moxifloxacin 0.5 % Ophthalmic Solution

Generic Name: MOXIFLOXACIN HYDROCHLORIDE
Brand Name: VIGAMOX
  • Substance Name(s):
  • MOXIFLOXACIN HYDROCHLORIDE

DRUG INTERACTIONS

7 Drug-drug interaction studies have not been conducted with VIGAMOX® solution. In vitro studies indicate that moxifloxacin does not inhibit CYP3A4, CYP2D6, CYP2C9, CYP2C19, or CYP1A2, indicating that moxifloxacin is unlikely to alter the pharmacokinetics of drugs metabolized by these cytochrome P450 isozymes.

DESCRIPTION

11 VIGAMOX® (moxifloxacin hydrochloride ophthalmic solution) 0.5% is a sterile solution for topical ophthalmic use. Moxifloxacin hydrochloride is an 8-methoxy fluoroquinolone anti-infective, with a diazabicyclononyl ring at the C7 position. Chemical Name: 1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-[(4aS,7aS)-octahydro-6H-pyrrolol[3,4-b]pyridin-6-yl]-4-oxo-3-quinoline carboxylic acid, monohydrochloride. Moxifloxacin hydrochloride is a slightly yellow to yellow crystalline powder. Each mL of VIGAMOX® solution contains 5.45 mg moxifloxacin hydrochloride, equivalent to 5 mg moxifloxacin base. Contains: Active: Moxifloxacin 0.5% (5 mg/mL); Inactives: Boric acid, sodium chloride, and purified water. May also contain hydrochloric acid/sodium hydroxide to adjust pH to approximately 6.8. VIGAMOX® solution is an isotonic solution with an osmolality of approximately 290 mOsm/kg. chemical

CLINICAL STUDIES

14 In two randomized, double-masked, multicenter, controlled clinical trials in which patients were dosed 3 times a day for 4 days, VIGAMOX® solution produced clinical cures on day 5-6 in 66% to 69% of patients treated for bacterial conjunctivitis. Microbiological success rates for the eradication of baseline pathogens ranged from 84% to 94%. Please note that microbiologic eradication does not always correlate with clinical outcome in anti-infective trials.

HOW SUPPLIED

Product: 50090-0859 NDC: 50090-0859-0 3 mL in a BOTTLE, PLASTIC

GERIATRIC USE

8.5 Geriatric Use No overall differences in safety and effectiveness have been observed between elderly and younger patients.

DOSAGE FORMS AND STRENGTHS

3 4 mL bottle filled with 3 mL sterile ophthalmic solution of moxifloxacin hydrochloride, 0.5% as base. 4 mL bottle filled with 3 mL sterile ophthalmic solution of moxifloxacin hydrochloride, 0.5% as base. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Moxifloxacin is a member of the fluoroquinolone class of anti-infective drugs (See 12.4 Microbiology).

INDICATIONS AND USAGE

1 VIGAMOX® solution is indicated for the treatment of bacterial conjunctivitis caused by susceptible strains of the following organisms: Corynebacterium species* Micrococcus luteus* Staphylococcus aureus Staphylococcus epidermidis Staphylococcus haemolyticus Staphylococcus hominis Staphylococcus warneri* Streptococcus pneumoniae Streptococcus viridans group Acinetobacter lwoffii* Haemophilus influenzae Haemophilus parainfluenzae* Chlamydia trachomatis *Efficacy for this organism was studied in fewer than 10 infections. VIGAMOX® solution is a topical fluoroquinolone anti-infective indicated for the treatment of bacterial conjunctivitis caused by susceptible strains of the following organisms: Corynebacterium species*, Micrococcus luteus*, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus warneri*, Streptococcus pneumoniae, Streptococcus viridans group, Acinetobacter lwoffii*, Haemophilus influenzae, Haemophilus parainfluenzae*, Chlamydia trachomatis *Efficacy for this organism was studied in fewer than 10 infections. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of VIGAMOX® solution in infants below 1 year of age have not been established. There is no evidence that the ophthalmic administration of VIGAMOX® solution has any effect on weight bearing joints, even though oral administration of some quinolones has been shown to cause arthropathy in immature animals.

PREGNANCY

8.1 Pregnancy Pregnancy Category C. Teratogenic Effects: Moxifloxacin was not teratogenic when administered to pregnant rats during organogenesis at oral doses as high as 500 mg/kg/day (approximately 21,700 times the highest recommended total daily human ophthalmic dose); however, decreased fetal body weights and slightly delayed fetal skeletal development were observed. There was no evidence of teratogenicity when pregnant Cynomolgus monkeys were given oral doses as high as 100 mg/kg/day (approximately 4,300 times the highest recommended total daily human ophthalmic dose). An increased incidence of smaller fetuses was observed at 100 mg/kg/day. Since there are no adequate and well-controlled studies in pregnant women, VIGAMOX® solution should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

8.3 Nursing Mothers Moxifloxacin has not been measured in human milk, although it can be presumed to be excreted in human milk. Caution should be exercised when VIGAMOX® solution is administered to a nursing mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Topical ophthalmic use only. (5.1) Hypersensitivity and anaphylaxis have been reported with systemic use of moxifloxacin. (5.2) Prolonged use may result in overgrowth of non-susceptible organisms, including fungi. (5.3) Patients should not wear contact lenses if they have signs or symptoms of bacterial conjunctivitis. (5.4) 5.1 Topical Ophthalmic Use Only NOT FOR INJECTION. VIGAMOX® solution is for topical ophthalmic use only and should not be injected subconjunctivally or introduced directly into the anterior chamber of the eye. 5.2 Hypersensitivity Reaction In patients receiving systemically administered quinolones, including moxifloxacin, serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported, some following the first dose. Some reactions were accompanied by cardiovascular collapse, loss of consciousness, angioedema (including laryngeal, pharyngeal or facial edema), airway obstruction, dyspnea, urticaria, and itching. If an allergic reaction to moxifloxacin occurs, discontinue use of the drug. Serious acute hypersensitivity reactions may require immediate emergency treatment. Oxygen and airway management should be administered as clinically indicated. 5.3 Growth of Resistant Organisms with Prolonged Use As with other anti-infectives, prolonged use may result in overgrowth of non-susceptible organisms, including fungi. If superinfection occurs, discontinue use and institute alternative therapy. Whenever clinical judgment dictates, the patient should be examined with the aid of magnification, such as slit-lamp biomicroscopy, and, where appropriate, fluorescein staining. 5.4 Avoidance of Contact Lens Wear Patients should be advised not to wear contact lenses if they have signs or symptoms of bacterial conjunctivitis.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Patients should be advised not to touch the dropper tip to any surface to avoid contaminating the contents. Patients should be advised not to wear contact lenses if they have signs and symptoms of bacterial conjunctivitis. Systemically administered quinolones including moxifloxacin have been associated with hypersensitivity reactions, even following a single dose. Patients should be told to discontinue use immediately and contact their physician at the first sign of a rash or allergic reaction. Rx Only Licensed to Alcon by Bayer Pharma AG. U.S. PAT. NO. 5,607,942; 6,716,830; 7,671,070 © 2003-2011 Novartis Manufactured by Alcon Laboratories, Inc. Fort Worth, TX 76134 USA 9007343-1011

DOSAGE AND ADMINISTRATION

2 Instill one drop in the affected eye 3 times a day for 7 days. Instill one drop in the affected eye 3 times a day for 7 days. (2)

Metoclopramide 10 MG Oral Tablet

Generic Name: METOCLOPRAMIDE HYDROCHLORIDE
Brand Name: Metoclopramide Hydrochloride
  • Substance Name(s):
  • METOCLOPRAMIDE HYDROCHLORIDE

WARNINGS

Mental depression has occurred in patients with and without prior history of depression. Symptoms have ranged from mild to severe and have included suicidal ideation and suicide. Metoclopramide should be given to patients with a prior history of depression only if the expected benefits outweigh the potential risks. Extrapyramidal symptoms, manifested primarily as acute dystonic reactions, occur in approximately 1 in 500 patients treated with the usual adult dosages of 30 to 40 mg/day of metoclopramide. These usually are seen during the first 24 to 48 hours of treatment with metoclopramide, occur more frequently in pediatric patients and adult patients less than 30 years of age and are even more frequent at higher doses. These symptoms may include involuntary movements of limbs and facial grimacing, torticollis, oculogyric crisis, rhythmic protrusion of tongue, bulbar type of speech, trismus, or dystonic reactions resembling tetanus. Rarely, dystonic reactions may present as stridor and dyspnea, possibly due to laryngospasm. If these symptoms should occur, inject 50 mg of diphenhydramine hydrochloride intramuscularly, and they usually will subside. Benztropine mesylate, 1 to 2 mg intramuscularly, may also be used to reverse these reactions. Parkinsonian-like symptoms have occurred, more commonly within the first 6 months after beginning treatment with metoclopramide, but occasionally after longer periods. These symptoms generally subside within 2 to 3 months following discontinuance of metoclopramide. Patients with preexisting Parkinson’s disease should be given metoclopramide cautiously, if at all, since such patients may experience exacerbation of parkinsonian symptoms when taking metoclopramide. Tardive Dyskinesia (see Boxed Warnings) Treatment with metoclopramide can cause tardive dyskinesia (TD), a potentially irreversible and disfiguring disorder characterized by involuntary movements of the face, tongue, or extremities. Although the risk of TD with metoclopramide has not been extensively studied, one published study reported a TD prevalence of 20% among patients treated for at least 12 weeks. Treatment with metoclopramide for longer than 12 weeks should be avoided in all but rare cases where therapeutic benefit is thought to outweigh the risk of developing TD. Although the risk of developing TD in the general population may be increased among the elderly, women, and diabetics, it is not possible to predict which patients will develop metoclopramide-induced TD. Both the risk of developing TD and the likelihood that TD will become irreversible increase with duration of treatment and total cumulative dose. Metoclopramide should be discontinued in patients who develop signs or symptoms of TD. There is no known effective treatment for established cases of TD, although in some patients, TD may remit, partially or completely, within several weeks to months after metoclopramide is withdrawn. Metoclopramide itself may suppress, or partially suppress, the signs of TD, thereby masking the underlying disease process. The effect of this symptomatic suppression upon the long-term course of TD is unknown. Therefore, metoclopramide should not be used for the symptomatic control of TD. Neuroleptic Malignant Syndrome (NMS) There have been rare reports of an uncommon but potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) associated with metoclopramide. Clinical manifestations of NMS include hyperthermia, muscle rigidity, altered consciousness, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis and cardiac arrhythmias). The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases where the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, malignant hyperthermia, drug fever and primary central nervous system (CNS) pathology. The management of NMS should include 1) immediate discontinuation of metoclopramide and other drugs not essential to concurrent therapy, 2) intensive symptomatic treatment and medical monitoring, and 3) treatment of any concomitant serious medical problems for which specific treatments are available. Bromocriptine and dantrolene sodium have been used in treatment of NMS, but their effectiveness have not been established (see ADVERSE REACTIONS ).

DRUG INTERACTIONS

Drug Interactions: The effects of metoclopramide on gastrointestinal motility are antagonized by anticholinergic drugs and narcotic analgesics. Additive sedative effects can occur when metoclopramide is given with alcohol, sedatives, hypnotics, narcotics or tranquilizers. The finding that metoclopramide releases catecholamines in patients with essential hypertension suggests that it should be used cautiously, if at all, in patients receiving monoamine oxidase inhibitors. Absorption of drugs from the stomach may be diminished (e.g., digoxin) by metoclopramide, whereas the rate and/or extent of absorption of drugs from the small bowel may be increased (e.g., acetaminophen, tetracycline, levodopa, ethanol, cyclosporine). Gastroparesis (gastric stasis) may be responsible for poor diabetic control in some patients. Exogenously administered insulin may begin to act before food has left the stomach and lead to hypoglycemia. Because the action of metoclopramide will influence the delivery of food to the intestines and thus the rate of absorption, insulin dosage or timing of dosage may require adjustment.

OVERDOSAGE

Symptoms of overdosage may include drowsiness, disorientation and extrapyramidal reactions. Anticholinergic or antiparkinson drugs or antihistamines with anticholinergic properties may be helpful in controlling the extrapyramidal reactions. Symptoms are self-limiting and usually disappear within 24 hours. Hemodialysis removes relatively little metoclopramide, probably because of the small amount of the drug in blood relative to tissues. Similarly, continuous ambulatory peritoneal dialysis does not remove significant amounts of drug. It is unlikely that dosage would need to be adjusted to compensate for losses through dialysis. Dialysis is not likely to be an effective method of drug removal in overdose situations. Unintentional overdose due to misadministration has been reported in infants and children with the use of metoclopramide oral solution. While there was no consistent pattern to the reports associated with these overdoses, events included seizures, extrapyramidal reactions, and lethargy. Methemoglobinemia has occurred in premature and full-term neonates who were given overdoses of metoclopramide (1 to 4 mg/kg/day orally, intramuscularly or intravenously for 1 to 3 or more days). Methemoglobinemia can be reversed by the intravenous administration of methylene blue. However, methylene blue may cause hemolytic anemia in patients with G6PD deficiency, which may be fatal (see PRECAUTIONS – Other Special Populations ).

DESCRIPTION

Metoclopramide hydrochloride is a white or practically white, crystalline, odorless or practically odorless powder. It is very soluble in water, freely soluble in alcohol, sparingly soluble in chloroform, practically insoluble in ether. Chemically, it is 4-amino-5-chloro-N-[2-(diethylamino) ethyl]-2-methoxybenzamide monohydrochloride monohydrate. Its structural formula is as follows: Each tablet for oral administration contains metoclopramide hydrochloride, equivalent to either 5 mg or 10 mg metoclopramide. Tablets also contain as inactive ingredients anhydrous lactose, magnesium stearate, povidone, pregelatinized starch, sodium starch glycolate and (5 mg only) D&C Yellow #10 and FD&C Blue #1. Structural formula

HOW SUPPLIED

Metoclopramide Tablets, USP: 5 mg – Light green, round, unscored tablets in boxes of 10×10 UD 100 NDC 63739-103-10 Debossed: WPI on one side and 2228 on the other side. 10 mg – White, round, scored tablets in boxes of 10×10 UD 100 NDC 63739-293-10 Debossed: WPI on one side and 2229 on the other side. Dispense in a tight, light-resistant container as defined in the USP. Store at 20°-25°C (68°-77°F). [See USP Controlled Room Temperature]. Manufactured by: Watson Pharmaceuticals 311 Bonnie Circle Corona, CA 92880 Distributed by: McKesson Packaging Services a business unit of McKesson Corporation 7101 Weddington Rd., Concord, NC 28027 IS-4014956 May 2015

GERIATRIC USE

Geriatric Use Clinical studies of metoclopramide did not include sufficient numbers of subjects aged 65 and over to determine whether elderly subjects respond differently from younger subjects. The risk of developing parkinsonian-like side effects increases with ascending dose. Geriatric patients should receive the lowest dose of metoclopramide that is effective. If parkinsonian-like symptoms develop in a geriatric patient receiving metoclopramide, metoclopramide should generally be discontinued before initiating any specific anti-parkinsonian agents (see WARNINGS and DOSAGE AND ADMINISTRATION – For the Relief of Symptomatic Gastroesophageal Reflux ). The elderly may be at greater risk for tardive dyskinesia (see WARNINGS – Tardive Dyskinesia ). Sedation has been reported in metoclopramide users. Sedation may cause confusion and manifest as over-sedation in the elderly (see CLINICAL PHARMACOLOGY, PRECAUTIONS – Information for Patients and ADVERSE REACTIONS – CNS Effects ). Metoclopramide is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function (see DOSAGE AND ADMINISTRATION – USE IN PATIENTS WITH RENAL OR HEPATIC IMPAIRMENT ). For these reasons, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased renal function, concomitant disease, or other drug therapy in the elderly (see DOSAGE AND ADMINISTRATION – For the Relief of Symptomatic Gastroesophageal Reflux and Use in Patients with Renal or Hepatic Impairment ).

INDICATIONS AND USAGE

The use of metoclopramide tablets is recommended for adults only. Therapy should not exceed 12 weeks in duration. Symptomatic Gastroesophageal Reflux: Metoclopramide tablets are indicated as short-term (4 to 12 weeks) therapy for adults with symptomatic, documented gastroesophageal reflux who fail to respond to conventional therapy. The principal effect of metoclopramide is on symptoms of postprandial and daytime heartburn with less observed effect on nocturnal symptoms. If symptoms are confined to particular situations, such as following the evening meal, use of metoclopramide as single doses prior to the provocative situation should be considered, rather than using the drug throughout the day. Healing of esophageal ulcers and erosions has been endoscopically demonstrated at the end of a 12-week trial using doses of 15 mg q.i.d. As there is no documented correlation between symptoms and healing of esophageal lesions, patients with documented lesions should be monitored endoscopically. Diabetic Gastroparesis (Diabetic Gastric Stasis): Metoclopramide tablets, USP are indicated for the relief of symptoms associated with acute and recurrent diabetic gastric stasis. The usual manifestations of delayed gastric emptying (e.g., nausea, vomiting, heartburn, persistent fullness after meals, and anorexia) appear to respond to metoclopramide within different time intervals. Significant relief of nausea occurs early and continues to improve over a three-week period. Relief of vomiting and anorexia may precede the relief of abdominal fullness by one week or more.

PEDIATRIC USE

Pediatric Use: Safety and effectiveness in pediatric patients have not been established (see OVERDOSAGE) Care should be exercised in administering metoclopramide to neonates since prolonged clearance may produce excessive serum concentrations (see CLINICAL PHARMACOLOGY – Pharmacokinetics ). In addition, neonates have reduced levels of NADH-cytochrome b5 reductase which, in combination with the aforementioned pharmacokinetic factors, make neonates more susceptible to methemoglobinemia (see OVERDOSAGE ). The safety profile of metoclopramide in adults cannot be extrapolated to pediatric patients. Dystonias and other extrapyramidal reactions associated with metoclopramide are more common in the pediatric population than in adults. (See WARNINGS and ADVERSE REACTIONS – Extrapyramidal Reactions. )

NUSRING MOTHERS

Nursing Mothers: Metoclopramide is excreted in human milk. Caution should be exercised when metoclopramide is administered to a nursing mother.

BOXED WARNING

WARNING: TARDIVE DYSKINESIA Treatment with metoclopramide can cause tardive dyskinesia, a serious movement disorder that is often irreversible. The risk of developing tardive dyskinesia increases with duration of treatment and total cumulative dose. Metoclopramide therapy should be discontinued in patients who develop signs or symptoms of tardive dyskinesia. There is no known treatment for tardive dyskinesia. In some patients, symptoms may lessen or resolve after metoclopramide treatment is stopped. Treatment with metoclopramide for longer than 12 weeks should be avoided in all but rare cases where therapeutic benefit is thought to outweigh the risk of developing tardive dyskinesia. See WARNINGS

INFORMATION FOR PATIENTS

Information for Patients: The use of metoclopramide is recommended for adults only. Metoclopramide may impair the mental and/or physical abilities required for the performance of hazardous tasks such as operating machinery or driving a motor vehicle. The ambulatory patient should be cautioned accordingly. For additional information, patients should be instructed to see the Medication Guide for metoclopramide tablets.

DOSAGE AND ADMINISTRATION

Therapy with metoclopramide tablets should not exceed 12 weeks in duration. For the Relief of Symptomatic Gastroesophageal Reflux: Administer from 10 mg to 15 mg metoclopramide hydrochloride, USP orally up to q.i.d. 30 minutes before each meal and at bedtime, depending upon symptoms being treated and clinical response (see CLINICAL PHARMACOLOGY and INDICATIONS AND USAGE ). If symptoms occur only intermittently or at specific times of the day, use of metoclopramide in single doses up to 20 mg prior to the provoking situation may be preferred rather than continuous treatment. Occasionally, patients (such as elderly patients) who are more sensitive to the therapeutic or adverse effects of metoclopramide will require only 5 mg per dose. Experience with esophageal erosions and ulcerations is limited, but healing has thus far been documented in one controlled trial using q.i.d. therapy at 15 mg per dose, and this regimen should be used when lesions are present, so long as it is tolerated (see ADVERSE REACTIONS ). Because of the poor correlation between symptoms and endoscopic appearance of the esophagus, therapy directed at esophageal lesions is best guided by endoscopic evaluation. Therapy longer than 12 weeks has not been evaluated and cannot be recommended. For the Relief of Symptoms Associated with Diabetic Gastroparesis (Diabetic Gastric Stasis) Administer 10 mg of metoclopramide 30 minutes before each meal and at bedtime for two to eight weeks, depending upon response and the likelihood of continued well-being upon drug discontinuation. The initial route of administration should be determined by the severity of the presenting symptoms. If only the earliest manifestations of diabetic gastric stasis are present, oral administration of metoclopramide may be initiated. However, if severe symptoms are present, therapy should begin with metoclopramide injection (consult labeling of the injection prior to initiating parenteral administration). Administration of the metoclopramide injection up to 10 days may be required before symptoms subside, at which time oral administration may be instituted. Since diabetic gastric stasis is frequently recurrent, metoclopramide therapy should be reinstituted at the earliest manifestation. Use in Patients with Renal or Hepatic Impairment: Since metoclopramide is excreted principally through the kidneys, in those patients whose creatinine clearance is below 40 mL/min, therapy should be initiated at approximately one-half the recommended dosage. Depending upon clinical efficacy and safety considerations, the dosage may be increased or decreased as appropriate. See OVERDOSAGE section for information regarding dialysis. Metoclopramide undergoes minimal hepatic metabolism, except for simple conjugation. Its safe use has been described in patients with advanced liver disease whose renal function was normal.

Morphine Sulfate 15 MG Extended Release Oral Tablet

Generic Name: MORPHINE SULFATE
Brand Name: Morphine Sulfate
  • Substance Name(s):
  • MORPHINE SULFATE

DRUG INTERACTIONS

7 Mixed agonist/antagonist and partial agonist opioid analgesics: Avoid use with Morphine sulfate extended-release tablets because they may reduce analgesic effect of Morphine sulfate extended-release tablets or precipitate withdrawal symptoms. (5.11, 7.2) Monoamine oxidase inhibitors (MAOIs): Avoid morphine sulfate extended-release tablets in patients taking MAOIs or within 14 days of stopping such treatment. (7.4) 7.1 CNS Depressants The concomitant use of morphine sulfate extended-release tablets with other CNS depressants including sedatives, hypnotics, tranquilizers, general anesthetics, phenothiazines, other opioids, and alcohol can increase the risk of respiratory depression, profound sedation, coma, and death. Monitor patients receiving CNS depressants and morphine sulfate extended-release tablets for signs of respiratory depression, sedation, and hypotension. When combined therapy with any of the above medications is considered, the dose of one or both agents should be reduced [see Dosage and Administration (2.2) and Warnings and Precautions (5.4)]. 7.2 Interactions with Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics Mixed agonist/antagonist (i.e., pentazocine, nalbuphine, and butorphanol) and partial agonist (buprenorphine) analgesics may reduce the analgesic effect of morphine sulfate extended-release tablets or precipitate withdrawal symptoms. Avoid the use of agonist/antagonist and partial agonist analgesics in patients receiving morphine sulfate extended-release tablets. 7.3 Muscle Relaxants Morphine may enhance the neuromuscular blocking action of skeletal muscle relaxants and produce an increased degree of respiratory depression. Monitor patients receiving muscle relaxants and morphine sulfate extended-release tablets for signs of respiratory depression that may be greater than otherwise expected. 7.4 Monoamine Oxidase Inhibitors (MAOIs) The effects of morphine may be potentiated by MAOIs. Monitor patients on concurrent therapy with an MAOI and morphine sulfate extended-release tablets for increased respiratory and central nervous system depression. MAOIs have been reported to potentiate the effects of morphine anxiety, confusion, and significant depression of respiration or coma. Morphine sulfate extended-release tablets should not be used in patients taking MAOIs or within 14 days of stopping such treatment. 7.5 Cimetidine Cimetidine can potentiate morphine-induced respiratory depression. There is a report of confusion and severe respiratory depression when a patient undergoing hemodialysis was concurrently administered morphine and cimetidine. Monitor patients for respiratory depression when morphine sulfate extended-release tablets and cimetidine are used concurrently. 7.6 Diuretics Morphine can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Morphine may also lead to acute retention of urine by causing spasm of the sphincter of the bladder, particularly in men with enlarged prostates. 7.7 Anticholinergics Anticholinergics or other medications with anticholinergic activity when used concurrently with opioid analgesics may result in increased risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Monitor patients for signs of urinary retention or reduced gastric motility when morphine sulfate extended-release tablets are used concurrently with anticholinergic drugs. 7.8 P-Glycoprotein (PGP) Inhibitors PGP-inhibitors (e.g., quinidine) may increase the absorption/exposure of morphine sulfate by about two-fold. Therefore, monitor patients for signs of respiratory and central nervous system depression when morphine sulfate extended-release tablets are used concurrently with PGP inhibitors.

OVERDOSAGE

10 Clinical Presentation Acute overdosage with morphine is manifested by respiratory depression, somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, and, in some cases, pulmonary edema, bradycardia, hypotension, and death. Marked mydriasis rather than miosis may be seen due to severe hypoxia in overdose situations. Treatment of Overdose In case of overdose, priorities are the re-establishment of a patent and protected airway and institution of assisted or controlled ventilation if needed. Employ other supportive measures (including oxygen, vasopressors) in the management of circulatory shock and pulmonary edema as indicated. Cardiac arrest or arrhythmias will require advanced life support techniques. The opioid antagonists, naloxone or nalmefene, are specific antidotes to respiratory depression resulting from opioid overdose. Opioid antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to morphine overdose. Such agents should be administered cautiously to persons who are known, or suspected to be physically dependent on morphine sulfate extended-release tablets. In such cases, an abrupt or complete reversal of opioid effects may precipitate an acute withdrawal syndrome. Because the duration of reversal would be expected to be less than the duration of action of morphine in morphine sulfate extended-release tablets, carefully monitor the patient until spontaneous respiration is reliably re-established. Morphine sulfate extended-release tablets will continue to release morphine and add to the morphine load for 24 to 48 hours or longer following ingestion necessitating prolonged monitoring. If the response to opioid antagonists is suboptimal or not sustained, additional antagonist should be administered as directed in the product’s prescribing information. In an individual physically dependent on opioids, administration of the usual dose of the antagonist will precipitate an acute withdrawal syndrome. The severity of the withdrawal symptoms experienced will depend on the degree of physical dependence and the dose of the antagonist administered. If a decision is made to treat serious respiratory depression in the physically dependent patient, administration of the antagonist should be begun with care and by titration with smaller than usual doses of the antagonist.

