Tamoxifen 10 MG Oral Tablet

Generic Name: TAMOXIFEN CITRATE
Brand Name: Tamoxifen Citrate
  • Substance Name(s):
  • TAMOXIFEN CITRATE

WARNINGS

Effects in Metastatic Breast Cancer Patients As with other additive hormonal therapy (estrogens and androgens), hypercalcemia has been reported in some breast cancer patients with bone metastases within a few weeks of starting treatment with tamoxifen. If hypercalcemia does occur, appropriate measures should be taken and, if severe, tamoxifen should be discontinued. Effects on the Uterus-Endometrial Cancer and Uterine Sarcoma An increased incidence of uterine malignancies has been reported in association with tamoxifen treatment. The underlying mechanism is unknown, but may be related to the estrogen-like effect of tamoxifen. Most uterine malignancies seen in association with tamoxifen are classified as adenocarcinoma of the endometrium. However, rare uterine sarcomas, including malignant mixed mullerian tumors (MMMT), have also been reported. Uterine sarcoma is generally associated with a higher FIGO stage (III/IV) at diagnosis, poorer prognosis, and shorter survival. Uterine sarcoma has been reported to occur more frequently among long-term users (≥ 2 years) of tamoxifen than non-users. Some of the uterine malignancies (endometrial carcinoma or uterine sarcoma) have been fatal. In the NSABP P-1 trial, among participants randomized to tamoxifen there was a statistically significant increase in the incidence of endometrial cancer (33 cases of invasive endometrial cancer, compared to 14 cases among participants randomized to placebo (RR = 2.48, 95% CI: 1.27 to 4.92). The 33 cases in participants receiving tamoxifen were FIGO Stage I, including 20 IA, 12 IB, and 1 IC endometrial adenocarcinomas. In participants randomized to placebo, 13 were FIGO Stage I (8 IA and 5 IB) and 1 was FIGO Stage IV. Five women on tamoxifen and 1 on placebo received postoperative radiation therapy in addition to surgery. This increase was primarily observed among women at least 50 years of age at the time of randomization (26 cases of invasive endometrial cancer, compared to 6 cases among participants randomized to placebo (RR = 4.50, 95% CI: 1.78 to 13.16). Among women ≤ 49 years of age at the time of randomization there were 7 cases of invasive endometrial cancer, compared to 8 cases among participants randomized to placebo (RR = 0.94, 95% CI: 0.28 to 2.89). If age at the time of diagnosis is considered, there were 4 cases of endometrial cancer among participants ≤ 49 randomized to tamoxifen compared to 2 among participants randomized to placebo (RR = 2.21, 95% CI: 0.4 to 12.0). For women ≥ 50 at the time of diagnosis, there were 29 cases among participants randomized to tamoxifen compared to 12 among women on placebo (RR = 2.5, 95% CI: 1.3 to 4.9). The risk ratios were similar in the two groups, although fewer events occurred in younger women. Most (29 of 33 cases in the tamoxifen group) endometrial cancers were diagnosed in symptomatic women, although 5 of 33 cases in the tamoxifen group occurred in asymptomatic women. Among women receiving tamoxifen the events appeared between 1 and 61 months (average = 32 months) from the start of treatment. In an updated review of long-term data (median length of total follow-up is 6.9 years, including blinded follow-up) on 8,306 women with an intact uterus at randomization in the NSABP P-1 risk reduction trial, the incidence of both adenocarcinomas and rare uterine sarcomas was increased in women taking tamoxifen. During blinded follow-up, there were 36 cases of FIGO Stage I endometrial adenocarcinoma (22 were FIGO Stage IA, 13 IB, and 1 IC) in women receiving tamoxifen and 15 cases in women receiving placebo [14 were FIGO Stage I (9 IA and 5 IB), and 1 case was FIGO Stage IV]. Of the patients receiving tamoxifen who developed endometrial cancer, one with Stage IA and 4 with Stage IB cancers received radiation therapy. In the placebo group, one patient with FIGO Stage IB cancer received radiation therapy and the patient with FIGO Stage IVB cancer received chemotherapy and hormonal therapy. During total follow-up, endometrial adenocarcinoma was reported in 53 women randomized to tamoxifen (30 cases of FIGO Stage IA, 20 were Stage IB, 1 was Stage IC, and 2 were Stage IIIC), and 17 women randomized to placebo (9 cases were FIGO Stage IA, 6 were Stage IB, 1 was Stage IIIC, and 1 was Stage IVB) (incidence per 1,000 women-years of 2.20 and 0.71, respectively). Some patients received postoperative radiation therapy in addition to surgery. Uterine sarcomas were reported in 4 women randomized to tamoxifen (1 was FIGO IA, 1 was FIGO IB, 1 was FIGO IIA, and 1 was FIGO IIIC) and 1 patient randomized to placebo (FIGO 1A); incidence per 1,000 women-years of 0.17 and 0.04, respectively. Of the patients randomized to tamoxifen, the FIGO IA and IB cases were a MMMT and sarcoma, respectively; the FIGO II was a MMMT; and the FIGO III was a sarcoma; and the 1 patient randomized to placebo had a MMMT. A similar increased incidence in endometrial adenocarcinoma and uterine sarcoma was observed among women receiving tamoxifen in 5 other NSABP clinical trials. Any patient receiving or who has previously received tamoxifen who reports abnormal vaginal bleeding should be promptly evaluated. Patients receiving or who have previously received tamoxifen should have annual gynecological examinations and they should promptly inform their physicians if they experience any abnormal gynecological symptoms, e.g., menstrual irregularities, abnormal vaginal bleeding, changes in vaginal discharge, or pelvic pain or pressure. In the P-1 trial, endometrial sampling did not alter the endometrial cancer detection rate compared to women who did not undergo endometrial sampling (0.6% with sampling, 0.5% without sampling) for women with an intact uterus. There are no data to suggest that