at 48 weeks were comparable to those observed in the base study. Table 8: Lipid-Lowering Effects of Simvastatin in Adolescent Patients with Heterozygous Familial Hypercholesterolemia (Mean Percent Change from Baseline) Dosage Duration N Total-C LDL-C HDL-C TG median percent change Apo B Placebo 24 Weeks 67 % Change from Baseline (95% CI) 1.6 (-2.2, 5.3) 1.1 (-3.4, 5.5) 3.6 (-0.7, 8.0) -3.2 (-11.8, 5.4) -0.5 (-4.7, 3.6) Mean baseline, mg/dL (SD) 278.6(51.8) 211.9(49.0) 46.9(11.9) 90.0(50.7) 186.3(38.1) Simvastatin Tablets 24 Weeks 106 % Change from Baseline (95% CI) -26.5 (-29.6, -23.3) -36.8 (-40.5, -33.0) 8.3 (4.6, 11.9) -7.9 (-15.8, 0.0) -32.4 (-35.9, -29.0) Mean baseline, mg/dL (SD) 270.2(44.0) 203.8(41.5) 47.7(9.0) 78.3(46.0) 179.9(33.8) After 24 weeks of treatment, the mean achieved LDL-C value was 124.9 mg/dL (range: 64.0 to 289.0 mg/dL) in the simvastatin tablets 40 mg group compared to 207.8 mg/dL (range: 128.0 to 334.0 mg/dL) in the placebo group. The safety and efficacy of doses above 40 mg daily have not been studied in children with HeFH. The long-term efficacy of simvastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

HOW SUPPLIED

Product: 70786-0004 NDC: 70786-0004-1 30 TABLET, FILM COATED in a BOTTLE NDC: 70786-0004-3 90 TABLET, FILM COATED in a BOTTLE Product: 70786-0004 NDC: 70786-0005-3 90 TABLET, FILM COATED in a BOTTLE NDC: 70786-0005-1 30 TABLET, FILM COATED in a BOTTLE Product: 70786-0004 NDC: 70786-0006-1 30 TABLET, FILM COATED in a BOTTLE NDC: 70786-0006-3 90 TABLET, FILM COATED in a BOTTLE

RECENT MAJOR CHANGES

Contraindication ( 4) 02/2014 Warnings and Precautions Myopathy/Rhabdomyolysis ( 5.1) 02/2014

GERIATRIC USE

8.5 Geriatric Use Of the 2,423 patients who received simvastatin tablets in Phase III clinical studies and the 10,269 patients in the Heart Protection Study who received simvastatin tablets, 363 (15%) and 5,366 (52%), respectively were ≥65 years old. In HPS, 615 (6%) were ≥75 years old. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Since advanced age (≥65 years) is a predisposing factor for myopathy, simvastatin tablets should be prescribed with caution in the elderly. [See Clinical Pharmacology (12.3).] A pharmacokinetic study with simvastatin showed the mean plasma level of statin activity to be approximately 45% higher in elderly patients between 70 to 78 years of age compared with patients between 18 to 30 years of age. In 4S, 1,021 (23%) of 4,444 patients were 65 or older. Lipid-lowering efficacy was at least as great in elderly patients compared with younger patients, and simvastatin tablets significantly reduced total mortality and CHD mortality in elderly patients with a history of CHD. In HPS, 52% of patients were elderly (4,891 patients 65 to 69 years and 5,806 patients 70 years or older). The relative risk reductions of CHD death, non-fatal MI, coronary and non-coronary revascularization procedures, and stroke were similar in older and younger patients [see Clinical Studies (14.1)]. In HPS, among 32,145 patients entering the active run-in period, there were 2 cases of myopathy/rhabdomyolysis; these patients were aged 67 and 73. Of the 7 cases of myopathy/rhabdomyolysis among 10,269 patients allocated to simvastatin, 4 were aged 65 or more (at baseline), of whom one was over 75. There were no overall differences in safety between older and younger patients in either 4S or HPS. Because advanced age (≥65 years) is a predisposing factor for myopathy, including rhabdomyolysis, simvastatin tablets should be prescribed with caution in the elderly. In a clinical trial of patients treated with simvastatin 80 mg/day, patients ≥65 years of age had an increased risk of myopathy, including rhabdomyolysis, compared to patients <65 years of age. [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)] .

DOSAGE FORMS AND STRENGTHS

3. Simvastatin tablets 5 mg are brick red colored, round shaped, biconvex, film coated tablet debossed “SI” on one side and plain on other side. Simvastatin tablets 10 mg are brick red colored,oval shaped, biconvex,film-coated tablets, debossed “S 4” on one side and plain on the other side Simvastatin tablets 20 mg are brick red colored,oval shaped, biconvex,film-coated tablets, debossed “S 5” on one side and plain on the other side. Simvastatin tablets 40 mg are brick red colored,oval shaped, biconvex,film-coated tablets,debossed “S 6” on one side and plain on the other side Simvastatin tablets 80 mg are brick red colored, capsule-shaped, biconvex, film-coated tablets, debossed with “SMV” on one side and “80” on the other side Tablets: 5 mg; 10 mg; 20 mg; 40.0#160;mg; 80 mg ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action Simvastatin is a prodrug and is hydrolyzed to its active β-hydroxyacid form, simvastatin acid, after administration. Simvastatin is a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate, an early and rate limiting step in the biosynthetic pathway for cholesterol. In addition, simvastatin reduces VLDL and TG and increases HDL-C.

INDICATIONS AND USAGE

1. Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. In patients with coronary heart disease (CHD) or at high risk of CHD, simvastatin tablets can be started simultaneously with diet. Simvastatin tablets are an HMG-CoA reductase inhibitor (statin) indicated as an adjunctive therapy to diet to: Reduce the risk of total mortality by reducing CHD deaths and reduce the risk of non-fatal myocardial infarction, stroke, and the need for revascularization procedures in patients at high risk of coronary events. ( 1.1) Reduce elevated total-C, LDL-C, Apo B, TG and increase HDL-C in patients with primary hyperlipidemia (heterozygous familial and nonfamilial) and mixed dyslipidemia. ( 1.2) Reduce elevated TG in patients with hypertriglyceridemia and reduce TG and VLDL-C in patients with primary dysbeta-lipoproteinemia. ( 1.2) Reduce total-C and LDL-C in adult patients with homozygous familial hypercholesterolemia. ( 1.2 ) Reduce elevated total-C, LDL-C, and Apo B in boys and postmenarchal girls, 10 to 17 years of age with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy. ( 1.2, 1.3) Limitations of Use Simvastatin tablets have not been studied in Fredrickson Types I and V dyslipidemias. ( 1.4) 1.1 Reductions in Risk of CHD Mortality and Cardiovascular Events In patients at high risk of coronary events because of existing coronary heart disease, diabetes, peripheral vessel disease, history of stroke or other cerebrovascular disease, simvastatin tablets are indicated to: Reduce the risk of total mortality by reducing CHD deaths. Reduce the risk of non-fatal myocardial infarction and stroke. Reduce the need for coronary and non-coronary revascularization procedures. 1.2 Hyperlipidemia Simvastatin tablets are indicated to: Reduce elevated total cholesterol (total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B), and triglycerides (TG), and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hyperlipidemia (Fredrickson type IIa, heterozygous familial and nonfamilial) or mixed dyslipidemia (Fredrickson type IIb). Reduce elevated TG in patients with hypertriglyceridemia (Fredrickson type lV hyperlipidemia). Reduce elevated TG and VLDL-C in patients with primary dysbetalipoproteinemia (Fredrickson type III hyperlipidemia). Reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia (HoFH) as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) or if such treatments are unavailable. 1.3 Adolescent Patients with Heterozygous Familial Hypercholesterolemia (HeFH) Simvastatin tablets are indicated as an adjunct to diet to reduce total-C, LDL-C, and Apo B levels in adolescent boys and girls who are at least one year post-menarche, 10 to 17 years of age, with HeFH, if after an adequate trial of diet therapy the following findings are present: LDL cholesterol remains ≥190 mg/dL; or LDL cholesterol remains ≥160 mg/dL and There is a positive family history of premature cardiovascular disease (CVD) or Two or more other CVD risk factors are present in the adolescent patient. The minimum goal of treatment in pediatric and adolescent patients is to achieve a mean LDL-C <130 mg/dL. The optimal age at which to initiate lipid-lowering therapy to decrease the risk of symptomatic adulthood CAD has not been determined. 1.4 Limitations of Use Simvastatin tablets have not been studied in conditions where the major abnormality is elevation of chylomicrons (i.e., hyperlipidemia Fredrickson types I and V).

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of simvastatin in patients 10 to 17 years of age with heterozygous familial hypercholesterolemia have been evaluated in a controlled clinical trial in adolescent boys and in girls who were at least 1 year post-menarche. Patients treated with simvastatin had an adverse reaction profile similar to that of patients treated with placebo. Doses greater than 40 mg have not been studied in this population. In this limited controlled study, there was no significant effect on growth or sexual maturation in the adolescent boys or girls, or on menstrual cycle length in girls. [See Dosage and Administration (2.5), Adverse Reactions (6.1), Clinical Studies (14.2).] Adolescent females should be counseled on appropriate contraceptive methods while on simvastatin therapy [see Contraindications (4) and Use in Specific Populations (8.1)]. Simvastatin has not been studied in patients younger than 10 years of age, nor in pre-menarchal girls.

PREGNANCY

8.1 Pregnancy Pregnancy Category X [See Contraindications (4).] Simvastatin tablets are contraindicated in women who are or may become pregnant. Lipid lowering drugs offer no benefit during pregnancy, because cholesterol and cholesterol derivatives are needed for normal fetal development. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy. There are no adequate and well-controlled studies of use with simvastatin tablets during pregnancy; however, there are rare reports of congenital anomalies in infants exposed to statins in utero. Animal reproduction studies of simvastatin in rats and rabbits showed no evidence of teratogenicity. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Because statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, simvastatin tablets may cause fetal harm when administered to a pregnant woman. If simvastatin tablets are used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. There are rare reports of congenital anomalies following intrauterine exposure to statins. In a review Manson, J.M., Freyssinges, C., Ducrocq, M.B., Stephenson, W.P., Postmarketing Surveillance of Lovastatin and Simvastatin Exposure During Pregnancy, Reproductive Toxicology,, 10(6):439-446, 1996. of approximately 100 prospectively followed pregnancies in women exposed to simvastatin or another structurally related statin, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed those expected in the general population. However, the study was only able to exclude a 3- to 4-fold increased risk of congenital anomalies over the background rate. In 89% of these cases, drug treatment was initiated prior to pregnancy and was discontinued during the first trimester when pregnancy was identified. Simvastatin was not teratogenic in rats or rabbits at doses (25, 10 mg/kg/day, respectively) that resulted in 3 times the human exposure based on mg/m 2 surface area. However, in studies with another structurally-related statin, skeletal malformations were observed in rats and mice. Women of childbearing potential, who require treatment with simvastatin tablets for a lipid disorder, should be advised to use effective contraception. For women trying to conceive, discontinuation of simvastatin tablets should be considered. If pregnancy occurs, simvastatin tablets should be immediately discontinued.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether simvastatin is excreted in human milk. Because a small amount of another drug in this class is excreted in human milk and because of the potential for serious adverse reactions in nursing infants, women taking simvastatin should not nurse their infants. A decision should be made whether to discontinue nursing or discontinue drug, taking into account the importance of the drug to the mother [see Contraindications (4)] .

WARNING AND CAUTIONS

5. WARNINGS AND PRECAUTIONS Patients should be advised of the increased risk of myopathy including rhabdomyolysis with the 80-mg dose. ( 5.1) Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): Risks increase with higher doses and concomitant use of certain medicines. Predisposing factors include advanced age (≥65), female gender, uncontrolled hypothyroidism, and renal impairment. Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported. ( 4, 5.1, 8.5, 8.6) Patients should be advised to report promptly any unexplained and/or persistent muscle pain, tenderness, or weakness. Simvastatin therapy should be discontinued immediately if myopathy is diagnosed or suspected. See Drug Interaction table. ( 5.1) Liver enzyme abnormalities: Persistent elevations in hepatic transaminases can occur. Check liver enzyme tests before initiating therapy and as clinically indicated thereafter. ( 5.2) 5.1 Myopathy/Rhabdomyolysis Simvastatin occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase (CK) above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of statin activity in plasma. Predisposing factors for myopathy include advanced age (≥65 years),female gender, uncontrolled hypothyroidism, and renal impairment. The risk of myopathy, including rhabdomyolysis, is dose related. In a clinical trial database in which 41,413 patients were treated with simvastatin. 24,747 (approximately 60%) of whom were enrolled in studies with a median follow-up of at least 4 years, the incidence of myopathy was approximately 0.03% and 0.08% at 20 and 40 mg/day, respectively. The incidence of myopathy with 80 mg (0.61%) was disproportionately higher than that observed at the lower doses. In these trials, patients were carefully monitored and some interacting medicinal products were excluded In a clinical trial in which 12,064 patients with a history of myocardial infarction were treated with simvastatin (mean follow-up 6.7 years), the incidence of myopathy (defined as unexplained muscle weakness or pain with a serum creatine kinase [CK] >10 times upper limit of normal [ULN]) in patients on 80 mg/day was approximately 0.9% compared with 0.02% for patients on 20 mg/day. The incidence of rhabdomyolysis (defined as myopathy with a CK >40 times ULN) in patients on 80 mg/day was approximately 0.4% compared with 0% for patients on 20 mg/day. The incidence of myopathy, including rhabdomyolysis, was highest during the first year and then notably decreased during the subsequent years of treatment. In this trial, patients were carefully monitored and some interacting medicinal products were excluded. The risk of myopathy, including rhabdomyolysis, is greater in patients on simvastatin 80 mg compared with other statin therapies with similar or greater LDL-C-lowering efficacy and compared with lower doses of simvastatin. Therefore, the 80-mg dose of simvastatin should be used only in patients who have been taking simvastatin 80 mg chronically (e.g., for 12 months or more) without evidence of muscle toxicity [See Dosage and Administration, Restricted Dosing for 80 mg (2.2).] If, however, a patient who is currently tolerating the 80-mg dose of simvastatin needs to be initiated on an interacting drug that is contraindicated or is associated with a dose cap for simvastatin, that patient should be switched to an alternative statin with less potential for the drug-drug interaction. Patients should be advised of the increased risk of myopathy, including rhabdomyolysis, and to report promptly any unexplained muscle pain, tenderness or weakness. If symptoms occur, treatment should be discontinued immediately. [See Warnings and Precautions (5.2).] There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents. All patients starting therapy with simvastatin, or whose dose of simvastatin is being increased, should be advised of the risk of myopathy, including rhabdomyolysis, and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing simvastatin. Simvastatin therapy should be discontinued immediately if myopathy is diagnosed or suspected. In most cases, muscle symptoms and CK increases resolved when treatment was promptly discontinued. Periodic CK determinations may be considered in patients starting therapy with simvastatin or whose dose is being increased, but there is no assurance that such monitoring will prevent myopathy. Many of the patients who have developed rhabdomyolysis on therapy with simvastatin have had complicated medical histories, including renal insufficiency usually as a consequence of long-standing diabetes mellitus. Such patients merit closer monitoring. Simvastatin therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. Simvastatin therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy. Drug Interactions The risk of myopathy and rhabdomyolysis is increased by high levels of statin activity in plasma. Simvastatin is metabolized by the cytochrome P450 isoform 3A4. Certain drugs which inhibit this metabolic pathway can raise the plasma levels of simvastatin and may increase the risk of myopathy. These include itraconazole, ketoconazole, posaconazole, voriconazole, the macrolide antibiotics erythromycin and clarithromycin, and the ketolide antibiotic telithromycin, HIV protease inhibitors, boceprevir, telaprevir, the antidepressant nefazodone, cobicistat-containing products, or grapefruit juice [See Clinical Pharmacology (12.3).] . Combination of these drugs with simvastatin is contraindicated. If short-term treatment with strong CYP3A4 inhibitors is unavoidable, therapy with simvastatin must be suspended during the course of treatment. [See Contraindications (4) and Drug Interactions (7.1).] The combined use of simvastatin with gemfibrozil, cyclosporine, or danazol is contraindicated [See Contraindications (4) and Drug Interactions (7.1 and 7.2).] Caution should be used when prescribing other fibrates with simvastatin, as these agents can cause myopathy when given alone and the risk is increased when they are coadministered [see Drug Interactions (7.2).] Cases of myopathy, including rhabdomyolysis, have been reported with simvastatin coadministered with colchicine, and caution should be exercised when prescribing simvastatin with colchicine [see Drug Interactions (7.7).] The benefits of the combined use of simvastatin with the following drugs should be carefully weighed against the potential risks of combinations: other lipid-lowering drugs (other fibrates, ≥1 g/day of niacin, or, for patients with HoFH, lomitapide), amiodarone, dronedarone, verapamil, diltiazem, amlodipine, or ranolazine [see Drug Interactions (7.3) and Table 3 in Clinical Pharmacology (12.3)] [also see Dosage and Administration, Patients with Homozygous Familial Hypercholesterolemia (2.4)] Cases of myopathy, including rhabdomyolysis, have been observed with simvastatin coadministered with lipid-modifying doses (≥1 g/day niacin) of niacin-containing products. In an ongoing, double-blind, randomized cardiovascular outcomes trial, an independent safety monitoring committee identified that the incidence of myopathy is higher in Chinese compared with non-Chinese patients taking simvastatin 40 mg coadministered with lipid-modifying doses of a niacin-containing product. Caution should be used when treating Chinese patients with simvastatin in doses exceeding 20 mg/day coadministered with lipid- modifying doses of niacin-containing products. Because the risk for myopathy is dose-related, Chinese patients should not receive simvastatin 80 mg coadministered with lipid-modifying doses of niacin- containing products. It is unknown if the risk for myopathy with coadministration of simvastatin with lipid-modifying doses of niacin-containing products observed in Chinese patients applies to other Asian patients [see Drug Interactions (7.4)] . Prescribing recommendations for interacting agents are summarized in Table 1 [see also Dosage and Administration (2.3, 2.4) Drug Interactions (7), Clinical Pharmacology (12.3)]. Table 1: Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis Interacting Agents Prescribing Recommendations Strong CYP3A4 Inhibitors, e.g.: Itraconazole Ketoconazole Posaconazole Voriconazole Erythromycin Clarithromycin Telithromycin HIV protease inhibitors Boceprevir Telaprevir Nefazodone Cobicistat-containing products Gemfibrozil Cyclosporine Danazol Contraindicated with simvastatin Verapamil Diltiazem Dronedarone Do not exceed 10 mg simvastatin daily Amiodarone Amlodipine Ranolazine Do not exceed 20 mg simvastatin daily Lomitapide For patients with HoFH, do not exceed 20 mg simvastatin daily For patients with HoFH who have been taking 80 mg simvastatin chronically (e.g., for 12 months or more) without evidence of muscle toxicity, do not exceed 40 mg simvastatin when taking lomitapide. Grapefruit juice Avoid grapefruit juice 5.2 Liver Dysfunction Persistent increases (to more than 3X the ULN) in serum transaminases have occurred in approximately 1% of patients who received simvastatin in clinical studies. When drug treatment was interrupted or discontinued in these patients, the transaminase levels usually fell slowly to pretreatment levels. The increases were not associated with jaundice or other clinical signs or symptoms. There was no evidence of hypersensitivity. In the Scandinavian Simvastatin Survival Study (4S) [see Clinical Studies (14.1)] , the number of patients with more than one transaminase elevation to > 3X ULN, over the course of the study, was not significantly different between the simvastatin and placebo groups (14 [0.7%] vs. 12 [0.6%]). Elevated transaminases resulted in the discontinuation of 8 patients from therapy in the simvastatin group (n=2,221) and 5 in the placebo group (n=2,223). Of the 1,986 simvastatin treated patients in 4S with normal liver function tests (LFTs) at baseline, 8 (0.4%) developed consecutive LFT elevations to > 3X ULN and/or were discontinued due to transaminase elevations during the 5.4 years (median follow-up) of the study. Among these 8 patients, 5 initially developed these abnormalities within the first year. All of the patients in this study received a starting dose of 20 mg of simvastatin; 37% were titrated to 40 mg. In 2 controlled clinical studies in 1,105 patients, the 12-month incidence of persistent hepatic transaminase elevation without regard to drug relationship was 0.9% and 2.1% at the 40- and 80-mg dose, respectively. No patients developed persistent liver function abnormalities following the initial 6 months of treatment at a given dose. It is recommended that liver function tests be performed before the initiation of treatment, and thereafter when clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including simvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with simvastatin, promptly interrupt therapy. If an alternate etiology is not found do not restart simvastatin. Note that ALT may emanate from muscle, therefore ALT rising with CK may indicate myopathy [see Warnings and Precautions (5.1)] . The drug should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver diseases or unexplained transaminase elevations are contraindications to the use of simvastatin. Moderate (less than 3X ULN) elevations of serum transaminases have been reported following therapy with simvastatin. These changes appeared soon after initiation of therapy with simvastatin, were often transient, were not accompanied by any symptoms and did not require interruption of treatment. 5.3 Endocrine Function Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including simvastatin.