DESCRIPTION

11 Morphine sulfate extended-release tablets are for oral use and contain morphine sulfate, an agonist at the mu-opioid receptor. Morphine sulfate extended-release tablets 15 mg, 30 mg, 60 mg, and 100 mg contain the following inactive ingredients: lactose monohydrate, hypromellose, magnesium stearate, colloidal silicon dioxide, polyethylene glycol, titanium dioxide, polydextrose, and triacetin. The tablet strengths describe the amount of morphine per tablet as the pentahydrated sulfate salt (morphine sulfate). The 15 mg tablets also contain: FD&C Blue No. 2. The 30 mg tablets also contain: D&C Red No. 7 and FD&C Blue No. 2. The 60 mg tablets also contain: FD&C Yellow No. 6 and red iron oxide. The 100 mg tablets also contain: black iron oxide. Morphine sulfate is an odorless, white, crystalline powder with a bitter taste. It has a solubility of 1 in 21 parts of water and 1 in 1000 parts of alcohol, but is practically insoluble in chloroform or ether. The octanol: water partition coefficient of morphine is 1.42 at physiologic pH and the pKb is 7.9 for the tertiary nitrogen (mostly ionized at pH 7.4). Its structural formula is: Chemical Structure

HOW SUPPLIED

16 /STORAGE AND HANDLING Morphine sulfate extended-release 15 mg tablets are round, film-coated, blue tablets, debossed with “15” on one side and “ML” on the other side. They are available as follows: NDC 51862-185-01 bottles of 100 Morphine sulfate extended-release 30 mg tablets are round, film-coated, purple tablets, debossed with “30” on one side and “ML” on the other side. They are available as follows: NDC 51862-186-01 bottles of 100 Morphine sulfate extended-release 60 mg tablets are round, film-coated, orange tablets, debossed with “60” on one side and “ML” on the other side. They are available as follows: NDC 51862-187-01 bottles of 100 Morphine sulfate extended-release 100 mg tablets are round, film-coated, gray tablets, debossed with “100” on one side and “ML” on the other side. They are available as follows: NDC 51862-188-01 bottles of 100 Store at 20º to 25ºC (68º to 77ºF). [See USP Controlled Room Temperature.] Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. PHARMACIST: Dispense a Medication Guide with each prescription. CAUTION DEA FORM REQUIRED

RECENT MAJOR CHANGES

Boxed Warning 04/2014 Indications and Usage (1) 04/2014 Dosage and Administration (2) 04/2014 Warnings and Precautions (5) 04/2014

GERIATRIC USE

8.5 Geriatric Use The pharmacokinetics of morphine sulfate extended-release tablets have not been studied in elderly patients. Clinical studies of morphine sulfate extended-release tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 Morphine sulfate extended-release 15 mg tablets are round, film-coated, blue tablets, debossed with “15” on one side and “ML” on the other side Morphine sulfate extended-release 30 mg tablets are round, film-coated, purple tablets, debossed with “30” on one side and “ML” on the other side Morphine sulfate extended-release 60 mg tablets are round, film-coated, orange tablets, debossed with “60” on one side and “ML” on the other side Morphine sulfate extended-release 100 mg tablets 100 mg tablets are for use in opioid-tolerant patients only are round, film-coated, gray tablets, debossed with “100” on one side and “ML” on the other side Extended-release tablets: 15 mg, 30 mg, 60 mg, 100 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Morphine sulfate, an opioid agonist, is relatively selective for the mu receptor, although it can interact with other opioid receptors at higher doses. In addition to analgesia, the widely diverse effects of morphine sulfate include analgesia, dysphoria, euphoria, somnolence, respiratory depression, diminished gastrointestinal motility, altered circulatory dynamics, histamine release, physical dependence, and alterations of the endocrine and autonomic nervous systems. Morphine produces both its therapeutic and its adverse effects by interaction with one or more classes of specific opioid receptors located throughout the body. Morphine acts as a full agonist, binding with and activating opioid receptors at sites in the peri-aqueductal and peri-ventricular grey matter, the ventro-medial medulla and the spinal cord to produce analgesia.

INDICATIONS AND USAGE

1 Morphine sulfate extended-release tablets are indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. Morphine sulfate extended-release tablets is an opioid agonist product indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. (1) Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations, reserve Morphine sulfate extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. (1) Morphine sulfate extended-release tablets are not indicated as an as-needed (prn) analgesic. (1) Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations, reserve morphine sulfate extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. Morphine sulfate extended-release tablets are not indicated as an as-needed (prn) analgesic.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness in pediatric patients below the age of 18 have not been established.

PREGNANCY

8.1 Pregnancy Clinical Considerations Fetal/neonatal adverse reactions Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth. Observe newborns for symptoms of neonatal opioid withdrawal syndrome, such as poor feeding, diarrhea, irritability, tremor, rigidity, and seizures, and manage accordingly [see Warnings and Precautions (5.3)]. Teratogenic Effects (Pregnancy Category C) There are no adequate and well-controlled studies in pregnant women. Morphine sulfate extended-release tablets should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. In humans, the frequency of congenital anomalies has been reported to be no greater than expected among the children of 70 women who were treated with morphine during the first four months of pregnancy or in 448 women treated with morphine anytime during pregnancy. Furthermore, no malformations were observed in the infant of a woman who attempted suicide by taking an overdose of morphine and other medication during the first trimester of pregnancy. Several literature reports indicate that morphine administered subcutaneously during the early gestational period in mice and hamsters produced neurological, soft tissue and skeletal abnormalities. With one exception, the effects that have been reported were following doses that were maternally toxic and the abnormalities noted were characteristic of those observed when maternal toxicity is present. In one study, following subcutaneous infusion of doses greater than or equal to 0.15 mg/kg to mice, exencephaly, hydronephrosis, intestinal hemorrhage, split supraoccipital, malformed sternebrae, and malformed xiphoid were noted in the absence of maternal toxicity. In the hamster, morphine sulfate given subcutaneously on gestation day 8 produced exencephaly and cranioschisis. In rats treated with subcutaneous infusions of morphine during the period of organogenesis, no teratogenicity was observed. No maternal toxicity was observed in this study, however, increased mortality and growth retardation were seen in the offspring. In two studies performed in the rabbit, no evidence of teratogenicity was reported at subcutaneous doses up to 100 mg/kg. Non-Teratogenic Effects Infants born to mothers who have taken opioids chronically may exhibit neonatal withdrawal syndrome [see Warnings and Precautions (5.3)], reversible reduction in brain volume, small size, decreased ventilatory response to CO2 and increased risk of sudden infant death syndrome. Morphine sulfate should be used by a pregnant woman only if the need for opioid analgesia clearly outweighs the potential risks to the fetus. Controlled studies of chronic in utero morphine exposure in pregnant women have not been conducted. Published literature has reported that exposure to morphine during pregnancy in animals is associated with reduction in growth and a host of behavioral abnormalities in the offspring. Morphine treatment during gestational periods of organogenesis in rats, hamsters, guinea pigs and rabbits resulted in the following treatment-related embryotoxicity and neonatal toxicity in one or more studies: decreased litter size, embryo-fetal viability, fetal and neonatal body weights, absolute brain and cerebellar weights, delayed motor and sexual maturation, and increased neonatal mortality, cyanosis and hypothermia. Decreased fertility in female offspring, and decreased plasma and testicular levels of luteinizing hormone and testosterone, decreased testes weights, seminiferous tubule shrinkage, germinal cell aplasia, and decreased spermatogenesis in male offspring were also observed. Decreased litter size and viability were observed in the offspring of male rats administered morphine (25 mg/kg, IP) for 1 day prior to mating. Behavioral abnormalities resulting from chronic morphine exposure of fetal animals included altered reflex and motor skill development, mild withdrawal, and altered responsiveness to morphine persisting into adulthood.

NUSRING MOTHERS

8.3 Nursing Mothers Morphine is excreted in breast milk, with a milk to plasma morphine AUC ratio of approximately 2.5:1. The amount of morphine received by the infant varies depending on the maternal plasma concentration, the amount of milk ingested by the infant, and the extent of first pass metabolism. Withdrawal signs can occur in breast-feeding infants when maternal administration of morphine is stopped. Because of the potential for adverse reactions in nursing infants from morphine sulfate extended-release tablets, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: ADDICTION, ABUSE, and MISUSE; LIFE-THREATENING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; and NEONATAL OPIOID WITHDRAWAL SYNDROME WARNING: ADDICTION, ABUSE, and MISUSE; LIFETHREATENING RESPIRATORY DEPRESSION, ACCIDENTAL INGESTION; and NEONATAL OPIOID WITHDRAWAL SYNDROME See full prescribing information for complete boxed warning. Morphine sulfate extended-release tablets exposes users to risks of addiction, abuse, and misuse, which can lead to overdose and death. Assess each patient’s risk before prescribing, and monitor regularly for development of these behaviors and conditions. (5.1) Serious, life-threatening or fatal respiratory depression may occur. Monitor closely, especially upon initiation or following a dose increase. Instruct patients to swallow Morphine sulfate extended-release tablets whole to avoid exposure to a potentially fatal dose of morphine. (5.2) Accidental ingestion of Morphine sulfate extended-release tablets, especially in children, can result in fatal overdose of morphine. (5.2) Prolonged use of Morphine sulfate extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. (5.3) Addiction, Abuse, and Misuse Morphine sulfate extended-release tablets exposes patients and other users to the risks of opioid addiction, abuse, and misuse, which can lead to overdose and death. Assess each patient’s risk prior to prescribing morphine sulfate extended-release tablets, and monitor all patients regularly for the development of these behaviors or conditions [see Warnings and Precautions (5.1)]. Life-Threatening Respiratory Depression Serious, life-threatening, or fatal respiratory depression may occur with use of morphine sulfate extended-release tablets. Monitor for respiratory depression, especially during initiation of morphine sulfate extended-release tablets or following a dose increase. Instruct patients to swallow morphine sulfate extended-release tablets whole; crushing, chewing, or dissolving morphine sulfate extended-release tablets can cause rapid release and absorption of a potentially fatal dose of morphine [see Warnings and Precautions (5.2)]. Accidental Ingestion Accidental ingestion of even one dose of morphine sulfate extended-release tablets, especially by children, can result in a fatal overdose of morphine [see Warnings and Precautions (5.2)]. Neonatal Opioid Withdrawal Syndrome Prolonged use of morphine sulfate extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available [see Warnings and Precautions (5.3)].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Interaction with CNS depressants: Concomitant use may cause profound sedation, respiratory depression, and death. If coadministration is required, consider dose reduction of one or both drugs because of additive pharmacologic effects. (5.4) Elderly, cachectic, debilitated patients, and those with chronic pulmonary disease: Monitor closely because of increased risk for life-threatening respiratory depression. (5.5, 5.6) Hypotensive effect: Monitor during dose initiation and titration. (5.7) Patients with head injury or increased intracranial pressure: Monitor for sedation and respiratory depression. Avoid use of morphine sulfate extended-release tablets in patients with impaired consciousness or coma susceptible to intracranial effects of CO2 retention. (5.8) 5.1 Addiction, Abuse, and Misuse Morphine sulfate extended-release tablets contains morphine, a Schedule II controlled substance. As an opioid, morphine sulfate extended-release tablets exposes its users to the risks of addiction, abuse, and misuse. As modified-release products such as morphine sulfate extended-release tablets deliver the opioid over an extended period of time, there is a greater risk for overdose and death due to the larger amount of morphine present [see Drug Abuse and Dependence (9)]. Although the risk of addiction in any individual is unknown, it can occur in patients appropriately prescribed morphine sulfate extended-release tablets and in those who obtain the drug illicitly. Addiction can occur at recommended doses and if the drug is misused or abused. Assess each patient’s risk for opioid addiction, abuse, or misuse prior to prescribing morphine sulfate extended-release tablets, and monitor all patients receiving opioids for development of these behaviors or conditions. Risks are increased in patients with a personal or family history of substance abuse (including drug or alcohol abuse or addiction) or mental illness (e.g., major depression). The potential for these risks should not, however, prevent the proper management of pain in any given patient. Patients at increased risk may be prescribed modified-release opioid formulations such as morphine sulfate extended-release tablets, but use in such patients necessitates intensive counseling about the risks of proper use of morphine sulfate extended-release tablets along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse or misuse of morphine sulfate extended-release tablets by crushing, chewing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of morphine and can result in overdose and death [see Overdosage (10)]. Opioid agonists such as morphine sulfate extended-release tablets are sought by drug abusers and people with addiction disorders and are subject to criminal diversion. Consider these risks when prescribing or dispensing morphine sulfate extended-release tablets. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity and advising the patient on the proper disposal of unused drug [see Patient Counseling Information (17)]. Contact local state professional licensing board or state controlled substances authority for information on how to prevent and detect abuse or diversion of this product. 5.2 Life-Threatening Respiratory Depression Serious, life-threatening, or fatal respiratory depression has been reported with the use of modified-release opioids, even when used as recommended. Respiratory depression from opioid use, if not immediately recognized and treated, may lead to respiratory arrest and death. Management of respiratory depression may include close observation, supportive measures, and use of opioid antagonists, depending on the patient’s clinical status [see Overdosage (10)]. Carbon dioxide (CO2) retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. While serious, life-threatening, or fatal respiratory depression can occur at any time during the use of morphine sulfate extended-release tablets, the risk is greatest during the initiation of therapy or following a dose increase. Closely monitor patients for respiratory depression when initiating therapy with morphine sulfate extended-release tablets and following dose increases. To reduce the risk of respiratory depression, proper dosing and titration of morphine sulfate extended-release tablets are essential [see Dosage and Administration (2)]. Overestimating the morphine sulfate extended-release tablets dose when converting patients from another opioid product can result in a fatal overdose with the first dose. Accidental ingestion of even one dose of morphine sulfate extended-release tablets, especially by children, can result in respiratory depression and death due to an overdose of morphine. 5.3 Neonatal Opioid Withdrawal Syndrome Prolonged use of morphine sulfate extended-release tablets during pregnancy can result in withdrawal signs in the neonate. Neonatal opioid withdrawal syndrome, unlike opioid withdrawal syndrome in adults, may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. Neonatal opioid withdrawal syndrome presents as irritability, hyperactivity and abnormal sleep pattern, high pitched cry, tremor, vomiting, diarrhea and failure to gain weight. The onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of the drug by the newborn. 5.4 Interactions with Central Nervous System Depressants Hypotension, and profound sedation, coma or respiratory depression may result if morphine sulfate extended-release tablets are used concomitantly with other central nervous system (CNS) depressants (e.g., sedatives, anxiolytics, hypnotics, neuroleptics, other opioids). When considering the use of morphine sulfate extended-release tablets in a patient taking a CNS depressant, assess the duration of use of the CNS depressant and the patient’s response, including the degree of tolerance that has developed to CNS depression. Additionally, evaluate the patient’s use of alcohol and/or illicit drugs that cause CNS depression. If the decision to begin morphine sulfate extended-release tablets is made, start with the lowest possible dose, 15 mg every 12 hours, monitor patients for signs of sedation and respiratory depression, and consider using a lower dose of the concomitant CNS depressant [see Drug Interactions (7.1)]. 5.5 Use in Elderly, Cachectic, and Debilitated Patients Life-threatening respiratory depression is more likely to occur in elderly, cachectic, or debilitated patients as they may have altered pharmacokinetics or altered clearance compared to younger, healthier patients. Monitor such patients closely, particularly when initiating and titrating morphine sulfate extended-release tablets and when morphine sulfate extended-release tablets are given concomitantly with other drugs that depress respiration [see Warnings and Precautions (5.2)]. 5.6 Use in Patients with Chronic Pulmonary Disease Monitor patients with significant chronic obstructive pulmonary disease or cor pulmonale, and patients having a substantially decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression for respiratory depression, particularly when initiating therapy and titrating with morphine sulfate extended-release tablets, as in these patients, even usual therapeutic doses of morphine sulfate extended-release tablets may decrease respiratory drive to the point of apnea [see Warnings and Precautions (5.2)]. Consider the use of alternative non-opioid analgesics in these patients if possible. 5.7 Hypotensive Effects Morphine sulfate extended-release tablets may cause severe hypotension including orthostatic hypotension and syncope in ambulatory patients. There is an increased risk in patients whose ability to maintain blood pressure has already been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines or general anesthetics) [see Drug Interactions (7.1)]. Monitor these patients for signs of hypotension after initiating or titrating the dose of morphine sulfate extended-release tablets. In patients with circulatory shock, morphine sulfate extended-release tablets may cause vasodilation that can further reduce cardiac output and blood pressure. Avoid the use of morphine sulfate extended-release tablets in patients with circulatory shock. 5.8 Use in Patients with Head Injury or Increased Intracranial Pressure Monitor patients taking morphine sulfate extended-release tablets who may be susceptible to the intracranial effects of CO2 retention (e.g., those with evidence of increased intracranial pressure or brain tumors) for signs of sedation and respiratory depression, particularly when initiating therapy with morphine sulfate extended-release tablets. Morphine sulfate extended-release tablets may reduce respiratory drive, and the resultant CO2 retention can further increase intracranial pressure. Opioids may also obscure the clinical course in a patient with a head injury. Avoid the use of morphine sulfate extended-release tablets in patients with impaired consciousness or coma. 5.9 Use in Patients with Gastrointestinal Conditions Morphine sulfate extended-release tablets are contraindicated in patients with paralytic ileus. Avoid the use of morphine sulfate extended-release tablets in patients with other GI obstruction. The morphine in morphine sulfate extended-release tablets may cause spasm of the sphincter of Oddi. Monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms. Opioids may cause increases in the serum amylase. 5.10 Use in Patients with Convulsive or Seizure Disorders The morphine in morphine sulfate extended-release tablets may aggravate convulsions in patients with convulsive disorders, and may induce or aggravate seizures in some clinical settings. Monitor patients with a history of seizure disorders for worsened seizure control during morphine sulfate extended-release tablet therapy. 5.11 Avoidance of Withdrawal Avoid the use of mixed agonist/antagonist (i.e., pentazocine, nalbuphine, and butorphanol) or partial agonist (buprenorphine) analgesics in patients who have received or are receiving a course of therapy with a full opioid agonist analgesic, including morphine sulfate extended-release tablets. In these patients, mixed agonists/antagonist and partial agonist analgesics may reduce the analgesic effect and/or may precipitate withdrawal symptoms. When discontinuing morphine sulfate extended-release tablets, gradually taper the dose [see Dosage and Administration (2.3)]. Do not abruptly discontinue morphine sulfate extended-release tablets. 5.12 Driving and Operating Machinery Morphine sulfate extended-release tablets may impair the mental or physical abilities needed to perform potentially hazardous activities such as driving a car or operating machinery. Warn patients not to drive or operate dangerous machinery unless they are tolerant to the effects of morphine sulfate extended-release tablets and know how they will react to the medication.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Addiction, Abuse, and Misuse Inform patients that the use of morphine sulfate extended-release tablets, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose or death [see Warnings and Precautions (5.1)]. Instruct patients not to share morphine sulfate extended-release tablets with others and to take steps to protect morphine sulfate extended-release tablets from theft or misuse. Life-Threatening Respiratory Depression Inform patients of the risk of life-threatening respiratory depression, including information that the risk is greatest when starting morphine sulfate extended-release tablets or when the dose is increased, and that it can occur even at recommended doses [see Warnings and Precautions (5.2)]. Advise patients how to recognize respiratory depression and to seek medical attention if breathing difficulties develop. Accidental Ingestion Inform patients that accidental ingestion, especially in children, may result in respiratory depression or death [see Warnings and Precautions (5.2)]. Instruct patients to take steps to store morphine sulfate extended-release tablets securely and to dispose of unused morphine sulfate extended-release tablets by flushing the tablets down the toilet. Neonatal Opioid Withdrawal Syndrome Inform female patients of reproductive potential that prolonged use of morphine sulfate extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated [see Warnings and Precautions (5.3)]. Interactions with Alcohol and other CNS Depressants Inform patients that potentially serious additive effects may occur if morphine sulfate extended-release tablets are used with alcohol or other CNS depressants, and not to use such drugs unless supervised by a health care provider. Important Administration Instructions Instruct patients how to properly take morphine sulfate extended-release tablets, including the following: Swallowing morphine sulfate extended-release tablets whole Not crushing, chewing, or dissolving the tablets Using morphine sulfate extended-release tablets exactly as prescribed to reduce the risk of life-threatening adverse reactions (e.g., respiratory depression) Not discontinuing morphine sulfate extended-release tablets without first discussing the need for a tapering regimen with the prescriber Hypotension Inform patients that morphine sulfate extended-release tablets may cause orthostatic hypotension and syncope. Instruct patients how to recognize symptoms of low blood pressure and how to reduce the risk of serious consequences should hypotension occur (e.g., sit or lie down, carefully rise from a sitting or lying position). Driving or Operating Heavy Machinery Inform patients that morphine sulfate extended-release tablets may impair the ability to perform potentially hazardous activities such as driving a car or operating heavy machinery. Advise patients not to perform such tasks until they know how they will react to the medication. Constipation Advise patients of the potential for severe constipation, including management instructions and when to seek medical attention. Anaphylaxis Inform patients that anaphylaxis has been reported with ingredients contained in morphine sulfate extended-release tablets. Advise patients how to recognize such a reaction and when to seek medical attention. Pregnancy Advise female patients that morphine sulfate extended-release tablets can cause fetal harm and to inform the prescriber if they are pregnant or plan to become pregnant. Disposal of Unused Morphine Sulfate Extended-release Tablets Advise patients to flush the unused tablets down the toilet when morphine sulfate extended-release tablets are no longer needed.

DOSAGE AND ADMINISTRATION

2 For opioid-naïve and opioid non-tolerant patients, initiate with 15 mg tablets orally every 8 to 12 hours. (2.1) Do not abruptly discontinue morphine sulfate extended-release tablets in a physically dependent patient. (2.3) Instruct patients to swallow morphine sulfate extended-release tablets intact. (2.4) 2.1 Initial Dosing Morphine sulfate extended-release tablets should be prescribed only by healthcare professionals who are knowledgeable in the use of potent opioids for the management of chronic pain. Initiate the dosing regimen for each patient individually, taking into account the patient’s prior analgesic treatment experience and risk factors for addiction, abuse, and misuse [see Warnings and Precautions (5.1)]. Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy with morphine sulfate extended-release tablets [see Warnings and Precautions (5.2)]. Morphine sulfate extended-release tablets must be taken whole. Crushing, chewing, or dissolving morphine sulfate extended-release tablets will result in uncontrolled delivery of morphine and can lead to overdose or death [see Warnings and Precautions (5.1)]. Use of Morphine Sulfate Extended-release Tablets as the First Opioid Analgesic Initiate treatment with morphine sulfate extended-release tablets with 15 mg tablets orally every 8 or 12 hours. Use of Morphine Sulfate Extended-release Tablets in Patients who are not Opioid Tolerant The starting dose for patients who are not opioid tolerant is morphine sulfate extended-release tablets 15 mg orally every 12 hours. Patients who are opioid are those receiving, for one week or longer, at least 60 mg oral morphine per day, 25 mg mcg transdermal fentanyl per hour, 30 mg oral oxycodone per day, 8 mg oral hydromorphone per day, 25 mg oral oxymorphone per day, or an equianalgesic dose of another opioid. Use of higher starting doses in patients who are not opioid tolerant may cause fatal respiratory depression. Conversion from Other Oral Morphine to Morphine Sulfate Extended-release Tablets Patients receiving other oral morphine formulations may be converted to morphine sulfate extended-release tablets by administering one-half of the patient’s 24-hour requirement as morphine sulfate extended-release tablets on an every-12-hour schedule or by administering one-third of the patient’s daily requirement as morphine sulfate extended-release tablets on an every-8-hour schedule. Conversion from Other Opioids to Morphine Sulfate Extended-release Tablets There are no established conversion ratios for conversion from other opioids to morphine sulfate extended-release tablets defined by clinical trials. Discontinue all other around-the-clock opioid drugs when morphine sulfate extended-release tablets therapy is initiated and initiate dosing using morphine sulfate extended-release tablets 15 mg orally every 8 to 12 hours. It is safer to underestimate a patient’s 24-hour oral morphine requirements and provide rescue medication (e.g., immediate-release morphine) than to overestimate the 24-hour oral morphine requirements and manage an adverse reaction. While useful tables of opioid equivalents are readily available, there is substantial inter-patient variability in the relative potency of different opioid drugs and products. Conversion from Parenteral Morphine or Other Opioids (Parenteral or Oral) to Morphine Sulfate Extended-release Tablets When converting from parenteral morphine or other non-morphine opioids (parenteral or oral) to morphine sulfate extended-release tablets, consider the following general points: Parenteral to oral morphine ratio: Between 2 to 6 mg of oral morphine may be required to provide analgesia equivalent to 1 mg of parenteral morphine. Typically, a dose of morphine that is approximately three times the previous daily parenteral morphine requirement is sufficient. Other parenteral or oral non-morphine opioids to oral morphine sulfate: Specific recommendations are not available because of a lack of systematic evidence for these types of analgesic substitutions. Published relative potency data are available, but such ratios are approximations. In general, begin with half of the estimated daily morphine requirement as the initial dose, managing inadequate analgesia by supplementation with immediate-release morphine. Conversion from Methadone to Morphine Sulfate Extended-release Tablets Close monitoring is of particular importance when converting methadone to other opioid agonists. The ratio between methadone and other opioid agonists may vary widely as a function of previous dose exposure. Methadone has a long half-life and can accumulate in the plasma. 2.2 Titration and Maintenance of Therapy Individually titrate morphine sulfate extended-release tablets to a dose that provides adequate analgesia and minimizes adverse reactions. Continually reevaluate patients receiving morphine sulfate extended-release tablets to assess the maintenance of pain control and the relative incidence of adverse reactions, as well as monitoring for the development of addiction, abuse, or misuse. Frequent communication is important among the prescriber, other members of the healthcare team, the patient, and the caregiver/family during periods of changing analgesic requirements, including initial titration. During chronic therapy periodically reassess the continued need for the use of opioid analgesics. Patients who experience breakthrough pain may require a dose increase of morphine sulfate extended-release tablets, or may need rescue medication with an appropriate dose of an immediate-release analgesic. If the level of pain increases after dose stabilization, attempt to identify the source of increased pain before increasing the morphine sulfate extended-release tablets dose. Because steady-state plasma concentrations are approximated in 1 day, morphine sulfate extended-release tablets dosage adjustments may be done every 1 to 2 days. If unacceptable opioid-related adverse reactions are observed, the subsequent doses may be reduced. Adjust the dose to obtain an appropriate balance between management of pain and opioid-related adverse reactions. 2.3 Discontinuation of Morphine Sulfate Extended-Release Tablets When the patient no longer requires therapy with morphine sulfate extended-release tablets, use a gradual downward titration of the dose to prevent signs and symptoms of withdrawal in the physically-dependent patient. Do not abruptly discontinue morphine sulfate extended-release tablets. 2.4 Administration of Morphine Sulfate Extended-Release Tablets Morphine sulfate extended-release tablets must be taken whole. Crushing, chewing, or dissolving morphine sulfate extended-release tablets will result in uncontrolled delivery of morphine and can lead to overdose or death [see Warnings and Precautions (5.1)].

Tamsulosin hydrochloride 0.4 MG Oral Capsule

Generic Name: TAMSULOSIN HYDROCHLORIDE
Brand Name: FLOMAX
  • Substance Name(s):
  • TAMSULOSIN HYDROCHLORIDE

DRUG INTERACTIONS

7 FLOMAX capsules 0.4 mg should not be used with strong inhibitors of CYP3A4 (e.g., ketoconazole). FLOMAX capsules should be used with caution in combination with moderate inhibitors of CYP3A4 (e.g., erythromycin), in combination with strong (e.g., paroxetine) or moderate (e.g., terbinafine) inhibitors of CYP2D6, or in patients known to be CYP2D6 poor metabolizers, particularly at a dose higher than 0.4 mg (e.g., 0.8 mg). (5.2, 7.1, 12.3) Concomitant use of PDE5 inhibitors with tamsulosin can potentially cause symptomatic hypotension (5.2, 7.3, 12.3) 7.1 Cytochrome P450 Inhibition Strong and Moderate Inhibitors of CYP3A4 or CYP2D6 Tamsulosin is extensively metabolized, mainly by CYP3A4 and CYP2D6. Concomitant treatment with ketoconazole (a strong inhibitor of CYP3A4) resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 2.2 and 2.8, respectively [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of concomitant administration of a moderate CYP3A4 inhibitor (e.g., erythromycin) on the pharmacokinetics of FLOMAX have not been evaluated [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. Concomitant treatment with paroxetine (a strong inhibitor of CYP2D6) resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 1.3 and 1.6, respectively [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. A similar increase in exposure is expected in CYP2D6 poor metabolizers (PM) as compared to extensive metabolizers (EM). Since CYP2D6 PMs cannot be readily identified and the potential for significant increase in tamsulosin exposure exists when FLOMAX 0.4 mg is co-administered with strong CYP3A4 inhibitors in CYP2D6 PMs, FLOMAX 0.4 mg capsules should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of concomitant administration of a moderate CYP2D6 inhibitor (e.g., terbinafine) on the pharmacokinetics of FLOMAX have not been evaluated [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of co-administration of both a CYP3A4 and a CYP2D6 inhibitor with FLOMAX capsules have not been evaluated. However, there is a potential for significant increase in tamsulosin exposure when FLOMAX 0.4 mg is co-administered with a combination of both CYP3A4 and CYP2D6 inhibitors [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. Cimetidine Treatment with cimetidine resulted in a significant decrease (26%) in the clearance of tamsulosin hydrochloride, which resulted in a moderate increase in tamsulosin hydrochloride AUC (44%) [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.2 Other Alpha Adrenergic Blocking Agents The pharmacokinetic and pharmacodynamic interactions between FLOMAX capsules and other alpha adrenergic blocking agents have not been determined; however, interactions between FLOMAX capsules and other alpha adrenergic blocking agents may be expected [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.3 PDE5 Inhibitors Caution is advised when alpha adrenergic blocking agents including FLOMAX are co-administered with PDE5 inhibitors. Alpha-adrenergic blockers and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.4 Warfarin A definitive drug-drug interaction study between tamsulosin hydrochloride and warfarin was not conducted. Results from limited in vitro and in vivo studies are inconclusive. Caution should be exercised with concomitant administration of warfarin and FLOMAX capsules [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.5 Nifedipine, Atenolol, Enalapril Dosage adjustments are not necessary when FLOMAX capsules are administered concomitantly with nifedipine, atenolol, or enalapril [ see Clinical Pharmacology (12.3) ]. 7.6 Digoxin and Theophylline Dosage adjustments are not necessary when a FLOMAX capsule is administered concomitantly with digoxin or theophylline [ see Clinical Pharmacology (12.3) ]. 7.7 Furosemide FLOMAX capsules had no effect on the pharmacodynamics (excretion of electrolytes) of furosemide. While furosemide produced an 11% to 12% reduction in tamsulosin hydrochloride Cmax and AUC, these changes are expected to be clinically insignificant and do not require adjustment of the FLOMAX capsules dosage [ see Clinical Pharmacology (12.3) ].

OVERDOSAGE

10 Should overdosage of FLOMAX capsules lead to hypotension [ see Warnings and Precautions (5.1) and Adverse Reactions (6.1) ], support of the cardiovascular system is of first importance. Restoration of blood pressure and normalization of heart rate may be accomplished by keeping the patient in the supine position. If this measure is inadequate, then administration of intravenous fluids should be considered. If necessary, vasopressors should then be used and renal function should be monitored and supported as needed. Laboratory data indicate that tamsulosin hydrochloride is 94% to 99% protein bound; therefore, dialysis is unlikely to be of benefit.

DESCRIPTION

11 Tamsulosin hydrochloride is an antagonist of alpha1A adrenoceptors in the prostate. Tamsulosin hydrochloride is (-)-( R )-5-[2-[[2-( o -Ethoxyphenoxy) ethyl]amino]propyl]-2-methoxybenzenesulfonamide, monohydrochloride. Tamsulosin hydrochloride is a white crystalline powder that melts with decomposition at approximately 230°C. It is sparingly soluble in water and methanol, slightly soluble in glacial acetic acid and ethanol, and practically insoluble in ether. The empirical formula of tamsulosin hydrochloride is C20H28N2O5S • HCl. The molecular weight of tamsulosin hydrochloride is 444.98. Its structural formula is: Each FLOMAX capsule for oral administration contains tamsulosin hydrochloride 0.4 mg, and the following inactive ingredients: methacrylic acid copolymer dispersion, NF; microcrystalline cellulose, NF; triacetin, USP; calcium stearate, NF; talc, USP; FD&C blue No. 2; titanium dioxide; ferric oxide; gelatin, and trace amounts of black edible ink. Flomax Structure

CLINICAL STUDIES

14 Four placebo-controlled clinical studies and one active-controlled clinical study enrolled a total of 2296 patients (1003 received FLOMAX capsules 0.4 mg once daily, 491 received FLOMAX capsules 0.8 mg once daily, and 802 were control patients) in the U.S. and Europe. In the two U.S. placebo-controlled, double-blind, 13-week, multicenter studies [Study 1 (US92-03A) and Study 2 (US93-01)], 1486 men with the signs and symptoms of BPH were enrolled. In both studies, patients were randomized to either placebo, FLOMAX capsules 0.4 mg once daily, or FLOMAX capsules 0.8 mg once daily. Patients in FLOMAX capsules 0.8 mg once-daily treatment groups received a dose of 0.4 mg once daily for one week before increasing to the 0.8 mg once-daily dose. The primary efficacy assessments included: 1) total American Urological Association (AUA) Symptom Score questionnaire, which evaluated irritative (frequency, urgency, and nocturia), and obstructive (hesitancy, incomplete emptying, intermittency, and weak stream) symptoms, where a decrease in score is consistent with improvement in symptoms; and 2) peak urine flow rate, where an increased peak urine flow rate value over baseline is consistent with decreased urinary obstruction. Mean changes from baseline to Week 13 in total AUA Symptom Score were significantly greater for groups treated with FLOMAX capsules 0.4 mg and 0.8 mg once daily compared to placebo in both U.S. studies (Table 3, Figures 2A and 2B). The changes from baseline to Week 13 in peak urine flow rate were also significantly greater for the FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups compared to placebo in Study 1, and for the FLOMAX capsules 0.8 mg once-daily group in Study 2 (Table 3, Figures 3A and 3B). Overall there were no significant differences in improvement observed in total AUA Symptom Scores or peak urine flow rates between the 0.4 mg and the 0.8 mg dose groups with the exception that the 0.8 mg dose in Study 1 had a significantly greater improvement in total AUA Symptom Score compared to the 0.4 mg dose. Table 3 Mean (±S.D.) Changes from Baseline to Week 13 in Total AUA Symptom Score** and Peak Urine Flow Rate (mL/sec) Total AUA Symptom Score Peak Urine Flow Rate Mean Baseline Value Mean Change Mean Baseline Value Mean Change * Statistically significant difference from placebo (p-value ≤0.050; Bonferroni-Holm multiple test procedure). ** Total AUA Symptom Scores ranged from 0 to 35. † Peak urine flow rate measured 4 to 8 hours post dose at Week 13. ‡ Peak urine flow rate measured 24 to 27 hours post dose at Week 13. Week 13: For patients not completing the 13-week study, the last observation was carried forward. Study 1 † FLOMAX capsules 0.8 mg once daily 19.9 ± 4.9 n=247 -9.6* ± 6.7 n=237 9.57 ± 2.51 n=247 1.78* ± 3.35 n=247 FLOMAX capsules 0.4 mg once daily 19.8 ± 5.0 n=254 -8.3* ± 6.5 n=246 9.46 ± 2.49 n=254 1.75* ± 3.57 n=254 Placebo 19.6 ± 4.9 n=254 -5.5 ± 6.6 n=246 9.75 ± 2.54 n=254 0.52 ± 3.39 n=253 Study 2 ‡ FLOMAX capsules 0.8 mg once daily 18.2 ± 5.6 n=244 -5.8* ± 6.4 n=238 9.96 ± 3.16 n=244 1.79* ± 3.36 n=237 FLOMAX capsules 0.4 mg once daily 17.9 ± 5.8 n=248 -5.1* ± 6.4 n=244 9.94 ± 3.14 n=248 1.52 ± 3.64 n=244 Placebo 19.2 ± 6.0 n=239 -3.6 ± 5.7 n=235 9.95 ± 3.12 n=239 0.93 ± 3.28 n=235 Mean total AUA Symptom Scores for both FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups showed a rapid decrease starting at 1 week after dosing and remained decreased through 13 weeks in both studies (Figures 2A and 2B). In Study 1, 400 patients (53% of the originally randomized group) elected to continue in their originally assigned treatment groups in a double-blind, placebo-controlled, 40-week extension trial (138 patients on 0.4 mg, 135 patients on 0.8 mg, and 127 patients on placebo). Three hundred twenty-three patients (43% of the originally randomized group) completed one year. Of these, 81% (97 patients) on 0.4 mg, 74% (75 patients) on 0.8 mg, and 56% (57 patients) on placebo had a response ≥25% above baseline in total AUA Symptom Score at one year. Figure 2A Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 1 * indicates significant difference from placebo (p-value ≤0.050). B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Total AUA Symptom Scores range from 0 to 35. Figure 2B Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 2 * indicates significant difference from placebo (p-value ≤0.050). Baseline measurement was taken Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Total AUA Symptom Scores range from 0 to 35. Figure 3A Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 1 * indicates significant difference from placebo (p-value ≤0.050). B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: The uroflowmetry assessments at Week 0 were recorded 4 to 8 hours after patients received the first dose of double-blind medication. Measurements at each visit were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration). Note: Patients in the 0.8 mg treatment groups received 0.4 mg for the first week. Figure 3B Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 2 * indicates significant difference from placebo (p-value ≤0.050). Baseline measurement was taken Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Week 1 and Week 2 measurements were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration). All other visits were scheduled 24 to 27 hours after dosing (approximate trough tamsulosin concentration). Figure 2a Figure 2b Figure 3a Figure 3b

HOW SUPPLIED

16 /STORAGE AND HANDLING FLOMAX capsules 0.4 mg are supplied in high density polyethylene bottles containing 100 hard gelatin capsules with olive green opaque cap and orange opaque body. The capsules are imprinted on one side with Flomax 0.4 mg and on the other side with BI 58. FLOMAX capsules 0.4 mg, 100 capsules (NDC 0597-0058-01) Store at 25°C (77°F); excursions permitted to 15°C–30°C (59°F–86°F) [see USP Controlled Room Temperature]. Keep FLOMAX capsules and all medicines out of reach of children.

RECENT MAJOR CHANGES

Dosage and Administration (2) 4/2009 Contraindications (4) 12/2009 Warnings and Precautions Drug Interactions (5.2) 12/2009 Screening for Prostate Cancer (5.4) 12/2009

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects (1783) in clinical studies of tamsulosin, 36% were 65 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and the other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out [ see Clinical Pharmacology (12.3) ].

DOSAGE FORMS AND STRENGTHS

3 Capsule: 0.4 mg, olive green and orange hard gelatin, imprinted on one side with Flomax 0.4 mg and on the other side with BI 58 Capsules: 0.4 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action The symptoms associated with benign prostatic hyperplasia (BPH) are related to bladder outlet obstruction, which is comprised of two underlying components: static and dynamic. The static component is related to an increase in prostate size caused, in part, by a proliferation of smooth muscle cells in the prostatic stroma. However, the severity of BPH symptoms and the degree of urethral obstruction do not correlate well with the size of the prostate. The dynamic component is a function of an increase in smooth muscle tone in the prostate and bladder neck leading to constriction of the bladder outlet. Smooth muscle tone is mediated by the sympathetic nervous stimulation of alpha1 adrenoceptors, which are abundant in the prostate, prostatic capsule, prostatic urethra, and bladder neck. Blockade of these adrenoceptors can cause smooth muscles in the bladder neck and prostate to relax, resulting in an improvement in urine flow rate and a reduction in symptoms of BPH. Tamsulosin, an alpha1 adrenoceptor blocking agent, exhibits selectivity for alpha1 receptors in the human prostate. At least three discrete alpha1 adrenoceptor subtypes have been identified: alpha1A, alpha1B, and alpha1D; their distribution differs between human organs and tissue. Approximately 70% of the alpha1 receptors in the human prostate are of the alpha1A subtype. FLOMAX capsules are not intended for use as an antihypertensive drug.

INDICATIONS AND USAGE

1 Flomax® (tamsulosin hydrochloride) capsules are indicated for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH) [ see Clinical Studies (14) ]. FLOMAX capsules are not indicated for the treatment of hypertension. FLOMAX is an alpha1 adrenoceptor antagonist indicated for treatment of the signs and symptoms of benign prostatic hyperplasia (1) FLOMAX capsules are not indicated for the treatment of hypertension (1)

PEDIATRIC USE

8.4 Pediatric Use FLOMAX capsules are not indicated for use in pediatric populations. Efficacy and positive benefit/risk of tamsulosin hydrochloride was not demonstrated in two studies conducted in patients 2 years to 16 years of age with elevated detrusor leak point pressure (>40 cm H2O) associated with known neurological disorder (e.g., spina bifida). Patients in both studies were treated on a weight-based mg/kg schema (0.025 mg, 0.05 mg, 0.1 mg, 0.2 mg, or 0.4 mg tamsulosin hydrochloride) for the reduction in detrusor leak point pressure below 40 cm H2O. In a randomized, double-blind, placebo-controlled, 14-week, pharmacokinetic, safety and efficacy study in 161 patients, no statistically significant difference in the proportion of responders was observed between groups receiving tamsulosin hydrochloride and placebo. In an open-label, 12-month safety study, 87 patients were treated with tamsulosin hydrochloride. The most frequently reported adverse events (≥5%) from the pooled data of both studies were urinary tract infection, vomiting, pyrexia, headache, nasopharyngitis, cough, pharyngitis, influenza, diarrhea, abdominal pain, and constipation.

PREGNANCY

8.1 Pregnancy Teratogenic Effects, Pregnancy Category B. Administration of tamsulosin hydrochloride to pregnant female rats at dose levels up to approximately 50 times the human therapeutic AUC exposure (300 mg/kg/day) revealed no evidence of harm to the fetus. Administration of tamsulosin hydrochloride to pregnant rabbits at dose levels up to 50 mg/kg/day produced no evidence of fetal harm. FLOMAX capsules are not indicated for use in women.

NUSRING MOTHERS

8.3 Nursing Mothers FLOMAX capsules are not indicated for use in women.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Advise patients about the possibility of symptoms related to postural hypotension and to avoid situations where injury could result should syncope occur (5.1) Should not be used in combination with strong inhibitors of CYP3A4. Use with caution in combination with moderate inhibitors of CYP3A4, with strong or moderate inhibitors of CYP2D6, in patients known to be CYP2D6 poor metabolizers, or in combination with other cytochrome P450 inhibitors. (5.2, 7.1, 12.3) Should not be used in combination with other alpha adrenergic blocking agents (5.2, 7.2, 12.3) Exercise caution with concomitant administration of warfarin (5.2, 7.4, 12.3) Advise patients about the possibility and seriousness of priapism (5.3) Intraoperative Floppy Iris Syndrome has been observed during cataract surgery in some patients. Advise patients considering cataract surgery to tell their ophthalmologist that they have taken FLOMAX capsules. (5.5) Advise patients to be screened for the presence of prostate cancer prior to treatment and at regular intervals afterwards (5.4) 5.1 Orthostasis The signs and symptoms of orthostasis (postural hypotension, dizziness, and vertigo) were detected more frequently in FLOMAX capsule-treated patients than in placebo recipients. As with other alpha adrenergic blocking agents there is a potential risk of syncope [ see Adverse Reactions (6.1) ]. Patients beginning treatment with FLOMAX capsules should be cautioned to avoid situations in which injury could result should syncope occur [ see Patient Counseling Information (17.1) ]. 5.2 Drug Interactions Tamsulosin is extensively metabolized, mainly by CYP3A4 and CYP2D6. FLOMAX capsules 0.4 mg should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should be used with caution in combination with moderate inhibitors of CYP3A4 (e.g., erythromycin), in combination with strong (e.g., paroxetine) or moderate (e.g., terbinafine) inhibitors of CYP2D6, in patients known to be CYP2D6 poor metabolizers particularly at a dose higher than 0.4 mg (e.g., 0.8 mg) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should be used with caution in combination with cimetidine, particularly at a dose higher than 0.4 mg (e.g., 0.8 mg) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should not be used in combination with other alpha adrenergic blocking agents [ see Drug Interactions (7.2) and Clinical Pharmacology (12.3) ]. Caution is advised when alpha adrenergic blocking agents including FLOMAX are co-administered with PDE5 inhibitors. Alpha-adrenergic blockers and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [ see Drug Interactions (7.3) and Clinical Pharmacology (12.3) ]. Caution should be exercised with concomitant administration of warfarin and FLOMAX capsules [ see Drug Interactions (7.4) and Clinical Pharmacology (12.3) ]. 5.3 Priapism Rarely (probably less than 1 in 50,000 patients), tamsulosin, like other alpha1 antagonists, has been associated with priapism (persistent painful penile erection unrelated to sexual activity). Because this condition can lead to permanent impotence if not properly treated, patients must be advised about the seriousness of the condition [ see Patient Counseling Information (17.2) ]. 5.4 Screening for Prostate Cancer Prostate cancer and BPH frequently co-exist; therefore, patients should be screened for the presence of prostate cancer prior to treatment with FLOMAX capsules and at regular intervals afterwards [ see Patient Counseling Information (17.3) ]. 5.5 Intraoperative Floppy Iris Syndrome Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in some patients treated with alpha1 blockers, including FLOMAX capsules [ see Adverse Reactions (6.2) ]. Most reports were in patients taking the alpha1 blocker when IFIS occurred, but in some cases, the alpha1 blocker had been stopped prior to surgery. In most of these cases, the alpha1 blocker had been stopped recently prior to surgery (2 to 14 days), but in a few cases, IFIS was reported after the patient had been off the alpha1 blocker for a longer period (5 weeks to 9 months). IFIS is a variant of small pupil syndrome and is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs and potential prolapse of the iris toward the phacoemulsification incisions. The patient’s ophthalmologist should be prepared for possible modifications to their surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. The benefit of stopping alpha1 blocker therapy prior to cataract surgery has not been established. 5.6 Sulfa Allergy In patients with sulfa allergy, allergic reaction to FLOMAX capsules has been rarely reported. If a patient reports a serious or life-threatening sulfa allergy, caution is warranted when administering FLOMAX capsules.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Patient Labeling (17.6). 17.1 Hypotension Patients should be told about the possible occurrence of symptoms related to postural hypotension, such as dizziness, when taking FLOMAX capsules, and they should be cautioned about driving, operating machinery, or performing hazardous tasks [ see Warnings and Precautions (5.1) ]. 17.2 Priapism Patients should be advised about the possibility of priapism as a result of treatment with FLOMAX capsules and other similar medications. Patients should be informed that this reaction is extremely rare, but if not brought to immediate medical attention, can lead to permanent erectile dysfunction (impotence) [ see Warnings and Precautions (5.3) ]. 17.3 Screening for Prostate Cancer Prostate cancer and BPH frequently co-exist; therefore, patients should be screened for the presence of prostate cancer prior to treatment with FLOMAX capsules and at regular intervals afterwards [ see Warnings and Precautions (5.4) ]. 17.4 Intraoperative Floppy Iris Syndrome Patients considering cataract surgery should be advised to tell their ophthalmologist that they have taken FLOMAX capsules [ see Warnings and Precautions (5.5) ]. 17.5 Administration Patients should be advised not to crush or chew the FLOMAX capsules. 17.6 FDA-approved Patient Labeling Patient labeling is provided as a tear-off leaflet at the end of this prescribing information.

DOSAGE AND ADMINISTRATION

2 FLOMAX capsules 0.4 mg once daily is recommended as the dose for the treatment of the signs and symptoms of BPH. It should be administered approximately one-half hour following the same meal each day. For those patients who fail to respond to the 0.4 mg dose after 2 to 4 weeks of dosing, the dose of FLOMAX capsules can be increased to 0.8 mg once daily. FLOMAX capsules 0.4 mg should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Warnings and Precautions (5.2) ]. If FLOMAX capsules administration is discontinued or interrupted for several days at either the 0.4 mg or 0.8 mg dose, therapy should be started again with the 0.4 mg once-daily dose. 0.4 mg once daily taken approximately one-half hour following the same meal each day (2) Can be increased to 0.8 mg once daily for patients who fail to respond to the 0.4 mg dose after 2 to 4 weeks of dosing (2) If discontinued or interrupted for several days, therapy should start again with the 0.4 mg once-daily dose (2)

norepinephrine (as bitartrate) 4 MG per 4 ML Injection

Generic Name: NOREPINEPHRINE BITARTRATE
Brand Name: Norepinephrine bitartrate
  • Substance Name(s):
  • NOREPINEPHRINE BITARTRATE

WARNINGS

Norepinephrine should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

DRUG INTERACTIONS

Drug Interactions: Cyclopropane and halothane anesthetics increase cardiac autonomic irritability and therefore seem to sensitize the myocardium to the action of intravenously administered epinephrine or norepinephrine. Hence, the use of norepinephrine during cyclopropane and halothane anesthesia is generally considered contraindicated because of the risk of producing ventricular tachycardia or fibrillation. The same type of cardiac arrhythmias may result from the use of norepinephrine in patients with profound hypoxia or hypercarbia. Norepinephrine should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

OVERDOSAGE

Overdosage with norepinephrine may result in headache, severe hypertension, reflex bradycardia, marked increase in peripheral resistance, and decreased cardiac output. In case of accidental overdosage, as evidenced by excessive blood pressure elevation, discontinue norepinephrine until the condition of the patient stabilizes.

DESCRIPTION

Norepinephrine (sometimes referred to as l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic amine which differs from epinephrine by the absence of a methyl group on the nitrogen atom. Norepinephrine bitartrate is (-)-α-(aminomethyl)-3,4-dihydroxybenzyl alcohol tartrate (1:1) (salt) monohydrate and has the following structural formula: Norepinephrine is supplied in sterile aqueous solution in the form of the bitartrate salt to be administered by intravenous infusion following dilution. Norepinephrine is sparingly soluble in water, very slightly soluble in alcohol and ether, and readily soluble in acids. Each mL contains the equivalent of 1 mg base of norepinephrine, sodium chloride for isotonicity. It has a pH of 3 to 4.5. The air in the ampules has been displaced by nitrogen gas. Norephinephrine structure

HOW SUPPLIED

Norepinephrine Bitartrate Injection, USP, contains the equivalent of 4 mg base of norepinephrine per each 4 mL ampule (1 mg/mL), and is available as follows: NDC 36000-162-10 Ampules of 4 mL in shelf carton of 10 Store at 25°C (77°F); excursions permitted to 15 to 30°C (59 to 86°F) [see USP Controlled Room Temperature]. Retain in carton until time of use. Protect from light.

GERIATRIC USE

Geriatric Use: Clinical studies of norepinephrine bitartrate injection did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Norepinephrine infusions should not be administered into the veins in the leg in elderly patients (see PRECAUTIONS, General).

INDICATIONS AND USAGE

For blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions). As an adjunct in the treatment of cardiac arrest and profound hypotension.

PEDIATRIC USE

Pediatric Use: Safety and effectiveness in pediatric patients has not been established.

PREGNANCY

Pregnancy Category C: Animal reproduction studies have not been conducted with norepinephrine. It is also not known whether norepinephrine can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Norepinephrine should be given to a pregnant woman only if clearly needed.

NUSRING MOTHERS

Nursing Mothers: It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when norepinephrine is administered to a nursing woman.

BOXED WARNING

IMPORTANT- Antidote for Extravasation Ischemia: To prevent sloughing and necrosis in areas in which extravasation has taken place, the area should be infiltrated as soon as possible with 10 mL to 15 mL of saline solution containing from 5 mg to 10 mg of phentolamine, an adrenergic blocking agent. A syringe with a fine hypodermic needle should be used, with the solution being infiltrated liberally throughout the area, which is easily identified by its cold, hard, and pallid appearance. Sympathetic blockade with phentolamine causes immediate and conspicuous local hyperemic changes if the area is infiltrated within 12 hours. Therefore, phentolamine should be given as soon as possible after the extravasation is noted.