INFORMATION FOR PATIENTS

17. PATIENT COUNSELING INFORMATION Patients should be advised to adhere to their National Cholesterol Education Program (NCEP)-recommended diet, a regular exercise program, and periodic testing of a fasting lipid panel. Patients should be advised about substances they should not take concomitantly with simvastatin [see Contraindications (4) and Warnings and Precautions (5.1)]. Patients should also be advised to inform other healthcare professionals prescribing a new medication or increasing the dose of an existing medication that they are taking simvastatin tablets. 17.1 Muscle Pain All patients starting therapy with simvastatin tablets should be advised of the risk of myopathy , including rhabdomyolysis, and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing simvastatin tablets. Patients using the 80-mg dose should be informed that the risk of myopathy, including rhabdomyolysis, is increased with use of the 80-mg dose. The risk of myopathy, including rhabdomyolysis, occurring with use of simvastatin tablets are increased when taking certain types of medication or consuming grapefruit juice. Patients should discuss all medication, both prescription and over the counter, with their healthcare professional. 17.2 Liver Enzymes It is recommended that liver function tests be performed before the initiation of simvastatin tablets, and thereafter when clinically indicated. All patients treated with simvastatin tablets should be advised to report promptly any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice. 17.3 Pregnancy Women of childbearing age should be advised to use an effective method of birth control to prevent pregnancy while using simvastatin tablets. Discuss future pregnancy plans with your patients, and discuss when to stop taking simvastatin tablets if they are trying to conceive. Patients should be advised that if they become pregnant they should stop taking simvastatin tablets and call their healthcare professional. 17.4 Breastfeeding Women who are breastfeeding should not use simvastatin tablets. Patients who have a lipid disorder and are breastfeeding should be advised to discuss the options with their healthcare professional. Manufactured For: Accord Healthcare, Inc., 1009, Slater Road, Suite 210-B, Durham, NC 27703, USA Manufactured By: Intas Pharmaceuticals Limited, Ahmedabad -380 009, India. 10 9351 1 659550 Issued February 2015

DOSAGE AND ADMINISTRATION

2. Dose range is 5 to 40 mg/day. ( 2.1) Recommended usual starting dose is 10 or 20 mg once a day in the evening. ( 2.1) Recommended starting dose for patients at high risk of CHD is 40 mg/day. ( 2.1) Due to the increased risk of myopathy, including rhabdomyolysis, use of the 80-mg dose of simvastatin tablets should be restricted to patients who have been taking simvastatin 80 mg chronically (e.g., for 12 months or more) without evidence of muscle toxicity. ( 2.2) Patients who are currently tolerating the 80-mg dose of simvastatin tablets who need to be initiated on an interacting drug that is contraindicated or is associated with a dose cap for simvastatin should be switched to an alternative statin with less potential for the drug-drug interaction. ( 2.2) Due to the increased risk of myopathy, including rhabdomyolysis, associated with the 80-mg dose of simvastatin tablets, patients unable to achieve their LDL-C goal utilizing the 40-mg dose of simvastatin tablets should not be titrated to the 80-mg dose, but should be placed on alternative LDL-C-lowering treatment(s) that provides greater LDL-C lowering. ( 2.2) Adolescents (10 to 17 years of age) with HeFH: starting dose is 10 mg/day; maximum recommended dose is 40 mg/day. ( 2.5) 2.1 Recommended Dosing The usual dosage range is 5 to 40 mg/day. In patients with CHD or at high risk of CHD, simvastatin tablets can be started simultaneously with diet. The recommended usual starting dose is 10 or 20 mg once a day in the evening. For patients at high risk for a CHD event due to existing CHD, diabetes, peripheral vessel disease, history of stroke or other cerebrovascular disease, the recommended starting dose is 40 mg/day. Lipid determinations should be performed after 4 weeks of therapy and periodically thereafter. 2.2 Restricted Dosing for 80 mg Due to the increased risk of myopathy, including rhabdomyolysis, particularly during the first year of treatment, use of the 80-mg dose of simvastatin tablets should be restricted to patients who have been taking simvastatin 80 mg chronically (e.g., for 12 months or more) without evidence of muscle toxicity. [see Warnings and Precautions (5.1)] Patients who are currently tolerating the 80-mg dose of simvastatin tablets who need to be initiated on an interacting drug that is contraindicated or is associated with a dose cap for simvastatin should be switched to an alternative statin with less potential for the drug-drug interaction. Due to the increased risk of myopathy, including rhabdomyolysis, associated with the 80-mg dose of simvastatin tablets, patients unable to achieve their LDL-C goal utilizing the 40-mg dose of simvastatin tablets should not be titrated to the 80-mg dose, but should be placed on alternative LDL-C-lowering treatment(s) that provides greater LDL-C lowering. 2.3 Coadministration with Other Drugs Patients taking Verapamil, Diltiazem, or Dronedarone The dose of simvastatin tablets should not exceed 10 mg/day [see Warnings and Precautions (5.1), Drug Interactions (7.3), and Clinical Pharmacology (12.3)]. . Patients taking Amiodarone, Amlodipine or Ranolazine The dose of simvastatin tablets should not exceed 20 mg/day [see Warnings and Precautions (5.1), Drug Interactions (7.3), and Clinical Pharmacology (12.3)]. 2.4 Patients with Homozygous Familial Hypercholesterolemia The recommended dosage is 40 mg/day in the evening [see Dosage and Administration, Restricted Dosing for 80 mg (2.2)] . Simvastatin tablets should be used as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) in these patients or if such treatments are unavailable. Simvastatin exposure is approximately doubled with concomitant use of lomitapide; therefore, the dose of simvastatin tablets should be reduced by 50% if initiating lomitapide. Simvastatin tablets dosage should not exceed 20 mg/day (or 40 mg/day for patients who have previously taken simvastatin tablets 80 mg/day chronically, e.g., for 12 months or more, without evidence of muscle toxicity) while taking lomitapide. 2.5 Adolescents (10 to 17 years of age) with Heterozygous Familial Hypercholesterolemia The recommended usual starting dose is 10 mg once a day in the evening. The recommended dosing range is 10 to 40 mg/day; the maximum recommended dose is 40 mg/day. Doses should be individualized according to the recommended goal of therapy [see NCEP Pediatric Panel Guidelines National Cholesterol Education Program (NCEP): Highlights of the Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics 89(3):495-501. 1992. and Clinical Studies (14.2) ]. Adjustments should be made at intervals of 4 weeks or more. 2.6 Patients with Renal Impairment Because simvastatin tablets do not undergo significant renal excretion, modification of dosage should not be necessary in patients with mild to moderate renal impairment. However, caution should be exercised when simvastatin tablets are administered to patients with severe renal impairment; such patients should be started at 5 mg/day and be closely monitored [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)]. 2.7 Chinese Patients Taking Lipid-Modifying Doses (greater than or equal to 1 g/day Niacin) of Niacin-Containing Products Because of an increased risk for myopathy, in Chinese patients taking simvastatin 40 mg coadministered with lipid-modifying doses (greater than or equal to 1 g/day niacin) of niacin-containing products, caution should be used when treating Chinese patients with simvastatin doses exceeding 20 mg/day coadministered with lipid-modifying doses of niacin-containing products. Because the risk for myopathy is dose-related, Chinese patients should not receive simvastatin 80 mg coadministered with lipid-modifying doses of niacin-containing products. The cause of the increased risk of myopathy is not known. It is also unknown if the risk for myopathy with coadministration of simvastatin with lipid-modifying doses of niacin-containing products observed in Chinese patients applies to other Asian patients. [see Warnings and Precautions (5.1)]

Plavix 75 MG Oral Tablet

WARNINGS

Thrombotic thrombocytopenic purpura (TTP) TTP has been reported rarely following use of PLAVIX, sometimes after a short exposure (<2 weeks). TTP is a serious condition that can be fatal and requires urgent treatment including plasmapheresis (plasma exchange). It is characterized by thrombocytopenia, microangiopathic hemolytic anemia (schistocytes [fragmented RBCs] seen on peripheral smear), neurological findings, renal dysfunction, and fever. (See ADVERSE REACTIONS .)

DRUG INTERACTIONS

Drug Interactions Since clopidogrel is metabolized to its active metabolite by CYP2C19, use of drugs that inhibit the activity of this enzyme would be expected to result in reduced drug levels of the active metabolite of clopidogrel and a reduction in clinical efficacy. Concomitant use of drugs that inhibit CYP2C19 (e.g., omeprazole) should be discouraged. Study of specific drug interactions yielded the following results: Aspirin Aspirin did not modify the clopidogrel-mediated inhibition of ADP-induced platelet aggregation. Concomitant administration of 500 mg of aspirin twice a day for 1 day did not significantly increase the prolongation of bleeding time induced by PLAVIX. PLAVIX potentiated the effect of aspirin on collagen-induced platelet aggregation. PLAVIX and aspirin have been administered together for up to one year. Heparin In a study in healthy volunteers, PLAVIX did not necessitate modification of the heparin dose or alter the effect of heparin on coagulation. Coadministration of heparin had no effect on inhibition of platelet aggregation induced by PLAVIX. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) In healthy volunteers receiving naproxen, concomitant administration of PLAVIX was associated with increased occult gastrointestinal blood loss. NSAIDs and PLAVIX should be coadministered with caution. Warfarin Because of the increased risk of bleeding, the concomitant administration of warfarin with PLAVIX should be undertaken with caution. (See PRECAUTIONS: General .) Other Concomitant Therapy No clinically significant pharmacodynamic interactions were observed when PLAVIX was coadministered with atenolol, nifedipine, or both atenolol and nifedipine. The pharmacodynamic activity of PLAVIX was also not significantly influenced by the coadministration of phenobarbital, cimetidine or estrogen. The pharmacokinetics of digoxin or theophylline were not modified by the coadministration of PLAVIX (clopidogrel bisulfate). At high concentrations in vitro, clopidogrel inhibits P450 (2C9). Accordingly, PLAVIX may interfere with the metabolism of phenytoin, tamoxifen, tolbutamide, warfarin, torsemide, fluvastatin, and many non-steroidal anti-inflammatory agents, but there are no data with which to predict the magnitude of these interactions. Caution should be used when any of these drugs is coadministered with PLAVIX. In addition to the above specific interaction studies, patients entered into clinical trials with PLAVIX received a variety of concomitant medications including diuretics, beta-blocking agents, angiotensin converting enzyme inhibitors, calcium antagonists, cholesterol lowering agents, coronary vasodilators, antidiabetic agents (including insulin), thrombolytics, heparins (unfractionated and LMWH), GPIIb/IIIa antagonists, antiepileptic agents and hormone replacement therapy without evidence of clinically significant adverse interactions. There are no data on the concomitant use of oral anticoagulants, non study oral anti-platelet drugs and chronic NSAIDs with clopidogrel.

OVERDOSAGE

Overdose following clopidogrel administration may lead to prolonged bleeding time and subsequent bleeding complications. A single oral dose of clopidogrel at 1500 or 2000 mg/kg was lethal to mice and to rats and at 3000 mg/kg to baboons. Symptoms of acute toxicity were vomiting (in baboons), prostration, difficult breathing, and gastrointestinal hemorrhage in all species. Recommendations About Specific Treatment Based on biological plausibility, platelet transfusion may be appropriate to reverse the pharmacological effects of PLAVIX if quick reversal is required.

DESCRIPTION

PLAVIX (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex. Chemically it is methyl (+)-(S)-α-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1). The empirical formula of clopidogrel bisulfate is C16H16ClNO2S•H2SO4 and its molecular weight is 419.9. The structural formula is as follows: Clopidogrel bisulfate is a white to off-white powder. It is practically insoluble in water at neutral pH but freely soluble at pH 1. It also dissolves freely in methanol, dissolves sparingly in methylene chloride, and is practically insoluble in ethyl ether. It has a specific optical rotation of about +56°. PLAVIX for oral administration is provided as either pink, round, biconvex, debossed, film-coated tablets containing 97.875 mg of clopidogrel bisulfate which is the molar equivalent of 75 mg of clopidogrel base or pink, oblong, debossed film-coated tablets containing 391.5 mg of clopidogrel bisulfate which is the molar equivalent of 300 mg of clopidogrel base. Each tablet contains hydrogenated castor oil, hydroxypropylcellulose, mannitol, microcrystalline cellulose and polyethylene glycol 6000 as inactive ingredients. The pink film coating contains ferric oxide, hypromellose 2910, lactose monohydrate, titanium dioxide and triacetin. The tablets are polished with Carnauba wax. Chemical Structure

CLINICAL STUDIES

The clinical evidence for the efficacy of PLAVIX is derived from four double-blind trials involving 81,090 patients: the CAPRIE study (Clopidogrel vs. Aspirin in Patients at Risk of Ischemic Events), a comparison of PLAVIX to aspirin, and the CURE (Clopidogrel in Unstable Angina to Prevent Recurrent Ischemic Events), the COMMIT/CCS-2 (Clopidogrel and Metoprolol in Myocardial Infarction Trial / Second Chinese Cardiac Study) studies comparing PLAVIX to placebo, both given in combination with aspirin and other standard therapy and CLARITY-TIMI 28 (Clopidogrel as Adjunctive Reperfusion Therapy – Thrombolysis in Myocardial Infarction). Recent Myocardial Infarction (MI), Recent Stroke or Established Peripheral Arterial Disease The CAPRIE trial was a 19,185-patient, 304-center, international, randomized, double-blind, parallel-group study comparing PLAVIX (75 mg daily) to aspirin (325 mg daily). The patients randomized had: 1) recent histories of myocardial infarction (within 35 days); 2) recent histories of ischemic stroke (within 6 months) with at least a week of residual neurological signs; or 3) objectively established peripheral arterial disease. Patients received randomized treatment for an average of 1.6 years (maximum of 3 years). The trial’s primary outcome was the time to first occurrence of new ischemic stroke (fatal or not), new myocardial infarction (fatal or not), or other vascular death. Deaths not easily attributable to nonvascular causes were all classified as vascular. Table 2: Outcome Events in the CAPRIE Primary Analysis Patients PLAVIX 9599 aspirin 9586 IS (fatal or not) 438 (4.6%) 461 (4.8%) MI (fatal or not) 275 (2.9%) 333 (3.5%) Other vascular death 226 (2.4%) 226 (2.4%) Total 939 (9.8%) 1020 (10.6%) As shown in the table, PLAVIX (clopidogrel bisulfate) was associated with a lower incidence of outcome events of every kind. The overall risk reduction (9.8% vs. 10.6%) was 8.7%, P=0.045. Similar results were obtained when all-cause mortality and all-cause strokes were counted instead of vascular mortality and ischemic strokes (risk reduction 6.9%). In patients who survived an on-study stroke or myocardial infarction, the incidence of subsequent events was again lower in the PLAVIX group. The curves showing the overall event rate are shown in Figure 1. The event curves separated early and continued to diverge over the 3-year follow-up period. Figure 1: Fatal or Non-Fatal Vascular Events in the CAPRIE Study Although the statistical significance favoring PLAVIX over aspirin was marginal (P=0.045), and represents the result of a single trial that has not been replicated, the comparator drug, aspirin, is itself effective (vs. placebo) in reducing cardiovascular events in patients with recent myocardial infarction or stroke. Thus, the difference between PLAVIX and placebo, although not measured directly, is substantial. The CAPRIE trial included a population that was randomized on the basis of 3 entry criteria. The efficacy of PLAVIX relative to aspirin was heterogeneous across these randomized subgroups (P=0.043). It is not clear whether this difference is real or a chance occurrence. Although the CAPRIE trial was not designed to evaluate the relative benefit of PLAVIX over aspirin in the individual patient subgroups, the benefit appeared to be strongest in patients who were enrolled because of peripheral vascular disease (especially those who also had a history of myocardial infarction) and weaker in stroke patients. In patients who were enrolled in the trial on the sole basis of a recent myocardial infarction, PLAVIX was not numerically superior to aspirin. In the meta-analyses of studies of aspirin vs. placebo in patients similar to those in CAPRIE, aspirin was associated with a reduced incidence of thrombotic events. There was a suggestion of heterogeneity in these studies too, with the effect strongest in patients with a history of myocardial infarction, weaker in patients with a history of stroke, and not discernible in patients with a history of peripheral vascular disease. With respect to the inferred comparison of PLAVIX to placebo, there is no indication of heterogeneity. Figure Acute Coronary Syndrome The CURE study included 12,562 patients with acute coronary syndrome without ST segment elevation (unstable angina or non-Q-wave myocardial infarction) and presenting within 24 hours of onset of the most recent episode of chest pain or symptoms consistent with ischemia. Patients were required to have either ECG changes compatible with new ischemia (without ST segment elevation) or elevated cardiac enzymes or troponin I or T to at least twice the upper limit of normal. The patient population was largely Caucasian (82%) and included 38% women, and 52% patients ≥65 years of age. Patients were randomized to receive PLAVIX (300 mg loading dose followed by 75 mg/day) or placebo, and were treated for up to one year. Patients also received aspirin (75–325 mg once daily) and other standard therapies such as heparin. The use of GPIIb/IIIa inhibitors was not permitted for three days prior to randomization. The number of patients experiencing the primary outcome (CV death, MI, or stroke) was 582 (9.30%) in the PLAVIX-treated group and 719 (11.41%) in the placebo-treated group, a 20% relative risk reduction (95% CI of 10%–28%; p=0.00009) for the PLAVIX-treated group (see Table 3). At the end of 12 months, the number of patients experiencing the co-primary outcome (CV death, MI, stroke or refractory ischemia) was 1035 (16.54%) in the PLAVIX-treated group and 1187 (18.83%) in the placebo-treated group, a 14% relative risk reduction (95% CI of 6%–21%, p=0.0005) for the PLAVIX-treated group (see Table 3). In the PLAVIX-treated group, each component of the two primary endpoints (CV death, MI, stroke, refractory ischemia) occurred less frequently than in the placebo-treated group. Table 3: Outcome Events in the CURE Primary Analysis Outcome PLAVIX (+ aspirin)Other standard therapies were used as appropriate. Placebo (+ aspirin) Relative Risk Reduction (%) (95% CI) (n=6259) (n=6303) Primary outcome 582 (9.3%) 719 (11.4%) 20% (Cardiovascular death, MI, Stroke) (10.3, 27.9) P=0.00009 Co-primary outcome 1035 (16.5%) 1187 (18.8%) 14% (Cardiovascular death, MI, Stroke, Refractory Ischemia) (6.2, 20.6) P=0.00052 All Individual Outcome Events: CV death 318 (5.1%) 345 (5.5%) 7% (-7.7, 20.6) MI 324 (5.2%) 419 (6.6%) 23% (11.0, 33.4) Stroke 75 (1.2%) 87 (1.4%) 14% (-17.7, 36.6) Refractory ischemia 544 (8.7%) 587 (9.3%) 7% (-4.0, 18.0) The benefits of PLAVIX (clopidogrel bisulfate) were maintained throughout the course of the trial (up to 12 months). Figure 2: Cardiovascular Death, Myocardial Infarction, and Stroke in the CURE Study In CURE, the use of PLAVIX was associated with a lower incidence of CV death, MI or stroke in patient populations with different characteristics, as shown in Figure 3. The benefits associated with PLAVIX were independent of the use of other acute and long-term cardiovascular therapies, including heparin/LMWH (low molecular weight heparin), IV glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, lipid-lowering drugs, beta-blockers, and ACE-inhibitors. The efficacy of PLAVIX was observed independently of the dose of aspirin (75–325 mg once daily). The use of oral anticoagulants, non-study anti-platelet drugs and chronic NSAIDs was not allowed in CURE. Figure 3: Hazard Ratio for Patient Baseline Characteristics and On-Study Concomitant Medications/Interventions for the CURE Study The use of PLAVIX in CURE was associated with a decrease in the use of thrombolytic therapy (71 patients [1.1%] in the PLAVIX group, 126 patients [2.0%] in the placebo group; relative risk reduction of 43%, P=0.0001), and GPIIb/IIIa inhibitors (369 patients [5.9%] in the PLAVIX group, 454 patients [7.2%] in the placebo group, relative risk reduction of 18%, P=0.003). The use of PLAVIX in CURE did not impact the number of patients treated with CABG or PCI (with or without stenting), (2253 patients [36.0%] in the PLAVIX group, 2324 patients [36.9%] in the placebo group; relative risk reduction of 4.0%, P=0.1658). In patients with ST-segment elevation acute myocardial infarction, safety and efficacy of clopidogrel have been evaluated in two randomized, placebo-controlled, double-blind studies, COMMIT- a large outcome study conducted in China – and CLARITY- a supportive study of a surrogate endpoint conducted internationally. The randomized, double-blind, placebo-controlled, 2×2 factorial design COMMIT trial included 45,852 patients presenting within 24 hours of the onset of the symptoms of suspected myocardial infarction with supporting ECG abnormalities (i.e., ST elevation, ST depression or left bundle-branch block). Patients were randomized to receive PLAVIX (75 mg/day) or placebo, in combination with aspirin (162 mg/day), for 28 days or until hospital discharge whichever came first. The co-primary endpoints were death from any cause and the first occurrence of re-infarction, stroke or death. The patient population included 28% women, 58% patients ≥60 years (26% patients ≥70 years) and 55% patients who received thrombolytics, 68% received ace-inhibitors, and only 3% had percutaneous coronary intervention (PCI). As shown in Table 4 and Figures 4 and 5 below, PLAVIX significantly reduced the relative risk of death from any cause by 7% (p = 0.029), and the relative risk of the combination of re-infarction, stroke or death by 9% (p = 0.002). Table 4: Outcome Events in the COMMIT Analysis Event PLAVIX (+ aspirin) (N=22961) Placebo (+ aspirin) (N=22891) Odds ratio (95% CI) p-value Composite endpoint: Death, MI, or Stroke 2121 (9.2%) 2310 (10.1%) 0.91 (0.86, 0.97) 0.002 Death 1726 (7.5%) 1845 (8.1%) 0.93 (0.87, 0.99) 0.029 Non-fatal MINon-fatal MI and non-fatal stroke exclude patients who died (of any cause). 270 (1.2%) 330 (1.4%) 0.81 (0.69, 0.95) 0.011 Non-fatal Stroke 127 (0.6%) 142 (0.6%) 0.89 (0.70, 1.13) 0.33 Figure 4: Cumulative Event Rates for Death in the COMMIT Study Figure 5: Cumulative Event Rates for the Combined Endpoint Re-Infarction, Stroke or Death in the COMMIT Study The effect of PLAVIX did not differ significantly in various pre-specified subgroups as shown in Figure 6. Additionally, the effect was similar in non-prespecified subgroups including those based on infarct location, Killip class or prior MI history (see Figure 7). Such subgroup analyses should be interpreted very cautiously. Figure 6: Effects of Adding PLAVIX to Aspirin on the Combined Primary Endpoint across Baseline and Concomitant Medication Subgroups for the COMMIT Study Figure 7: Effects of Adding PLAVIX to Aspirin in the Non-Prespecified Subgroups in the COMMIT Study The randomized, double-blind, placebo-controlled CLARITY trial included 3,491 patients, 5% U.S., presenting within 12 hours of the onset of a ST elevation myocardial infarction and planned for thrombolytic therapy. Patients were randomized to receive PLAVIX (300-mg loading dose, followed by 75 mg/day) or placebo until angiography, discharge, or Day 8. Patients also received aspirin (150 to 325 mg as a loading dose, followed by 75 to 162 mg/day), a fibrinolytic agent and, when appropriate, heparin for 48 hours. The patients were followed for 30 days. The primary endpoint was the occurrence of the composite of an occluded infarct-related artery (defined as TIMI Flow Grade 0 or 1) on the predischarge angiogram, or death or recurrent myocardial infarction by the time of the start of coronary angiography. The patient population was mostly Caucasian (89.5%) and included 19.7% women and 29.2% patients ≥65 years. A total of 99.7% of patients received fibrinolytics (fibrin specific: 68.7%, non-fibrin specific: 31.1%), 89.5% heparin, 78.7% beta-blockers, 54.7% ACE inhibitors and 63% statins. The number of patients who reached the primary endpoint was 262 (15.0%) in the PLAVIX-treated group and 377 (21.7%) in the placebo group, but most of the events related to the surrogate endpoint of vessel patency. Table 5: Event Rates for the Primary Composite Endpoint in the CLARITY Study Clopidogrel 1752 Placebo 1739 OR 95% CI *The total number of patients with a component event (occluded IRA, death, or recurrent MI) is greater than the number of patients with a composite event because some patients had more than a single type of component event. Number (%) of patients reporting the composite endpoint 262 (15.0%) 377 (21.7%) 0.64 0.53, 0.76 Occluded IRA N (subjects undergoing angiography) 1640 1634 n (%) patients reporting endpoint 192 (11.7%) 301 (18.4%) 0.59 0.48, 0.72 Death n (%) patients reporting endpoint 45 (2.6%) 38 (2.2%) 1.18 0.76, 1.83 Recurrent MI n (%) patients reporting endpoint 44 (2.5%) 62 (3.6%) 0.69 0.47, 1.02 Figure Figure Figure Figure Figure Figure