DOSAGE AND ADMINISTRATION

Norepinephrine Bitartrate Injection is a concentrated, potent drug which must be diluted in dextrose containing solutions prior to infusion. An infusion of norepinephrine should be given into a large vein (see PRECAUTIONS). Restoration of Blood Pressure in Acute Hypotensive States Blood volume depletion should always be corrected as fully as possible before any vasopressor is administered. When, as an emergency measure, intraaortic pressures must be maintained to prevent cerebral or coronary artery ischemia, norepinephrine can be administered before and concurrently with blood volume replacement. Diluent: Norepinephrine should be diluted in 5 percent dextrose injection or 5 percent dextrose and sodium chloride injections. These dextrose containing fluids are protection against significant loss of potency due to oxidation. Administration in saline solution alone is not recommended. Whole blood or plasma, if indicated to increase blood volume, should be administered separately (for example, by use of a Y-tube and individual containers if given simultaneously). Average Dosage: Add a 4 mL ampul (4 mg) of norepinephrine to 1,000 mL of a 5 percent dextrose containing solution. Each mL of this dilution contains 4 mcg of the base of norepinephrine. Give this solution by intravenous infusion. Insert a plastic intravenous catheter through a suitable bore needle well advanced centrally into the vein and securely fixed with adhesive tape, avoiding, if possible, a catheter tie-in technique as this promotes stasis. An IV drip chamber or other suitable metering device is essential to permit an accurate estimation of the rate of flow in drops per minute. After observing the response to an initial dose of 2 mL to 3 mL (from 8 mcg to 12 mcg of base) per minute, adjust the rate of flow to establish and maintain a low normal blood pressure (usually 80 mm Hg to 100 mm Hg systolic) sufficient to maintain the circulation to vital organs. In previously hypertensive patients, it is recommended that the blood pressure should be raised no higher than 40 mm Hg below the preexisting systolic pressure. The average maintenance dose ranges from 0.5 mL to 1 mL per minute (from 2 mcg to 4 mcg of base). High Dosage: Great individual variation occurs in the dose required to attain and maintain an adequate blood pressure. In all cases, dosage of norepinephrine should be titrated according to the response of the patient. Occasionally much larger or even enormous daily doses (as high as 68 mg base or 17 ampules) may be necessary if the patient remains hypotensive, but occult blood volume depletion should always be suspected and corrected when present. Central venous pressure monitoring is usually helpful in detecting and treating this situation. Fluid Intake: The degree of dilution depends on clinical fluid volume requirements. If large volumes of fluid (dextrose) are needed at a flow rate that would involve an excessive dose of the pressor agent per unit of time, a solution more dilute than 4 mcg per mL should be used. On the other hand, when large volumes of fluid are clinically undesirable, a concentration greater than 4 mcg per mL may be necessary. Duration of Therapy: The infusion should be continued until adequate blood pressure and tissue perfusion are maintained without therapy. Infusions of norepinephrine should be reduced gradually, avoiding abrupt withdrawal. In some of the reported cases of vascular collapse due to acute myocardial infarction, treatment was required for up to six days. Adjunctive Treatment in Cardiac Arrest Infusions of norepinephrine are usually administered intravenously during cardiac resuscitation to restore and maintain an adequate blood pressure after an effective heartbeat and ventilation have been established by other means. [Norepinephrine’s powerful beta-adrenergic stimulating action is also thought to increase the strength and effectiveness of systolic contractions once they occur.] Average Dosage: To maintain systemic blood pressure during the management of cardiac arrest, norepinephrine is used in the same manner as described under Restoration of Blood Pressure in Acute Hypotensive States. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to use, whenever solution and container permit. Do not use the solution if its color is pinkish or darker than slightly yellow or if it contains a precipitate. Avoid contact with iron salts, alkalis, or oxidizing agents.

meropenem 500 MG Injection

Generic Name: MEROPENEM
Brand Name: MEROPENEM
  • Substance Name(s):
  • MEROPENEM

DRUG INTERACTIONS

7 Co-administration of Meropenem for Injection with probenecid inhibits renal excretion of meropenem. (7.1) Co-administration of Meropenem for Injection with valproic acid or divalproex sodium reduces the serum concentration of valproic acid potentially increasing the risk of breakthrough seizures. (5.3, 7.2) 7.1 Probenecid Probenecid competes with meropenem for active tubular secretion, resulting in increased plasma concentrations of meropenem. Co-administration of probenecid with meropenem is not recommended. 7.2 Valproic Acid Case reports in the literature have shown that co-administration of carbapenems, including meropenem, to patients receiving valproic acid or divalproex sodium results in a reduction in valproic acid concentrations. The valproic acid concentrations may drop below the therapeutic range as a result of this interaction, therefore increasing the risk of breakthrough seizures. Although the mechanism of this interaction is unknown, data from in vitro and animal studies suggest that carbapenems may inhibit the hydrolysis of valproic acid’s glucuronide metabolite (VPA-g) back to valproic acid, thus decreasing the serum concentrations of valproic acid. If administration of Meropenem for Injection is necessary, then supplemental anti-convulsant therapy should be considered [see Warnings and Precautions (5.3) ].

OVERDOSAGE

10 In mice and rats, large intravenous doses of meropenem (2200 mg/kg to 4000 mg/kg) have been associated with ataxia, dyspnea, convulsions, and mortalities. Intentional overdosing of Meropenem for Injection is unlikely, although accidental overdosing might occur if large doses are given to patients with reduced renal function. The largest dose of meropenem administered in clinical trials has been 2 grams given intravenously every 8 hours. At this dosage, no adverse pharmacological effects or increased safety risks have been observed. Limited post-marketing experience indicates that if adverse events occur following overdosage, they are consistent with the adverse event profile described in the Adverse Reactions section and are generally mild in severity and resolve on withdrawal or dose reduction. Consider symptomatic treatments. In individuals with normal renal function, rapid renal elimination takes place. Meropenem and its metabolite are readily dialyzable and effectively removed by hemodialysis; however, no information is available on the use of hemodialysis to treat overdosage.

DESCRIPTION

11 Meropenem for Injection is a sterile, pyrogen-free, synthetic, broad-spectrum, carbapenem antibacterial for intravenous administration. It is (4R,5S,6S)-3- [[(3S,5S)-5-(Dimethylcarbamoyl)-3-pyrrolidinyl]thio]-6-[(1R)-1 hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxilic acid trihydrate. Its empirical formula is C17H25N3O5S∙3H2O with a molecular weight of 437.52. Its structural formula is: Meropenem for Injection is a white to pale yellow crystalline powder. The solution varies from colorless to yellow depending on the concentration. The pH of freshly constituted solutions is between 7.3 and 8.3. Meropenem is soluble in 5% monobasic potassium phosphate solution, sparingly soluble in water, very slightly soluble in hydrated ethanol, and practically insoluble in acetone or ether. When constituted as instructed, each 1 gram Meropenem for Injection vial will deliver 1 gram of meropenem and 90.2 mg of sodium as sodium carbonate (3.92 mEq). Each 500 mg Meropenem for Injection vial will deliver 500 mg meropenem and 45.1 mg of sodium as sodium carbonate (1.96 mEq) [see Dosage and Administration (2.4) ]. Chemical Structure

CLINICAL STUDIES

14 14.1 Complicated Skin and Skin Structure Infections Adult patients with complicated skin and skin structure infections including complicated cellulitis, complex abscesses, perirectal abscesses, and skin infections requiring intravenous antimicrobials, hospitalization, and surgical intervention were enrolled in a randomized, multi-center, international, double-blind trial. The study evaluated meropenem at doses of 500 mg administered intravenously every 8 hours and imipenem-cilastatin at doses of 500 mg administered intravenously every 8 hours. The study compared the clinical response between treatment groups in the clinically evaluable population at the follow-up visit (test-of-cure). The trial was conducted in the United States, South Africa, Canada, and Brazil. At enrollment, approximately 37% of the patients had underlying diabetes, 12% had underlying peripheral vascular disease and 67% had a surgical intervention. The study included 510 patients randomized to meropenem and 527 patients randomized to imipenem-cilastatin. Two hundred and sixty one (261) patients randomized to meropenem and 287 patients randomized to imipenem-cilastatin were clinically evaluable. The success rates in the clinically evaluable patients at the follow-up visit were 86% (225/261) in the meropenem arm and 83% (238/287) in imipenem-cilastatin arm. The following table provides the results for the overall as well as subgroup comparisons in clinically evaluable population. Success RatePercent of satisfactory clinical response at follow-up evaluation. Population Meropenem for Injection nn=number of patients with satisfactory response./NN=number of patients in the clinically evaluable population or respective subgroup within treatment groups. (%) Imipenem-cilastatin n/N (%) Total 225/261 (86) 238/287 (83) Diabetes mellitus 83/97 (86) 76/105 (72) No diabetes mellitus 142/164 (87) 162/182 (89) Less than 65 years of age 190/218 (87) 205/241 (85) 65 years of age or older 35/43 (81) 33/46 (72) Men 130/148 (88) 137/172 (80) Women 95/113 (84) 101/115 (88) The following clinical efficacy rates were obtained, per organism. The values represent the number of patients clinically cured/number of clinically evaluable patients at the post-treatment follow-up visit, with the percent cure in parentheses (Fully Evaluable analysis set). MICROORGANISMSPatients may have more than one pretreatment pathogen. Meropenem for Injection nn=number of patients with satisfactory response./NN=number of patients in the clinically evaluable population or subgroup within treatment groups. (%)%= Percent of satisfactory clinical response at follow-up evaluation. Imipenem-cilastatin n/N (%) Gram-positive aerobes Staphylococcus aureus, methicillin susceptible 82/88 (93) 84/100 (84) Streptococcus pyogenes (Group A) 26/29 (90) 28/32 (88) Streptococcus agalactiae (Group B) 12/17 (71) 16/19 (84) Enterococcus faecalis 9/12 (75) 14/20 (70) Streptococcus viridans Group, nos 11/12 (92) 5/6 (83) Gram-negative aerobes Escherichia coli 12/15 (80) 15/21 (71) Pseudomonas aeruginosa 11/15 (73) 13/15 (87) Proteus mirabilis 11/13 (85) 6/7 (86) Anaerobes Bacteroides fragilis 10/11 (91) 9/10 (90) Peptostreptococcus species 10/13 (77) 14/16 (88) The proportion of patients who discontinued study treatment due to an adverse event was similar for both treatment groups (meropenem, 2.5% and imipenem-cilastatin, 2.7%). 14.2 Complicated Intra-Abdominal Infections One controlled clinical study of complicated intra-abdominal infection was performed in the United States where meropenem was compared with clindamycin/tobramycin. Three controlled clinical studies of complicated intra-abdominal infections were performed in Europe; meropenem was compared with imipenem (two trials) and cefotaxime/metronidazole (one trial). Using strict evaluability criteria and microbiologic eradication and clinical cures at follow-up which occurred 7 or more days after completion of therapy, the following presumptive microbiologic eradication/clinical cure rates and statistical findings were obtained: Treatment Arm No. evaluable/No. enrolled (%) Microbiologic Eradication Rate Clinical Cure Rate Outcome meropenem 146/516 (28%) 98/146 (67%) 101/146 (69%) imipenem 65/220 (30%) 40/65 (62%) 42/65 (65%) Meropenem equivalent to control cefotaxime/metronidazole 26/85 (30%) 22/26 (85%) 22/26 (85%) Meropenem not equivalent to control clindamycin/tobramycin 50/212 (24%) 38/50 (76%) 38/50 (76%) Meropenem equivalent to control The finding that meropenem was not statistically equivalent to cefotaxime/metronidazole may have been due to uneven assignment of more seriously ill patients to the meropenem arm. Currently there is no additional information available to further interpret this observation. 14.3 Bacterial Meningitis Four hundred forty-six patients (397 pediatric patients 3 months to less than 17 years of age) were enrolled in 4 separate clinical trials and randomized to treatment with meropenem (n=225) at a dose of 40 mg/kg every 8 hours or a comparator drug, i.e., cefotaxime (n=187) or ceftriaxone (n=34), at the approved dosing regimens. A comparable number of patients were found to be clinically evaluable (ranging from 61-68%) and with a similar distribution of pathogens isolated on initial CSF culture. Patients were defined as clinically not cured if any one of the following three criteria were met: At the 5-7 week post-completion of therapy visit, the patient had any one of the following: moderate to severe motor, behavior or development deficits, hearing loss of greater than60 decibels in one or both ears, or blindness. During therapy the patient’s clinical status necessitated the addition of other antibacterial drugs. Either during or post-therapy, the patient developed a large subdural effusion needing surgical drainage, or a cerebral abscess, or a bacteriologic relapse. Using the definition, the following efficacy rates were obtained, per organism. The values represent the number of patients clinically cured/number of clinically evaluable patients, with the percent cure in parentheses. MICROORGANISMS Meropenem for Injection COMPARATOR S. pneumoniae 17/24 (71) 19/30 (63) H. influenzae (+)(+) β-lactamase-producing 8/10 (80) 6/6 (100) H. influenzae (-/NT)(-/NT) non-β-lactamase-producing or not tested 44/59 (75) 44/60 (73) N. meningitidis 30/35 (86) 35/39 (90) Total (including others) 102/131 (78) 108/140 (77) Sequelae were the most common reason patients were assessed as clinically not cured. Five patients were found to be bacteriologically not cured, 3 in the comparator group (1 relapse and 2 patients with cerebral abscesses) and 2 in the meropenem group (1 relapse and 1 with continued growth of Pseudomonas aeruginosa). The adverse events seen were comparable between the two treatment groups both in type and frequency. The meropenem group did have a statistically higher number of patients with transient elevation of liver enzymes [see Adverse Reactions (6.1) ]. Rates of seizure activity during therapy were comparable between patients with no CNS abnormalities who received meropenem and those who received comparator agents. In the Meropenem for Injection treated group, 12/15 patients with seizures had late onset seizures (defined as occurring on day 3 or later) versus 7/20 in the comparator arm. With respect to hearing loss, 263 of the 271 evaluable patients had at least one hearing test performed post-therapy. The following table shows the degree of hearing loss between the meropenem-treated patients and the comparator-treated patients. Degree of Hearing Loss (in one or both ears) Meropenem n = 128 Comparator n = 135 No loss 61% 56% 20-40 decibels 20% 24% Greater than 40-60 decibels 8% 7% Greater than 60 decibels 9% 10%

HOW SUPPLIED

16 /STORAGE AND HANDLING Meropenem for Injection is supplied in 20 mL and 30 mL injection vials containing sufficient meropenem to deliver 500 mg or 1 gram for intravenous administration, respectively. The dry powder should be stored at controlled room temperature 20º-25ºC (68º-77ºF) [see USP]. 500 mg Injection Vial (NDC 0781-3000-94) and packaged in cartons of 10 vials (NDC 0781-3000-95) and cartons of 25 vials (NDC 0781-3000-96). 1 gram Injection Vial (NDC 0781-3098-94) and packaged in cartons of 10 vials (NDC 0781-3098-95) and cartons of 25 vials (NDC 0781-3098-96).

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects in clinical studies of Meropenem for Injection, approximately 1100 (30%) were 65 years of age and older, while 400 (11%) were 75 years and older. Additionally, in a study of 511 patients with complicated skin and skin structure infections, 93 (18%) were 65 years of age and older, while 38 (7%) were 75 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects; spontaneous reports and other reported clinical experience have not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Meropenem is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with renal impairment. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. A pharmacokinetic study with Meropenem for Injection in elderly patients has shown a reduction in the plasma clearance of meropenem that correlates with age-associated reduction in creatinine clearance [see Clinical Pharmacology (12.3) ].

DOSAGE FORMS AND STRENGTHS

3 Single use clear glass vials containing 500 mg or 1 gram (as the trihydrate blend with anhydrous sodium carbonate for constitution) of sterile meropenem powder. 500 mg Injection Vial (3) 1 gram Injection Vial (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Meropenem is an antibacterial drug [see Clinical Pharmacology (12.4) ].

INDICATIONS AND USAGE

1 To reduce the development of drug-resistant bacteria and maintain the effectiveness of Meropenem for Injection and other antibacterial drugs, Meropenem for Injection should only be used to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Meropenem for Injection is useful as presumptive therapy in the indicated condition (e.g. intra-abdominal infections) prior to the identification of the causative organisms because of its broad spectrum of bactericidal activity. For information regarding use in pediatric patients see [ Indications and Usage (1.1), (1.2),(1.3); Dosage and Administration (2.3), Adverse Reactions (6.1) , and Clinical Pharmacology (12.3) ]. Meropenem for Injection is a penem antibacterial indicated as single agent therapy for the treatment of: Complicated skin and skin structure infections (adult patients and pediatric patients 3 months of age and older only). (1.1) Complicated intra-abdominal infections (adult and pediatric patients). (1.2) Bacterial meningitis (pediatric patients 3 months of age and older only). (1.3) To reduce the development of drug-resistant bacteria and maintain the effectiveness of Meropenem for Injection and other antibacterial drugs, Meropenem for Injection should only be used to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. 1.1 Skin and Skin Structure Infections (Adult Patients and Pediatric Patients 3 Months of age and older only) Meropenem for Injection is indicated as a single agent therapy for the treatment of complicated skin and skin structure infections due to Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus pyogenes, Streptococcus agalactiae, viridans group streptococci, Enterococcus faecalis (vancomycin-susceptible isolates only), Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Bacteroides fragilis, and Peptostreptococcus species. 1.2 Intra-abdominal Infections (Adult and Pediatric Patients) Meropenem for Injection is indicated as a single agent therapy for the treatment of complicated appendicitis and peritonitis caused by viridans group streptococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, B. thetaiotaomicron, and Peptostreptococcus species. 1.3 Bacterial Meningitis (Pediatric Patients 3 Months of age and older only) Meropenem for Injection is indicated as a single agent therapy for the treatment of bacterial meningitis caused by Streptococcus pneumoniaeThe efficacy of meropenem as monotherapy in the treatment of meningitis caused by penicillin nonsusceptible isolates of Streptococcus pneumoniae has not been established., Haemophilus influenzae, and Neisseria meningitidis. Meropenem for Injection has been found to be effective in eliminating concurrent bacteremia in association with bacterial meningitis.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of Meropenem for Injection have been established for pediatric patients 3 months of age and older with complicated skin and skin structure infections and bacterial meningitis, and for pediatric patients of all ages with complicated intra-abdominal infections. Skin and Skin Structure Infections Use of Meropenem for Injection in pediatric patients 3 months of age and older with complicated skin and skin structure infections is supported by evidence from an adequate and well-controlled study in adults and additional data from pediatric pharmacokinetics studies [see Indications and Usage (1.3) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.1) ]. Intra-abdominal Infections Use of Meropenem for Injection in pediatric patients 3 months of age and older with intra-abdominal infections is supported by evidence from adequate and well-controlled studies in adults with additional data from pediatric pharmacokinetics studies and controlled clinical trials in pediatric patients. Use of Meropenem for Injection in pediatric patients less than 3 months of age with intra-abdominal infections is supported by evidence from adequate and well-controlled studies in adults with additional data from a pediatric pharmacokinetic and safety study [see Indications and Usage (1.2) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.2) ]. Bacterial Meningitis Use of Meropenem for Injection in pediatric patients 3 months of age and older with bacterial meningitis is supported by evidence from adequate and well-controlled studies in the pediatric population [see Indications and Usage (1.3) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.3) ].

PREGNANCY

8.1 Pregnancy Pregnancy Category B. Reproductive studies have been performed with meropenem in rats at doses of up to 1000 mg/kg/day, and cynomolgus monkeys at doses of up to 360 mg/kg/day (on the basis of AUC comparisons, approximately 1.8 times and 3.7 times, respectively, to the human exposure at the usual dose of 1 gram every 8 hours). These studies revealed no evidence of impaired fertility or harm to the fetus due to meropenem, although there were slight changes in fetal body weight at doses of 250 mg/kg/day (on the basis of AUC comparisons, 0.4 times the human exposure at a dose of 1 gram every 8 hours) and above in rats. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

8.3 Nursing Mothers Meropenem has been reported to be excreted in human milk. Caution should be exercised when Meropenem for Injection is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients receiving β-lactams. (5.1) Seizures and other adverse CNS experiences have been reported during treatment. (5.2) Co-administration of Meropenem for Injection with valproic acid or divalproex sodium reduces the serum concentration of valproic acid potentially increasing the risk of breakthrough seizures. (5.3, 7.2) Clostridium difficile-associated diarrhea (ranging from mild diarrhea to fatal colitis) has been reported. Evaluate if diarrhea occurs. (5.4) In patients with renal dysfunction, thrombocytopenia has been observed. (5.8) 5.1 Hypersensitivity Reactions Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients receiving therapy with β-lactams. These reactions are more likely to occur in individuals with a history of sensitivity to multiple allergens. There have been reports of individuals with a history of penicillin hypersensitivity who have experienced severe hypersensitivity reactions when treated with another β-lactam. Before initiating therapy with Meropenem for Injection, it is important to inquire aboutprevious hypersensitivity reactions to penicillins, cephalosporins, other β-lactams, and other allergens. If an allergic reaction to Meropenem for Injection occurs, discontinue the drug immediately. Serious anaphylactic reactions require immediate emergency treatment with epinephrine, oxygen, intravenous steroids, and airway management, including intubation. Other therapy may also be administered as indicated. 5.2 Seizure Potential Seizures and other adverse CNS experiences have been reported during treatment with Meropenem for Injection These experiences have occurred most commonly in patients with CNS disorders (e.g., brain lesions or history of seizures) or with bacterial meningitis and/or compromised renal function [see Adverse Reactions (6.1) and Drug Interactions (7.2) ]. During clinical investigations, 2904 immunocompetent adult patients were treated for non-CNS infections with the overall seizure rate being 0.7% (based on 20 patients with this adverse event). All meropenemtreated patients with seizures had pre-existing contributing factors. Among these are included prior history of seizures or CNS abnormality and concomitant medications with seizure potential. Dosage adjustment is recommended in patients with advanced age and/or reduced renal function [see Dosage and Administration (2.2) ]. Close adherence to the recommended dosage regimens is urged, especially in patients with known factors that predispose to convulsive activity. Continue anti-convulsant therapy in patients with known seizure disorders. If focal tremors, myoclonus, or seizures occur, evaluate neurologically, placed on anti-convulsant therapy if not already instituted, and the dosage of Meropenem for Injection re-examined to determine whether it should be decreased or the antibacterial drug discontinued. 5.3 Interaction with Valproic Acid Case reports in the literature have shown that co-administration of carbapenems, including meropenem, to patients receiving valproic acid or divalproex sodium results in a reduction in valproic acid concentrations. The valproic acid concentrations may drop below the therapeutic range as a result of this interaction, therefore increasing the risk of breakthrough seizures. Increasing the dose of valproic acid or divalproex sodium may not be sufficient to overcome this interaction. The concomitant use of meropenem and valproic acid or divalproex sodium is generally not recommended. Antibacterials other than carbapenems should be considered to treat infections in patients whose seizures are well controlled on valproic acid or divalproex sodium. If administration of Meropenem for Injection is necessary, supplemental anti-convulsant therapy should be considered [see Drug Interactions (7.2) ]. 5.4 Clostridium difficile-associated Diarrhea Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Meropenem for Injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing isolates of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial drug use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibacterial drug use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial drug treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. 5.5 Development of Drug-Resistant Bacteria Prescribing Meropenem for Injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria. 5.6 Overgrowth of Nonsusceptible Organisms As with other broad-spectrum antibacterial drugs, prolonged use of meropenem may result in overgrowth of nonsusceptible organisms. Repeated evaluation of the patient is essential. If superinfection does occur during therapy, appropriate measures should be taken. 5.7 Laboratory Tests While Meropenem for Injection possesses the characteristic low toxicity of the beta-lactam group of antibacterial drugs, periodic assessment of organ system functions, including renal, hepatic, and hematopoietic, is advisable during prolonged therapy. 5.8 Patients with Renal Impairment In patients with renal impairment, thrombocytopenia has been observed but no clinical bleeding reported [see Dosage and Administration (2.2), Adverse Reactions (6.1), Use In Specific Populations (8.5) and (8.6) , and Clinical Pharmacology (12.3) ]. 5.9 Dialysis There is inadequate information regarding the use of Meropenem for Injection in patients on hemodialysis or peritoneal dialysis. 5.10 Potential for Neuromotor Impairment Patients receiving Meropenem for Injection on an outpatient basis may develop adverse events such as seizures, headaches and/or paresthesias that could interfere with mental alertness and/or cause motor impairment. Until it is reasonably well established that Meropenem for Injection is well tolerated, patients should not operate machinery or motorized vehicles [see Adverse Reactions (6.1) ].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Counsel patients that antibacterial drugs including Meropenem for Injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Meropenem for Injection is prescribed to treat a bacterial infection, tell patients that although it is common to feel better early in the course of therapy, take the medication exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Meropenem for Injection or other antibacterial drugs in the future. Counsel patients that diarrhea is a common problem caused by antibacterial drugs which usually ends when the antibacterial drug is discontinued. Sometimes after starting treatment with antibacterial drugs, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibacterial drug. If this occurs, patients should contact their physician as soon as possible [see Warnings and Precautions (5.4) ]. Counsel patients to inform their physician if they are taking valproic acid or divalproex sodium. Valproic acid concentrations in the blood may drop below the therapeutic range upon co-administration with Meropenem for Injection. If treatment with Meropenem for Injection is necessary and continued, alternative or supplemental anti-convulsant medication to prevent and/or treat seizures may be needed [see Warnings and Precautions (5.3) ]. Patients receiving Meropenem for Injection on an outpatient basis may develop adverse events such as seizures, headaches and/or paresthesias that could interfere with mental alertness and/or cause motor impairment. Until it is reasonably well established that Meropenem for Injection is well tolerated, patients should not operate machinery or motorized vehicles [see Warnings and Precautions (5.10) ].

DOSAGE AND ADMINISTRATION

2 500 mg every 8 hours by intravenous infusion over 15 to 30 minutes for skin and skin structure infections for adult patients. When treating infections caused by Pseudomonas aeruginosa, a dose of 1 gram every 8 hours is recommended. (2.1) 1 gram every 8 hours by intravenous infusion over 15 minutes to 30 minutes for intra-abdominal infections for adult patients. (2.1) 1 gram every 8 hours by intravenous bolus injection (5 mL to 20 mL) over 3 minutes to 5 minutes for adult patients. (2.1) Dosage should be reduced in adult patients with renal impairment. (2.2) Recommended Meropenem for Injection Dosage Schedule for Adult Patients with Renal Impairment Creatinine Clearance (mL/min) Dose (dependent on type of infection) Dosing Interval Greater than 50 Recommended dose (500 mg cSSSI and 1 gram Intra-abdominal) Every 8 hours 26-50 Recommended dose Every 12 hours 10-25 One-half recommended dose Every 12 hours Less than10 One-half recommended dose Every 24 hours Pediatric patients 3 months of age and older Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients 3 Months of Age and Older with Normal Renal Function (2.3) Type of Infection Dose (mg/kg) Up to a Maximum Dose Dosing Interval – Intravenous infusion is to be given over approximately 15 minutes to 30 minutes. -Intravenous bolus injection (5 mL to 20 mL) is to be given over approximately 3 minutes to 5 minutes. -There is no experience in pediatric patients with renal impairment. Complicated skin and skin structure20 mg/kg (or 1 gram for pediatric patients weighing over 50 kg) every 8 hours is recommended when treating complicated skin and skin structure infections caused by P. aeruginosa (2.3). 10 500 mg Every 8 hours Intra-abdominal 20 1 gram Every 8 hours Meningitis 40 2 grams Every 8 hours Pediatric patients less than 3 months of age Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients Less than 3 Months of Age with Complicated Intra-Abdominal Infections and Normal Renal Function (2.3) Age Group Dose (mg/kg) Dosing Interval – Intravenous infusion is to be given over 30 minutes. – There is no experience in pediatric patients with renal impairment. GA: gestational age and PNA: postnatal Infants less than 32 weeks GA and PNA less than 2 weeks 20 Every 12 hours Infants less than 32 weeks GA and PNA 2 weeks and older 20 Every 8 hours Infants 32 weeks and older GA and PNA less than 2 weeks 20 Every 8 hours Infants 32 weeks and older GA and PNA 2 weeks and older 30 Every 8 hours 2.1 Adult Patients The recommended dose of Meropenem for Injection is 500 mg given every 8 hours for skin and skin structure infections and 1 gram given every 8 hours for intra-abdominal infections. When treating complicated skin and skin structure infections caused by P.aeruginosa, a dose of 1 gram every 8 hours is recommended. Meropenem for Injection should be administered by intravenous infusion over approximately 15 minutes to 30 minutes. Doses of 1 gram may also be administered as an intravenous bolus injection (5 mL to 20 mL) over approximately 3 minutes to 5 minutes. 2.2 Use in Adult Patients with Renal Impairment Dosage should be reduced in patients with creatinine clearance of 50 mL/min or less. (See dosing table below.) When only serum creatinine is available, the following formula (Cockcroft and Gault equation)5 may be used to estimate creatinine clearance. Males: Creatinine Clearance (mL/min) = Weight (kg) × (140 – age) 72 × serum creatinine (mg/dL) Females: 0.85 × above value Recommended Meropenem for Injection Dosage Schedule for Adult Patients with Renal Impairment Creatinine Clearance (mL/min) Dose (dependent on type of infection) Dosing Interval Greater than 50 Recommended dose (500 mg cSSSI and 1 gram Intra-abdominal) Every 8 hours Greater than 25-50 Recommended dose Every 12 hours 10-25 One-half recommended dose Every 12 hours Less than 10 One-half recommended dose Every 24 hours There is inadequate information regarding the use of Meropenem for Injection in patients on hemodialysis or peritoneal dialysis. 2.3 Use in Pediatric Patients Pediatric Patients 3 Months of Age and Older For pediatric patients 3 months of age and older, the Meropenem for Injection dose is 10 mg/kg, 20 mg/kg or 40 mg/kg every 8 hours (maximum dose is 2 grams every 8 hours), depending on the type of infection (complicated skin and skin structure, intra-abdominal or meningitis). (See dosing table below.) Pediatric patients weighing over 50 kg should be administered Meropenem for Injection at a dose of 500 mg every 8 hours for complicated skin and skin structure infections, 1 gram every 8 hours for intra-abdominal infections and 2 grams every 8 hours for meningitis. Meropenem for Injection should be given as intravenous infusion over approximately 15 minutes to 30 minutes or as an intravenous bolus injection (5 mL to 20 mL) over approximately 3 minutes-5 minutes. There is limited safety data available to support the administration of a 40 mg/kg (up to a maximum of 2 grams) bolus dose. Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients 3 Months of Age and Older with Normal Renal Function Type of Infection Dose (mg/kg) Up to a Maximum Dose Dosing Interval Complicated skin and skin structure 10 500 mg Every 8 hours Intra-abdominal 20 1 gram Every 8 hours Meningitis 40 2 grams Every 8 hours There is no experience in pediatric patients with renal impairment. When treating complicated skin and skin structure infections caused by P. aeruginosa, a dose of 20 mg/kg (or 1 gram for pediatric patients weighing over 50 kg) every 8 hours is recommended. Pediatric Patients Less Than 3 Months of Age For pediatric patients (with normal renal function) less than 3 months of age, with intra-abdominal infections, the Meropenem for Injection dose is based on gestational age (GA) and postnatal age (PNA). (See dosing table below). Meropenem for Injection should be given as intravenous infusion over 30 minutes. Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients Less than 3 Months of Age with Complicated Intra-Abdominal Infections and Normal Renal Function Age Group Dose (mg/kg) Dose Interval Infants less than 32 weeks GA and PNA less than 2 weeks 20 Every 12 hours Infants less than 32 weeks GA and PNA 2 weeks and older 20 Every 8 hours Infants 32 weeks and older GA and PNA less than 2 weeks 20 Every 8 hours Infants 32 weeks and older GA and PNA 2 weeks and older 30 Every 8 hours There is no experience in pediatric patients with renal impairment. 2.4 Preparation of Solution For Intravenous Bolus Administration Constitute injection vials (500 mg and 1 gram) with sterile Water for Injection (see table below). Shake to dissolve and let stand until clear. Vial Size Amount of Diluent Added (mL) Approximate Withdrawable Volume (mL) Approximate Average Concentration (mg/mL) 500 mg 10 10 50 1 gram 20 20 50 For Infusion Infusion vials (500 mg and 1 gram) may be directly constituted with a compatible infusion fluid. Alternatively, an injection vial may be constituted, then the resulting solution added to an intravenous container and further diluted with an appropriate infusion fluid [see Dosage and Administration (2.5) and (2.6) ]. WARNING: Do not use flexible container in series connections. 2.5 Compatibility Compatibility of Meropenem for Injection with other drugs has not been established. Meropenem for Injection should not be mixed with or physically added to solutions containing other drugs. 2.6 Stability and Storage Freshly prepared solutions of Meropenem for Injection should be used. However, constituted solutions of Meropenem for Injection maintain satisfactory potency under the conditions described below. Solutions of intravenous Meropenem for Injection should not be frozen. Intravenous Bolus Administration Meropenem for Injection vials constituted with sterile Water for Injection for bolus administration (up to 50 mg/mL of Meropenem for Injection) may be stored for up to 3 hours at up to 25°C (77°F) or for 13 hours at up to 5°C (41°F). Intravenous Infusion Administration Solutions prepared for infusion (Meropenem for Injection concentrations ranging from 1 mg/mL to 20 mg/mL) constituted with Sodium Chloride Injection 0.9% may be stored for 1 hour at up to 25°C (77°F) or 15 hours at up to 5°C (41°F). Solutions prepared for infusion (Meropenem for Injection concentrations ranging from 1 mg/mL to 20 mg/mL) constituted with Dextrose Injection 5% should be used immediately. NOTE: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

vancomycin (as vancomycin hydrochloride) 1 GM Injection

Generic Name: VANCOMYCIN HYDROCHLORIDE
Brand Name: Vancomycin Hydrochloride
  • Substance Name(s):
  • VANCOMYCIN HYDROCHLORIDE

WARNINGS

Rapid bolus administration (e.g., over several minutes) may be associated with exaggerated hypotension, including shock and rarely cardiac arrest. Vancomycin hydrochloride for injection should be administered in a diluted solution over a period of not less than 60 minutes to avoid rapid-infusion-related reactions.Stopping the infusion usually results in a prompt cessation of these reactions. Ototoxicity has occurred in patients receiving vancomycin hydrochloride for injection. It may be transient or permanent. It has been reported mostly in patients who have been given excessive doses, who have an underlying hearing loss, or who are receiving concomitant therapy with another ototoxic agent such as an aminoglycoside. Vancomycin should be used with caution in patients with renal insufficiency because the risk of toxicity is appreciably increased by high, prolonged blood concentrations. Dosage of vancomycin hydrochloride for injection must be adjusted for patients with renal dysfunction (see PRECAUTIONS and DOSAGE AND ADMINISTRATION ). Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including vancomycin hydrochloride for injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

DRUG INTERACTIONS

Drug Interactions Concomitant administration of vancomycin and anesthetic agents has been associated with erythema and histamine-like flushing (see Pediatric Use under PRECAUTIONS) and anaphylactoid reactions (see ADVERSE REACTIONS ). Concurrent and/or sequential systemic or topical use of other potentially, neurotoxic and/or nephrotoxic drugs, such as amphotericin B, aminoglycosides, bacitracin, polymyxin B, colistin, viomycin, or cisplatin, when indicated requires careful monitoring.

OVERDOSAGE

Supportive care is advised, with maintenance of glomerular filtration. Vancomycin is poorly removed by dialysis. Hemofiltration and hemoperfusion with polysulfone resin have been reported to result in increased vancomycin clearance. The median lethal intravenous dose is 319 mg/kg in rats and 400 mg/kg in mice. To obtain up-to-date information about the treatment of overdose, a good resource is your certified Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians’ Desk Reference (PDR). In managing overdosage, consider the possibility of multiple drug overdoses, interaction among drugs, and unusual drug kinetics in your patient.

DESCRIPTION

Vancomycin Hydrochloride for Injection, USP is a lyophilized powder, for preparing intravenous (IV) infusions, in vials each containing the equivalent of 500 mg or 1 g vancomycin base. 500 mg of the base are equivalent to 0.34 mmol. When reconstituted with Sterile Water for Injection to a concentration of 50 mg/mL, the pH of the solution is between 2.5 and 4.5. Vancomycin Hydrochloride for Injection, USP should be administered intravenously in diluted solution (see DOSAGE AND ADMINISTRATION ), AFTER RECONSTITUTION FURTHER DILUTION IS REQUIRED BEFORE USE. Vancomycin is a tricyclic glycopeptide antibiotic derived from Amycolatopasis orientalis (formerly Nocardia orientalis). The chemical name for Vancomycin hydrochloride is 3S- [3R*,6S*(S*),7S*,22S*,23R*,26R*,36S*,38aS*]]-3-(2-Amino-2-oxoethyl)-44-[[2-O-(3-amino-2,3,6-trideoxy-3-C-methyl-α-L-lyxo-hexopyranosyl)-ß-D-glucopyranosyl]oxy]-10,19-dichloro-2,3,4,5,6,7,23,24,25,26,36,37,38,38a-tetradecahydro-7,22,28,30,32-pentahydroxy-6-[[4-methyl-2-(methylamino)-1-oxopentyl]amino]-2,5,24,38,39-pentaoxo-22H-8,11:18,21-dietheno-23,36-(iminomethano)-13,16:31,35-dimetheno-1H,16H-[1,6,9] oxadiazacyclohexadecino[4,5-m][10,2,16]-benzoxadiazacyclotetracosine-26-carboxylic acid, monohydrochloride. The molecular formula is C66H75Cl2N9O24• HCl and the molecular weight is 1,485.74. Vancomycin hydrochloride has the following structural formula: VAncomycin-structure

HOW SUPPLIED

NDC No. Pack configuration 68083-143-25 Vancomycin Hydrochloride for Injection, USP equivalent to 500 mg vancomycin in one vial, in packages of 25. 68083-144-10 Vancomycin Hydrochloride for Injection, USP equivalent to 1 g vancomycin in one vial, in packages of 10. Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature]. The rubber closure is not made with natural rubber latex.

INDICATIONS AND USAGE

Vancomycin hydrochloride for injection, USP is indicated for the treatment of serious or severe infections caused by susceptible strains of methicillin-resistant (β-lactam-resistant) staphylococci. It is indicated for penicillin-allergic patients, for patients who cannot receive or who have failed to respond to other drugs, including the penicillins or cephalosporins, and for infections caused by vancomycin-susceptible organisms that are resistant to other antimicrobial drugs. Vancomycin hydrochloride for injection, USP is indicated for initial therapy when methicillin-resistant staphylococci are suspected, but after susceptibility data are available, therapy should be adjusted accordingly. Vancomycin hydrochloride for injection, USP is effective in the treatment of staphylococcal endocarditis. Its effectiveness has been documented in other infections due to staphylococci, including septicemia, bone infections, lower respiratory tract infections, and skin and skin structure infections. When staphylococcal infections are localized and purulent, antibiotics are used as adjuncts to appropriate surgical measures. Vancomycin hydrochloride for injection, USP has been reported to be effective alone or in combination with an aminoglycoside for endocarditis caused by S. viridans or S. bovis. For endocarditis caused by enterococci (e.g., E. faecalis), vancomycin has been reported to be effective only in combination with an aminoglycoside. Vancomycin hydrochloride for injection, USP has been reported to be effective for the treatment of diphtheroid endocarditis. Vancomycin hydrochloride for injection, USP has been used successfully in combination with either rifampin, an aminoglycoside, or both in early-onset prosthetic valve endocarditis caused by S. epidermidis or diphtheroids. Specimens for bacteriologic cultures should be obtained in order to isolate and identify causative organisms and to determine their susceptibilities to vancomycin. To reduce the development of drug-resistant bacteria and maintain the effectiveness of vancomycin hydrochloride for injection, USP and other antibacterial drugs, vancomycin hydrochloride for injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. The parenteral form of vancomycin hydrochloride may be administered orally for treatment of antibiotic-associated pseudomembranous colitis produced by C. difficile and for staphylococcal enterocolitis. Parenteral administration of vancomycin hydrochloride alone is of unproven benefit for these indications. Vancomycin is not effective by the oral route for other types of infections.

PEDIATRIC USE

Pediatric Use In pediatric patients, it may be appropriate to confirm desired vancomycin serum concentrations. Concomitant administration of vancomycin and anesthetic agents has been associated with erythema and histamine-like flushing in pediatric patients (see PRECAUTIONS). Geriatrics Use The natural decrement of glomerular filtration with increasing age may lead to elevated vancomycin serum concentrations if dosage is not adjusted. Vancomycin dosage schedules should be adjusted in elderly patients (see DOSAGE AND ADMINISTRATION ). Information for Patients Patients should be counseled that antibacterial drugs including vancomycin hydrochloride for injection, USP should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When vancomycin hydrochloride for injection, USP is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by vancomycin hydrochloride for injection, USP or other antibacterial drugs in the future. Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Animal reproduction studies have not been conducted with vancomycin. It is not known whether vancomycin can affect reproduction capacity. In a controlled clinical study, the potential ototoxic and nephrotoxic effects of vancomycin on infants were evaluated when the drug was administered to pregnant women for serious staphylococcal infections complicating intravenous drug abuse. Vancomycin was found in cord blood. No sensorineural hearing loss or nephrotoxicity attributable to vancomycin was noted. One infant whose mother received vancomycin in the third trimester experienced conductive hearing loss that was not attributed to the administration of vancomycin. Because the number of patients treated in this study was limited and vancomycin was administered only in the second and third trimesters, it is not known whether vancomycin causes fetal harm. Vancomycin should be given to a pregnant womaen only if clearly needed.

NUSRING MOTHERS

Nursing Mothers Vancomycin hydrochloride for injection is excreted in human milk. Caution should be exercised when vancomycin hydrochloride for injection is administered to a nursing woman. Because of the potential for adverse events, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

DOSAGE AND ADMINISTRATION

Infusion-related events are related to both the concentration and the rate of administration of vancomycin. Concentrations of no more than 5 mg/mL and rates of no more than 10 mg/min, are recommended in adults (see also age-specific recommendations). In selected patients in need of fluid restriction, a concentration up to 10 mg/mL may be used; use of such higher concentrations may increase the risk of infusion-related events. An infusion rate of 10 mg/min or less is associated with fewer infusion-related events (see ADVERSE REACTIONS). Infusion-related events may occur, however, at any rate or concentration. Patients with Normal Renal Function Adults The usual daily intravenous dose is 2 g divided either as 500 mg every 6 hours or 1 g every 12 hours. Each dose should be administered at no more than 10 mg/min or over a period of at least 60 minutes, whichever is longer. Other patient factors, such as age or obesity, may call for modification of the usual intravenous daily dose. Pediatric Patients The usual intravenous dosage of vancomycin is 10 mg/kg per dose given every 6 hours. Each dose should be administered over a period of at least 60 minutes. Close monitoring of serum concentrations of vancomycin may be warranted in these patients. Neonates In pediatric patients up to the age of 1 month, the total daily intravenous dosage may be lower. In neonates, an initial dose of 15 mg/kg is suggested, followed by 10 mg/kg every 12 hours for neonates in the 1 st week of life and every 8 hours thereafter up to the age of 1 month. Each dose should be administered over 60 minutes. In premature infants, vancomycin clearance decreases as postconceptional age decreases. Therefore, longer dosing intervals may be necessary in premature infants. Close monitoring of serum concentrations of vancomycin is recommended in these patients. Patients with Impaired Renal Function and Elderly Patients Dosage adjustment must be made in patients with impaired renal function. In premature infants and the elderly, greater dosage reductions than expected may be necessary because of decreased renal function. Measurement of vancomycin serum concentrations can be helpful in optimizing therapy, especially in seriously ill patients with changing renal function. Vancomycin serum concentrations can be determined by use of microbiologic assay, radioimmunoassay, fluorescence polarization immunoassay, fluorescence immunoassay, or high-pressure liquid chromatography. If creatinine clearance can be measured or estimated accurately, the dosage for most patients with renal impairment can be calculated using the following table. The dosage of vancomycin hydrochloride for injection per day in mg is about 15 times the glomerular filtration rate in mL/min (see following table). DOSAGE TABLE FOR VANCOMYCIN IN PATIENTS WITH IMPAIRED RENAL FUNCTION (Adapted from Moellering et al.4 ) Creatinine Clearance mL/min Vancomycin Dose mg/24 hr 100 1,545 90 1,390 80 1,235 70 1,080 60 925 50 770 40 620 30 465 20 310 10 155 The initial dose should be no less than 15 mg/kg, even in patients with mild to moderate renal insufficiency. The table is not valid for functionally anephric patients. For such patients, an initial dose of 15 mg/kg of body weight should be given to achieve prompt therapeutic serum concentrations. The dose required to maintain stable concentrations is 1.9 mg/kg/24 hr. In patients with marked renal impairment, it may be more convenient to give maintenance doses of 250 to 1,000 mg once every several days rather than administering the drug on a daily basis. In anuria, a dose of 1,000 mg every 7 to 10 days has been recommended. When only serum creatinine is known, the following formula (based on sex, weight and age of the patient) may be used to calculate creatinine clearance. Calculated creatinine clearances (mL/min) are only estimates. The creatinine clearance should be measured promptly. Men: Weight (kg) x (140 – age in years) 72 x serum creatinine concentration (mg/dL) Women: 0.85 x above value The serum creatinine must represent a steady state of renal function. Otherwise, the estimated value for creatinine clearance is not valid. Such a calculated clearance is an overestimate of actual clearance in patients with conditions: (1) characterized by decreasing renal function, such as shock, severe heart failure, or oliguria; (2) in which a normal relationship between muscle mass and total body weight is not present, such as in obese patients or those with liver disease, edema, or ascites; and (3) accompanied by debilitation, malnutrition, or inactivity.The safety and efficacy of vancomycin administration by the intrathecal (intralumbar or intraventricular) routes have not been established. Intermittent infusion is the recommended method of administration. Compatibility with Other Drugs and IV Fluids The following diluents are physically and chemically compatible (with 4 g/L vancomycin hydrochloride): 5% Dextrose Injection, USP 5% Dextrose Injection and 0.9% Sodium Chloride Injection, USP Lactated Ringer’s Injection, USP 5% Dextrose and Lactated Ringer’s Injection Normosol®-M and 5% Dextrose 0.9% Sodium Chloride Injection, USP Isolyte® E Good professional practice suggests that compounded admixtures should be administered as soon after preparation as is feasible. Vancomycin solution has a low pH and may cause physical instability of other compounds. Mixtures of solutions of vancomycin and beta-lactam antibiotics have been shown to be physically incompatible. The likelihood of precipitation increases with higher concentrations of vancomycin. It is recommended to adequately flush the intravenous lines between the administration of these antibiotics. It is also recommended to dilute solutions of vancomycin to 5 mg/mL or less. Although intravitreal injection is not an approved route of administration for vancomycin, precipitation has been reported after intravitreal injection of vancomycin and ceftazidime for endophthalmitis using different syringes and needles. The precipitates dissolved gradually, with complete clearing of the vitreous cavity over two months and with improvement of visual acuity. Preparation and Stability At the time of use, reconstitute vials of Vancomycin Hydrochloride for Injection, USP with Sterile Water for Injection to a concentration of 50 mg of vancomycin/mL. (See following table for volume of diluent.) Concentration/Vial Volume of Diluent 500 mg 10 mL 1 g 20 mL After reconstitution, the vials may be stored in a refrigerator for 96 hours without significant loss of potency. Reconstituted solutions of vancomycin (500 mg/10 mL) must be further diluted in at least 100 mL of a suitable infusion solution. For doses of 1 gram (20 mL), at least 200 mL of solution must be used. The desired dose diluted in this manner should be administered by intermittent IV infusion over a period of at least 60 minutes. Parenteral drug products should be visually inspected for particulate matter and discoloration prior to administration, whenever solution and container permit. For Oral Administration Oral vancomycin is used in treating antibiotic-associated pseudomembranous colitis caused by C. difficile and for staphylococcal enterocolitis. Vancomycin is not effective by the oral route for other types of infections. The usual adult total daily dosage is 500 mg to 2 g given in 3 or 4 divided doses for 7 to 10 days. The total daily dose in children is 40 mg/kg of body weight in 3 or 4 divided doses for 7 to 10 days. The total daily dosage should not exceed 2 g. The appropriate dose may be diluted in 1 oz of water and given to the patients to drink. Common flavoring syrups may be added to the solution to improve the taste for oral administration. The diluted solution may be administered via a nasogastric tube.

Oseltamivir 75 MG Oral Capsule [Tamiflu]

Generic Name: OSELTAMIVIR PHOSPHATE
Brand Name: Tamiflu
  • Substance Name(s):
  • OSELTAMIVIR PHOSPHATE

DRUG INTERACTIONS

7 Live attenuated influenza vaccine, intranasal (7): Do not administer until 48 hours following cessation of TAMIFLU. Do not administer TAMIFLU until 2 weeks following administration of the live attenuated influenza vaccine, unless medically indicated. Influenza Vaccines The concurrent use of TAMIFLU with live attenuated influenza vaccine (LAIV) intranasal has not been evaluated. However, because of the potential for interference between these products, LAIV should not be administered within 2 weeks before or 48 hours after administration of TAMIFLU, unless medically indicated. The concern about possible interference arises from the potential for antiviral drugs to inhibit replication of live vaccine virus. Trivalent inactivated influenza vaccine can be administered at any time relative to use of TAMIFLU. Overall Drug Interaction Profile for Oseltamivir Information derived from pharmacology and pharmacokinetic studies of oseltamivir suggests that clinically significant drug interactions are unlikely. Oseltamivir is extensively converted to oseltamivir carboxylate by esterases, located predominantly in the liver. Drug interactions involving competition for esterases have not been extensively reported in literature. Low protein binding of oseltamivir and oseltamivir carboxylate suggests that the probability of drug displacement interactions is low. In vitro studies demonstrate that neither oseltamivir nor oseltamivir carboxylate is a good substrate for P450 mixed-function oxidases or for glucuronyl transferases. Clinically important drug interactions involving competition for renal tubular secretion are unlikely due to the known safety margin for most of these drugs, the elimination characteristics of oseltamivir carboxylate (glomerular filtration and anionic tubular secretion) and the excretion capacity of these pathways. Coadministration of probenecid results in an approximate two-fold increase in exposure to oseltamivir carboxylate due to a decrease in active anionic tubular secretion in the kidney. However, due to the safety margin of oseltamivir carboxylate, no dose adjustments are required when coadministering with probenecid. No pharmacokinetic interactions have been observed when coadministering oseltamivir with amoxicillin, acetaminophen, aspirin, cimetidine, antacids (magnesium and aluminum hydroxides and calcium carbonates), or warfarin.

OVERDOSAGE

10 At present, there has been no experience with overdose. Single doses of up to 1000 mg of TAMIFLU have been associated with nausea and/or vomiting.