HOW SUPPLIED

PLAVIX (clopidogrel bisulfate) 75-mg tablets are available as pink, round, biconvex, film-coated tablets debossed with “75” on one side and “1171” on the other. Tablets are provided as follows: NDC 67046-099-30 blister of 30 Storage Store at 25° C (77° F); excursions permitted to 15°–30° C (59°–86° F) [See USP Controlled Room Temperature].

GERIATRIC USE

Geriatric Use Of the total number of subjects in the CAPRIE, CURE and CLARITY controlled clinical studies, approximately 50% of patients treated with PLAVIX were 65 years of age and older, and 15% were 75 years and older. In COMMIT, approximately 58% of the patients treated with PLAVIX were 60 years and older, 26% of whom were 70 years and older. The observed risk of thrombotic events with clopidogrel plus aspirin versus placebo plus aspirin by age category is provided in Figures 3 and 6 for the CURE and COMMIT trials, respectively (see CLINICAL STUDIES ). The observed risk of bleeding events with clopidogrel plus aspirin versus placebo plus aspirin by age category is provided in Tables 6 and 7 for the CURE and COMMIT trials, respectively (see ADVERSE REACTIONS ).

MECHANISM OF ACTION

Mechanism of Action and Pharmacodynamic Properties Clopidogrel is a prodrug, one of whose metabolites is an inhibitor of platelet aggregation. A variety of drugs that inhibit platelet function have been shown to decrease morbid events in people with established cardiovascular atherosclerotic disease as evidenced by stroke or transient ischemic attacks, myocardial infarction, unstable angina or the need for vascular bypass or angioplasty. This indicates that platelets participate in the initiation and/or evolution of these events and that inhibiting platelet function can reduce the event rate. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Because the active metabolite is formed by CYP450 enzymes, some of which are polymorphic or subject to inhibition by other drugs, not all patients will have adequate platelet inhibition. Dose dependent inhibition of platelet aggregation can be seen 2 hours after single oral doses of PLAVIX. Repeated doses of 75 mg PLAVIX per day inhibit ADP-induced platelet aggregation on the first day, and inhibition reaches steady state between Day 3 and Day 7. At steady state, the average inhibition level observed with a dose of 75 mg PLAVIX per day was between 40% and 60%. Platelet aggregation and bleeding time gradually return to baseline values after treatment is discontinued, generally in about 5 days.

INDICATIONS AND USAGE

PLAVIX (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events as follows: Recent MI, Recent Stroke or Established Peripheral Arterial Disease For patients with a history of recent myocardial infarction (MI), recent stroke, or established peripheral arterial disease, PLAVIX has been shown to reduce the rate of a combined endpoint of new ischemic stroke (fatal or not), new MI (fatal or not), and other vascular death. Acute Coronary Syndrome -For patients with non-ST-segment elevation acute coronary syndrome (unstable angina/non-Q-wave MI) including patients who are to be managed medically and those who are to be managed with percutaneous coronary intervention (with or without stent) or CABG, PLAVIX has been shown to decrease the rate of a combined endpoint of cardiovascular death, MI, or stroke as well as the rate of a combined endpoint of cardiovascular death, MI, stroke, or refractory ischemia. -For patients with ST-segment elevation acute myocardial infarction, PLAVIX has been shown to reduce the rate of death from any cause and the rate of a combined endpoint of death, re-infarction or stroke. This benefit is not known to pertain to patients who receive primary angioplasty.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in the pediatric population have not been established.

PREGNANCY

Pregnancy Pregnancy Category B Reproduction studies performed in rats and rabbits at doses up to 500 and 300 mg/kg/day (respectively, 65 and 78 times the recommended daily human dose on a mg/m2 basis), revealed no evidence of impaired fertility or fetotoxicity due to clopidogrel. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of a human response, PLAVIX should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

Nursing Mothers Studies in rats have shown that clopidogrel and/or its metabolites are excreted in the milk. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the nursing woman.

INFORMATION FOR PATIENTS

Information for Patients Patients should be told that it may take them longer than usual to stop bleeding, that they may bruise and/or bleed more easily when they take PLAVIX or PLAVIX combined with aspirin, and that they should report any unusual bleeding to their physician. Patients should inform physicians and dentists that they are taking PLAVIX and/or any other product known to affect bleeding before any surgery is scheduled and before any new drug is taken.

DOSAGE AND ADMINISTRATION

Recent MI, Recent Stroke, or Established Peripheral Arterial Disease The recommended daily dose of PLAVIX is 75 mg once daily. Acute Coronary Syndrome For patients with non-ST-segment elevation acute coronary syndrome (unstable angina/non-Q-wave MI), PLAVIX should be initiated with a single 300-mg loading dose and then continued at 75 mg once daily. Aspirin (75 mg–325 mg once daily) should be initiated and continued in combination with PLAVIX. In CURE, most patients with Acute Coronary Syndrome also received heparin acutely (see CLINICAL STUDIES ). For patients with ST-segment elevation acute myocardial infarction, the recommended dose of PLAVIX is 75 mg once daily, administered in combination with aspirin, with or without thrombolytics. PLAVIX may be initiated with or without a loading dose (300 mg was used in CLARITY; see CLINICAL STUDIES ). Pharmacogenetics CYP2C19 poor metabolizer status is associated with diminished response to clopidogrel. The optimal dose regimen for poor metabolizers has yet to be determined. (See CLINICAL PHARMACOLOGY: Pharmacogenetics .) No dosage adjustment is necessary for elderly patients or patients with renal disease. (See CLINICAL PHARMACOLOGY: Special Populations.)

Theophylline 400 MG Extended Release Oral Tablet

Generic Name: THEOPHYLLINE
Brand Name: Theophylline (Anhydrous)
  • Substance Name(s):
  • THEOPHYLLINE ANHYDROUS

WARNINGS

Concurrent Illness Theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition: Active peptic ulcer disease Seizure disorders Cardiac arrhythmias (not including bradyarrhythmias) Conditions That Reduce Theophylline Clearance There are several readily identifiable causes of reduced theophylline clearance. If the total daily dose is not appropriately reduced in the presence of these risk factors, severe and potentially fatal theophylline toxicity can occur . Careful consideration must be given to the benefits and risks of theophylline use and the need for more intensive monitoring of serum theophylline concentrations in patients with the following risk factors: Age Neonates (term and premature) Children 60 years) Concurrent Diseases Acute pulmonary edema Congestive heart failure Cor-pulmonale Fever; ≥102° for 24 hours or more; or lesser temperature elevations for longer periods Hypothyroidism Liver disease; cirrhosis, acute hepatitis Reduced renal function in infants <3 months of age Sepsis with multi-organ failure Shock Cessation of Smoking Drug Interactions Adding a drug that inhibits theophylline metabolism (e.g., cimetidine, erythromycin, tacrine) or stopping a concurrently administered drug that enhances theophylline metabolism (e.g., carbamazepine, rifampin). (See PRECAUTIONS, Drug Interactions , Table II ). When Signs or Symptoms of Theophylline Toxicity Are Present Whenever a patient receiving theophylline develops nausea or vomiting, particularly repetitive vomiting, or other signs or symptoms consistent with theophylline toxicity (even if another cause may be suspected), additional doses of theophylline should be withheld and a serum theophylline concentration measured immediately . Patients should be instructed not to continue any dosage that causes adverse effects and to withhold subsequent doses until the symptoms have resolved, at which time the healthcare professional may instruct the patient to resume the drug at a lower dosage (see DOSAGE AND ADMINISTRATION, Dosing Guidelines , Table VI ). Dosage Increases Increases in the dose of theophylline should not be made in response to an acute exacerbation of symptoms of chronic lung disease since theophylline provides little added benefit to inhaled beta2-selective agonists and systemically administered corticosteroids in this circumstance and increases the risk of adverse effects. A peak steady-state serum theophylline concentration should be measured before increasing the dose in response to persistent chronic symptoms to ascertain whether an increase in dose is safe. Before increasing the theophylline dose on the basis of a low serum concentration, the healthcare professional should consider whether the blood sample was obtained at an appropriate time in relationship to the dose and whether the patient has adhered to the prescribed regimen (see PRECAUTIONS, Laboratory Tests ). As the rate of theophylline clearance may be dose-dependent (i.e., steady-state serum concentrations may increase disproportionately to the increase in dose), an increase in dose based upon a sub-therapeutic serum concentration measurement should be conservative. In general, limiting dose increases to about 25% of the previous total daily dose will reduce the risk of unintended excessive increases in serum theophylline concentration (see DOSAGE AND ADMINISTRATION , Table VI ).

DRUG INTERACTIONS

Drug Interactions Adding a drug that inhibits theophylline metabolism (e.g., cimetidine, erythromycin, tacrine) or stopping a concurrently administered drug that enhances theophylline metabolism (e.g., carbamazepine, rifampin). (See PRECAUTIONS, Drug Interactions , Table II ).