DESCRIPTION

11 TAMIFLU (oseltamivir phosphate) is available as capsules containing 30 mg, 45 mg, or 75 mg oseltamivir for oral use, in the form of oseltamivir phosphate, and as a powder for oral suspension, which when constituted with water as directed contains 6 mg/mL oseltamivir base. In addition to the active ingredient, each capsule contains pregelatinized starch, talc, povidone K30, croscarmellose sodium, and sodium stearyl fumarate. The 30 mg capsule shell contains gelatin, titanium dioxide, yellow iron oxide, and red iron oxide. The 45 mg capsule shell contains gelatin, titanium dioxide, and black iron oxide. The 75 mg capsule shell contains gelatin, titanium dioxide, yellow iron oxide, black iron oxide, and red iron oxide. Each capsule is printed with blue ink, which includes FD&C Blue No. 2 as the colorant. In addition to the active ingredient, the powder for oral suspension contains sorbitol, monosodium citrate, xanthan gum, titanium dioxide, tutti-frutti flavoring, sodium benzoate, and saccharin sodium. Oseltamivir phosphate is a white crystalline solid with the chemical name (3R,4R,5S)-4-acetylamino-5-amino-3(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid, ethyl ester, phosphate (1:1). The chemical formula is C16H28N2O4 (free base). The molecular weight is 312.4 for oseltamivir free base and 410.4 for oseltamivir phosphate salt. The structural formula is as follows: Chemical Structure

CLINICAL STUDIES

14 14.1 Treatment of Influenza Adult Subjects Two placebo-controlled double-blind clinical trials were conducted: one in the U.S. and one outside the U.S. Subjects were eligible for these trials if they had fever >100ºF, accompanied by at least one respiratory symptom (cough, nasal symptoms, or sore throat) and at least one systemic symptom (myalgia, chills/sweats, malaise, fatigue, or headache) and influenza virus was known to be circulating in the community. In addition, all subjects enrolled in the trials were allowed to take fever-reducing medications. Of 1355 subjects enrolled in these two trials, 849 (63%) subjects were influenza-infected (age range 18 to 65 years; median age 34 years; 52% male; 90% Caucasian; 31% smokers). Of the 849 influenza-infected subjects, 95% were infected with influenza A, 3% with influenza B, and 2% with influenza of unknown type. TAMIFLU was started within 40 hours of onset of symptoms. Subjects participating in the trials were required to self-assess the influenza-associated symptoms as “none,” “mild,” “moderate,” or “severe.” Time to improvement was calculated from the time of treatment initiation to the time when all symptoms (nasal congestion, sore throat, cough, aches, fatigue, headaches, and chills/sweats) were assessed as “none” or “mild.” In both studies, at the recommended dose of TAMIFLU 75 mg twice daily for 5 days, there was a 1.3 day reduction in the median time to improvement in influenza-infected subjects receiving TAMIFLU compared to subjects receiving placebo. Subgroup analyses of these studies by gender showed no differences in the treatment effect of TAMIFLU in men and women. In the treatment of influenza, no increased efficacy was demonstrated in subjects receiving treatment of 150 mg TAMIFLU twice daily for 5 days. Geriatric Subjects Three double-blind placebo-controlled treatment trials were conducted in subjects ≥65 years of age in three consecutive seasons. The enrollment criteria were similar to that of adult trials with the exception of fever being defined as >97.5°F. Of 741 subjects enrolled, 476 (65%) subjects were influenza-infected. Of the 476 influenza-infected subjects, 95% were infected with influenza type A and 5% with influenza type B. In the pooled analysis, at the recommended dose of TAMIFLU 75 mg twice daily for 5 days, there was a 1-day reduction in the median time to improvement in influenza-infected subjects receiving TAMIFLU compared to those receiving placebo (p=NS). However, the magnitude of treatment effect varied between studies. Pediatric Subjects One double-blind placebo-controlled treatment trial was conducted in pediatric subjects aged 1 to 12 years (median age 5 years), who had fever (>100°F) plus one respiratory symptom (cough or coryza) when influenza virus was known to be circulating in the community. Of 698 subjects enrolled in this trial, 452 (65%) were influenza-infected (50% male; 68% Caucasian). Of the 452 influenza-infected subjects, 67% were infected with influenza A and 33% with influenza B. The primary endpoint in this study was the time to freedom from illness, a composite endpoint that required 4 individual conditions to be met. These were: alleviation of cough, alleviation of coryza, resolution of fever, and parental opinion of a return to normal health and activity. TAMIFLU treatment of 2 mg/kg twice daily, started within 48 hours of onset of symptoms, significantly reduced the total composite time to freedom from illness by 1.5 days compared to placebo. Subgroup analyses of this study by gender showed no differences in the treatment effect of TAMIFLU in male and female pediatric subjects. 14.2 Prophylaxis of Influenza Adult Subjects The efficacy of TAMIFLU in preventing naturally occurring influenza illness has been demonstrated in three seasonal prophylaxis studies and a postexposure prophylaxis study in households. The primary efficacy parameter for all these studies was the incidence of laboratory-confirmed clinical influenza. Laboratory-confirmed clinical influenza was defined as oral temperature ≥99.0°F/37.2°C plus at least one respiratory symptom (cough, sore throat, nasal congestion) and at least one constitutional symptom (aches and pain, fatigue, headache, chills/sweats), all recorded within 24 hours, plus either a positive virus isolation or a four-fold increase in virus antibody titers from baseline. In a pooled analysis of two seasonal prophylaxis studies in healthy unvaccinated adults (aged 13 to 65 years), TAMIFLU 75 mg once daily taken for 42 days during a community outbreak reduced the incidence of laboratory-confirmed clinical influenza from 5% (25/519) for the placebo group to 1% (6/520) for the TAMIFLU group. In a seasonal prophylaxis study in elderly residents of skilled nursing homes, TAMIFLU 75 mg once daily taken for 42 days reduced the incidence of laboratory-confirmed clinical influenza from 4% (12/272) for the placebo group to 99.0°F/37.2°C plus cough and/or coryza, all recorded within 24 hours, plus either a positive virus culture or a four-fold increase in virus antibody titers from baseline. The incidence of confirmed clinical influenza was 3% (7/238) in the group not receiving TAMIFLU compared with 2% (5/237) in the group receiving TAMIFLU; this difference was not statistically significant. A secondary analysis was performed using the same clinical symptoms and RT-PCR for laboratory confirmation of influenza. Among subjects who were not already shedding virus at baseline, the incidence of RT-PCR-confirmed clinical influenza was 3% (7/231) in the group not receiving TAMIFLU and <1% (1/232) in the group receiving TAMIFLU.

HOW SUPPLIED

16 /STORAGE AND HANDLING TAMIFLU Capsules 45-mg capsules (45 mg free base equivalent of the phosphate salt): grey hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “45 mg” is printed in blue ink on the grey cap. Available in blister packages of 10 (NDC 54868-6083-0). 75-mg capsules (75 mg free base equivalent of the phosphate salt): grey/light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “75 mg” is printed in blue ink on the light yellow cap. Available in blister packages of 10 (NDC 54868-4476-0). Storage Store the capsules at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. TAMIFLU for Oral Suspension Supplied as a white powder blend in a glass bottle. After constitution, the powder blend produces a white tutti-frutti–flavored oral suspension. After constitution with 55 mL of water, each bottle delivers a usable volume of 60 mL of oral suspension equivalent to 360 mg oseltamivir base (6 mg/mL). Each bottle is supplied with a bottle adapter and a 10 mL oral dispenser (NDC 54868-6315-0). Storage Store dry powder at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Store constituted suspension under refrigeration for up to 17 days at 2° to 8°C (36° to 46°F). Do not freeze. Alternatively, store constituted suspension for up to 10 days at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature].

RECENT MAJOR CHANGES

Dosage and Administration (2.1, 2.2, 2.3, 2.7, 2.8) 3/2011

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects in clinical studies of TAMIFLU for the treatment of influenza, 19% were 65 and over, while 7% were 75 and over. Of the total number of patients in clinical studies of TAMIFLU for the prophylaxis of influenza, 25% were 65 and over, while 18% were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger subjects. The safety of TAMIFLU in geriatric subjects has been established in clinical studies that enrolled 741 subjects (374 received placebo and 362 received TAMIFLU). Some seasonal variability was noted in the clinical efficacy outcomes [see Clinical Studies (14.1)]. Safety and efficacy have been demonstrated in elderly residents of nursing homes who took TAMIFLU for up to 42 days for the prevention of influenza. Many of these individuals had cardiac and/or respiratory disease, and most had received vaccine that season [see Clinical Studies (14.2)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: 30 mg, 45 mg, 75 mg 30-mg capsules (30 mg free base equivalent of the phosphate salt): light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the light yellow body and “30 mg” is printed in blue ink on the light yellow cap. 45-mg capsules (45 mg free base equivalent of the phosphate salt): grey hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “45 mg” is printed in blue ink on the grey cap. 75-mg capsules (75 mg free base equivalent of the phosphate salt): grey/light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “75 mg” is printed in blue ink on the light yellow cap. For Oral Suspension: 6 mg/mL (final concentration when constituted) White powder blend for constitution to a white tutti-frutti–flavored suspension. After constitution, each bottle delivers a usable volume of 60 mL of oral suspension equivalent to 360 mg oseltamivir base (6 mg/mL). Capsules: 30 mg, 45 mg, 75 mg (3) Powder for oral suspension: 360 mg oseltamivir base (constituted to a final concentration of 6 mg/mL) (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Oseltamivir is an antiviral drug [see Clinical Pharmacology (12.4)].

INDICATIONS AND USAGE

1 TAMIFLU is an influenza neuraminidase inhibitor indicated for: Treatment of influenza in patients 1 year and older who have been symptomatic for no more than 2 days. (1.1) Prophylaxis of influenza in patients 1 year and older. (1.2) Important Limitations of Use: Efficacy not established in patients who begin therapy after 48 hours of symptoms. (1.3) Not a substitute for annual influenza vaccination. (1.3) No evidence of efficacy for illness from agents other than influenza viruses types A and B. (1.3) Consider available information on influenza drug susceptibility patterns and treatment effects when deciding whether to use. (1.3) 1.1 Treatment of Influenza TAMIFLU is indicated for the treatment of uncomplicated acute illness due to influenza infection in patients 1 year and older who have been symptomatic for no more than 2 days. 1.2 Prophylaxis of Influenza TAMIFLU is indicated for the prophylaxis of influenza in patients 1 year and older. 1.3 Limitations of Use The following points should be considered before initiating treatment or prophylaxis with TAMIFLU: Efficacy of TAMIFLU in patients who begin treatment after 48 hours of symptoms has not been established. TAMIFLU is not a substitute for early influenza vaccination on an annual basis as recommended by the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices. There is no evidence for efficacy of TAMIFLU in any illness caused by agents other than influenza viruses types A and B. Influenza viruses change over time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example, changes in viral virulence) might also diminish clinical benefit of antiviral drugs. Prescribers should consider available information on influenza drug susceptibility patterns and treatment effects when deciding whether to use TAMIFLU.

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of TAMIFLU in pediatric patients younger than 1 year of age have not been studied. TAMIFLU is not indicated for either treatment or prophylaxis of influenza in pediatric patients younger than 1 year of age because of the unknown clinical significance of nonclinical animal toxicology data for human infants [see Nonclinical Toxicology (13.2)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are insufficient human data upon which to base an evaluation of risk of TAMIFLU to the pregnant woman or developing fetus. Studies for effects on embryo-fetal development were conducted in rats (50, 250, and 1500 mg/kg/day) and rabbits (50, 150, and 500 mg/kg/day) by the oral route. Relative exposures at these doses were, respectively, 2, 13, and 100 times human exposure in the rat and 4, 8, and 50 times human exposure in the rabbit. Pharmacokinetic studies indicated that fetal exposure was seen in both species. In the rat study, minimal maternal toxicity was reported in the 1500 mg/kg/day group. In the rabbit study, slight and marked maternal toxicities were observed, respectively, in the 150 and 500 mg/kg/day groups. There was a dose-dependent increase in the incidence rates of a variety of minor skeletal abnormalities and variants in the exposed offspring in these studies. However, the individual incidence rate of each skeletal abnormality or variant remained within the background rates of occurrence in the species studied. Because animal reproductive studies may not be predictive of human response and there are no adequate and well-controlled studies in pregnant women, TAMIFLU should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

8.3 Nursing Mothers In lactating rats, oseltamivir and oseltamivir carboxylate are excreted in the milk. It is not known whether oseltamivir or oseltamivir carboxylate is excreted in human milk. TAMIFLU should, therefore, be used only if the potential benefit for the lactating mother justifies the potential risk to the breast-fed infant.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serious skin/hypersensitivity reactions: Discontinue TAMIFLU and initiate appropriate treatment if allergic-like reactions occur or are suspected. (5.1) Neuropsychiatric events: Patients with influenza, including those receiving TAMIFLU, particularly pediatric patients, may be at an increased risk of confusion or abnormal behavior early in their illness. Monitor for signs of abnormal behavior. (5.2) 5.1 Serious Skin/Hypersensitivity Reactions Cases of anaphylaxis and serious skin reactions including toxic epidermal necrolysis, Stevens-Johnson Syndrome, and erythema multiforme have been reported in postmarketing experience with TAMIFLU. TAMIFLU should be stopped and appropriate treatment instituted if an allergic-like reaction occurs or is suspected. 5.2 Neuropsychiatric Events Influenza can be associated with a variety of neurologic and behavioral symptoms that can include events such as hallucinations, delirium, and abnormal behavior, in some cases resulting in fatal outcomes. These events may occur in the setting of encephalitis or encephalopathy but can occur without obvious severe disease. There have been postmarketing reports (mostly from Japan) of delirium and abnormal behavior leading to injury, and in some cases resulting in fatal outcomes, in patients with influenza who were receiving TAMIFLU. Because these events were reported voluntarily during clinical practice, estimates of frequency cannot be made but they appear to be uncommon based on TAMIFLU usage data. These events were reported primarily among pediatric patients and often had an abrupt onset and rapid resolution. The contribution of TAMIFLU to these events has not been established. Closely monitor patients with influenza for signs of abnormal behavior. If neuropsychiatric symptoms occur, evaluate the risks and benefits of continuing treatment for each patient. 5.3 Bacterial Infections Serious bacterial infections may begin with influenza-like symptoms or may coexist with or occur as complications during the course of influenza. TAMIFLU has not been shown to prevent such complications. 5.4 Limitations of Populations Studied Efficacy of TAMIFLU in the treatment of influenza in patients with chronic cardiac disease and/or respiratory disease has not been established. No difference in the incidence of complications was observed between the treatment and placebo groups in this population. No information is available regarding treatment of influenza in patients with any medical condition sufficiently severe or unstable to be considered at imminent risk of requiring hospitalization. Efficacy of TAMIFLU for treatment or prophylaxis of influenza has not been established in immunocompromised patients.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved Patient Labeling (Patient Information) 17.1 Information for Patients Patients and/or caregivers should be advised of the risk of severe allergic reactions (including anaphylaxis) or serious skin reactions and should stop TAMIFLU and seek immediate medical attention if an allergic-like reaction occurs or is suspected. Patients and/or caregivers should be advised of the risk of neuropsychiatric events in patients with influenza and should contact their physician if they experience signs of abnormal behavior while receiving TAMIFLU. Their physician will determine if TAMIFLU treatment should be continued. Instruct patients to begin treatment with TAMIFLU as soon as possible from the first appearance of flu symptoms. Similarly, prevention should begin as soon as possible after exposure, at the recommendation of a physician. Instruct patients to take any missed doses as soon as they remember, except if it is near the next scheduled dose (within 2 hours), and then continue to take TAMIFLU at the usual times. TAMIFLU is not a substitute for a flu vaccination. Patients should continue receiving an annual flu vaccination according to guidelines on immunization practices. A bottle of TAMIFLU for oral suspension contains approximately 11 g sorbitol. One dose of 75 mg TAMIFLU for oral suspension delivers 2 g sorbitol. For patients with hereditary fructose intolerance, this is above the daily maximum limit of sorbitol and may cause dyspepsia and diarrhea.

DOSAGE AND ADMINISTRATION

2 Treatment of influenza (2.2) Adults and adolescents (13 years and older): 75 mg twice daily for 5 days Pediatric patients (1 year and older): Based on weight twice daily for 5 days Renally impaired patients (creatinine clearance 10-30 mL/min): Reduce to 75 mg once daily for 5 days (2.4) Prophylaxis of influenza (2.3) Adults and adolescents (13 years and older): 75 mg once daily for at least 10 days -Community outbreak: 75 mg once daily for up to 6 weeks Pediatric patients (1 year and older): Based on weight once daily for 10 days -Community outbreak: Based on weight once daily for up to 6 weeks Renally impaired patients (creatinine clearance 10-30 mL/min): Reduce to 75 mg once every other day or 30 mg once daily (2.4) 2.1 Dosing for Treatment and Prophylaxis of Influenza TAMIFLU may be taken with or without food [see Clinical Pharmacology (12.3)]. However, when taken with food, tolerability may be enhanced in some patients. The recommended oral treatment and prophylaxis dose of TAMIFLU for patients 1 year of age and older is shown in Table 1. Table 1 Treatment and Prophylaxis Dosing of Oral TAMIFLU for Influenza For Patients 1 Year of Age and Older Based on Body Weight Weight (kg) Weight (lbs) Treatment Dosing for 5 days Prophylaxis Dosing for 10 days Volume of Oral Suspension (6 mg/mL) for each Dose Number of Bottles of Oral Suspension to Dispense Number of Capsules and Strength to Dispense 15 kg or less 33 lbs or less 30 mg twice daily 30 mg once daily 5 mL 1 bottle 10 Capsules 30 mg 16 kg thru 23 kg 34 lbs thru 51 lbs 45 mg twice daily 45 mg once daily 7.5 mL 2 bottles 10 Capsules 45 mg 24 kg thru 40 kg 52 lbs thru 88 lbs 60 mg twice daily 60 mg once daily 10 mL 2 bottles 20 Capsules 30 mg 41 kg or more 89 lbs or more 75 mg twice daily 75 mg once daily 12.5 mL 3 bottles 10 Capsules 75 mg 2.2 Standard Dosage – Treatment of Influenza Adults and Adolescents The recommended oral dose of TAMIFLU for treatment of influenza in adults and adolescents 13 years and older is 75 mg twice daily for 5 days. Treatment should begin within 2 days of onset of symptoms of influenza. TAMIFLU for oral suspension may be used by patients who cannot swallow a capsule (see Table 1). Pediatric Patients TAMIFLU is not indicated for treatment of influenza in pediatric patients younger than 1 year. The recommended oral dose of TAMIFLU for pediatric patients 1 year and older is shown in Table 1. For pediatric patients who cannot swallow capsules, TAMIFLU for oral suspension is the preferred formulation. If the oral suspension product is not available, TAMIFLU capsules may be opened and mixed with sweetened liquids such as regular or sugar-free chocolate syrup, corn syrup, caramel topping, or light brown sugar (dissolved in water). If the appropriate strengths of TAMIFLU capsules are not available to mix with sweetened liquids and the oral suspension product is not available, then a pharmacist may compound an emergency supply of oral suspension from TAMIFLU 75 mg capsules [see Dosage and Administration (2.8)]. 2.3 Standard Dosage – Prophylaxis of Influenza Adults and Adolescents The recommended oral dose of TAMIFLU for prophylaxis of influenza in adults and adolescents 13 years and older following close contact with an infected individual is 75 mg once daily for at least 10 days. Therapy should begin within 2 days of exposure. The recommended dose for prophylaxis during a community outbreak of influenza is 75 mg once daily. Safety and efficacy have been demonstrated for up to 6 weeks in immunocompetent patients. The duration of protection lasts for as long as dosing is continued. Safety has been demonstrated for up to 12 weeks in immunocompromised patients. TAMIFLU for oral suspension may also be used by patients who cannot swallow a capsule (see Table 1). Pediatric Patients The safety and efficacy of TAMIFLU for prophylaxis of influenza in pediatric patients younger than 1 year of age have not been established. The recommended oral dose of TAMIFLU for pediatric patients 1 year and older following close contact with an infected individual is shown in Table 1. For pediatric patients who cannot swallow capsules, TAMIFLU for oral suspension is the preferred formulation. If the oral suspension product is not available, TAMIFLU capsules may be opened and mixed with sweetened liquids such as regular or sugar-free chocolate syrup, corn syrup, caramel topping, or light brown sugar (dissolved in water). If the appropriate strengths of TAMIFLU capsules are not available to mix with sweetened liquids and the oral suspension product is not available, then a pharmacist may compound an emergency supply of oral suspension from TAMIFLU 75 mg capsules [see Dosage and Administration (2.8)]. Prophylaxis in pediatric patients following close contact with an infected individual is recommended for 10 days. Therapy should begin within 2 days of exposure. For prophylaxis in pediatric patients during a community outbreak of influenza, dosing may be continued for up to 6 weeks. 2.4 Renal Impairment Data are available on plasma concentrations of oseltamivir carboxylate following various dosing schedules in patients with renal impairment [see Clinical Pharmacology (12.3)]. Treatment of Influenza Dose adjustment is recommended for adult patients with creatinine clearance between 10 and 30 mL/min receiving TAMIFLU for the treatment of influenza. In these patients it is recommended that the dose be reduced to 75 mg of TAMIFLU once daily for 5 days. No recommended dosing regimens are available for patients with end-stage renal disease undergoing routine hemodialysis or continuous peritoneal dialysis treatment. Prophylaxis of Influenza For the prophylaxis of influenza, dose adjustment is recommended for adult patients with creatinine clearance between 10 and 30 mL/min receiving TAMIFLU. In these patients it is recommended that the dose be reduced to 75 mg of TAMIFLU every other day or 30 mg TAMIFLU every day. No recommended dosing regimens are available for patients undergoing routine hemodialysis and continuous peritoneal dialysis treatment with end-stage renal disease. 2.5 Hepatic Impairment No dose adjustment is recommended for patients with mild or moderate hepatic impairment (Child-Pugh score ≤9) [see Clinical Pharmacology (12.3)]. 2.6 Geriatric Patients No dose adjustment is required for geriatric patients [see Use in Specific Populations (8.5) and Clinical Pharmacology (12.3)]. 2.7 Preparation of TAMIFLU for Oral Suspension It is recommended that TAMIFLU for oral suspension be constituted by the pharmacist prior to dispensing to the patient: a)Tap the closed bottle several times to loosen the powder. b) Measure 55 mL of water in a graduated cylinder. c)Add the total amount of water for constitution to the bottle and shake the closed bottle well for 15 seconds. d)Remove the child-resistant cap and push bottle adapter into the neck of the bottle. e)Close bottle with child-resistant cap tightly. This will assure the proper seating of the bottle adapter in the bottle and child-resistant status of the cap. Label the bottle with instructions to Shake Well before each use. The constituted TAMIFLU for oral suspension (6 mg/mL) should be used within 17 days of preparation when stored under refrigeration or within 10 days if stored at controlled room temperature; the pharmacist should write the date of expiration of the constituted suspension on a pharmacy label. The patient package insert and oral dispenser should be dispensed to the patient. 2.8 Emergency Compounding of an Oral Suspension from 75 mg TAMIFLU Capsules (Final Concentration 6 mg/mL) The following directions are provided for use only during emergency situations. These directions are not intended to be used if the FDA-approved, commercially manufactured TAMIFLU for oral suspension is readily available from wholesalers or the manufacturer. Compounding an oral suspension with this procedure will provide one patient with enough medication for a 5-day course of treatment or a 10-day course of prophylaxis. Commercially manufactured TAMIFLU for oral suspension (6 mg/mL) is the preferred product for pediatric and adult patients who have difficulty swallowing capsules or where lower doses are needed. In the event that TAMIFLU for oral suspension is not available, the pharmacist may compound a suspension (6 mg/mL) from TAMIFLU capsules 75 mg using one of these vehicles: Cherry Syrup (Humco®), Ora-Sweet® SF (sugar-free) (Paddock Laboratories), or simple syrup. Other vehicles have not been studied. This compounded suspension should not be used for convenience or when the FDA-approved TAMIFLU for oral suspension is commercially available. First, calculate the total volume of an oral suspension needed to be compounded and dispensed for each patient. The total volume required is determined by the weight of the patient (see Table 2). Table 2 Volume of an Oral Suspension (6 mg/mL) Needed to be Compounded Based Upon the Patient’s Body Weight Weight (kg) Weight (lbs) Total Volume to Compound per Patient (mL) 15 kg or less 33 lbs or less 75 mL 16 thru 23 kg 34 thru 51 lbs 100 mL 24 thru 40 kg 52 thru 88 lbs 125 mL 41 kg or more 89 lbs or more 150 mL Second, determine the number of capsules and the amount of water and vehicle (Cherry Syrup, Ora-Sweet® SF, or simple syrup) that are needed to prepare the total volume (determined from Table 2: 75 mL, 100 mL, 125 mL, or 150 mL) of compounded oral suspension (6 mg/mL) (see Table 3). Table 3 Number of TAMIFLU 75 mg Capsules and Amount of Vehicle (Cherry Syrup, Ora-Sweet® SF, or Simple Syrup) Needed to Prepare the Total Volume of a Compounded Oral Suspension (6 mg/mL) Total Volume of Compounded Oral Suspension to be Prepared 75 mL 100 mL 125 mL 150 mL Number of TAMIFLU 75 mg Capsules 6 capsules (450 mg oseltamivir) 8 capsules (600 mg oseltamivir) 10 capsules (750 mg oseltamivir) 12 capsules (900 mg oseltamivir) Amount of Water 5 mL 7 mL 8 mL 10 mL Volume of Vehicle Cherry Syrup (Humco®) OR Ora-Sweet® SF (Paddock Laboratories) OR simple syrup 69 mL 91 mL 115 mL 137 mL Third, follow the procedure below for compounding the oral suspension (6 mg/mL) from TAMIFLU capsules 75 mg: Place the specified amount of water into a polyethyleneterephthalate (PET) or glass bottle (see Table 3). Carefully separate the capsule body and cap and pour the contents of the required number of TAMIFLU 75 mg capsules into the PET or glass bottle. Gently swirl the suspension to ensure adequate wetting of the TAMIFLU powder for at least 2 minutes. Slowly add the specified amount of vehicle to the bottle. Close the bottle using a child-resistant cap and shake well for 30 seconds to completely dissolve the active drug and to ensure homogeneous distribution of the dissolved drug in the resulting suspension. (Note: The active drug, oseltamivir phosphate, readily dissolves in the specified vehicles. The suspension is caused by inert ingredients of TAMIFLU capsules which are insoluble in these vehicles.) Put an ancillary label on the bottle indicating “Shake Well Before Use.” Instruct the parent or caregiver that any unused suspension remaining in the bottle following completion of therapy must be discarded by either affixing an ancillary label to the bottle or adding a statement to the pharmacy label instructions. Place an appropriate expiration date on the label according to storage conditions below. Storage of the Emergency Compounded Suspension Refrigeration: Stable for 5 weeks (35 days) when stored in a refrigerator at 2° to 8°C (36° to 46°F). Room Temperature: Stable for five days (5 days) when stored at room temperature, 25°C (77°F). Note: The storage conditions are based on stability studies of compounded oral suspensions, using the above mentioned vehicles, which were placed in glass and polyethyleneterephthalate (PET) bottles. Stability studies have not been conducted with other vehicles or bottle types. Place a pharmacy label on the bottle that includes the patient’s name, dosing instructions, and drug name and any other required information to be in compliance with all State and Federal Pharmacy Regulations. Dosing of the Compounded Suspension (6 mg/mL) Refer to Table 1 for the proper dosing instructions for the pharmacy label.