OVERDOSAGE

General The chronicity and pattern of theophylline overdosage significantly influences clinical manifestations of toxicity, management and outcome. There are two common presentations: (1) acute overdose , i.e., ingestion of a single large excessive dose (>10 mg/kg), as occurs in the context of an attempted suicide or isolated medication error, and (2) chronic overdosage , i.e., ingestion of repeated doses that are excessive for the patient’s rate of theophylline clearance. The most common causes of chronic theophylline overdosage include patient or caregiver error in dosing, healthcare professional prescribing of an excessive dose or a normal dose in the presence of factors known to decrease the rate of theophylline clearance, and increasing the dose in response to an exacerbation of symptoms without first measuring the serum theophylline concentration to determine whether a dose increase is safe. Severe toxicity from theophylline overdose is a relatively rare event. In one health maintenance organization, the frequency of hospital admissions for chronic overdosage of theophylline was about 1 per 1000 person-years exposure. In another study, among 6000 blood samples obtained for measurement of serum theophylline concentration, for any reason, from patients treated in an emergency department, 7% were in the 20-30 mcg/mL range and 3% were >30 mcg/mL. Approximately two-thirds of the patients with serum theophylline concentrations in the 20-30 mcg/mL range had one or more manifestations of toxicity while >90% of patients with serum theophylline concentrations >30 mcg/mL were clinically intoxicated. Similarly, in other reports, serious toxicity from theophylline is seen principally at serum concentrations >30 mcg/mL. Several studies have described the clinical manifestations of theophylline overdose and attempted to determine the factors that predict life-threatening toxicity. In general, patients who experience an acute overdose are less likely to experience seizures than patients who have experienced a chronic overdosage, unless the peak serum theophylline concentration is >100 mcg/mL. After a chronic overdosage, generalized seizures, life-threatening cardiac arrhythmias, and death may occur at serum theophylline concentrations >30 mcg/mL. The severity of toxicity after chronic overdosage is more strongly correlated with the patient’s age than the peak serum theophylline concentration; patients >60 years are at the greatest risk for severe toxicity and mortality after a chronic overdosage. Pre-existing or concurrent disease may also significantly increase the susceptibility of a patient to a particular toxic manifestation, e.g., patients with neurologic disorders have an increased risk of seizures and patients with cardiac disease have an increased risk of cardiac arrhythmias for a given serum theophylline concentration compared to patients without the underlying disease. The frequency of various reported manifestations of theophylline overdose according to the mode of overdose are listed in Table IV. Other manifestations of theophylline toxicity include increases in serum calcium, creatine kinase, myoglobin and leukocyte count, decreases in serum phosphate and magnesium, acute myocardial infarction, and urinary retention in men with obstructive uropathy. Seizures associated with serum theophylline concentrations >30 mcg/mL are often resistant to anticonvulsant therapy and may result in irreversible brain injury if not rapidly controlled. Death from theophylline toxicity is most often secondary to cardiorespiratory arrest and/or hypoxic encephalopathy following prolonged generalized seizures or intractable cardiac arrhythmias causing hemodynamic compromise. Overdose Management General Recommendations for Patients with Symptoms of Theophylline Overdose or Serum Theophylline Concentrations >30 mcg/mL (Note: Serum theophylline concentrations may continue to increase after presentation of the patient for medical care.) While simultaneously instituting treatment, contact a regional poison center to obtain updated information and advice on individualizing the recommendations that follow. Institute supportive care, including establishment of intravenous access, maintenance of the airway, and electrocardiographic monitoring. Treatment of seizures Because of the high morbidity and mortality associated with theophylline-induced seizures, treatment should be rapid and aggressive. Anticonvulsant therapy should be initiated with an intravenous benzodiazepine, e.g., diazepam, in increments of 0.1-0.2 mg/kg every 1-3 minutes until seizures are terminated. Repetitive seizures should be treated with a loading dose of phenobarbital (20 mg/kg infused over 30-60 minutes). Case reports of theophylline overdose in humans and animal studies suggest that phenytoin is ineffective in terminating theophylline-induced seizures. The doses of benzodiazepines and phenobarbital required to terminate theophylline-induced seizures are close to the doses that may cause severe respiratory depression or respiratory arrest; the healthcare professional should therefore be prepared to provide assisted ventilation. Elderly patients and patients with COPD may be more susceptible to the respiratory depressant effects of anticonvulsants. Barbiturate-induced coma or administration of general anesthesia may be required to terminate repetitive seizures or status epilepticus. General anesthesia should be used with caution in patients with theophylline overdose because fluorinated volatile anesthetics may sensitize the myocardium to endogenous catecholamines released by theophylline. Enflurane appears less likely to be associated with this effect than halothane and may, therefore, be safer. Neuromuscular blocking agents alone should not be used to terminate seizures since they abolish the musculoskeletal manifestations without terminating seizure activity in the brain. Anticipate Need for Anticonvulsants In patients with theophylline overdose who are at high risk for theophylline-induced seizures, e.g., patients with acute overdoses and serum theophylline concentrations >100 mcg/mL or chronic overdosage in patients >60 years of age with serum theophylline concentrations >30 mcg/mL, the need for anticonvulsant therapy should be anticipated. A benzodiazepine such as diazepam should be drawn into a syringe and kept at the patient’s bedside and medical personnel qualified to treat seizures should be immediately available. In selected patients at high risk for theophylline-induced seizures, consideration should be given to the administration of prophylactic anticonvulsant therapy. Situations where prophylactic anticonvulsant therapy should be considered in high risk patients include anticipated delays in instituting methods for extracorporeal removal of theophylline (e.g., transfer of a high risk patient from one healthcare facility to another for extracorporeal removal) and clinical circumstances that significantly interfere with efforts to enhance theophylline clearance (e.g., a neonate where dialysis may not be technically feasible or a patient with vomiting unresponsive to antiemetics who is unable to tolerate multiple-dose oral activated charcoal). In animal studies, prophylactic administration of phenobarbital, but not phenytoin , has been shown to delay the onset of theophylline-induced generalized seizures and to increase the dose of theophylline required to induce seizures (i.e., markedly increases the LD 50 ). Although there are no controlled studies in humans, a loading dose of intravenous phenobarbital (20 mg/kg infused over 60 minutes) may delay or prevent life-threatening seizures in high risk patients while efforts to enhance theophylline clearance are continued. Phenobarbital may cause respiratory depression, particularly in elderly patients and patients with COPD. Treatment of cardiac arrhythmias Sinus tachycardia and simple ventricular premature beats are not harbingers of life-threatening arrhythmias, they do not require treatment in the absence of hemodynamic compromise, and they resolve with declining serum theophylline concentrations. Other arrhythmias, especially those associated with hemodynamic compromise, should be treated with antiarrhythmic therapy appropriate for the type of arrhythmia. Gastrointestinal decontamination Oral activated charcoal (0.5 g/kg up to 20 g and repeat at least once 1-2 hours after the first dose) is extremely effective in blocking the absorption of theophylline throughout the gastrointestinal tract, even when administered several hours after ingestion. If the patient is vomiting, the charcoal should be administered through a nasogastric tube or after administration of an antiemetic. Phenothiazine antiemetics such as prochlorperazine or perphenazine should be avoided since they can lower the seizure threshold and frequently cause dystonic reactions. A single dose of sorbitol may be used to promote stooling to facilitate removal of theophylline bound to charcoal from the gastrointestinal tract. Sorbitol, however, should be dosed with caution since it is a potent purgative which can cause profound fluid and electrolyte abnormalities, particularly after multiple doses. Commercially available fixed combinations of liquid charcoal and sorbitol should be avoided in young children and after the first dose in adolescents and adults since they do not allow for individualization of charcoal and sorbitol dosing. Ipecac syrup should be avoided in theophylline overdoses. Although ipecac induces emesis, it does not reduce the absorption of theophylline unless administered within 5 minutes of ingestion and even then is less effective than oral activated charcoal. Moreover, ipecac induced emesis may persist for several hours after a single dose and significantly decrease the retention and the effectiveness of oral activated charcoal. Serum Theophylline Concentration Monitoring The serum theophylline concentration should be measured immediately upon presentation, 2-4 hours later, and then at sufficient intervals, e.g., every 4 hours, to guide treatment decisions and to assess the effectiveness of therapy. Serum theophylline concentrations may continue to increase after presentation of the patient for medical care as a result of continued absorption of theophylline from the gastrointestinal tract. Serial monitoring of serum theophylline serum concentrations should be continued until it is clear that the concentration is no longer rising and has returned to non-toxic levels. General Monitoring Procedures Electrocardiographic monitoring should be initiated on presentation and continued until the serum theophylline level has returned to a non-toxic level. Serum electrolytes and glucose should be measured on presentation and at appropriate intervals indicated by clinical circumstances. Fluid and electrolyte abnormalities should be promptly corrected. Monitoring and treatment should be continued until the serum concentration decreases below 20 mcg/mL. Enhance clearance of theophylline Multiple-dose oral activated charcoal (e.g., 0.5 mg/kg up to 20 g, every two hours) increases the clearance of theophylline at least twofold by adsorption of theophylline secreted into gastrointestinal fluids. Charcoal must be retained in, and pass through, the gastrointestinal tract to be effective; emesis should therefore be controlled by administration of appropriate antiemetics. Alternatively, the charcoal can be administered continuously through a nasogastric tube in conjunction with appropriate antiemetics. A single dose of sorbitol may be administered with the activated charcoal to promote stooling to facilitate clearance of the adsorbed theophylline from the gastrointestinal tract. Sorbitol alone does not enhance clearance of theophylline and should be dosed with caution to prevent excessive stooling which can result in severe fluid and electrolyte imbalances. Commercially available fixed combinations of liquid charcoal and sorbitol should be avoided in young children and after the first dose in adolescents and adults since they do not allow for individualization of charcoal and sorbitol dosing. In patients with intractable vomiting, extracorporeal methods of theophylline removal should be instituted (see , Extracorporeal Removal ). Specific Recommendations Acute Overdose Serum Concentration >2030100 mcg/mL Consider prophylactic anticonvulsant therapy. Administer multiple-dose oral activated charcoal and measures to control emesis. Consider extracorporeal removal, even if the patient has not experienced a seizure (see , Extracorporeal Removal ). Monitor the patient and obtain serial theophylline concentrations every 2-4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. Chronic Overdosage Serum Concentration >2030 mcg/mL in patients 30 mcg/mL in patients ≥ 60 years of age Consider prophylactic anticonvulsant therapy. Administer multiple-dose oral activated charcoal and measures to control emesis. Consider extracorporeal removal even if the patient has not experienced a seizure (see , Extracorporeal Removal). Monitor the patient and obtain serial theophylline concentrations every 2-4 hours to gauge the effectiveness of therapy and to guide further treatment decisions. Extracorporeal Removal Increasing the rate of theophylline clearance by extracorporeal methods may rapidly decrease serum concentrations, but the risks of the procedure must be weighed against the potential benefit. Charcoal hemoperfusion is the most effective method of extracorporeal removal, increasing theophylline clearance up to sixfold, but serious complications, including hypotension, hypocalcemia, platelet consumption and bleeding diatheses may occur. Hemodialysis is about as efficient as multiple-dose oral activated charcoal and has a lower risk of serious complications than charcoal hemoperfusion. Hemodialysis should be considered as an alternative when charcoal hemoperfusion is not feasible and multiple-dose oral charcoal is ineffective because of intractable emesis. Serum theophylline concentrations may rebound 5-10 mcg/mL after discontinuation of charcoal hemoperfusion or hemodialysis due to redistribution of theophylline from the tissue compartment. Peritoneal dialysis is ineffective for theophylline removal; exchange transfusions in neonates have been minimally effective.

DESCRIPTION

Theophylline (Anhydrous) Extended-Release Tablets in a controlled-release system allows a 24-hour dosing interval for appropriate patients. Theophylline is structurally classified as a methylxanthine. It occurs as a white, odorless, crystalline powder with a bitter taste. Anhydrous theophylline has the chemical name 1H-Purine-2,6-dione,3,7- dihydro-1,3-dimethyl-, and is represented by the following structural formula: The molecular formula of anhydrous theophylline is C7H8N4O2 with a molecular weight of 180.17. Each extended-release tablet for oral administration, contains 400 or 600 mg of anhydrous theophylline. Inactive ingredients: glyceryl behenate, silicified microcrystalline cellulose, silicon dioxide, and magnesium stearate. Theophylline Structural Formula

HOW SUPPLIED

Theophylline (Anhydrous) Extended-Release Tablets 400 mg are supplied as round, white, bisected, uncoated tablets, embossed with “N” “T4”, available in bottles of 100 tablets (NDC 29033-001-01) or 500 tablets (NDC 29033-001-05). Theophylline (Anhydrous) Extended-Release Tablets 600 mg are supplied as oblong, white, bisected,uncoated tablets, embossed with “NT6”, available in bottles of 100 tablets (NDC 29033-002-01). Store at 20°-25°C (68°-77°F); excursions permitted between 15°-30°C (59°-86°F). [See USP Controlled Room Temerature]. Dispense in tight, light-resistant container. Manufactured by: Nostrum Laboratories, Inc. 1800 N. Topping Ave, Kansas City, MO 64120 Rev 02 January 2015

GERIATRIC USE

Geriatric Use Elderly patients are at a significantly greater risk of experiencing serious toxicity from theophylline than younger patients due to pharmacokinetic and pharmacodynamic changes associated with aging. The clearance of theophylline is decreased by an average of 30% in healthy elderly adults (>60 yrs) compared to healthy young adults. Theophylline clearance may be further reduced by concomitant diseases prevalent in the elderly, which further impair clearance of this drug and have the potential to increase serum levels and potential toxicity. These conditions include impaired renal function, chronic obstructive pulmonary disease, congestive heart failure, hepatic disease and an increased prevalence of use of certain medications (see PRECAUTIONS: Drug Interactions ) with the potential for pharmacokinetic and pharmacodynamic interaction. Protein binding may be decreased in the elderly resulting in an increased proportion of the total serum theophylline concentration in the pharmacologically active unbound form. Elderly patients also appear to be more sensitive to the toxic effects of theophylline after chronic overdosage than younger patients. Careful attention to dose reduction and frequent monitoring of serum theophylline concentrations are required in elderly patients (see PRECAUTIONS, Monitoring Serum Theophylline Concentrations , and DOSAGE AND ADMINISTRATION ). The maximum daily dose of theophylline in patients greater than 60 years of age ordinarily should not exceed 400 mg/day unless the patient continues to be symptomatic and the peak steady-state serum theophylline concentration is <10 mcg/mL (see DOSAGE AND ADMINISTRATION ). Theophylline doses greater than 400 mg/d should be prescribed with caution in elderly patients. Theophylline should be prescribed with caution in elderly male patients with pre-existing partial outflow obstruction, such as prostatic enlargement, due to the risk of urinary retention.

MECHANISM OF ACTION

Mechanism of Action: Theophylline has two distinct actions in the airways of patients with reversible obstruction; smooth muscle relaxation (i.e., bronchodilation) and suppression of the response of the airways to stimuli (i.e., non-bronchodilator prophylactic effects). While the mechanisms of action of theophylline are not known with certainty, studies in animals suggest that bronchodilatation is mediated by the inhibition of two isozymes of phosphodiesterase (PDE III and, to a lesser extent, PDE IV) while non-bronchodilator prophylactic actions are probably mediated through one or more different molecular mechanisms, that do not involve inhibition of PDE III or antagonism of adenosine receptors. Some of the adverse effects associated with theophylline appear to be mediated by inhibition of PDE III (e.g., hypotension, tachycardia, headache, and emesis) and adenosine receptor antagonism (e.g., alterations in cerebral blood flow). Theophylline increases the force of contraction of diaphragmatic muscles. This action appears to be due to enhancement of calcium uptake through an adenosine-mediated channel.

INDICATIONS AND USAGE

Theophylline is indicated for the treatment of the symptoms and reversible airflow obstruction associated with chronic asthma and other chronic lung diseases, e.g., emphysema and chronic bronchitis.

PEDIATRIC USE

Pediatric Use Theophylline is safe and effective for the approved indications in pediatric patients. The maintenance dose of theophylline must be selected with caution in pediatric patients since the rate of theophylline clearance is highly variable across the pediatric age range (see CLINICAL PHARMACOLOGY , Table I , WARNINGS , AND DOSAGE AND ADMINISTRATION , Table V ).

PREGNANCY

Pregnancy: Teratogenic Effects: Category C In studies in which pregnant mice, rats and rabbits were dosed during the period of organogenesis, theophylline produced teratogenic effects. In studies with mice, a single intraperitoneal dose at and above 100 mg/kg (approximately equal to the maximum recommended oral dose for adults on a mg/m 2 basis) during organogenesis produced cleft palate and digital abnormalities. Micromelia, micrognathia, clubfoot, subcutaneous hematoma, open eyelids, and embryolethality were observed at doses that are approximately 2 times the maximum recommended oral dose for adults on a mg/m 2 basis. In a study with rats dosed from conception through organogenesis, an oral dose of 150 mg/kg/day (approximately 2 times the maximum recommended oral dose for adults on a mg/m 2 basis) produced digital abnormalities. Embryolethality was observed with a subcutaneous dose of 200 mg/kg/day (approximately 4 times the maximum recommended oral dose for adults on a mg/m 2 basis). In a study in which pregnant rabbits were dosed throughout organogenesis, an intravenous dose of 60 mg/kg/day (approximately 2 times the maximum recommended oral dose for adults on a mg/m 2 basis), which caused the death of one doe and clinical signs in others, produced cleft palate and was embryolethal. Doses at and above 15 mg/kg/day (less than the maximum recommended oral dose for adults on a mg/m 2 basis) increased the incidence of skeletal variations. There are no adequate and well-controlled studies in pregnant women. Theophylline should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

Nursing Mothers Theophylline is excreted into breast milk and may cause irritability or other signs of mild toxicity in nursing human infants. The concentration of theophylline in breast milk is about equivalent to the maternal serum concentration. An infant ingesting a liter of breast milk containing 10-20 mcg/mL of theophylline per day is likely to receive 10-20 mg of theophylline per day. Serious adverse effects in the infant are unlikely unless the mother has toxic serum theophylline concentrations.

INFORMATION FOR PATIENTS

Information for Patients The patient (or parent/caregiver) should be instructed to seek medical advice whenever nausea, vomiting, persistent headache, insomnia or rapid heartbeat occurs during treatment with theophylline, even if another cause is suspected. The patient should be instructed to contact their healthcare professional if they develop a new illness, especially if accompanied by a persistent fever, if they experience worsening of a chronic illness, if they start or stop smoking cigarettes or marijuana, or if another healthcare professional adds a new medication or discontinues a previously prescribed medication. Patients should be informed that theophylline interacts with a wide variety of drugs (see Table II ). The dietary supplement St. John’s Wort (Hypericum perforatum) should not be taken at the same time as theophylline, since it may result in decreased theophylline levels. If patients are already taking St. John’s Wort and theophylline together, they should consult their healthcare professional before stopping the St. John’s Wort, since their theophylline concentrations may rise when this is done, resulting in toxicity. Patients should be instructed to inform all healthcare professionals involved in their care that they are taking theophylline, especially when a medication is being added or deleted from their treatment. Patients should be instructed to not alter the dose, timing of the dose, or frequency of administration without first consulting their healthcare professional. If a dose is missed, the patient should be instructed to take the next dose at the usually scheduled time and to not attempt to make up for the missed dose. Theophylline (Anhydrous) Extended-Release Tablets can be taken once a day in the morning or evening. It is recommended that Theophylline (Anhydrous) Extended-Release Tablets be taken with meals. Patients should be advised that if they choose to take Theophylline (Anhydrous) Extended-Release Tablets with food it should be taken consistently with food and if they take it in a fasted condition it should routinely be taken fasted. It is important that the product whenever dosed be dosed consistently with or without food. Theophylline (Anhydrous) Extended-Release Tablets are not to be chewed or crushed because it may lead to a rapid release of theophylline with the potential for toxicity. The scored tablet may be split. Patients receiving Theophylline (Anhydrous) Extended-Release Tablets may pass an intact matrix tablet in the stool or via colostomy. These matrix tablets usually contain little or no residual theophylline.

DOSAGE AND ADMINISTRATION

Theophylline (Anhydrous) Extended-Release Tablets 400 or 600 mg Tablets can be taken once a day in the morning or evening. It is recommended that Theophylline (Anhydrous) Extended-Release Tablets be taken with meals. Patients should be advised that if they choose to take Theophylline (Anhydrous) Extended-Release Tablets with food it should be taken consistently with food and if they take it in a fasted condition it should routinely be taken fasted. It is important that the product whenever dosed be dosed consistently with or without food. Theophylline (Anhydrous) Extended-Release Tablets are not to be chewed or crushed because it may lead to a rapid release of theophylline with the potential for toxicity. The scored tablet may be split. Infrequently, patients receiving Theophylline (Anhydrous) Extended-Release 400 or 600 mg Tablets may pass an intact matrix tablet in the stool or via colostomy. These matrix tablets usually contain little or no residual theophylline. Stabilized patients, 12 years of age or older, who are taking an immediate-release or controlled-release theophylline product may be transferred to once-daily administration of 400 mg or 600 mg Theophylline (Anhydrous) Extended-Release Tablets on a mg-for-mg basis. It must be recognized that the peak and trough serum theophylline levels produced by the once-daily dosing may vary from those produced by the previous product and/or regimen. General Considerations The steady-state peak serum theophylline concentration is a function of the dose, the dosing interval, and the rate of theophylline absorption and clearance in the individual patient. Because of marked individual differences in the rate of theophylline clearance, the dose required to achieve a peak serum theophylline concentration in the 10-20 mcg/mL range varies fourfold among otherwise similar patients in the absence of factors known to alter theophylline clearance (e.g., 400-1600 mg/day in adults <60 years old and 10-36 mg/kg/day in children 1-9 years old). For a given population there is no single theophylline dose that will provide both safe and effective serum concentrations for all patients. Administration of the median theophylline dose required to achieve a therapeutic serum theophylline concentration in a given population may result in either sub-therapeutic or potentially toxic serum theophylline concentrations in individual patients. For example, at a dose of 900 mg/d in adults <60 years or 22 mg/kg/d in children 1-9 years, the steady-state peak serum theophylline concentration will be <10 mcg/mL in about 30% of patients, 10-20 mcg/mL in about 50% and 20-30 mcg/mL in about 20% of patients. The dose of theophylline must be individualized on the basis of peak serum theophylline concentration measurements in order to achieve a dose that will provide maximum potential benefit with minimal risk of adverse effects. Transient caffeine-like adverse effects and excessive serum concentrations in slow metabolizers can be avoided in most patients by starting with a sufficiently low dose and slowly increasing the dose, if judged to be clinically indicated, in small increments (See Table V ). Dose increases should only be made if the previous dosage is well tolerated and at intervals of no less than 3 days to allow serum theophylline concentrations to reach the new steady-state. Dosage adjustment should be guided by serum theophylline concentration measurement (see PRECAUTIONS, Laboratory Tests and , Table VI ). Healthcare providers should instruct patients and caregivers to discontinue any dosage that causes adverse effects, to withhold the medication until these symptoms are gone and to then resume therapy at a lower, previously tolerated dosage (see WARNINGS ). If the patient’s symptoms are well controlled, there are no apparent adverse effects, and no intervening factors that might alter dosage requirements (see WARNINGS and PRECAUTIONS ), serum theophylline concentrations should be monitored at 6 month intervals for rapidly growing children and at yearly intervals for all others. In acutely ill patients, serum theophylline concentrations should be monitored at frequent intervals, e.g., every 24 hours. Theophylline distributes poorly into body fat, therefore, mg/kg dose should be calculated on the basis of ideal body weight. Table V contains theophylline dosing titration schema recommended for patients in various age groups and clinical circumstances. Table VI contains recommendations for theophylline dosage adjustment based upon serum theophylline concentrations. Application of these general dosing recommendations to individual patients must take into account the unique clinical characteristics of each patient. In general, these recommendations should serve as the upper limit for dosage adjustments in order to decrease the risk of potentially serious adverse events associated with unexpected large increases in serum theophylline concentration. Table V. Dosing initiation and titration (as anhydrous theophylline). * A. Children (12-15 years) and adults (16-60 years) without risk factors for impaired clearance. Titration Step Children 45 kg and adults 1 If caffeine-like adverse effects occur, then consideration should be given to a lower dose and titrating the dose more slowly (see ADVERSE REACTIONS ). 1. Starting Dosage 12-14 mg/kg/day up to a maximum of 300 mg/day admin. QD* 300-400 mg/day1 admin. QD* 2. After 3 days, if tolerated , increase dose to: 16 mg/kg/day up to a maximum of 400 mg/day admin. QD* 400-600 mg/day 1 admin. QD* 3. After 3 more days, if tolerated , and if needed increase dose to: 20 mg/kg/day up to a maximum of 600 mg/day admin. QD* As with all theophylline products, doses greater than 600 mg should be titrated according to blood level (see Table VI) B. Patients With Risk Factors For Impaired Clearance, The Elderly (>60 Years), And Those In Whom It Is Not Feasible To Monitor Serum Theophylline Concentrations: In children 12-15 years of age, the theophylline dose should not exceed 16 mg/kg/day up to a maximum of 400 mg/day in the presence of risk factors for reduced theophylline clearance (see WARNINGS ) or if it is not feasible to monitor serum theophylline concentrations. In adolescents ≥16 years and adults, including the elderly, the theophylline dose should not exceed 400 mg/day in the presence of risk factors for reduced theophylline clearance (see WARNINGS ) or if it is not feasible to monitor serum theophylline concentrations. *Patients with more rapid metabolism clinically identified by higher than average dose requirements, should receive a smaller dose more frequently (every 12 hours) to prevent breakthrough symptoms resulting from low trough concentrations before the next dose. TABLE VI. Dosage adjustment guided by serum theophylline concentration. ¶Dose reduction and/or serum theophylline concentration measurement is indicated whenever adverse effects are present physiologic abnormalities that can reduce theophylline clearance occur (e.g. sustained fever), or a drug that interacts with theophylline is added or discontinued (see WARNINGS ). Peak Serum Concentration Dosage Adjustment 30 mcg/mL Treat overdose as indicated (see recommendations for chronic overdosage). If theophylline is subsequently resumed, decrease dose by at least 50% and recheck serum concentration after 3 days to guide further dosage adjustment.

Plavix 75 MG (clopidogrel bisulfate 97.875 MG) Oral Tablet

WARNINGS

Thrombotic thrombocytopenic purpura (TTP) TTP has been reported rarely following use of PLAVIX, sometimes after a short exposure (<2 weeks). TTP is a serious condition that can be fatal and requires urgent treatment including plasmapheresis (plasma exchange). It is characterized by thrombocytopenia, microangiopathic hemolytic anemia (schistocytes [fragmented RBCs] seen on peripheral smear), neurological findings, renal dysfunction, and fever. (See ADVERSE REACTIONS .)

DRUG INTERACTIONS

Drug Interactions Since clopidogrel is metabolized to its active metabolite by CYP2C19, use of drugs that inhibit the activity of this enzyme would be expected to result in reduced drug levels of the active metabolite of clopidogrel and a reduction in clinical efficacy. Concomitant use of drugs that inhibit CYP2C19 (e.g., omeprazole) should be discouraged. Study of specific drug interactions yielded the following results: Aspirin Aspirin did not modify the clopidogrel-mediated inhibition of ADP-induced platelet aggregation. Concomitant administration of 500 mg of aspirin twice a day for 1 day did not significantly increase the prolongation of bleeding time induced by PLAVIX. PLAVIX potentiated the effect of aspirin on collagen-induced platelet aggregation. PLAVIX and aspirin have been administered together for up to one year. Heparin In a study in healthy volunteers, PLAVIX did not necessitate modification of the heparin dose or alter the effect of heparin on coagulation. Coadministration of heparin had no effect on inhibition of platelet aggregation induced by PLAVIX. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) In healthy volunteers receiving naproxen, concomitant administration of PLAVIX was associated with increased occult gastrointestinal blood loss. NSAIDs and PLAVIX should be coadministered with caution. Warfarin Because of the increased risk of bleeding, the concomitant administration of warfarin with PLAVIX should be undertaken with caution. (See PRECAUTIONS: General .) Other Concomitant Therapy No clinically significant pharmacodynamic interactions were observed when PLAVIX was coadministered with atenolol, nifedipine, or both atenolol and nifedipine. The pharmacodynamic activity of PLAVIX was also not significantly influenced by the coadministration of phenobarbital, cimetidine or estrogen. The pharmacokinetics of digoxin or theophylline were not modified by the coadministration of PLAVIX (clopidogrel bisulfate). At high concentrations in vitro, clopidogrel inhibits P450 (2C9). Accordingly, PLAVIX may interfere with the metabolism of phenytoin, tamoxifen, tolbutamide, warfarin, torsemide, fluvastatin, and many non-steroidal anti-inflammatory agents, but there are no data with which to predict the magnitude of these interactions. Caution should be used when any of these drugs is coadministered with PLAVIX. In addition to the above specific interaction studies, patients entered into clinical trials with PLAVIX received a variety of concomitant medications including diuretics, beta-blocking agents, angiotensin converting enzyme inhibitors, calcium antagonists, cholesterol lowering agents, coronary vasodilators, antidiabetic agents (including insulin), thrombolytics, heparins (unfractionated and LMWH), GPIIb/IIIa antagonists, antiepileptic agents and hormone replacement therapy without evidence of clinically significant adverse interactions. There are no data on the concomitant use of oral anticoagulants, non study oral anti-platelet drugs and chronic NSAIDs with clopidogrel.

OVERDOSAGE

Overdose following clopidogrel administration may lead to prolonged bleeding time and subsequent bleeding complications. A single oral dose of clopidogrel at 1500 or 2000 mg/kg was lethal to mice and to rats and at 3000 mg/kg to baboons. Symptoms of acute toxicity were vomiting (in baboons), prostration, difficult breathing, and gastrointestinal hemorrhage in all species. Recommendations About Specific Treatment Based on biological plausibility, platelet transfusion may be appropriate to reverse the pharmacological effects of PLAVIX if quick reversal is required.

DESCRIPTION

PLAVIX (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex. Chemically it is methyl (+)-(S)-α-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1). The empirical formula of clopidogrel bisulfate is C16H16ClNO2S•H2SO4 and its molecular weight is 419.9. The structural formula is as follows: Clopidogrel bisulfate is a white to off-white powder. It is practically insoluble in water at neutral pH but freely soluble at pH 1. It also dissolves freely in methanol, dissolves sparingly in methylene chloride, and is practically insoluble in ethyl ether. It has a specific optical rotation of about +56°. PLAVIX for oral administration is provided as either pink, round, biconvex, debossed, film-coated tablets containing 97.875 mg of clopidogrel bisulfate which is the molar equivalent of 75 mg of clopidogrel base or pink, oblong, debossed film-coated tablets containing 391.5 mg of clopidogrel bisulfate which is the molar equivalent of 300 mg of clopidogrel base. Each tablet contains hydrogenated castor oil, hydroxypropylcellulose, mannitol, microcrystalline cellulose and polyethylene glycol 6000 as inactive ingredients. The pink film coating contains ferric oxide, hypromellose 2910, lactose monohydrate, titanium dioxide and triacetin. The tablets are polished with Carnauba wax. Chemical Structure

CLINICAL STUDIES

The clinical evidence for the efficacy of PLAVIX is derived from four double-blind trials involving 81,090 patients: the CAPRIE study (Clopidogrel vs. Aspirin in Patients at Risk of Ischemic Events), a comparison of PLAVIX to aspirin, and the CURE (Clopidogrel in Unstable Angina to Prevent Recurrent Ischemic Events), the COMMIT/CCS-2 (Clopidogrel and Metoprolol in Myocardial Infarction Trial / Second Chinese Cardiac Study) studies comparing PLAVIX to placebo, both given in combination with aspirin and other standard therapy and CLARITY-TIMI 28 (Clopidogrel as Adjunctive Reperfusion Therapy – Thrombolysis in Myocardial Infarction). Recent Myocardial Infarction (MI), Recent Stroke or Established Peripheral Arterial Disease The CAPRIE trial was a 19,185-patient, 304-center, international, randomized, double-blind, parallel-group study comparing PLAVIX (75 mg daily) to aspirin (325 mg daily). The patients randomized had: 1) recent histories of myocardial infarction (within 35 days); 2) recent histories of ischemic stroke (within 6 months) with at least a week of residual neurological signs; or 3) objectively established peripheral arterial disease. Patients received randomized treatment for an average of 1.6 years (maximum of 3 years). The trial’s primary outcome was the time to first occurrence of new ischemic stroke (fatal or not), new myocardial infarction (fatal or not), or other vascular death. Deaths not easily attributable to nonvascular causes were all classified as vascular. Table 2: Outcome Events in the CAPRIE Primary Analysis Patients PLAVIX 9599 aspirin 9586 IS (fatal or not) 438 (4.6%) 461 (4.8%) MI (fatal or not) 275 (2.9%) 333 (3.5%) Other vascular death 226 (2.4%) 226 (2.4%) Total 939 (9.8%) 1020 (10.6%) As shown in the table, PLAVIX (clopidogrel bisulfate) was associated with a lower incidence of outcome events of every kind. The overall risk reduction (9.8% vs. 10.6%) was 8.7%, P=0.045. Similar results were obtained when all-cause mortality and all-cause strokes were counted instead of vascular mortality and ischemic strokes (risk reduction 6.9%). In patients who survived an on-study stroke or myocardial infarction, the incidence of subsequent events was again lower in the PLAVIX group. The curves showing the overall event rate are shown in Figure 1. The event curves separated early and continued to diverge over the 3-year follow-up period. Figure 1: Fatal or Non-Fatal Vascular Events in the CAPRIE Study Although the statistical significance favoring PLAVIX over aspirin was marginal (P=0.045), and represents the result of a single trial that has not been replicated, the comparator drug, aspirin, is itself effective (vs. placebo) in reducing cardiovascular events in patients with recent myocardial infarction or stroke. Thus, the difference between PLAVIX and placebo, although not measured directly, is substantial. The CAPRIE trial included a population that was randomized on the basis of 3 entry criteria. The efficacy of PLAVIX relative to aspirin was heterogeneous across these randomized subgroups (P=0.043). It is not clear whether this difference is real or a chance occurrence. Although the CAPRIE trial was not designed to evaluate the relative benefit of PLAVIX over aspirin in the individual patient subgroups, the benefit appeared to be strongest in patients who were enrolled because of peripheral vascular disease (especially those who also had a history of myocardial infarction) and weaker in stroke patients. In patients who were enrolled in the trial on the sole basis of a recent myocardial infarction, PLAVIX was not numerically superior to aspirin. In the meta-analyses of studies of aspirin vs. placebo in patients similar to those in CAPRIE, aspirin was associated with a reduced incidence of thrombotic events. There was a suggestion of heterogeneity in these studies too, with the effect strongest in patients with a history of myocardial infarction, weaker in patients with a history of stroke, and not discernible in patients with a history of peripheral vascular disease. With respect to the inferred comparison of PLAVIX to placebo, there is no indication of heterogeneity. Figure Acute Coronary Syndrome The CURE study included 12,562 patients with acute coronary syndrome without ST segment elevation (unstable angina or non-Q-wave myocardial infarction) and presenting within 24 hours of onset of the most recent episode of chest pain or symptoms consistent with ischemia. Patients were required to have either ECG changes compatible with new ischemia (without ST segment elevation) or elevated cardiac enzymes or troponin I or T to at least twice the upper limit of normal. The patient population was largely Caucasian (82%) and included 38% women, and 52% patients ≥65 years of age. Patients were randomized to receive PLAVIX (300 mg loading dose followed by 75 mg/day) or placebo, and were treated for up to one year. Patients also received aspirin (75–325 mg once daily) and other standard therapies such as heparin. The use of GPIIb/IIIa inhibitors was not permitted for three days prior to randomization. The number of patients experiencing the primary outcome (CV death, MI, or stroke) was 582 (9.30%) in the PLAVIX-treated group and 719 (11.41%) in the placebo-treated group, a 20% relative risk reduction (95% CI of 10%–28%; p=0.00009) for the PLAVIX-treated group (see Table 3). At the end of 12 months, the number of patients experiencing the co-primary outcome (CV death, MI, stroke or refractory ischemia) was 1035 (16.54%) in the PLAVIX-treated group and 1187 (18.83%) in the placebo-treated group, a 14% relative risk reduction (95% CI of 6%–21%, p=0.0005) for the PLAVIX-treated group (see Table 3). In the PLAVIX-treated group, each component of the two primary endpoints (CV death, MI, stroke, refractory ischemia) occurred less frequently than in the placebo-treated group. Table 3: Outcome Events in the CURE Primary Analysis Outcome PLAVIX (+ aspirin)Other standard therapies were used as appropriate. Placebo (+ aspirin) Relative Risk Reduction (%) (95% CI) (n=6259) (n=6303) Primary outcome 582 (9.3%) 719 (11.4%) 20% (Cardiovascular death, MI, Stroke) (10.3, 27.9) P=0.00009 Co-primary outcome 1035 (16.5%) 1187 (18.8%) 14% (Cardiovascular death, MI, Stroke, Refractory Ischemia) (6.2, 20.6) P=0.00052 All Individual Outcome Events: CV death 318 (5.1%) 345 (5.5%) 7% (-7.7, 20.6) MI 324 (5.2%) 419 (6.6%) 23% (11.0, 33.4) Stroke 75 (1.2%) 87 (1.4%) 14% (-17.7, 36.6) Refractory ischemia 544 (8.7%) 587 (9.3%) 7% (-4.0, 18.0) The benefits of PLAVIX (clopidogrel bisulfate) were maintained throughout the course of the trial (up to 12 months). Figure 2: Cardiovascular Death, Myocardial Infarction, and Stroke in the CURE Study In CURE, the use of PLAVIX was associated with a lower incidence of CV death, MI or stroke in patient populations with different characteristics, as shown in Figure 3. The benefits associated with PLAVIX were independent of the use of other acute and long-term cardiovascular therapies, including heparin/LMWH (low molecular weight heparin), IV glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, lipid-lowering drugs, beta-blockers, and ACE-inhibitors. The efficacy of PLAVIX was observed independently of the dose of aspirin (75–325 mg once daily). The use of oral anticoagulants, non-study anti-platelet drugs and chronic NSAIDs was not allowed in CURE. Figure 3: Hazard Ratio for Patient Baseline Characteristics and On-Study Concomitant Medications/Interventions for the CURE Study The use of PLAVIX in CURE was associated with a decrease in the use of thrombolytic therapy (71 patients [1.1%] in the PLAVIX group, 126 patients [2.0%] in the placebo group; relative risk reduction of 43%, P=0.0001), and GPIIb/IIIa inhibitors (369 patients [5.9%] in the PLAVIX group, 454 patients [7.2%] in the placebo group, relative risk reduction of 18%, P=0.003). The use of PLAVIX in CURE did not impact the number of patients treated with CABG or PCI (with or without stenting), (2253 patients [36.0%] in the PLAVIX group, 2324 patients [36.9%] in the placebo group; relative risk reduction of 4.0%, P=0.1658). In patients with ST-segment elevation acute myocardial infarction, safety and efficacy of clopidogrel have been evaluated in two randomized, placebo-controlled, double-blind studies, COMMIT- a large outcome study conducted in China – and CLARITY- a supportive study of a surrogate endpoint conducted internationally. The randomized, double-blind, placebo-controlled, 2×2 factorial design COMMIT trial included 45,852 patients presenting within 24 hours of the onset of the symptoms of suspected myocardial infarction with supporting ECG abnormalities (i.e., ST elevation, ST depression or left bundle-branch block). Patients were randomized to receive PLAVIX (75 mg/day) or placebo, in combination with aspirin (162 mg/day), for 28 days or until hospital discharge whichever came first. The co-primary endpoints were death from any cause and the first occurrence of re-infarction, stroke or death. The patient population included 28% women, 58% patients ≥60 years (26% patients ≥70 years) and 55% patients who received thrombolytics, 68% received ace-inhibitors, and only 3% had percutaneous coronary intervention (PCI). As shown in Table 4 and Figures 4 and 5 below, PLAVIX significantly reduced the relative risk of death from any cause by 7% (p = 0.029), and the relative risk of the combination of re-infarction, stroke or death by 9% (p = 0.002). Table 4: Outcome Events in the COMMIT Analysis Event PLAVIX (+ aspirin) (N=22961) Placebo (+ aspirin) (N=22891) Odds ratio (95% CI) p-value Composite endpoint: Death, MI, or Stroke 2121 (9.2%) 2310 (10.1%) 0.91 (0.86, 0.97) 0.002 Death 1726 (7.5%) 1845 (8.1%) 0.93 (0.87, 0.99) 0.029 Non-fatal MINon-fatal MI and non-fatal stroke exclude patients who died (of any cause). 270 (1.2%) 330 (1.4%) 0.81 (0.69, 0.95) 0.011 Non-fatal Stroke 127 (0.6%) 142 (0.6%) 0.89 (0.70, 1.13) 0.33 Figure 4: Cumulative Event Rates for Death in the COMMIT Study Figure 5: Cumulative Event Rates for the Combined Endpoint Re-Infarction, Stroke or Death in the COMMIT Study The effect of PLAVIX did not differ significantly in various pre-specified subgroups as shown in Figure 6. Additionally, the effect was similar in non-prespecified subgroups including those based on infarct location, Killip class or prior MI history (see Figure 7). Such subgroup analyses should be interpreted very cautiously. Figure 6: Effects of Adding PLAVIX to Aspirin on the Combined Primary Endpoint across Baseline and Concomitant Medication Subgroups for the COMMIT Study Figure 7: Effects of Adding PLAVIX to Aspirin in the Non-Prespecified Subgroups in the COMMIT Study The randomized, double-blind, placebo-controlled CLARITY trial included 3,491 patients, 5% U.S., presenting within 12 hours of the onset of a ST elevation myocardial infarction and planned for thrombolytic therapy. Patients were randomized to receive PLAVIX (300-mg loading dose, followed by 75 mg/day) or placebo until angiography, discharge, or Day 8. Patients also received aspirin (150 to 325 mg as a loading dose, followed by 75 to 162 mg/day), a fibrinolytic agent and, when appropriate, heparin for 48 hours. The patients were followed for 30 days. The primary endpoint was the occurrence of the composite of an occluded infarct-related artery (defined as TIMI Flow Grade 0 or 1) on the predischarge angiogram, or death or recurrent myocardial infarction by the time of the start of coronary angiography. The patient population was mostly Caucasian (89.5%) and included 19.7% women and 29.2% patients ≥65 years. A total of 99.7% of patients received fibrinolytics (fibrin specific: 68.7%, non-fibrin specific: 31.1%), 89.5% heparin, 78.7% beta-blockers, 54.7% ACE inhibitors and 63% statins. The number of patients who reached the primary endpoint was 262 (15.0%) in the PLAVIX-treated group and 377 (21.7%) in the placebo group, but most of the events related to the surrogate endpoint of vessel patency. Table 5: Event Rates for the Primary Composite Endpoint in the CLARITY Study Clopidogrel 1752 Placebo 1739 OR 95% CI *The total number of patients with a component event (occluded IRA, death, or recurrent MI) is greater than the number of patients with a composite event because some patients had more than a single type of component event. Number (%) of patients reporting the composite endpoint 262 (15.0%) 377 (21.7%) 0.64 0.53, 0.76 Occluded IRA N (subjects undergoing angiography) 1640 1634 n (%) patients reporting endpoint 192 (11.7%) 301 (18.4%) 0.59 0.48, 0.72 Death n (%) patients reporting endpoint 45 (2.6%) 38 (2.2%) 1.18 0.76, 1.83 Recurrent MI n (%) patients reporting endpoint 44 (2.5%) 62 (3.6%) 0.69 0.47, 1.02 Figure Figure Figure Figure Figure Figure

HOW SUPPLIED

PLAVIX (clopidogrel bisulfate) 75-mg tablets are available as pink, round, biconvex, film-coated tablets debossed with “75” on one side and “1171” on the other. Tablets are provided as follows: NDC 67046-099-30 blister of 30 Storage Store at 25° C (77° F); excursions permitted to 15°–30° C (59°–86° F) [See USP Controlled Room Temperature].

GERIATRIC USE

Geriatric Use Of the total number of subjects in the CAPRIE, CURE and CLARITY controlled clinical studies, approximately 50% of patients treated with PLAVIX were 65 years of age and older, and 15% were 75 years and older. In COMMIT, approximately 58% of the patients treated with PLAVIX were 60 years and older, 26% of whom were 70 years and older. The observed risk of thrombotic events with clopidogrel plus aspirin versus placebo plus aspirin by age category is provided in Figures 3 and 6 for the CURE and COMMIT trials, respectively (see CLINICAL STUDIES ). The observed risk of bleeding events with clopidogrel plus aspirin versus placebo plus aspirin by age category is provided in Tables 6 and 7 for the CURE and COMMIT trials, respectively (see ADVERSE REACTIONS ).