Omeprazole 40 MG Delayed Release Oral Capsule

Generic Name: OMEPRAZOLE
Brand Name: Omeprazole
  • Substance Name(s):
  • OMEPRAZOLE

OVERDOSAGE

10 Reports have been received of overdosage with omeprazole in humans. Doses ranged up to 2400 mg (120 times the usual recommended clinical dose). Manifestations were variable, but included confusion, drowsiness, blurred vision, tachycardia, nausea, vomiting, diaphoresis, flushing, headache, dry mouth, and other adverse reactions similar to those seen in normal clinical experience. [See Adverse Reactions (6)] Symptoms were transient, and no serious clinical outcome has been reported when omeprazole was taken alone. No specific antidote for omeprazole overdosage is known. Omeprazole is extensively protein bound and is, therefore, not readily dialyzable. In the event of overdosage, treatment should be symptomatic and supportive. As with the management of any overdose, the possibility of multiple drug ingestion should be considered. For current information on treatment of any drug overdose, contact your local Poison Control Center. Single oral doses of omeprazole at 1350, 1339, and 1200 mg/kg were lethal to mice, rats, and dogs, respectively. Animals given these doses showed sedation, ptosis, tremors, convulsions, and decreased activity, body temperature, and respiratory rate and increased depth of respiration.

DESCRIPTION

11 The active ingredient in omeprazole delayed-release capsules is a substituted benzimidazole, 5-methoxy-2-[[(4-methoxy-3, 5-dimethyl-2-pyridinyl) methyl] sulfinyl]-1H-benzimidazole, a compound that inhibits gastric acid secretion. Its empirical formula is C17H19N3O3S, with a molecular weight of 345.42 . Chemical Structure

INDICATIONS AND USAGE

1 1.1 Duodenal Ulcer (adults) Omeprazole delayed-release capsules are indicated for short-term treatment of active duodenal ulcer in adults. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. Omeprazole delayed-release capsules in combination with clarithromycin and amoxicillin, is indicated for treatment of patients with H. pylori infection and duodenal ulcer disease (active or up to 1-year history) to eradicate H. pylori in adults. Omeprazole delayed-release capsules, in combination with clarithromycin is indicated for treatment of patients with H. pylori infection and duodenal ulcer disease to eradicate H. pylori in adults. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence [see Clinical Studies (14.1) and Dosage and Administration (2) ]. Among patients who fail therapy, Omeprazole delayed-release capsules with clarithromycin is more likely to be associated with the development of clarithromycin resistance as compared with triple therapy. In patients who fail therapy, susceptibility testing should be done. If resistance to clarithromycin is demonstrated or susceptibility testing is not possible, alternative antimicrobial therapy should be instituted. [ See Microbiology section (12.4) ], and the clarithromycin package insert, Microbiology section.) 1.2 Gastric Ulcer (adults) Omeprazole delayed-release capsules are indicated for short-term treatment (4-8 weeks) of active benign gastric ulcer in adults. [See Clinical Studies (14.2) ] 1.3 Treatment of Gastroesophageal Reflux Disease (GERD) (adults and pediatric patients) Symptomatic GERD Omeprazole delayed-release capsules are indicated for the treatment of heartburn and other symptoms associated with GERD in pediatric patients and adults. Erosive Esophagitis Omeprazole delayed-release capsules are indicated for the short-term treatment (4-8 weeks) of erosive esophagitis that has been diagnosed by endoscopy in pediatric patients and adults. [See Clinical Studies (14.4) ] The efficacy of Omeprazole delayed-release capsules used for longer than 8 weeks in these patients has not been established. If a patient does not respond to 8 weeks of treatment, an additional 4 weeks of treatment may be given. If there is recurrence of erosive esophagitis or GERD symptoms (e.g., heartburn), additional 4-8 week courses of omeprazole may be considered. 1.4 Maintenance of Healing of Erosive Esophagitis (adults and pediatric patients) Omeprazole delayed-release capsules are indicated to maintain healing of erosive esophagitis in pediatric patients and adults. Controlled studies do not extend beyond 12 months. [See Clinical Studies (14.4) ] 1.5 Pathological Hypersecretory Conditions (adults) Omeprazole delayed-release capsules are indicated for the long-term treatment of pathological hypersecretory conditions (e.g., Zollinger-Ellison syndrome, multiple endocrine adenomas and systemic mastocytosis) in adults.

DOSAGE AND ADMINISTRATION

NDC: 2 Omeprazole delayed-release capsules should be taken before eating. In the clinical trials, antacids were used concomitantly with omeprazole. Patients should be informed that the omeprazole delayed-release capsule should be swallowed whole. For patients unable to swallow an intact capsule, alternative administration options are available. [See Dosage and Administration (2.8)] 2.1 Short-Term Treatment of Active Duodenal Ulcer The recommended adult oral dose of Omeprazole delayed-release capsules is 20 mg once daily. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. 2.2 H. pylori Eradication for the Reduction of the Risk of Duodenal Ulcer Recurrence Triple Therapy (omeprazole/clarithromycin/amoxicillin) — The recommended adult oral regimen is omeprazole delayed-release capsules 20 mg plus clarithromycin 500 mg plus amoxicillin 1000 mg each given twice daily for 10 days. In patients with an ulcer present at the time of initiation of therapy, an additional 18 days of omeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. Dual Therapy (omeprazole/clarithromycin) — The recommended adult oral regimen is omeprazole delayed-release capsuels 40 mg once daily plus clarithromycin 500 mg three times daily for 14 days. In patients with an ulcer present at the time of initiation of therapy, an additional 14 days ofomeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. 2.3 Gastric Ulcer The recommended adult oral dose is 40 mg once daily for 4-8 weeks. 2.4 Gastroesophageal Reflux Disease (GERD) The recommended adult oral dose for the treatment of patients with symptomatic GERD and no esophageal lesions is 20 mg daily for up to 4 weeks. The recommended adult oral dose for the treatment of patients with erosive esophagitis and accompanying symptoms due to GERD is 20 mg daily for 4 to 8 weeks. 2.5 Maintenance of Healing of Erosive Esophagitis The recommended adult oral dose is 20 mg daily. [See Clinical Studies (14.4) ] 2.6 Pathological Hypersecretory Conditions The dosage of omeprazole delayed-release capsules in patients with pathological hypersecretory conditions varies with the individual patient. The recommended adult oral starting dose is 60 mg once daily. Doses should be adjusted to individual patient needs and should continue for as long as clinically indicated. Doses up to 120 mg three times daily have been administered. Daily dosages of greater than 80 mg should be administered in divided doses. Some patients with Zollinger-Ellison syndrome have been treated continuously with omeprazole delayed-release capsules for more than 5 years. 2.7 Pediatric Patients For the treatment of GERD and maintenance of healing of erosive esophagitis, the recommended daily dose for pediatric patients 2 to 16 years of age is as follows: On a per kg basis, the doses of omeprazole required to heal erosive esophagitis in pediatric patients are greater than those for adults. Alternative administrative options can be used for pediatric patients unable to swallow an intact capsule [See Dosage and Administration (2.8) ]. 2.8 Alternative Administration Options Omeprazole is available as a delayed-release capsule. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsules can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use. 16 HOW SUPPLIED/STORAGE AND HANDLING Omeprazole delayed-release capsules, USP 40 mg are off-white to pale yellow, elliptical to spherical pellets filled in size ‘0el’ hard gelatin capsules with opaque yellow coloured cap and opaque lavender coloured body, imprinted on cap ‘OMEPRAZOLE’ 40 mg and on body ‘R159’ with black ink. NDC: 35356-891-60 Bottles of 60 17 PATIENT COUNSELING INFORMATION Omeprazole delayed-release capsules should be taken before eating. Patients should be informed that the omeprazole delayed-release capsules should be swallowed whole. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsule can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use.

traMADol HCl 200 MG 24HR Extended Release Oral Tablet

Generic Name: TRAMADOL HYDROCHLORIDE
Brand Name: TRAMADOL HYDROCHLORIDE
  • Substance Name(s):
  • TRAMADOL HYDROCHLORIDE

DRUG INTERACTIONS

7 Table 2 includes clinically significant drug interactions with tramadol hydrochloride extended-release tablets. Table 2: Clinically Significant Drug Interactions with Tramadol Hydrochloride Extended-Release Tablets Inhibitors of CYP2D6 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP2D6 inhibitors may result in an increase in the plasma concentration of tramadol and a decrease in the plasma concentration of M1, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. Since M1 is a more potent µ-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. After stopping a CYP2D6 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease and the M1 plasma concentration will increase which could increase or prolong therapeutic effects but also increase adverse reactions related to opioid toxicity, and may cause potentially fatal respiratory depression [see Clinical Pharmacology (12.3)]. Intervention: If concomitant use of a CYP2D6 inhibitor is necessary, follow patients closely for adverse reactions including opioid withdrawal, seizures, and serotonin syndrome. If a CYP2D6 inhibitor is discontinued, consider lowering tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients closely for adverse events including respiratory depression and sedation. Examples Quinidine, fluoxetine, paroxetine and bupropion Inhibitors of CYP3A4 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inhibitors can increase the plasma concentration of tramadol and may result in a greater amount of metabolism via CYP2D6 and greater levels of M1. Follow patients closely for increased risk of serious adverse events including seizures and serotonin syndrome, and adverse reactions related to opioid toxicity including potentially fatal respiratory depression, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. After stopping a CYP3A4 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease [see Clinical Pharmacology (12.3)], resulting in decreased opioid efficacy and possibly signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Intervention: If concomitant use is necessary, consider dosage reduction of tramadol hydrochloride extended-release tablets until stable drug effects are achieved. Follow patients closely for seizures and serotonin syndrome, and signs of respiratory depression and sedation at frequent intervals. If a CYP3A4 inhibitor is discontinued, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved and follow patients for signs and symptoms of opioid withdrawal. Examples Macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g. ketoconazole), protease inhibitors (e.g., ritonavir) CYP3A4 Inducers Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inducers can decrease the plasma concentration of tramadol [see Clinical Pharmacology (12.3)], resulting in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence to tramadol, [see Warnings and Precautions (5.4)]. After stopping a CYP3A4 inducer, as the effects of the inducer decline, the tramadol plasma concentration will increase [see Clinical Pharmacology (12.3)], which could increase or prolong both the therapeutic effects and adverse reactions, and may cause seizures and serotonin syndrome, and potentially fatal respiratory depression. Intervention: If concomitant use is necessary, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients for signs of opioid withdrawal. If a CYP3A4 inducer is discontinued, consider tramadol hydrochloride extended-release tablets dosage reduction and monitor for seizures and serotonin syndrome, and signs of sedation and respiratory depression. Patients taking carbamazepine, a CYP3A4 inducer, may have a significantly reduced analgesic effect of tramadol. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of tramadol hydrochloride extended-release tablets and carbamazepine is not recommended. Examples: Rifampin, carbamazepine, phenytoin Benzodiazepines and Other Central Nervous System (CNS) Depressants Clinical Impact: Due to additive pharmacologic effect, the concomitant use of benzodiazepines or other CNS depressants, including alcohol, can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death. Intervention: Reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients closely for signs of respiratory depression and sedation [see Warnings and Precautions (5.5)]. Examples: Benzodiazepines and other sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol. Serotonergic Drugs Clinical Impact: The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Intervention: If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. Examples: Selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonin neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), monoamine oxidase (MAO) inhibitors (those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Monoamine Oxidase Inhibitors (MAOIs) Clinical Impact: MAOI interactions with opioids may manifest as serotonin syndrome [see Warnings and Precautions (5.6)] or opioid toxicity (e.g., respiratory depression, coma) [see Warnings and Precautions (5.2)]. Intervention: Do not use tramadol hydrochloride extended-release tablets in patients taking MAOIs or within 14 days of stopping such treatment. Examples: phenelzine, tranylcypromine, linezolid Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics Clinical Impact: May reduce the analgesic effect of tramadol hydrochloride extended-release tablets and/or precipitate withdrawal symptoms. Intervention: Avoid concomitant use. Examples: butorphanol, nalbuphine, pentazocine, buprenorphine Muscle Relaxants Clinical Impact: Tramadol may enhance the neuromuscular blocking action of skeletal muscle relaxants and produce an increased degree of respiratory depression. Intervention: Monitor patients for signs of respiratory depression that may be greater than otherwise expected and decrease the dosage of tramadol hydrochloride extended-release tablets and/or the muscle relaxant as necessary. Diuretics Clinical Impact: Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Intervention: Monitor patients for signs of diminished diuresis and/or effects on blood pressure and increase the dosage of the diuretic as needed. Anticholinergic Drugs Clinical Impact: The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Intervention: Monitor patients for signs of urinary retention or reduced gastric motility when tramadol hydrochloride extended-release tablets are used concomitantly with anticholinergic drugs. Digoxin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of digoxin toxicity. Intervention: Follow patients for signs of digoxin toxicity and adjust the dosage of digoxin as needed. Warfarin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of alteration of warfarin effect, including elevation of prothrombin times. Intervention: Monitor the prothrombin time of patients on warfarin for signs of an interaction and adjust the dosage of warfarin as needed. Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics: Avoid use with tramadol hydrochloride extended-release tablets because they may reduce analgesic effect of tramadol hydrochloride extended-release tablets or precipitate withdrawal symptoms. (5.15, 7)

OVERDOSAGE

10 Clinical Presentation Acute overdosage with tramadol hydrochloride extended-release tablets can be manifested by respiratory depression, somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, and, in some cases, pulmonary edema, bradycardia, hypotension, partial or complete airway obstruction, atypical snoring, and death. Marked mydriasis rather than miosis may be seen with hypoxia in overdose situations [see Clinical Pharmacology (12.2)]. Treatment of Overdose In case of overdose, priorities are the reestablishment of a patent and protected airway and institution of assisted or controlled ventilation, if needed. Employ other supportive measures (including oxygen and vasopressors) in the management of circulatory shock and pulmonary edema as indicated. Cardiac arrest or arrhythmias will require advanced life-support techniques. The opioid antagonists, naloxone or nalmefene, are specific antidotes to respiratory depression resulting from opioid overdose. For clinically significant respiratory or circulatory depression secondary to tramadol overdose, administer an opioid antagonist. Opioid antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to tramadol overdose. While naloxone will reverse some, but not all, symptoms caused by overdosage with tramadol, the risk of seizures is also increased with naloxone administration. In animals, convulsions following the administration of toxic doses of tramadol hydrochloride extended-release tablets could be suppressed with barbiturates or benzodiazepines but were increased with naloxone. Naloxone administration did not change the lethality of an overdose in mice. Hemodialysis is not expected to be helpful in an overdose because it removes less than 7% of the administered dose in a 4-hour dialysis period. Because the duration of opioid reversal is expected to be less than the duration of action of tramadol in tramadol hydrochloride extended-release tablets, carefully monitor the patient until spontaneous respiration is reliably reestablished. Tramadol hydrochloride extended-release tablets will continue to release tramadol and add to the tramadol load for 24 to 48 hours or longer following ingestion, necessitating prolonged monitoring. If the response to an opioid antagonist is suboptimal or only brief in nature, administer additional antagonist as directed by the product’s prescribing information. In an individual physically dependent on opioids, administration of the recommended usual dosage of the antagonist will precipitate an acute withdrawal syndrome. The severity of the withdrawal symptoms experienced will depend on the degree of physical dependence and the dose of the antagonist administered. If a decision is made to treat serious respiratory depression in the physically dependent patient, administration of the antagonist should be initiated with care and by titration with smaller than usual doses of the antagonist.

DESCRIPTION

11 Tramadol hydrochloride is an opioid agonist in an extended-release tablet formulation for oral use. The chemical name is (±)cis-2-[(dimethylamino) methyl]-1-(3-methoxyphenyl) cyclohexanol hydrochloride. Its structural formula is: The molecular weight of tramadol hydrochloride is 299.84. It is a white, crystalline powder that is freely soluble in water and methanol, very slightly soluble in acetone and has a pKa of 9.41. The n-octanol/water log partition coefficient (logP) is 1.35 at pH 7. Tramadol hydrochloride extended-release tablets contain 100 mg, 200 mg or 300 mg of tramadol hydrochloride, USP in an extended-release formulation. The tablets are white in color and contain the inactive ingredients pregelatinized maize starch, hypromellose, mannitol, magnesium stearate, cellulose acetate and polyethylene glycol. Imprinting ink contains, shellac glaze, iron oxide black, N-butyl alcohol, ammonium hydroxide and propylene glycol. tramadol-structure

CLINICAL STUDIES

14 Clinical Trial Experience Tramadol hydrochloride extended-release tablets were studied in patients with chronic, moderate to moderately severe pain due to osteoarthritis and/or low back pain in four 12-week, randomized, double-blind, placebocontrolled trials. To qualify for inclusion into these studies, patients were required to have moderate to moderately severe pain as defined by a pain intensity score of ≥40 mm, off previous medications, on a 0 to 100 mm visual analog scale (VAS). Adequate evidence of efficacy was demonstrated in the following two studies: Study 1 : Osteoarthritis of the Knee and/or Hip In one 12-week randomized, double-blind, placebo-controlled study, patients with moderate to moderately severe pain due to osteoarthritis of the knee and/or hip were administered doses from 100 mg to 400 mg daily. Treatment was initiated at 100 mg QD for four days then increased by 100 mg per day increments every five days to the randomized fixed dose. Between 51% and 59% of patients in the tramadol hydrochloride extended-release tablets treatment groups completed the study and 56% of patients in the placebo group completed the study. Discontinuations due to adverse events were more common in the tramadol hydrochloride extended-release tablets 200 mg, 300 mg and 400 mg treatment groups (20%, 27%, and 30% of discontinuations, respectively) compared to 14% of the patients treated with tramadol hydrochloride extended-release tablets 100 mg and 10% of patients treated with placebo. Pain, as assessed by the WOMAC Pain subscale, was measured at 1, 2, 3, 6, 9, and 12 weeks and change from baseline assessed. A responder analysis based on the percent change in WOMAC Pain subscale demonstrated a statistically significant improvement in pain for the 100 mg and 200 mg treatment groups compared to placebo (see Figure 3). Study 2: Osteoarthritis of the Knee In one 12-week randomized, double-blind, placebo-controlled flexible-dosing trial of tramadol hydrochloride extended-release tablets in patients with osteoarthritis of the knee, patients titrated to an average daily tramadol hydrochloride extended-release tablets dose of approximately 270 mg/day. Forty-nine percent of patients randomized to tramadol hydrochloride extended-release tablets completed the study, while 52% of patients randomized to placebo completed the study. Most of the early discontinuations in the tramadol hydrochloride extended-release tablets treatment group were due to adverse events, accounting for 27% of the early discontinuations in contrast to 7% of the discontinuations from the placebo group. Thirty-seven percent of the placebo-treated patients discontinued the study due to lack of efficacy compared to 15% of tramadol hydrochloride extended-release tablets-treated patients. The tramadol hydrochloride extended-release tablets group demonstrated a statistically significant decrease in the mean VAS score, and a statistically significant difference in the responder rate, based on the percent change from baseline in the VAS score, measured at 1, 2, 4, 8, and 12 weeks, between patients receiving tramadol hydrochloride extended-release tablets and placebo (see Figure 4). tramadol-figure3 tramadol-figure4

HOW SUPPLIED

16 /STORAGE AND HANDLING Tramadol hydrochloride extended-release tablets are supplied in the following package and dose strength forms: 100 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-859-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-859-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-859-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-859-18 200 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-860-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-860-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-860-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-860-18 300 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-861-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-861-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-861-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-861-18 Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F) [see USP Controlled Room Temperature]. Dispense in a tight, light resistant container. Warning: keep out of reach of children.

RECENT MAJOR CHANGES

Boxed Warning 12/2016 Indication and Usage (1) 12/2016 Dosage and Administration (2) 12/2016 Contraindications (4) 12/2016 Warnings and Precautions (5) 12/2016

GERIATRIC USE

8.5 Geriatric Use Nine-hundred-one elderly (65 years of age or older) subjects were exposed to tramadol hydrochloride extended-release tablets in clinical trials. Of those subjects, 156 were 75 years of age and older. In general, higher incidence rates of adverse events were observed for patients older than 65 years of age compared with patients 65 years and younger, particularly for the following adverse events: constipation, fatigue, weakness, postural hypotension and dyspepsia. For this reason, tramadol hydrochloride extended-release tablets should be used with caution in patients over 65 years of age, and with even greater caution in patients older than 75 years of age [see Dosage and Administration (2.4), Clinical Pharmacology (12.3)]. Respiratory depression is the chief risk for elderly patients treated with opioids, and has occurred after large initial doses were administered to patients who were not opioidtolerant or when opioids were co-administered with other agents that depress respiration. Titrate the dosage of tramadol hydrochloride extended-release tablets slowly in geriatric patients and monitor closely for signs of central nervous system and respiratory depression [see Warnings and Precautions (5.10)]. Tramadol is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 DOSAGE FORMS & STRENGTHS Extended-release tablets are available as: 100 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. 200 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. 300 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Extended-release tablets 100 mg, 200 mg, and 300 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Tramadol hydrochloride extended-release tablets contain tramadol, an opioid agonist and an inhibitor of reuptake of norepinephrine and serotonin. Although the mode of action of tramadol is not completely understood, the analgesic effect of tramadol is believed to be due to both binding to μ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin. Opioid activity of tramadol is due to both low affinity binding of the parent compound and higher affinity binding of the O-desmethyl metabolite M1 to μ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opioid antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound. Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin in vitro, as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol. Apart from analgesia, tramadol administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of other opioids. In contrast to morphine, tramadol has not been shown to cause histamine release. At therapeutic doses, tramadol has no effect on heart rate, left-ventricular function, or cardiac index. Orthostatic hypotension has been observed.

INDICATIONS AND USAGE

1 INDICATIONS & USAGE Tramadol hydrochloride extended-release tablets are indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations [see Warnings and Precautions (5.1)], reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. Tramadol hydrochloride is an opioid agonist indicated for the management of pain severe enough to require daily around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. (1) Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations, reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. (1) Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of tramadol hydrochloride extended-release tablets in patients under 18 years of age have not been established. The use of tramadol hydrochloride extended-release tablets in the pediatric population is not recommended.

PREGNANCY

8.1 Pregnancy Risk Summary Prolonged use of opioid analgesics during pregnancy may cause neonatal opioid withdrawal syndrome [see Warnings and Precautions (5.3)]. Available data with tramadol hydrochloride extended-release tablets in pregnant women are insufficient to inform a drug-associated risk for major birth defects and miscarriage. In animal reproduction studies, tramadol administration during organogenesis decreased fetal weights and reduced ossification in mice, rats, and rabbits at 1.4, 0.6, and 3.6 times the maximum recommended human daily dosage (MRHD). Tramadol decreased pup body weight and increased pup mortality at 1.2 and 1.9 times the MRHD [see Data]. Based on animal data, advise pregnant women of the potential risk to a fetus. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. Clinical Considerations Fetal/Neonatal Adverse Reactions Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth. Neonatal opioid withdrawal syndrome presents as irritability, hyperactivity and abnormal sleep pattern, high pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. The onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of the drug by the newborn. Observe newborns for symptoms and signs of neonatal opioid withdrawal syndrome and manage accordingly [see Warnings and Precautions (5.3)]. Neonatal seizures, neonatal withdrawal syndrome, fetal death and stillbirth have been reported with tramadol during post-approval use of tramadol immediate-release products. Labor or Delivery Opioids cross the placenta and may produce respiratory depression and psychophysiologic effects in neonates. An opioid antagonist, such as naloxone, must be available for reversal of opioid-induced respiratory depression in the neonate. Tramadol hydrochloride extended-release tablets are not recommended for use in pregnant women during or immediately prior to labor, when use of shorter-acting analgesics or other analgesic techniques are more appropriate. Opioid analgesics, including tramadol hydrochloride extended-release tablets, can prolong labor through actions which temporarily reduce the strength, duration, and frequency of uterine contractions. However, this effect is not consistent and may be offset by an increased rate of cervical dilation, which tends to shorten labor. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor. The effect of tramadol hydrochloride extended-release tablets, if any, on the later growth, development, and functional maturation of the child is unknown. Data Animal Data Tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg), rats (25 mg/kg) and rabbits (75 mg/kg) at maternally toxic dosages, but was not teratogenic at these dose levels. These doses on a mg/m2 basis are 1.9, 0.8, and 4.9 times the maximum recommended human daily dosage (MRHD) for mouse, rat and rabbit, respectively. No drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg), rats (up to 80 mg/kg) or rabbits (up to 300 mg/kg) treated with tramadol by various routes. Embryo and fetal toxicity consisted primarily of decreased fetal weights, decreased skeletal ossification, and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. Embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg, a dose that would cause extreme maternal toxicity in the rabbit. The dosages listed for mouse, rat, and rabbit are 2.3, 2.6, and 19 times the MRHD, respectively. Tramadol was evaluated in pre- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (1.6 times the MRHD) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (2.6 times the MRHD).

NUSRING MOTHERS

8.3 Females and Males of Reproductive Potential Infertility Chronic use of opioids may cause reduced fertility in females and males of reproductive potential. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Clinical Pharmacology (12.2), Nonclinical Toxicology (13.1)].