MECHANISM OF ACTION

Mechanism of Action and Pharmacodynamic Properties Clopidogrel is a prodrug, one of whose metabolites is an inhibitor of platelet aggregation. A variety of drugs that inhibit platelet function have been shown to decrease morbid events in people with established cardiovascular atherosclerotic disease as evidenced by stroke or transient ischemic attacks, myocardial infarction, unstable angina or the need for vascular bypass or angioplasty. This indicates that platelets participate in the initiation and/or evolution of these events and that inhibiting platelet function can reduce the event rate. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Because the active metabolite is formed by CYP450 enzymes, some of which are polymorphic or subject to inhibition by other drugs, not all patients will have adequate platelet inhibition. Dose dependent inhibition of platelet aggregation can be seen 2 hours after single oral doses of PLAVIX. Repeated doses of 75 mg PLAVIX per day inhibit ADP-induced platelet aggregation on the first day, and inhibition reaches steady state between Day 3 and Day 7. At steady state, the average inhibition level observed with a dose of 75 mg PLAVIX per day was between 40% and 60%. Platelet aggregation and bleeding time gradually return to baseline values after treatment is discontinued, generally in about 5 days.

INDICATIONS AND USAGE

PLAVIX (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events as follows: Recent MI, Recent Stroke or Established Peripheral Arterial Disease For patients with a history of recent myocardial infarction (MI), recent stroke, or established peripheral arterial disease, PLAVIX has been shown to reduce the rate of a combined endpoint of new ischemic stroke (fatal or not), new MI (fatal or not), and other vascular death. Acute Coronary Syndrome -For patients with non-ST-segment elevation acute coronary syndrome (unstable angina/non-Q-wave MI) including patients who are to be managed medically and those who are to be managed with percutaneous coronary intervention (with or without stent) or CABG, PLAVIX has been shown to decrease the rate of a combined endpoint of cardiovascular death, MI, or stroke as well as the rate of a combined endpoint of cardiovascular death, MI, stroke, or refractory ischemia. -For patients with ST-segment elevation acute myocardial infarction, PLAVIX has been shown to reduce the rate of death from any cause and the rate of a combined endpoint of death, re-infarction or stroke. This benefit is not known to pertain to patients who receive primary angioplasty.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in the pediatric population have not been established.

PREGNANCY

Pregnancy Pregnancy Category B Reproduction studies performed in rats and rabbits at doses up to 500 and 300 mg/kg/day (respectively, 65 and 78 times the recommended daily human dose on a mg/m2 basis), revealed no evidence of impaired fertility or fetotoxicity due to clopidogrel. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of a human response, PLAVIX should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

Nursing Mothers Studies in rats have shown that clopidogrel and/or its metabolites are excreted in the milk. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the nursing woman.

INFORMATION FOR PATIENTS

Information for Patients Patients should be told that it may take them longer than usual to stop bleeding, that they may bruise and/or bleed more easily when they take PLAVIX or PLAVIX combined with aspirin, and that they should report any unusual bleeding to their physician. Patients should inform physicians and dentists that they are taking PLAVIX and/or any other product known to affect bleeding before any surgery is scheduled and before any new drug is taken.

DOSAGE AND ADMINISTRATION

Recent MI, Recent Stroke, or Established Peripheral Arterial Disease The recommended daily dose of PLAVIX is 75 mg once daily. Acute Coronary Syndrome For patients with non-ST-segment elevation acute coronary syndrome (unstable angina/non-Q-wave MI), PLAVIX should be initiated with a single 300-mg loading dose and then continued at 75 mg once daily. Aspirin (75 mg–325 mg once daily) should be initiated and continued in combination with PLAVIX. In CURE, most patients with Acute Coronary Syndrome also received heparin acutely (see CLINICAL STUDIES ). For patients with ST-segment elevation acute myocardial infarction, the recommended dose of PLAVIX is 75 mg once daily, administered in combination with aspirin, with or without thrombolytics. PLAVIX may be initiated with or without a loading dose (300 mg was used in CLARITY; see CLINICAL STUDIES ). Pharmacogenetics CYP2C19 poor metabolizer status is associated with diminished response to clopidogrel. The optimal dose regimen for poor metabolizers has yet to be determined. (See CLINICAL PHARMACOLOGY: Pharmacogenetics .) No dosage adjustment is necessary for elderly patients or patients with renal disease. (See CLINICAL PHARMACOLOGY: Special Populations.)

Mefenamic Acid 250 MG Oral Capsule

Generic Name: MEFENAMIC ACID
Brand Name: Mefenamic Acid
  • Substance Name(s):
  • MEFENAMIC ACID

WARNINGS

Cardiovascular Thrombotic Events Clinical trials of several COX-2 selective and nonselective NSAIDs of up to three years duration have shown an increased risk of serious cardiovascular (CV) thrombotic events, including myocardial infarction (MI) and stroke, which can be fatal. Based on available data, it is unclear that the risk for CV thrombotic events is similar for all NSAIDs. The relative increase in serious CV thrombotic events over baseline conferred by NSAID use appears to be similar in those with and without known CV disease or risk factors for CV disease. However, patients with known CV disease or risk factors had a higher absolute incidence of excess serious CV thrombotic events, due to their increased baseline rate. Some observational studies found that this increased risk of serious CV thrombotic events began as early as the first weeks of treatment. The increase in CV thrombotic risk has been observed most consistently at higher doses. To minimize the potential risk for an adverse CV event in NSAID-treated patients, use the lowest effective dose for the shortest duration possible. Physicians and patients should remain alert for the development of such events throughout the entire treatment course, even in the absence of previous CV symptoms. Patients should be informed about the symptoms of serious CV events and the steps to take if they occur. There is no consistent evidence that the concurrent use of aspirin mitigates the increased risk of serious CV thrombotic events associated with NSAID use. The concurrent use of aspirin and an NSAID, such as mefenamic acid, increases the risk of serious gastrointestinal (GI) events (see ; Gastrointestinal Bleeding, Ulceration, and Perforation ). Status Post Coronary Artery Bypass Graft (CABG) Surgery Two large, controlled, clinical trials of a COX-2 selective NSAID for the treatment of pain in the first 10-14 days following CABG surgery found an increased incidence of myocardial infarction and stroke. NSAIDs are contraindicated in the setting of CABG (see CONTRAINDICATIONS ). Post-MI Patients Observational studies conducted in the Danish National Registry have demonstrated that patients treated with NSAIDs in the post-MI period were at increased risk of reinfarction, CV-related death, and all-cause mortality beginning in the first week of treatment. In this same cohort, the incidence of death in the first year post-MI was 20 per 100 person years in NSAID-treated patients compared to 12 per 100 persons years in non-NSAID exposed patients. Although the absolute rate of death declined somewhat after the first year post-MI, the increased relative risk of death in NSAID users persisted over at least the next four years of follow-up. Avoid the use of mefenamic acid in patients with a recent MI unless the benefits are expected to outweigh the risk of recurrent CV thrombotic events. If mefenamic acid is used in patients with a recent MI, monitor patients for signs of cardiac ischemia. Gastrointestinal Bleeding, Ulceration, and Perforation NSAIDs, including mefenamic acid, cause serious gastrointestinal (GI) adverse events including inflammation, bleeding, ulceration, and perforation of the esophagus, stomach, small intestine, or large intestine, which can be fatal. These serious adverse events can occur at any time, with or without warning symptoms, in patients treated with NSAIDs. Only one in five patients who develop a serious upper GI adverse event on NSAID therapy is symptomatic. Upper GI ulcers, gross bleeding, or perforation caused by NSAIDs occur in approximately 1% of patients treated for 3-6 months, and in about 2-4% of patients treated for one year. However, even short-term NSAID therapy is not without risk. Risk Factors for GI Bleeding, Ulceration, and Perforation Patients with prior history of peptic ulcer disease and/or GI bleeding who used NSAIDs had greater than 10-fold increased risk for developing a GI bleed compared to patients without these risk factors. Other risk factors that increase the risk for GI bleeding in patients treated with NSAIDs include longer duration of NSAID therapy, concomitant use of oral corticosteroids, aspirin, anticoagulants, or selective serotonin reuptake inhibitors (SSRIs); smoking, use of alcohol, older age, and poor general health status. Most postmarketing reports of fatal GI events occurred in elderly or debilitate patients. Additionally, patients with advanced liver disease and/or coagulopathy are at increased risk for GI bleeding. Strategies to Minimize the GI Risks in NSAID-treated Patients Use the lowest effective dosage for the shortest possible duration. Avoid administration of more than one NSAID at a time. Avoid use in patients at higher risk unless benefits are expected to outweigh the increased risk of bleeding. For such patients, as well as those with active GI bleeding, consider alternate therapies other than NSAIDs. Remain alert to signs and symptoms of GI ulceration and bleeding during NSAID therapy. If a serious GI adverse event is suspected, promptly initiate evaluation and treatment, and discontinue mefenamic acid until a serious GI adverse event is ruled out. In the setting of concomitant use of low-dose aspirin for cardiac prophylaxis, monitor patients more closely for evidence of GI bleeding (see PRECAUTIONS; Drug Interactions ). Hepatotoxicity Elevations of ALT or AST (three or more times the upper limit of normal [ULN]) have been reported in approximately 1% of NSAID-treated patients in clinical trials. In addition, rare sometimes fatal, cases of severe hepatic injury, including fulminant hepatitis, liver necrosis, and hepatic failure have been reported. Elevations of ALT or AST (less than three times ULN) may occur in up to 15% of patients treated with NSAIDs including mefenamic acid. Inform patients of the warning signs and symptoms of hepatotoxicity (e.g., nausea, fatigue, lethargy, diarrhea, pruritus, jaundice, right upper quadrant tenderness, and “flu-like” symptoms). If clinical signs and symptoms consistent with liver disease develop, or if systemic manifestations occur (e.g., eosinophilia, rash, etc.), discontinue mefenamic acid immediately, and perform a clinical evaluation of the patient. Hypertension NSAIDs, including mefenamic acid, can lead to new onset of hypertension or worsening of pre-existing hypertension, either of which may contribute to the increased incidence of CV events. Patients taking angiotensin converting enzyme (ACE) inhibitors, thiazides diuretics, or loop diuretics may have impaired response to these therapies when taking NSAIDs (see PRECAUTIONS; Drug Interactions ). Monitor blood pressure (BP) during the initiation of NSAID treatment and throughout the course of therapy. Heart Failure and Edema The Coxib and tradional NSAID Trialists’ Collaboration meta-analysis of randomized controlled trials demonstrated an approximately two-fold increase in hospitalizations for heart failure in COX-2 selective-treated patients and nonselective NSAID-treated patients compared to placebo-treated patients. In a Danish National Registry study of Patients with heart failure, NSAID use increased the risk of MI, hospitalization for heart failure, and death. Additionally, fluid retention and edema have been observed in some patients treated with NSAIDs. Use of mefenamic acid may blunt the CV effects of several therapeutic agents used to treat these medical conditions (e.g., diuretics, ACE inhibitors, or angiotensin receptor blockers [ARBs]) (see PRECAUTIONS; Drug Interactions ). Avoid the use of mefenamic acid in patients with severe heart failure unless the benefits are expected to outweigh the risks of worsening heart failure. If mefenamic acid is used in patients with severe heart failure, monitor patients for signs of worsening heart failure. Renal Toxicity and Hyperkalemia Renal Toxicity Long-term administration of NSAIDs has resulted in renal papillary necrosis and other renal injury. Renal toxicity has also been seen in patients in whom renal prostaglandins have a compensatory role in the maintenance of renal perfusion. In these patients, administration of an NSAID may cause a dose-dependent reduction in prostaglandin formation and, secondarily, in renal blood flow, which may precipitate overt renal decompensation. Patients at greatest risk of this reaction are those with impaired renal function, dehydration, hypovolemia, heart failure, liver dysfunction, those taking diuretics and ACE inhibitors or ARBs, and the elderly. Discontinuation of NSAID therapy is usually followed by recovery to the pretreatment state. No information is available from controlled clinical studies regarding the use of mefenamic acid in patients with advanced renal disease. The renal effects of mefenamic acid may hasten the progression of renal dysfunction in patients with pre-existing renal disease. Correct volume status in dehydrated or hypovolemic patients prior to initiating mefenamic acid. Monitor renal function in patients with renal or hepatic impairment, heart failure, dehydration, or hypovolemia during use of mefenamic acid (see ​ PRECAUTIONS; Drug Interactions ). Avoid the use of mefenamic acid in patients with advanced renal disease unless the benefits are expected to outweigh the risk of worsening renal function. If mefenamic acid is used in patients with advanced renal disease, monitor patients for signs of worsening renal function. Hyperkalemia Increases in serum potassium concentration, including hyperkalemia, have been reported with use of NSAIDs, even in some patients without renal impairment. In patients with normal renal function, these effects have been attributed to a hyporeninemic-hypoaldosteronism state. Anaphylactic Reactions Mefenamic acid has been associated with anaphylactic reactions in patients with and without known hypersensitivity to mefenamic acid and in patients with aspirin-sensitive asthma (see CONTRAINDICATIONS , ; Exacerbation of Asthma Related to Aspirin Sensitivity ). Seek emergency help if anaphylactic reaction occurs. Exacerbation of Asthma Related to Aspirin Sensitivity A subpopulation of patients with asthma may have aspirin-sensitive asthma which may include chronic rhinosinusitis complicated by nasal polyps; severe, potentially fatal bronchospasm; and/or intolerance to aspirin and other NSAIDs. Because cross-reactivity between aspirin and other NSAIDs has been reported in such aspirin-sensitive patients, mefenamic acid is contraindicated in patients with this form of aspirin sensitivity (see CONTRAINDICATIONS ). When mefenamic acid is used in patients with pre-existing asthma (without known aspirin sensitivity), monitor patients for changes in the signs and symptoms of asthma. Serious Skin Reactions NSAIDs, including mefenamic acid, can cause serious skin adverse reactions such as exfoliative dermatitis, Stevens-Johnson Syndrome (SJS), and toxic epidermal necrolysis (TEN), which can be fatal. These serious events may occur without warning. Inform patients about the signs and symptoms of serious skin reactions and to discontinue the use of mefenamic acid at the first appearance of skin rash or any other sign of hypersensitivity. Mefenamic acid is contraindicated in patients with previous serious skin reactions to NSAIDs (see CONTRAINDICATIONS ). Premature Closure of Fetal Ducts Arteriosus Mefenamic acid may cause premature closure of the ductus arteriosus. Avoid use of NSAIDs, including mefenamic acid, in pregnant women starting at 30 weeks of gestation (third trimester) (see PRECAUTIONS; Pregnancy ). Hematological Toxicity Anemia has occurred in NSAID-treated patients. This may be due to occult or gross blood loss, fluid retention, or an incompletely described effect on erythropoiesis. If a patient treated with mefenamic acid has any signs or symptoms of anemia, monitor hemoglobin or hematocrit. NSAIDs, including mefenamic acid, may increase the risk of bleeding events. Co-morbid conditions such as coagulation disorders or concomitant use of warfarin, other anticoagulants, antiplatelet agents (e.g., aspirin), serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) may increase this risk. Monitor these patients for signs of bleeding (see PRECAUTIONS; Drug Interactions ).

DRUG INTERACTIONS

Drug Interactions See Table 2 for clinically significant drug interactions with mefenamic acid. Table 2: Clinically Significant Drug Interactions with mefenamic acid Drugs That Interfere with Hemostasis Clinical Impact: Mefenamic acid and anticoagulants such as warfarin have a synergistic effect on bleeding. The concomitant use of mefenamic acid and anticoagulants have an increased risk of serious bleeding compared to the use of either drug alone. Serotonin release by platelets plays an important role in hemostasis. Case-control and cohort epidemiological studies showed that concomitant use of drugs that interfere with serotonin reuptake and an NSAID may potentiate the risk of bleeding more than an NSAID alone. Intervention: Monitor patients with concomitant use of mefenamic acid with anticoagulants (e.g.,warfarin), antiplatelet agents (e.g., aspirin), selective serotonin reuptake inhibitors (SSRIs), and serotonin norepinephrine reuptake inhibitors (SNRIs) for signs of bleeding (see WARNINGS; Hematologic Toxicity ). Aspirin Clinical Impact: Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone (see WARNINGS; Gastrointestinal Bleeding, Ulceration and Perforation ). Intervention: Concomitant use of mefenamic acid and analgesic doses of aspirin is not generally recommended because of the increased risk of bleeding (see WARNINGS; Hematologic Toxicity ). Mefenamic acid is not a substitute for low dose aspirin for cardiovascular protection. ACE Inhibitors, Angiotensin Receptor Blockers, and Beta-Blockers Clinical Impact: NSAIDs may diminish the antihypertensive effect of angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), or beta-blockers (including propranolol). In patients who are elderly, volume-depleted (including those on diuretic therapy), or have renal impairment, co-administration of an NSAID with ACE inhibitors or ARBs may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Intervention: During concomitant use of mefenamic acid and ACE-inhibitors, ARBs, or beta-blockers, monitor blood pressure to ensure that the desired blood pressure is obtained. During concomitant use of mefenamic acid and ACE-inhibitors or ARBs in patients who are elderly, volume-depleted, or have impaired renal function, monitor for signs of worsening renal function (see WARNINGS; Renal Toxicity and Hyperkalemia ). When these drugs are administered concomitantly, patients should be adequately hydrated. Assess renal function at the beginning of the concomitant treatment and periodically thereafter. Diuretics Clinical Impact: Clinical studies, as well as post-marketing observations, showed that NSAIDs reduced the natriuretic effect of loop diuretics (e.g., furosemide) and thiazide diuretics in some patients. This effect has been attributed to the NSAID inhibition of renal prostaglandin synthesis. Intervention: During concomitant use of mefenamic acid with diuretics, observe patients for signs of worsening renal function, in addition to assuring diuretic efficacy including antihypertensive effects (see WARNINGS; Renal Toxicity and Hyperkalemia ). Digoxin Clinical Impact: The concomitant use of mefenamic acid with digoxin has been reported to increase the serum concentration and prolong the half-life of digoxin. Intervention: During concomitant use of mefenamic acid and digoxin, monitor serum digoxin levels. Lithium Clinical Impact: NSAIDs have produced elevations in plasma lithium levels and reductions in renal lithium clearance. The mean minimum lithium concentration increased 15%, and the renal clearance decreased by approximately 20%. This effect has been attributed to NSAID inhibition of renal prostaglandin synthesis. Intervention: During concomitant use of mefenamic acid and lithium, monitor patients for signs of lithium toxicity. Methotrexate Clinical Impact: Concomitant use of NSAIDs and methotrexate may increase the risk for methotrexate toxicity (e.g., neutropenia, thrombocytopenia, renal dysfunction). Intervention: During concomitant use of mefenamic acid and methotrexate, monitor patients for methotrexate toxicity. Cyclosporine Clinical Impact: Concomitant use of mefenamic acid and cyclosporine may increase cyclosporine’s nephrotoxicity. Intervention: During concomitant use of mefenamic acid and cyclosporine, monitor patients for signs of worsening renal function. NSAIDs and Salicylates Clinical Impact: Concomitant use of mefenamic acid with other NSAIDs or salicylates (e.g., diflunisal, salsalate) increases the risk of GI toxicity, with little or no increase in efficacy (see WARNINGS; Gastrointestinal Bleeding, Ulceration and Perforation ). Intervention: The concomitant use of mefenamic acid with other NSAIDs or salicylates is not recommended. Pemetrexed Clinical Impact: Concomitant use of mefenamic acid and pemetrexed may increase the risk of pemetrexed-associated myelosuppression, renal, and GI toxicity (see the pemetrexed prescribing information). Intervention: During concomitant use of mefenamic acid and pemetrexed, in patients with renal impairment whose creatinine clearance ranges from 45 to 79 mL/min, monitor for myelosuppression, renal and GI toxicity. NSAIDs with short elimination half-lives (e.g., diclofenac, indomethacin) should be avoided for a period of two days before, the day of, and two days following administration of pemetrexed. In the absence of data regarding potential interaction between pemetrexed and NSAIDs with longer half-lives (e.g., meloxicam, nabumetone), patients taking these NSAIDs should interrupt dosing for at least five days before, the day of, and two days following pemetrexed administration. Antacid Clinical Impact: In a single dose study (n=6), ingestion of an antacid containing 1.7-gram of magnesium hydroxide with 500-mg of mefenamic acid increased the Cmax and AUC of mefenamic acid by 125% and 36%, respectively. Intervention: Concomitant use of mefenamic acid and antacids is not generally recommended because of possible increased adverse events.