BOXED WARNING

WARNING: ADDICTION, ABUSE, AND MISUSE; LIFE-THREATENTING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS Addi ction, Abus e, a nd Misuse Tramadol hydrochloride extended-release tablets expos e pa ti en ts and o th er us ers to the risks of opio id addi ction, abus e, and misus e, w hi ch can l ead to ov erdose and d ea th. Ass ess ea ch pa ti en t’s risk p rior to p res c ribing tramadol hydrochloride extended-release tablets, and moni t or all pa ti en ts regula rly for the d ev elop ment of th ese b ehavio rs and con di tions [s ee Warnings and Pr ecautions (5.1 ) ]. Li f e-Th rea tening Resp i ra to ry D ep ression S erious, li f e-th rea tening, or fa tal respi ra to ry d ep ression may o ccur wi th use of tramadol hydrochloride extended-release tablets. Moni t or for respi ra to ry d ep r e ssion, esp ecially du r ing ini tia tion of tramadol hydrochloride extended-release tablets or follo wing a dose in creas e. Ins tru ct pa ti en ts to s wallow tramadol hydrochloride extended-release tablets in ta ct, and not to cu t, b reak, ch e w, c rush, or dissolve the tabl ets to avoid exposu re to a po ten tially fa tal dose of tra madol [s ee Warnings and Pr e cautions (5.2 ) ]. Accid en tal Ing es tion Accid en tal ing es tion of ev en one dose of tramadol hydrochloride extended-release tablet, esp ecially by child ren, can result in a fa tal ov erdose of tr a madol [s ee War nings and Pr ecautio ns (5.2 ) ]. Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available[ see Warnings and Precautions (5.3)]. Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 [see Warnings and Precautions (5.4), Drug Interactions (7) ]. Risks From Concomitant Use With Benzodiazepines Or Other CNS Depressants Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death [see Warnings and Precautions (5.5), Drug Interactions (7) ]. • Reserve concomitant prescribing of tramadol hydrochloride extended-release injection and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate. • Limit dosages and durations to the minimum required. • Follow patients for signs and symptoms of respiratory depression and sedation. WARNING: ADDICTION, ABUSE, AND MISUSE; LIFETHREATENING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS See full prescribing information for complete boxed warning . Tramadol hydrochloride extended-release tablets expose users to risks of addiction, abuse, and misuse, which can lead to overdose and death. Assess patient’s risk before prescribing and monitor regularly for these behaviors and conditions. (5.1) Serious, life-threatening, or fatal respiratory depression may occur. Monitor closely, especially upon initiation or following a dose increase. Instruct patients to swallow tramadol hydrochloride extended-release tablets intact, and not to cut, break, chew, crush, or dissolve the tablets to avoid exposure to a potentially fatal dose of tramadol. (5.2) Accidental ingestion of tramadol hydrochloride extended-release tablets, especially by children, can result in a fatal overdose of tramadol. (5.2) Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated. If prolonged opioid use is required in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. (5.3) The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 (5.4, 7) Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing for use in patients for whom alternative treatment options are inadequate; limit dosages and durations to the minimum required; and follow patients for signs and symptoms of respiratory depression and sedation. (5.5, 7)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serotonin Syndrome: Potentially life-threatening condition could result from concomitant serotonergic drug administration. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. (5.6) Risk of Seizure: Present within recommended dosage range. Risk is increased with higher than recommended doses and concomitant use of SSRIs, SNRIs, anorectics, tricyclic antidepressants and other tricyclic compounds, other opioids, MAOIs, neuroleptics, other drugs that reduce seizure threshold, in patients with epilepsy or at risk for seizures. (5.7, 7) Risk of Suicide: Do not use tramadol hydrochloride extended-release tablets in suicidal or addiction-prone patients. Use with caution in those taking tranquilizers, antidepressants or abuse alcohol. (5.8) Adrenal Insufficiency: If diagnosed, treat with physiologic replacement of corticosteroids, and wean patient off of the opioid. (5.9) Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients: Monitor closely, particularly during initiation and titration. (5.10) Severe Hypotension: Monitor during dosage initiation and titration. Avoid use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. (5.11) Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness: Monitor for sedation and respiratory depression. Avoid use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. (5.12) 5.1 Addiction, Abuse, and Misuse Tramadol hydrochloride extended-release tablet contains tramadol, a Schedule IV controlled substance. As an opioid, tramadol hydrochloride extended-release tablet exposes users to the risks of addiction, abuse, and misuse. Because extended-release products such as tramadol hydrochloride extended-release tablets deliver the opioid over an extended period of time, there is a greater risk for overdose and death due to the larger amount of tramadol present [see Drug Abuse and Dependence (9)]. Although the risk of addiction in any individual is unknown, it can occur in patients appropriately prescribed tramadol hydrochloride extended-release tablets. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each patient’s risk for opioid addiction, abuse, or misuse prior to prescribing tramadol hydrochloride extended-release tablets, and monitor all patients receiving tramadol hydrochloride extended-release tablets for the development of these behaviors and conditions. Risks are increased in patients with a personal or family history of substance abuse (including drug or alcohol abuse or addiction) or mental illness (e.g., major depression). The potential for these risks should not, however, prevent the proper management of pain in any given patient. Patients at increased risk may be prescribed opioids such as tramadol hydrochloride extended-release tablets, but use in such patients necessitates intensive counseling about the risks and proper use of tramadol hydrochloride extended-release tablets along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse or misuse of tramadol hydrochloride extended-release tablets by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of tramadol and can result in overdose and death [see Overdosage (10)]. Opioids are sought by drug abusers and people with addiction disorders and are subject to criminal diversion. Consider these risks when prescribing or dispensing tramadol hydrochloride extended-release tablets. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity and advising the patient on the proper disposal of unused drug [ see Patient Counseling Information (17)]. Contact local state professional licensing board or state controlled substances authority for information on how to prevent and detect abuse or diversion of this product. 5.2 Life-Threatening Respiratory Depression Serious, life-threatening, or fatal respiratory depression has been reported with the use of opioids, even when used as recommended. Respiratory depression, if not immediately recognized and treated, may lead to respiratory arrest and death. Management of respiratory depression may include close observation, supportive measures, and use of opioid antagonists, depending on the patient’s clinical status [see Overdosage (10)]. Carbon dioxide (CO2) retention from opioid- induced respiratory depression can exacerbate the sedating effects of opioids. While serious, life-threatening, or fatal respiratory depression can occur at any time during the use of tramadol hydrochloride extended-release tablets, the risk is greatest during the initiation of therapy or following a dosage increase. Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy with and following dosage increases of tramadol hydrochloride extended-release tablets. To reduce the risk of respiratory depression, proper dosing and titration of tramadol hydrochloride extended-release tablets are essential [see Dosage and Administration (2)]. Overestimating the tramadol hydrochloride extended-release tablets dosage when converting patients from another opioid product can result in a fatal overdose with the first dose. Accidental ingestion of even one dose of tramadol hydrochloride extended-release tablet, especially by children, can result in respiratory depression and death due to an overdose of tramadol. 5.3 Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in withdrawal in the neonate. Neonatal opioid withdrawal syndrome, unlike opioid withdrawal syndrome in adults, may be life- threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. Observe newborns for signs of neonatal opioid withdrawal syndrome and manage accordingly. Advise pregnant women using opioids for a prolonged period of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available [see Use in Specific Populations (8.1), Patient Counseling Information (17)]. 5.4 Risks of Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors on levels of tramadol and M1 from tramadol hydrochloride extended-release tablets are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol which is a weak serotonin and norepinephrine reuptake inhibitor and µ-opioid agonist, and the active metabolite, M1, which is more potent than tramadol in µ-opioid receptor binding [see Drug Interactions (7)]. Risks of Concomitant Use or Discontinuation of Cytochrome P450 2D6 Inhibitors The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 2D6 inhibitors (e.g., amiodarone, quinidine) may result in an increase in tramadol plasma levels and a decrease in the levels of the active metabolite, M1. A decrease in M1 exposure in patients who have developed physical dependence to tramadol, may result in signs and symptoms of opioid withdrawal and reduced efficacy. The effect of increased tramadol levels may be an increased risk for serious adverse events including seizures and serotonin syndrome. Discontinuation of a concomitantly used cytochrome P450 2D6 inhibitor may result in a decrease in tramadol plasma levels and an increase in active metabolite M1 levels, which could increase or prolong adverse reactions related to opioid toxicity and may cause potentially fatal respiratory depression. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP2D6 inhibitor for the risk of serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity, and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors of CYP2D6 [see Drug Interactions (7)]. Cytochrome P450 3A4 Interaction The concomitant use of tramadol hydrochloride extended-release tablets with cytochrome P450 3A4 inhibitors, such as macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g., ketoconazole), and protease inhibitors (e.g., ritonavir) or discontinuation of a cytochrome P450 3A4 inducer such as rifampin, carbamazepine, and phenytoin, may result in an increase in tramadol plasma concentrations, which could increase or prolong adverse reactions, increase the risk for serious adverse events including seizures and serotonin syndrome, and may cause potentially fatal respiratory depression. The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 3A4 inducers or discontinuation of a cytochrome P450 3A4 inhibitor may result in lower tramadol levels. This may be associated with a decrease in efficacy, and in some patients, may result in signs and symptoms of opioid withdrawal. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP3A4 inhibitor or inducer for the risk for serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors and inducers of CYP3A4 [see Drug Interactions (7)]. 5.5 Risks from Concomitant Use with Benzodiazepines or Other CNS Depressants Profound sedation, respiratory depression, coma, and death may result from the concomitant use of tramadol hydrochloride extended-release tablets with benzodiazepines or other CNS depressants (e.g., non-benzodiazepine sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol). Because of these risks, reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Observational studies have demonstrated that concomitant use of opioid analgesics and benzodiazepines increases the risk of drug-related mortality compared to use of opioid analgesics alone. Because of similar pharmacological properties, it is reasonable to expect similar risk with the concomitant use of other CNS depressant drugs with opioid analgesics [see Drug Interactions (7)]. If the decision is made to prescribe a benzodiazepine or other CNS depressant concomitantly with an opioid analgesic, prescribe the lowest effective dosages and minimum durations of concomitant use. In patients already receiving an opioid analgesic, prescribe a lower initial dose of the benzodiazepine or other CNS depressant than indicated in the absence of an opioid, and titrate based on clinical response. If an opioid analgesic is initiated in a patient already taking a benzodiazepine or other CNS depressant, prescribe a lower initial dose of the opioid analgesic, and titrate based on clinical response. Follow patients closely for signs and symptoms of respiratory depression and sedation. Advise both patients and caregivers about the risks of respiratory depression and sedation when tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants (including alcohol and illicit drugs). Advise patients not to drive or operate heavy machinery until the effects of concomitant use of the benzodiazepine or other CNS depressant have been determined.  Screen patients for risk of substance use disorders, including opioid abuse and misuse, and warn them of the risk for overdose and death associated with the use of additional CNS depressants including alcohol and illicit drugs [see Drug Interactions (7), Patient Counseling Information (17)]. 5.6 Serotonin Syndrome Risk Cases of serotonin syndrome, a potentially life-threatening condition, have been reported with the use of tramadol, including tramadol hydrochloride extended-release tablets, particularly during concomitant use with serotonergic drugs. Serotonergic drugs include selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonergic neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), and drugs that impair metabolism of serotonin (including MAO inhibitors, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue) [see Drug Interactions (7)]. This may occur within the recommended dosage range. Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). The onset of symptoms generally occurs within several hours to a few days of concomitant use, but may occur later than that. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. 5.7 Increased Risk of Seizures Seizures have been reported in patients receiving tramadol within the recommended dosage range. Spontaneous post-marketing reports indicate that seizure risk is increased with doses of tramadol above the recommended range. Concomitant use of tramadol increases the seizure risk in patients taking: [see Drug Interactions (7)]. · Selective serotonin re-uptake inhibitors (SSRIs) and Serotonin-norepinephrine re-uptake inhibitors (SNRIs) antidepressants or anorectics, · Tricyclic antidepressants (TCAs), and other tricyclic compounds (e.g., cyclobenzaprine, promethazine, etc.), · Other opioids, · MAO inhibitors [see Warnings and Precautions (5.9), Drug Interactions (7)] · Neuroleptics, or · Other drugs that reduce the seizure threshold. Risk of seizures may also increase in patients with epilepsy, those with a history of seizures, or in patients with a recognized risk for seizure (such as head trauma, metabolic disorders, alcohol and drug withdrawal, CNS infections). In tramadol overdose, naloxone administration may increase the risk of seizure. 5.8 Suicide Risk Do not prescribe tramadol hydrochloride extended-release tablets for patients who are suicidal or addiction-prone. Consideration should be given to the use of non-narcotic analgesics in patients who are suicidal or depressed. [see Drug Abuse and Dependence (9.2)] Prescribe tramadol hydrochloride extended-release tablets with caution for patients with a history of misuse and/or arecurrently taking CNS-active drugs including tranquilizers, or antidepressant drugs, or alcohol in excess, and patients who suffer from emotional disturbance or depression [see Drug Interactions (7)]. Inform patients not to exceed the recommended dose and to limit their intake of alcohol [see Dosage and Administration (2.1), Warnings and Precautions (5.5, 5.6, 5.12)]. 5.9 Adrenal Insufficiency Cases of adrenal insufficiency have been reported with opioid use, more often following greater than one month of use. Presentation of adrenal insufficiency may include non-specific symptoms and signs including nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. If adrenal insufficiency is suspected, confirm the diagnosis with diagnostic testing as soon as possible. If adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids. Wean the patient off of the opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers. Other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency. The information available does not identify any particular opioids as being more likely to be associated with adrenal insufficiency. 5.10 Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients The use of tramadol hydrochloride extended-release tablets in patients with acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment is contraindicated. Patients with Chronic Pulmonary Disease: Tramadol hydrochloride extended-release tablets-treated patients with significant chronic obstructive pulmonary disease or cor pulmonale, and those with a substantially decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression are at increased risk of decreased respiratory drive including apnea, even at recommended dosages of tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.2)]. Elderly, Cachectic, or Debilitated Patients: Life-threatening respiratory depression is more likely to occur in elderly, cachectic, or debilitated patients because they may have altered pharmacokinetics or altered clearance compared to younger, healthier patients [see Warnings and Precautions (5.2)]. Monitor such patients closely, particularly when initiating and titrating tramadol hydrochloride extended-release tablets and when tramadol hydrochloride extended-release tablets are given concomitantly with other drugs that depress respiration [see Warnings and Precautions (5.2, 5.5)]. Alternatively, consider the use of non-opioid analgesics in these patients. 5.11 Severe Hypotension Tramadol hydrochloride extended-release tablets may cause severe hypotension including orthostatic hypotension and syncope in ambulatory patients. There is increased risk in patients whose ability to maintain blood pressure has already been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines or general anesthetics) [see Drug Interactions (7)]. Monitor these patients for signs of hypotension after initiating or titrating the dosage of tramadol hydrochloride extended-release tablets. In patients with circulatory shock, tramadol hydrochloride extended-release tablets may cause vasodilation that can further reduce cardiac output and blood pressure. Avoid the use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. 5.12 Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness In patients who may be susceptible to the intracranial effects of CO2 retention (e.g., those with evidence of increased intracranial pressure or brain tumors), tramadol hydrochloride extended-release tablets may reduce respiratory drive, and the resultant CO2 retention can further increase intracranial pressure. Monitor such patients for signs of sedation and respiratory depression, particularly when initiating therapy with tramadol hydrochloride extended-release tablets. Opioids may also obscure the clinical course in a patient with a head injury. Avoid the use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. 5.13 Risks of Use in Patients with Gastrointestinal Conditions Tramadol hydrochloride extended-release tablets are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus. The tramadol in tramadol hydrochloride extended-release tablets may cause spasm of the sphincter of Oddi. Opioids may cause increases in serum amylase. Monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms. 5.14 Anaphylaxis and Other Hypersensitivity Reactions Serious and rarely fatal hypersensitive reactions have been reported in patients receiving therapy with tramadol. When these events do occur it is often following the first dose. Other reported hypersensitivity reactions include pruritus, hives, bronchospasm, angioedema, toxic epidermal necrolysis and Stevens-Johnson syndrome. Patients with a history of hypersensitivity reactions to tramadol and other opioids may be at increased risk and therefore should not receive tramadol hydrochloride extended-release tablets. If anaphylaxis or other hypersensitivity occurs, stop administration of tramadol hydrochloride extended-release tablets immediately, discontinue tramadol hydrochloride extended-release tablets permanently, and do not rechallenge with any formulation of tramadol. Advise patients to seek immediate medical attention if they experience any symptoms of a hypersensitivity reaction [see Patient Counseling Information (17)]. 5.15 Withdrawal Avoid the use of mixed agonist/antagonist (e.g., pentazocine, nalbuphine, and butorphanol) or partial agonist (e.g., buprenorphine) analgesics in patients who are receiving a full opioid agonist analgesic, including tramadol hydrochloride extended-release tablets. In these patients, mixed agonist/antagonist and partial agonist analgesics may reduce the analgesic effect and/or may precipitate withdrawal symptoms [see Drug Interactions (7)]. When discontinuing tramadol hydrochloride extended-release tablets, gradually taper the dosage [see Dosage and Administration (2.4)]. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Drug Abuse and Dependence (9.3)]. 5.16 Risks of Driving and Operating Machinery Tramadol hydrochloride extended-release tablets may impair the mental or physical abilities needed to perform potentially hazardous activities such as driving a car or operating machinery. Warn patients not to drive or operate dangerous machinery unless they are tolerant to the effects of tramadol hydrochloride extended-release tablets and know how they will react to the medication [see Patient Counseling Information (17)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Addiction, Abuse, and Misuse Inform patients that the use of tramadol hydrochloride extended-release tablets, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death [see Warnings and Precautions (5.1)]. Instruct patients not to share tramadol hydrochloride extended-release tablets with others and to take steps to protect tramadol hydrochloride extended-release tablets from theft or misuse. Life-Threatening Respiratory Depression Inform patients of the risk of life-threatening respiratory depression, including information that the risk is greatest when starting tramadol hydrochloride extended-release tablets or when the dosage is increased, and that it can occur even at recommended dosages [see Warnings and Precautions (5.2)]. Advise patients how to recognize respiratory depression and to seek medical attention if breathing difficulties develop. Accidental Ingestion Inform patients that accidental ingestion, especially by children, may result in respiratory depression or death [see Warnings and Precautions (5.2)]. Instruct patients to take steps to store tramadol hydrochloride extended-release tablets securely and to dispose of unused tramadol hydrochloride extended-release tablets in accordance with the local state guidelines and/or regulations. Interactions with Benzodiazepines and Other CNS Depressants Inform patients and caregivers that potentially fatal additive effects may occur if tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants, including alcohol, and not to use these concomitantly unless supervised by a healthcare provider [see Warnings and Precautions (5.5), Drug Interactions (7)]. Serotonin Syndrome Inform patients that tramadol could cause a rare but potentially life-threatening condition, particularly during concomitant use with serotonergic drugs. Warn patients of the symptoms of serotonin syndrome and to seek medical attention right away if symptoms develop. Instruct patients to inform their healthcare provider if they are taking, or plan to take serotonergic medications [see Warnings and Precautions (5.6), Drug Interactions (7)]. Seizures Inform patients that tramadol hydrochloride extended-release tablets may cause seizures with concomitant use of serotonergic agents (including SSRIs, SNRIs, and triptans) or drugs that significantly reduce the metabolic clearance of tramadol [see Warnings and Precautions (5.7)]. MAOI Interaction Inform patients not to take tramadol hydrochloride extended-release tablets while using any drugs that inhibit monoamine oxidase. Patients should not start MAOIs while taking tramadol hydrochloride extended-release tablets [see Drug Interactions (7)]. Adrenal Insufficiency Inform patients that opioids could cause adrenal insufficiency, a potentially life-threatening condition. Adrenal insufficiency may present with non-specific symptoms and signs such as nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. Advise patients to seek medical attention if they experience a constellation of these symptoms [see Warnings and Precautions (5.9)]. Important Administration Instructions Instruct patients how to properly take tramadol hydrochloride extended-release tablets, including the following: · Tramadol hydrochloride extended-release tablets are designed to work properly only if swallowed intact. Taking cut, broken, chewed, crushed, or dissolved tramadol hydrochloride extended-release tablets can result in a fatal overdose [see Dosage and Administration (2.1)]. · Advise patients not to exceed the single-dose and 24-hour dose limit and the time interval between doses, since exceeding these recommendations can result in respiratory depression, seizures, hepatic toxicity, and death. [see Dosage and Administration (2.1)]. · Do not discontinue tramadol hydrochloride extended-release tablets without first discussing the need for a tapering regimen with the prescriber [see Dosage and Administration (2.4)]. Hypotension Inform patients that tramadol hydrochloride extended-release tablets may cause orthostatic hypotension and syncope. Instruct patients how to recognize symptoms of low blood pressure and how to reduce the risk of serious consequences should hypotension occur (e.g., sit or lie down, carefully rise from a sitting or lying position) [see Warnings and Precautions (5.11)]. Anaphylaxis Inform patients that anaphylaxis has been reported with ingredients contained in tramadol hydrochloride extended-release tablets. Advise patients how to recognize such a reaction and when to seek medical attention [see Contraindications (4), Adverse Reactions (6)]. Pregnancy Neonatal Opioid Withdrawal Syndrome Inform female patients of reproductive potential that prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated [see Warnings and Precautions (5.3), Use in Specific Populations (8.1)]. Embryo-Fetal Toxicity Inform female patients of reproductive potential that tramadol hydrochloride extended-release tablets can cause fetal harm and to inform their healthcare provider of a known or suspected pregnancy [see Use in Specific Populations (8.1)]. Lactation Advise patients that breastfeeding is not recommended during treatment with tramadol hydrochloride extended-release tablets [see Use in Specific Populations (8.2)]. Infertility Inform patients that chronic use of opioids may cause reduced fertility. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Use in Specific Populations (8.3)]. Driving or Operating Heavy Machinery Inform patients that tramadol hydrochloride extended-release tablets may impair the ability to perform potentially hazardous activities such as driving a car or operating heavy machinery. Advise patients not to perform such tasks until they know how they will react to the medication [see Warnings and Precautions (5.5)]. Constipation Advise patients of the potential for severe constipation, including management instructions and when to seek medical attention [see Adverse Reactions (6), Clinical Pharmacology (12.1)]. Disposal of Unused Tramadol Hydrochloride Extended-Release Tablets Advise patients to throw the unused tramadol hydrochloride extended-release tablets in the household trash following these steps. 1) Remove the drugs from their original containers and mix with an undesirable substance, such as used coffee grounds or kitty litter (this makes the drug less appealing to children and pets, and unrecognizable to people who may intentionally go through the trash seeking drugs). 2) Place the mixture in a sealable bag, empty can, or other container to prevent the drug from leaking or breaking out of a garbage bag.

DOSAGE AND ADMINISTRATION

2 DOSAGE & ADMINISTRATION To be prescribed only by healthcare providers knowledgeable in use of potent opioids for management of chronic pain. (2.1) Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals (2.1). Individualize dosing based on the severity of pain, patient response, prior analgesic experience, and risk factors for addiction, abuse, and misuse. (2.1) Do not exceed a daily dose of 300 mg tramadol. Do not use with other tramadol products. (2.1) For opioid-naïve and opioid non-tolerant patients, initiate tramadol hydrochloride extended-release tablets at a dose of 100 mg once daily, then titrate up by 100 mg increments every 5 days according to need and tolerance. (2.2) For patients currently on tramadol IR, calculate total 24-hr IR dose, and initiate tramadol hydrochloride extended-release tablets at a dose rounded down to next lower 100 mg increment; then adjust dose according to need and tolerance. See full prescribing information for instructions on conversion, titration, and maintenance of therapy. (2.2, 2.3) Do not abruptly discontinue tramadol hydrochloride extended-release tablets in a physically-dependent patient. (2.4) 2.1 Important Dosage and Administration Instructions Tramadol hydrochloride extended-release tablets should be prescribed only by healthcare professionals who are knowledgeable in the use of potent opioids for the management of chronic pain. Do not use tramadol hydrochloride extended-release tablets concomitantly with other tramadol products [ see Warnings and Precautions (5.4), (5.12)]. Do not administer tramadol hydrochloride extended-release tablets at a dose exceeding 300 mg per day. Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals [see Warnings and Precautions (5.5)]. Initiate the dosing regimen for each patient individually, taking into account the patient’s severity of pain, patient response, prior analgesic treatment experience, and risk factors for addiction, abuse, and misuse [see Warnings and Precautions (5.1)] Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy and following dosage increases with tramadol hydrochloride extended-release tablets and adjust the dosage accordingly [see Warnings and Precautions (5.2)]. Instruct patients to swallow tramadol hydrochloride extended-release tablets whole [see Patient Counseling Information (17)], and to take it with liquid. Crushing, chewing, splitting, or dissolving tramadol hydrochloride extended-release tablets will result in uncontrolled delivery of tramadol and can lead to overdose or death [see Warnings and Precautions (5.1)]. Tramadol hydrochloride extended-release tablets may be taken without regard to food, It is recommended that tramadol hydrochloride extended-release tablets be taken in a consistent manner [ see Clinical Pharmacology (12.3)]. 2.2 Initial Dosage Patients Not Currently on a Tramadol Product The initial dose of tramadol hydrochloride extended-release tablet is 100 mg once daily. Patients Currently on Tramadol Immediate-Release (IR) Products Calculate the 24-hour tramadol IR dose and initiate a total daily dose of tramadol hydrochloride extended-release tablets rounded down to the next lower 100 mg increment. The dose may subsequently be individualized according to patient need. Due to limitations in flexibility of dose selection with tramadol hydrochloride extended-release tablets, some patients maintained on tramadol IR products may not be able to convert to tramadol hydrochloride extended-release tablets. Conversion from Other Opioids to Tramadol Hydrochloride Extended-Release Tablets Discontinue all other around-the-clock opioid drugs when tramadol hydrochloride extended-release tablets therapy is initiated. There are no established conversion ratios for conversion from other opioids to tramadol hydrochloride extended-release tablets defined by clinical trials. Initiate dosing using tramadol hydrochloride extended-release tablet 100 mg once a day. 2.3 Titration and Maintenance of Therapy Individually titrate tramadol hydrochloride extended-release tablets by 100 mg every five days to a dose that provides adequate analgesia and minimizes adverse reactions. The maximum daily dose of tramadol hydrochloride extended-release tablets is 300 mg per day. Continually reevaluate patients receiving tramadol hydrochloride extended-release tablets to assess the maintenance of pain control and the relative incidence of adverse reactions, as well as monitoring for the development of addiction, abuse, or misuse [see Warnings and Precautions (5.1)]. Frequent communication is important among the prescriber, other members of the healthcare team, the patient, and the caregiver/family during periods of changing analgesic requirements, including initial titration. During chronic therapy, periodically reassess the continued need for the use of opioid analgesics. Patients who experience breakthrough pain may require a dosage adjustment of tramadol hydrochloride extended-release tablets, or may need rescue medication with an appropriate dose of an immediate-release analgesic. If the level of pain increases after dosage stabilization, attempt to identify the source of increased pain before increasing the tramadol hydrochloride extended-release tablets dosage. If unacceptable opioid-related adverse reactions are observed, consider reducing the dosage. Adjust the dosage to obtain an appropriate balance between management of pain and opioid- related adverse reactions. 2.4 Discontinuation of Tramadol Hydrochloride Extended-Release Tablets When a patient no longer requires therapy with tramadol hydrochloride extended-release tablets, taper the dose gradually, by 25% to 50% every 2 to 4 days, while monitoring carefully for signs and symptoms of withdrawal. If the patient develops these signs or symptoms, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.15), Drug Abuse and Dependence (9.3)].