OVERDOSAGE

Symptoms following acute NSAID overdosages have been typically limited to lethargy, drowsiness, nausea, vomiting, and epigastric pain, which have been generally reversible with supportive care. Gastrointestinal bleeding has occurred. Hypertension, acute renal failure, respiratory depression and coma have occurred, but were rare (see WARNINGS; Cardiovascular Thrombotic Events , Gastrointestinal Bleeding, Ulceration, and Perforation, Hypertension, Renal Toxicity and Hyperkalemia ). Manage patients with symptomatic and supportive care following an NSAID overdosage. There are no specific antidotes. Consider emesis and/or activated charcoal (60 to 100 grams in adults, 1 to 2 grams per kg of body weight in pediatric patients) and/or osmotic cathartic in symptomatic patients seen within four hours of ingestion or in patients with a large overdose (5 to 10 times the recommended dosage). Forced diuresis, alkalinization of urine, hemodialysis, or hemoperfusion may not be useful due to high protein binding. For additional information about overdosage treatment, contact a poison control center (1-800-222-1222).

DESCRIPTION

Mefenamic Acid Capsules, USP are a member of the fenamate group of nonsteroidal anti-inflammatory drugs (NSAIDs). Each blue-banded, ivory capsule contains 250 mg of mefenamic acid for oral administration. Mefenamic acid is a white to greyish-white, odorless, microcrystalline powder with a melting point of 230°-231°C and water solubility of 0.004% at pH 7.1. The chemical name is N-2,3-xylylanthranilic acid. The molecular weight is 241.29. Its molecular formula is C15H15NO2 and the structural formula of mefenamic acid is: Each capsule also contains lactose, NF. The capsule shell and/or band contains citric acid, USP; D&C yellow No. 10; FD&C blue No. 1; FD&C red No. 3; FD&C yellow No. 6; gelatin, NF; glycerol monooleate; silicon dioxide, NF; sodium benzoate, NF; sodium lauryl sulfate, NF; titanium dioxide, USP. The structrual formula from mefenamic acid.

HOW SUPPLIED

Mefenamic acid is available as 250 mg blue-banded, ivory capsules, imprinted with “ FHPC 400″ and “PONSTEL®”. Bottles of 30 NDC 66993-070-30 Dispense in a tight container as defined in the USP. Image of capsule imprint Storage Store at room temperature 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Distributed by: Prasco Laboratories Mason, OH 45040 USA Manufactured by: Halo Pharmaceutical Inc Whippany, NJ 07981 Revised 06/2016 For inquiries call 1-800-849-9707

GERIATRIC USE

Geriatric Use Elderly patients, compared to younger patients, are at greater risk for NSAID-associated serious cardiovascular, gastrointestinal, and/or renal adverse reactions. If the anticipated benefit for the elderly patient outweighs these potential risks, start dosing at the low end of the dosing range, and monitor patients for adverse effects (see WARNINGS; Cardiovascular Thrombotic Events , Gastrointestinal Bleeding, Ulceration, and Perforation, Hepatotoxicity, Renal Toxicity and Hyperkalemia, PRECAUTIONS; Laboratory Monitoring ). Clinical studies of mefenamic acid did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. As with any NSAIDs, caution should be exercised in treating the elderly (65 years and older). This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see CLINICAL PHARMACOLOGY , A DVERSE REACTIONS ).

MECHANISM OF ACTION

Mechanism of Action Mefenamic acid has analgesic, anti-inflammatory, and antipyretic properties. The mechanism of action of Mefenamic acid, like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Mefenamic acid is a potent inhibitor of prostaglandin synthesis in vitro. Mefenamic acid concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because mefenamic acid is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues.

INDICATIONS AND USAGE

Carefully consider the potential benefits and risks of mefenamic acid and other treatment options before deciding to use mefenamic acid. Use the lowest effective dose for the shortest duration consistent with individual patient treatment goals (see WARNINGS ; G astrointestinal Bleeding, Ulceration, and Perforation ). Mefenamic acid is indicated: For relief of mild to moderate pain in patients ≥ 14 years of age, when therapy will not exceed one week (7 days). For treatment of primary dysmenorrhea.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients below the age of 14 have not been established.

PREGNANCY

Pregnancy Risk Summary Use of NSAIDs, including mefenamic acid, during the third trimester of pregnancy increases the risk of premature closure of the fetal ductus arterious. Avoid use of NSAIDs, including mefenamic acid, in pregnant women starting at 30 weeks of gestation (third trimester) (see WARNINGS ; Premature Closure of Fetal Ductus Arteriosus ). There are no adequate and well-controlled studies of mefenamic acid in pregnant women. Data from observational studies regarding potential embryofetal risks of NSAID use in women in the first or second trimesters of pregnancy are inconclusive. In the general U.S. population, all clinically recognized pregnancies, regardless of drug exposure have a background rate of 2-4% for major malformations, and 15-20% for pregnancy loss. In animal reproduction studies in rats and rabbits when dosed throughout gestation, there were no evidence of developmental effects at a dose of mefenamic acid 1.6-times and 0.6-times the maximum recommended human dose (MRHD), respectively. Dietary administration of mefenamic acid at a dose 1.2 -times the MRHD from gestation day (GD) 15 to weaning or at a dose equivalent to the MRHD from 15 days prior to mating through to weaning resulted in greater incidences of perinatal death [see Data]. Based on animal data, prostaglandins have been shown to have an important role in endometrial vascular permeability, blastocyst implantation, and decidualization. In animal studies, administration of prostaglandin synthesis inhibitors such as mefenamic acid, resulted in increased pre- and post-implantation loss. Data Animal data Pregnant rats administered 249 mg/kg of mefenamic acid (1.6-times the MRHD of 1500 mg/day on a mg/m2 basis) from GD 6 to GD 15 did not result in any clear adverse developmental effects. Pregnant rabbits given 50 mg/kg of mefenamic acid (0.6-times the MRHD on a mg/m2 basis) from GD 6 to GD 18 did not result in any clear treatment-related adverse developmental effects. However, incidences of resorption were greater in treated compared to control animals. This dose was associated with some evidence of maternal toxicity with 4 of 18 rabbits exhibiting diarrhea and weight loss. Dietary administration of mefenamic acid at a dose of 181 mg/kg (1.2-times the MRHD on a mg/m2 basis) to pregnant rats from GD 15 to weaning resulted in an increased incidence of perinatal death. Treated dams were associated with decreased weight gain and delayed parturition. In another study, dietary administration of mefenamic acid at a dose of 155 mg/kg (equivalent to the MRHD of 1500 mg/day on a mg/m2 basis) to females 15 days prior to mating through to weaning resulted in smaller average litter sizes and higher incidence of perinatal death.

NUSRING MOTHERS

Nursing Mothers Trace amounts of mefenamic acid may be present in breast milk and transmitted to the nursing infant. Because of the potential for serious adverse reactions in nursing infants from mefenamic acid, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

INFORMATION FOR PATIENTS

Information for Patients Advise the patient to read the FDA-approved patient labeling (Medication Guide) that accompanies each prescription dispensed. Inform patients, families and their caregivers of the following information before initiating therapy with mefenamic acid and periodically during the course of ongoing therapy. Cardiovascular Thrombotic Events Advise patients to be alert for the symptoms of cardiovascular thrombotic events, including chest pain, shortness of breath, weakness, or slurring of speech, and to report any of these symptoms to their healthcare provider immediately (see WARNINGS; Cardiovascular Thrombotic Events ). Gastrointestinal Bleeding, Ulceration, and Perforation Advise patients to report symptoms of ulcerations and bleeding, including epigastric pain, dyspepsia, melena, and hematemesis to their healthcare provider. In the setting of concomitant use of low-dose aspirin for cardiac prophylaxis, inform patients of the increased risk for the signs and symptoms of GI bleeding (see WARNINGS; Gastrointestinal Bleeding, Ulceration, and Perforation ). Hepatotoxicity Inform patients of the warning signs and symptoms of hepatotoxicity (e.g., nausea, fatigue, lethargy, pruritus, diarrhea, jaundice, right upper quadrant tenderness, and “flu-like” symptoms). If these occur, instruct patients to stop mefenamic acid and seek immediate medical therapy (see WARNINGS; Hepatotoxicity ). Heart Failure and Edema Advise patients to be alert for the symptoms of congestive heart failure including shortness of breath, unexplained weight gain, or edema and to contact their healthcare provider if such symptoms occur (see WARNINGS; Heart Failure and Edema ). Anaphylactic Reactions Inform patients of the signs of the anaphylactic reaction (e.g., difficulty breathing, swelling of the face or throat). Instruct patients to seek immediate emergency help if these occur (see CONTRAINDICATIONS , WARNINGS; Anaphylactic Reactions ). Serious Skin Reactions Advise patients to stop mefenamic acid immediately if they develop any type of rash and contact their healthcare provider as soon as possible (see WARNINGS; Serious Skin Reactions ). Female Fertility Advise female or reproductive potential who desire pregnancy that NSAIDs, including mefenamic acid, maybe associated with reversible delay in ovulation. (see PRECAUTIONS; Carcinogenesis, Mutagenesis, Impairment of Fertility ). Fetal Toxicity Inform pregnant women to avoid use of mefenamic acid and other NSAIDs starting at 30 weeks gestation because of the risk of the premature closure of the fetal ductus arteriosus (see WARNINGS; Premature Closure of Fetal Ductus Arteriosus ). Avoid Concomitant Use of NSAIDs Inform patients that the concomitant use of mefenamic acid with other NSAIDs or salicylates (e.g., diflunisal, salsalate) is not recommended due to the increased risk of gastrointestinal toxicity, and little or no increase in efficacy (see WARNINGS; Gastrointestinal Bleeding, Ulceration and Perforation , PRECAUTIONS; Drug Interactions ). Alert patients that NSAIDs may be present in “over the counter” medications for treatment of colds, fever, or insomnia. Use of NSAIDs and Low-Dose Aspirin Inform patients not to use low-dose aspirin concomitantly with mefenamic acid until they talk to their healthcare provider (see PRECAUTIONS; Drug Interactions ).

DOSAGE AND ADMINISTRATION

Carefully consider the potential benefits and risks of mefenamic acid and other treatment options before deciding to use mefenamic acid. Use the lowest effective dose for the shortest duration consistent with individual patient treatment goals (see WARNINGS ; Gastrointestinal Bleeding, Ulceration, and Perforation) . After observing the response to initial therapy with mefenamic acid, the dose and frequency should be adjusted to suit an individual patient’s needs. For the relief of acute pain in adults and adolescents ≥14 years of age, the recommended dose is 500 mg as an initial dose followed by 250 mg every 6 hours as needed, usually not to exceed one week. For the treatment of primary dysmenorrhea, the recommended dose is 500 mg as an initial dose followed by 250 mg every 6 hours, given orally, starting with the onset of bleeding and associated symptoms. Clinical studies indicate that effective treatment can be initiated with the start of menses and should not be necessary for more than 2 to 3 days.

Metronidazole 500 MG Oral Tablet

Generic Name: METRONIDAZOLE
Brand Name: Metronidazole
  • Substance Name(s):
  • METRONIDAZOLE

WARNINGS

Central and Peripheral Nervous System Effects Encephalopathy and peripheral neuropathy: Cases of encephalopathy and peripheral neuropathy (including optic neuropathy) have been reported with metronidazole. Encephalopathy has been reported in association with cerebellar toxicity characterized by ataxia, dizziness, and dysarthria. CNS lesions seen on MRI have been described in reports of encephalopathy. CNS symptoms are generally reversible within days to weeks upon discontinuation of metronidazole. CNS lesions seen on MRI have also been described as reversible. Peripheral neuropathy, mainly of sensory type has been reported and is characterized by numbness or paresthesia of an extremity. Convulsive seizures have been reported in patients treated with metronidazole. Aseptic meningitis: Cases of aseptic meningitis have been reported with metronidazole. Symptoms can occur within hours of dose administration and generally resolve after metronidazole therapy is discontinued. The appearance of abnormal neurologic signs and symptoms demands the prompt evaluation of the benefit/risk ratio of the continuation of therapy (see ADVERSE REACTIONS ).

DRUG INTERACTIONS

Drug Interactions Disulfiram Psychotic reactions have been reported in alcoholic patients who are using metronidazole and disulfiram concurrently. Metronidazole should not be given to patients who have taken disulfiram within the last two weeks (see CONTRAINDICATIONS ). Alcoholic Beverages Abdominal cramps, nausea, vomiting, headaches, and flushing may occur if alcoholic beverages or products containing propylene glycol are consumed during or following metronidazole therapy (see CONTRAINDICATIONS ). Warfarin and other Oral Anticoagulants Metronidazole has been reported to potentiate the anticoagulant effect of warfarin and other oral coumarin anticoagulants, resulting in a prolongation of prothrombin time. When metronidazole tablets are prescribed for patients on this type of anticoagulant therapy, prothrombin time and INR should be carefully monitored. L ithium In patients stabilized on relatively high doses of lithium, short-term metronidazole therapy has been associated with elevation of serum lithium and, in a few cases, signs of lithium toxicity. Serum lithium and serum creatinine levels should be obtained several days after beginning metronidazole to detect any increase that may precede clinical symptoms of lithium intoxication. Bu sulfan Metronidazole has been reported to increase plasma concentrations of busulfan, which can result in an increased risk for serious busulfan toxicity. Metronidazole should not be administered concomitantly with busulfan unless the benefit outweighs the risk. If no therapeutic alternatives to metronidazole are available, and concomitant administration with busulfan is medically needed, frequent monitoring of busulfan plasma concentration should be performed and the busulfan dose should be adjusted accordingly. Drugs that Inhibit CYP450 Enzymes The simultaneous administration of drugs that decrease microsomal liver enzyme activity, such as cimetidine, may prolong the half-life and decrease plasma clearance of metronidazole. Drugs that Induce CYP450 Enzymes The simultaneous administration of drugs that induce microsomal liver enzymes, such as phenytoin or phenobarbital, may accelerate the elimination of metronidazole, resulting in reduced plasma levels; impaired clearance of phenytoin has also been reported.

OVERDOSAGE

Single oral doses of metronidazole, up to 15 g, have been reported in suicide attempts and accidental overdoses. Symptoms reported include nausea, vomiting, and ataxia. Oral metronidazole has been studied as a radiation sensitizer in the treatment of malignant tumors. Neurotoxic effects, including seizures and peripheral neuropathy, have been reported after 5 to 7 days of doses of 6 to 10.4 g every other day. Treatment of Overdosage: There is no specific antidote for metronidazole overdose; therefore, management of the patient should consist of symptomatic and supportive therapy.

DESCRIPTION

Metronidazole tablets, USP, 250 mg or 500 mg is an oral formulation of the synthetic nitroimidazole antimicrobial, 2-methyl-5-nitro-1H-imidazole-1-ethanol, which has the following structural formula: Metronidazole 250 mg and 500 mg tablets, USP, for oral administration, contain the inactive ingredients: colloidal silicon dioxide, hydroxypropyl cellulose, lactose (anhydrous), microcrystalline cellulose, sodium starch glycolate, and stearic acid. Chemical Structure

HOW SUPPLIED

Metronidazole tablets, USP, 250 mg are available as white, round, convex tablets debossed with “3969” on one side and “WPI” on the other side and are packaged as follows: NDC 50268-538-15 (10 tablets per card, 5 cards per carton). Metronidazole tablets, USP, 500 mg are available as white, oblong tablets, debossed with “3970” on one side and “WPI” on the other side and are packaged as follows: NDC 50268-539-15 (10 tablets per card, 5 cards per carton). Dispensed in Unit Dose Package. For Institutional Use Only. Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

GERIATRIC USE

Geriatric Use In elderly geriatric patients, monitoring for metronidazole associated adverse events is recommended (see CLINICAL PHARMACOLOGY , PRECAUTIONS ). Decreased liver function in geriatric patients can result in increased concentrations of metronidazole that may necessitate adjustment of metronidazole dosage (see DOSAGE AND ADMINISTRATION ).

MECHANISM OF ACTION

Mechanism of Action Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unclear. Drug Resistance A potential for development of resistance exists against metronidazole. Resistance may be due to multiple mechanisms that include decreased uptake of the drug, altered reduction efficiency, overexpression of the efflux pumps, inactivation of the drug, and/or increased DNA damage repair. Metronidazole does not possess any clinically relevant activity against facultative anaerobes or obligate aerobes. Activity In Vitro and in Clinical Infections Metronidazole has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section. G r a m- p ositive anaerobes C lostridium species Eubacterium species e Peptococcus species Peptostreptococcus species G r a m- n e gative anaerobes Bacteroides fragilis group (B. fragilis, B. distasonis, B. ovatus, B. thetaiotaomicron, B.vulgatus) Fusobacterium species P r o t ozoal parasites Entamoeba histolytica T richomonas vaginalis The following in vitro data are available, but their clinical significance is unknown: Metronidazole exhibits in vitro minimal inhibitory concentrations (MIC’s) of 8 mcg/mL or less against most (greater than or equal to 90%) isolates of the following bacteria; however, the safety and effectiveness of metronidazole in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials. G r a m- n e gative anaerobes Bacteroides fragilis group (B. caccae, B. uniformis) Prevotella species (P. bivia, P. buccae, P. disiens) Su sceptibility Tests: When available, the clinical microbiology laboratory should provide results of in vitro susceptibility test results for antimicrobial drug products used in resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial or community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

INDICATIONS AND USAGE

Symptomatic Trichomoniasis Metronidazole tablets, USP are indicated for the treatment of T. vaginalis infection in females and males when the presence of the trichomonad has been confirmed by appropriate laboratory procedures (wet smears and/or cultures). Asymptomatic Trichomoniasis Metronidazole tablets, USP are indicated in the treatment of asymptomatic T. vaginalis infection in females when the organism is associated with endocervicitis, cervicitis, or cervical erosion. Since there is evidence that presence of the trichomonad can interfere with accurate assessment of abnormal cytological smears, additional smears should be performed after eradication of the parasite. Treatment of Asymptomatic Sexual Partners T. vaginalis infection is a venereal disease. Therefore, asymptomatic sexual partners of treated patients should be treated simultaneously if the organism has been found to be present, in order to prevent reinfection of the partner. The decision as to whether to treat an asymptomatic male partner who has a negative culture or one for whom no culture has been attempted is an individual one. In making this decision, it should be noted that there is evidence that a woman may become reinfected if her sexual partner is not treated. Also, since there can be considerable difficulty in isolating the organism from the asymptomatic male carrier, negative smears and cultures cannot be relied upon in this regard. In any event, the sexual partner should be treated with metronidazole tablets, USP in cases of reinfection. Amebiasis Metronidazole tablets, USP are indicated in the treatment of acute intestinal amebiasis (amebic dysentery) and amebic liver abscess. In amebic liver abscess, metronidazole tablet therapy does not obviate the need for aspiration or drainage of pus. Anaerobic Bacterial Infections Metronidazole tablets USP are indicated in the treatment of serious infections caused by susceptible anaerobic bacteria. Indicated surgical procedures should be performed in conjunction with metronidazole tablet therapy. In a mixed aerobic and anaerobic infection, antimicrobials appropriate for the treatment of the aerobic infection should be used in addition to metronidazole tablets, USP. INTRA-ABDOMINAL INFECTIONS, including peritonitis, intra-abdominal abscess, and liver abscess, caused by Bacteroides species including the B. fragilis group (B. fragilis, B. distasonis, B. ovatus, B. thetaiotaomicron, B. vulgatus), Clostridium species, Eubacterium species, Peptococcus species, and Peptostreptococcus species. SKIN AND SKIN STRUCTURE INFECTIONS caused by Bacteroides species including the B. fragilis group, Clostridium species, Peptococcus species, Peptostreptococcus species, and Fusobacterium species. GYNECOLOGIC INFECTIONS, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection, caused by Bacteroides species including the B. fragilis group, Clostridium species, Peptococcus species, Peptostreptococcus species, and Fusobacterium species. BACTERIAL SEPTICEMIA caused by Bacteroides species including the B. fragilis group and Clostridium species. BONE AND JOINT INFECTIONS, (as adjunctive therapy), caused by Bacteroides species including the B. fragilis group. CENTRAL NERVOUS SYSTEM (CNS) INFECTIONS, including meningitis and brain abscess, caused by Bacteroides species including the B. fragilis group. LOWER RESPIRATORY TRACT INFECTIONS, including pneumonia, empyema, and lung abscess, caused by Bacteroides species including the B. fragilis group. ENDOCARDITIS caused by Bacteroides species including the B. fragilis group. To reduce the development of drug-resistant bacteria and maintain the effectiveness of metronidazole tablets, USP and other antibacterial drugs, metronidazole tablets, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients have not been established, except for the treatment of amebiasis.

PREGNANCY

Pregnancy: Teratogenic Effects: Pregnancy Category B There are no adequate and well controlled studies of metronidazole in pregnant women. There are published data from case-control studies, cohort studies, and 2 meta-analyses that include more than 5000 pregnant women who used metronidazole during pregnancy. Many studies included first trimester exposures. One study showed an increased risk of cleft lip, with or without cleft palate, in infants exposed to metronidazole in-utero; however, these findings were not confirmed. In addition, more than ten randomized placebo-controlled clinical trials enrolled more than 5000 pregnant women to assess the use of antibiotic treatment (including metronidazole) for bacterial vaginosis on the incidence of preterm delivery. Most studies did not show an increased risk for congenital anomalies or other adverse fetal outcomes following metronidazole exposure during pregnancy. Three studies conducted to assess the risk of infant cancer following metronidazole exposure during pregnancy did not show an increased risk; however, the ability of these studies to detect such a signal was limited. Metronidazole crosses the placental barrier and its effects on the human fetal organogenesis are not known. Reproduction studies have been performed in rats, rabbits, and mice at doses similar to the maximum recommended human dose based on body surface area comparisons. There was no evidence of harm to the fetus due to metronidazole.

NUSRING MOTHERS

Nursing Mothers Metronidazole is present in human milk at concentrations similar to maternal serum levels, and infant serum levels can be close to or comparable to infant therapeutic levels. Because of the potential for tumorigenicity shown for metronidazole in mouse and rat studies, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. Alternatively, a nursing mother may choose to pump and discard human milk for the duration of metronidazole therapy, and for 24 hours after therapy ends and feed her infant stored human milk or formula.

BOXED WARNING

WARNING Metronidazole has been shown to be carcinogenic in mice and rats (see PRECAUTIONS ). Unnecessary use of the drug should be avoided. Its use should be reserved for the conditions described in the INDICATIONS AND USAGE section below.

DOSAGE AND ADMINISTRATION

Trichomoniasis In the Female One-day treatment − two grams of metronidazole tablets, given either as a single dose or in two divided doses of one gram each, given in the same day. Seven-day course of treatment − 250 mg three times daily for seven consecutive days. There is some indication from controlled comparative studies that cure rates as determined by vaginal smears and signs and symptoms, may be higher after a seven-day course of treatment than after a one-day treatment regimen. The dosage regimen should be individualized. Single-dose treatment can assure compliance, especially if administered under supervision, in those patients who cannot be relied on to continue the seven-day regimen. A seven-day course of treatment may minimize reinfection by protecting the patient long enough for the sexual contacts to obtain appropriate treatment. Further, some patients may tolerate one treatment regimen better than the other. Pregnant patients should not be treated during the first trimester (see CONTRAINDICATIONS ). In pregnant patients for whom alternative treatment has been inadequate, the one-day course of therapy should not be used, as it results in higher serum levels which can reach the fetal circulation (see PRECAUTIONS, Pregnancy). When repeat courses of the drug are required, it is recommended that an interval of four to six weeks elapse between courses and that the presence of the trichomonad be reconfirmed by appropriate laboratory measures. Total and differential leukocyte counts should be made before and after re-treatment. In the Male Treatment should be individualized as it is for the female. Amebiasis Adults For acute intestinal amebiasis (acute amebic dysentery): 750 mg orally three times daily for 5 to 10 days. For amebic liver abscess: 500 mg or 750 mg orally three times daily for 5 to 10 days. Pediatric patients 35 to 50 mg/kg/24 hours, divided into three doses, orally for 10 days. Anaerobic Bacterial Infections In the treatment of most serious anaerobic infections, intravenous metronidazole is usually administered initially. The usual adult oral dosage is 7.5 mg/kg every six hours (approx. 500 mg for a 70 kg adult). A maximum of 4 g should not be exceeded during a 24-hour period. The usual duration of therapy is 7 to 10 days; however, infections of the bone and joint, lower respiratory tract, and endocardium may require longer treatment. Dosage Adjustments P atients with Severe Hepatic Impairment For patients with severe hepatic impairment (Child-Pugh C), the dose of metronidazole should be reduced by 50% (see CLINICAL PHARMACOLOGY and PRECAUTIONS ). P atients Undergoing Hemodialysis: Hemodialysis removes significant amounts of metronidazole and its metabolites from systemic circulation. The clearance of metronidazole will depend on the type of dialysis membrane used, the duration of the dialysis session, and other factors. If the administration of metronidazole cannot be separated from the hemodialysis session, supplementation of metronidazole dosage following the hemodialysis session should be considered, depending on the patient’s clinical situation (see CLINICAL PHARMACOLOGY ).

Augmentin XR 12 HR 1000 MG Extended Release Oral Tablet

Generic Name: AMOXICILLIN AND CLAVULANATE POTASSIUM
Brand Name: AugmentinXR
  • Substance Name(s):
  • CLAVULANATE POTASSIUM
  • AMOXICILLIN

WARNINGS

SERIOUS AND OCCASIONALLY FATAL HYPERSENSITIVITY (ANAPHYLACTIC) REACTIONS HAVE BEEN REPORTED IN PATIENTS ON PENICILLIN THERAPY. THESE REACTIONS ARE MORE LIKELY TO OCCUR IN INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY AND/OR A HISTORY OF SENSITIVITY TO MULTIPLE ALLERGENS. THERE HAVE BEEN REPORTS OF INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY WHO HAVE EXPERIENCED SEVERE REACTIONS WHEN TREATED WITH CEPHALOSPORINS. BEFORE INITIATING THERAPY WITH AUGMENTIN XR, CAREFUL INQUIRY SHOULD BE MADE CONCERNING PREVIOUS HYPERSENSITIVITY REACTIONS TO PENICILLINS, CEPHALOSPORINS, OR OTHER ALLERGENS. IF AN ALLERGIC REACTION OCCURS, AUGMENTIN XR SHOULD BE DISCONTINUED AND THE APPROPRIATE THERAPY INSTITUTED. SERIOUS ANAPHYLACTIC REACTIONS REQUIRE IMMEDIATE EMERGENCY TREATMENT WITH EPINEPHRINE. OXYGEN, INTRAVENOUS STEROIDS, AND AIRWAY MANAGEMENT, INCLUDING INTUBATION, SHOULD ALSO BE ADMINISTERED AS INDICATED. Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including AUGMENTIN XR, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. AUGMENTIN XR should be used with caution in patients with evidence of hepatic dysfunction. Hepatic toxicity associated with the use of amoxicillin/clavulanate potassium is usually reversible. On rare occasions, deaths have been reported (less than 1 death reported per estimated 4 million prescriptions worldwide). These have generally been cases associated with serious underlying diseases or concomitant medications (see CONTRAINDICATIONS and ADVERSE REACTIONS—Liver).

OVERDOSAGE

Following overdosage, patients have experienced primarily gastrointestinal symptoms including stomach and abdominal pain, vomiting, and diarrhea. Rash, hyperactivity, or drowsiness have also been observed in a small number of patients. In the case of overdosage, discontinue AUGMENTIN XR, treat symptomatically, and institute supportive measures as required. If the overdosage is very recent and there is no contraindication, an attempt at emesis or other means of removal of drug from the stomach may be performed. A prospective study of 51 pediatric patients at a poison control center suggested that overdosages of less than 250 mg/kg of amoxicillin are not associated with significant clinical symptoms and do not require gastric emptying.5 Interstitial nephritis resulting in oliguric renal failure has been reported in a small number of patients after overdosage with amoxicillin. Crystalluria, in some cases leading to renal failure, has also been reported after amoxicillin overdosage in adult and pediatric patients. In case of overdosage, adequate fluid intake and diuresis should be maintained to reduce the risk of amoxicillin crystalluria. Renal impairment appears to be reversible with cessation of drug administration. High blood levels may occur more readily in patients with impaired renal function because of decreased renal clearance of both amoxicillin and clavulanate. Both amoxicillin and clavulanate are removed from the circulation by hemodialysis (see DOSAGE AND ADMINISTRATION).

DESCRIPTION

AUGMENTIN XR is an oral antibacterial combination consisting of the semisynthetic antibiotic amoxicillin (present as amoxicillin trihydrate and amoxicillin sodium) and the β-lactamase inhibitor clavulanate potassium (the potassium salt of clavulanic acid). Amoxicillin is an analog of ampicillin, derived from the basic penicillin nucleus 6-aminopenicillanic acid. The amoxicillin trihydrate molecular formula is C16H19N3O5S•3H2O, and the molecular weight is 419.45. Chemically, amoxicillin trihydrate is (2S,5R ,6R)-6-[(R )-(-)-2-Amino-2-(p-hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate and may be represented structurally as: The amoxicillin sodium molecular formula is C16H18N3NaO5S, and the molecular weight is 387.39. Chemically, amoxicillin sodium is [2S-[2α,5α,6β(S *)]]-6-[[Amino(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid monosodium salt and may be represented structurally as: Clavulanic acid is produced by the fermentation of Streptomyces clavuligerus. It is a β-lactam structurally related to the penicillins and possesses the ability to inactivate a wide variety of β-lactamases by blocking the active sites of these enzymes. Clavulanic acid is particularly active against the clinically important plasmid-mediated β-lactamases frequently responsible for transferred drug resistance to penicillins and cephalosporins. The clavulanate potassium molecular formula is C8H8KNO5, and the molecular weight is 237.25. Chemically, clavulanate potassium is potassium (Z)-(2R ,5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]-heptane-2-carboxylate, and may be represented structurally as: Inactive IngredientsCitric acid, colloidal silicon dioxide, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, titanium dioxide, and xanthan gum. Each tablet of AUGMENTIN XR contains 12.6 mg (0.32 mEq) of potassium and 29.3 mg (1.27 mEq) of sodium. image of chemical structure 1 image of chemical structure 2 image of chemical structure 3

CLINICAL STUDIES

Acute Bacterial SinusitisAdults with a diagnosis of acute bacterial sinusitis (ABS) were evaluated in 3 clinical studies. In one study, 363 patients were randomized to receive either AUGMENTIN XR 2,000 mg/125 mg orally every 12 hours or levofloxacin 500 mg orally daily for 10 days in a double-blind, multicenter, prospective trial. These patients were clinically and radiologically evaluated at the test of cure (day 17-28) visit. The combined clinical and radiological responses were 83.7% for AUGMENTIN XR and 84.3% for levofloxacin at the test of cure visit in clinically evaluable patients (95% CI for the treatment difference = -9.4, 8.3). The clinical response rates at the test of cure were 87.0% and 88.6%, respectively. The other 2 trials were non-comparative, multicenter studies designed to assess the bacteriological and clinical efficacy of AUGMENTIN XR (2,000 mg/125 mg orally every 12 hours for 10 days) in the treatment of 2288 patients with ABS. Evaluation timepoints were the same as in the prior study. Patients underwent maxillary sinus puncture for culture prior to receiving study medication. At test of cure, the clinical success rates were 87.5% and 86.6% (intention-to-treat) and 92.5% and 92.1% (per protocol populations). Patients with acute bacterial sinusitis due to S. pneumoniae with reduced susceptibility to penicillin were accrued through enrollment in these 2 open-label non-comparative clinical trials. Microbiologic eradication rates for key pathogens in these studies are shown in the following table: Clinical Outcome for ABS Penicillin MICs of S. pneumoniae Isolates Intent-To-Treat Clinically Evaluable n/Na % 95% CIb n/Na % 95% CIb All S. pneumoniae 344/370 93.0 — 318/326 97.5 — MIC ≥ 2.0 mcg/mLc 35/36 97.2 85.5, 99.9 30/31 95.8 83.3, 99.9 MIC = 2.0 mcg/mL 23/24 95.8 78.9, 99.9 19/20 95.0 75.1, 99.9 MIC ≥ 4.0 mcg/mLd 12/12 100 73.5, 100 11/11 100 71.5, 100 H. influenzae 265/305 86.9 — 242/259 93.4 — M. catarrhalis 94/105 89.5 — 86/90 95.6 — a n/N = patients with pathogen eradicated or presumed eradicated/total number of patients. b Confidence limits calculated using exact probabilities. c S. pneumoniae strains with penicillin MICs of ≥ 2 mcg/mL are considered resistant to penicillin. d Includes one patient each with S. pneumoniae penicillin MICs of 8 and 16 mcg/mL. Community-Acquired PneumoniaFour randomized, controlled, double-blind clinical studies and one non-comparative study were conducted in adults with community-acquired pneumonia (CAP). In comparative studies, 904 patients received AUGMENTIN XR at a dose of 2,000 mg/125 mg orally every 12 hours for 7 or 10 days. In the non-comparative study to assess both clinical and bacteriological efficacy, 1,122 patients received AUGMENTIN XR 2,000 mg/125 mg orally every 12 hours for 7 days. In the 4 comparative studies, the combined clinical success rate at test of cure ranged from 86.3% to 94.7% in clinically evaluable patients who received AUGMENTIN XR; in the non-comparative study, the clinical success rate was 85.6%. Data on the efficacy of AUGMENTIN XR in the treatment of community-acquired pneumonia due to S. pneumoniae with reduced susceptibility to penicillin were accrued from the 4 controlled clinical studies and the 1 non-comparative study. The majority of these cases were accrued from the non-comparative study. Clinical Outcome for CAP due to S. pneumoniae Penicillin MICs of S. pneumoniae Isolates Intent-To-Treat Clinically Evaluable n/Na % 95% CIb n/N a % 95% CIb All S. pneumoniae 318/367 86.6 — 275/297 92.6 — MIC ≥ 2.0 mcg/mLc 30/35 85.7 69.7, 95.2 24/25 96.0 79.6, 99.9 MIC = 2.0 mcg/mL 22/24 91.7 73.0, 99.0 18/18 100 81.5, 100 MIC ≥ 4.0 mcg/mLd 8/11 72.7 39.0, 94.0 6/7 85.7 42.1, 99.6 a n/N = patients with pathogen eradicated or presumed eradicated/total number of patients. b Confidence limits calculated using exact probabilities. c S. pneumoniae strains with penicillin MICs of ≥ 2 mcg/mL are considered resistant to penicillin. d Includes one patient each with S. pneumoniae penicillin MICs of 8 and 16 mcg/mL in the Intent-To-Treat group only. SafetyIn 2 randomized, double-blind, multicenter studies, AUGMENTIN XR (2,000 mg/125 mg orally every 12 hours, n = 577) was compared to AUGMENTIN (875 mg/125 mg orally every 12 hours, n = 570), administered for 7 days for the treatment of community-acquired pneumonia. Adverse events, regardless of relationship to test drug, were reported by 44.4% of patients who received AUGMENTIN XR (versus 46.3% in comparator group). Treatment-related adverse events were reported in 21.7% of patients who received AUGMENTIN XR (versus 21.2% in comparator group); most were mild and transient in nature. Adverse events which led to withdrawal were reported by 2.8% of patients who received AUGMENTIN XR (versus 5.3% in comparator group). In each group, the most frequently reported adverse events were diarrhea (14.4% versus 13.0%, p = 0.47), nausea (3.5 % versus 4.4%), and headache (3.5% versus 3.2%). Only 2 patients (0.3%) who received AUGMENTIN XR and 3 patients (0.5%) in the comparator group withdrew due to diarrhea. Serious adverse events considered suspected or probably related to test drug were reported in 0.3% of patients (versus 0.5% in comparator).

HOW SUPPLIED

AUGMENTIN XR Extended Release TabletsEach white, oval film-coated bilayer scored tablet, debossed with AUGMENTIN XR, contains amoxicillin trihydrate and amoxicillin sodium equivalent to a total of 1,000 mg of amoxicillin and clavulanate potassium equivalent to 62.5 mg of clavulanic acid. NDC 54868-4735-0 Bottles of 20 NDC 54868-4735-2 Bottles of 28 (7 day XR pack) NDC 54868-4735-1 Bottles of 40 (10 day XR pack)

INDICATIONS AND USAGE

AUGMENTIN XR Extended Release Tablets are indicated for the treatment of patients with community-acquired pneumonia or acute bacterial sinusitis due to confirmed, or suspected β-lactamase−producing pathogens (i.e., H. influenzae, M. catarrhalis, H. parainfluenzae, K. pneumoniae, or methicillin-susceptible S. aureus) and S. pneumoniae with reduced susceptibility to penicillin (i.e., penicillin MICs = 2 mcg/mL). AUGMENTIN XR is not indicated for the treatment of infections due to S. pneumoniae with penicillin MICs ≥ 4 mcg/mL. Data are limited with regard to infections due to S. pneumoniaewith penicillin MICs ≥ 4 mcg/mL (see CLINICAL STUDIES). Of the common epidemiological risk factors for patients with resistant pneumococcal infections, only age > 65 years was studied. Patients with other common risk factors for resistant pneumococcal infections (e.g., alcoholism, immune-suppressive illness, and presence of multiple co-morbid conditions) were not studied. In patients with community-acquired pneumonia in whom penicillin-resistant S. pneumoniae is suspected, bacteriological studies should be performed to determine the causative organisms and their susceptibility when AUGMENTIN XR is prescribed. Acute bacterial sinusitis or community-acquired pneumonia due to a penicillin-susceptible strain of S. pneumoniae plus a β-lactamase−producing pathogen can be treated with another AUGMENTIN® (amoxicillin/clavulanate potassium) product containing lower daily doses of amoxicillin (i.e., 500 mg every 8 hours or 875 mg every 12 hours). Acute bacterial sinusitis or community-acquired pneumonia due to S. pneumoniae alone can be treated with amoxicillin. To reduce the development of drug-resistant bacteria and maintain the effectiveness of AUGMENTIN XR and other antibacterial drugs, AUGMENTIN XR should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

DOSAGE AND ADMINISTRATION

AUGMENTIN XR should be taken at the start of a meal to enhance the absorption of amoxicillin and to minimize the potential for gastrointestinal intolerance. Absorption of the amoxicillin component is decreased when AUGMENTIN XR is taken on an empty stomach (see CLINICAL PHARMACOLOGY). The recommended dose of AUGMENTIN XR is 4,000 mg/250 mg daily according to the following table: Indication Dose Duration Acute bacterial sinusitis 2 tablets q12h 10 days Community-acquired pneumonia 2 tablets q12h 7-10 days Tablets of AUGMENTIN (250 mg or 500 mg) CANNOT be used to provide the same dosages as AUGMENTIN XR Extended Release Tablets. This is because AUGMENTIN XR contains 62.5 mg of clavulanic acid, while the AUGMENTIN 250-mg and 500-mg tablets each contain 125 mg of clavulanic acid. In addition, the Extended Release Tablet provides an extended time course of plasma amoxicillin concentrations compared to immediate-release Tablets. Thus, two AUGMENTIN 500-mg tablets are not equivalent to one AUGMENTIN XR tablet. Scored AUGMENTIN XR Extended Release Tablets are available for greater convenience for adult patients who have difficulty swallowing. The scored tablet is not intended to reduce the dosage of medication taken; as stated in the table above, the recommended dose of AUGMENTIN XR is two tablets twice a day (every 12 hours). Renally Impaired PatientsThe pharmacokinetics of AUGMENTIN XR have not been studied in patients with renal impairment. AUGMENTIN XR is contraindicated in patients with a creatinine clearance of < 30 mL/min. and in hemodialysis patients (see CONTRAINDICATIONS). Hepatically Impaired PatientsHepatically impaired patients should be dosed with caution and hepatic function monitored at regular intervals (see WARNINGS). Pediatric UsePediatric patients who weigh 40 kg or more and can swallow tablets should receive the adult dose. Geriatric UseNo dosage adjustment is required for the elderly (see PRECAUTIONS, Geriatric Use).