routine endometrial sampling in asymptomatic women taking tamoxifen to reduce the incidence of breast cancer would be beneficial. Non-Malignant Effects on the Uterus An increased incidence of endometrial changes including hyperplasia and polyps has been reported in association with tamoxifen treatment. The incidence and pattern of this increase suggest that the underlying mechanism is related to the estrogenic properties of tamoxifen. There have been a few reports of endometriosis and uterine fibroids in women receiving tamoxifen. The underlying mechanism may be due to the partial estrogenic effect of tamoxifen. Ovarian cysts have also been observed in a small number of premenopausal patients with advanced breast cancer who have been treated with tamoxifen. Tamoxifen has been reported to cause menstrual irregularity or amenorrhea. Thromboembolic Effects of Tamoxifen There is evidence of an increased incidence of thromboembolic events, including deep-vein thrombosis and pulmonary embolism, during tamoxifen therapy. When tamoxifen is coadministered with chemotherapy, there may be a further increase in the incidence of thromboembolic effects. For treatment of breast cancer, the risks and benefits of tamoxifen should be carefully considered in women with a history of thromboembolic events. In a small substudy (N = 81) of the NSABP-1 trial, there appeared to be no benefit to screening women for Factor V Leiden and Prothrombin mutations G20210A as a means to identify those who may not be appropriate candidates for tamoxifen therapy. Data from the NSABP P-1 trial show that participants receiving tamoxifen without a history of pulmonary emboli (PE) had a statistically significant increase in pulmonary emboli (18 tamoxifen, 6 placebo; RR = 3.01, 95% CI: 1.15 to 9.27). Three of the pulmonary emboli, all in the tamoxifen arm, were fatal. Eighty-seven percent of the cases of pulmonary embolism occurred in women at least 50 years of age at randomization. Among women receiving tamoxifen, the events appeared between 2 and 60 months (average = 27 months) from the start of treatment. In this same population, a non-statistically significant increase in deep-vein thrombosis (DVT) was seen in the tamoxifen group (30-tamoxifen, 19-placebo; RR = 1.59, 95% CI: 0.86 to 2.98). The same increase in relative risk was seen in women ≤ 49 and in women ≥ 50, although fewer events occurred in younger women. Women with thromboembolic events were at risk for a second related event (7 out of 25 women on placebo, 5 out of 48 women on tamoxifen) and were at risk for complications of the event and its treatment (0/25 on placebo, 4/48 on tamoxifen). Among women receiving tamoxifen, deep-vein thrombosis events occurred between 2 and 57 months (average = 19 months) from the start of treatment. There was a non-statistically significant increase in stroke among patients randomized to tamoxifen (24 placebo; 34 tamoxifen; RR = 1.42, 95% CI: 0.82 to 2.51). Six of the 24 strokes in the placebo group were considered hemorrhagic in origin and 10 of the 34 strokes in the tamoxifen group were categorized as hemorrhagic. Seventeen of the 34 strokes in the tamoxifen group were considered occlusive and 7 were considered to be of unknown etiology. Fourteen of the 24 strokes on the placebo arm were reported to be occlusive and 4 of unknown etiology. Among these strokes 3 strokes in the placebo group and 4 strokes in the tamoxifen group were fatal. Eighty-eight percent of the strokes occurred in women at least 50 years of age at the time of randomization. Among women receiving tamoxifen, the events occurred between 1 and 63 months (average = 30 months) from the start of treatment. Effects on the Liver: Liver Cancer In the Swedish trial using adjuvant tamoxifen 40 mg/day for 2 to 5 years, 3 cases of liver cancer have been reported in the tamoxifen-treated group vs. 1 case in the observation group (see PRECAUTIONS , Carcinogenesis ). In other clinical trials evaluating tamoxifen, no cases of liver cancer have been reported to date. One case of liver cancer was reported in NSABP P-1 in a participant randomized to tamoxifen. Effects on the Liver: Non-Malignant Effects Tamoxifen has been associated with changes in liver enzyme levels, and on rare occasions, a spectrum of more severe liver abnormalities including fatty liver, cholestasis, hepatitis and hepatic necrosis. A few of these serious cases included fatalities. In most reported cases the relationship to tamoxifen is uncertain. However, some positive rechallenges and dechallenges have been reported. In the NSABP P-1 trial, few grade 3 to 4 changes in liver function (SGOT, SGPT, bilirubin, alkaline phosphatase) were observed (10 on placebo and 6 on tamoxifen). Serum lipids were not systematically collected. Other Cancers A number of second primary tumors, occurring at sites other than the endometrium, have been reported following the treatment of breast cancer with tamoxifen in clinical trials. Data from the NSABP B-14 and P-1 studies show no increase in other (non-uterine) cancers among patients receiving tamoxifen. Whether an increased risk for other (non-uterine) cancers is associated with tamoxifen is still uncertain and continues to be evaluated. Effects on the Eye Ocular disturbances, including corneal changes, decrement in color vision perception, retinal vein thrombosis, and retinopathy have been reported in patients receiving tamoxifen. An increased incidence of cataracts and the need for cataract surgery have been reported in patients receiving tamoxifen. In the NSABP P-1 trial, an increased risk of borderline significance of developing cataracts among those women without cataracts at baseline (540 tamoxifen; 483 placebo; RR = 1.13, 95% CI: 1.00 to 1.28) was observed. Among these same women, tamoxifen was associated with an increased risk of having cataract surgery (101 tamoxifen; 63 placebo; RR = 1.62, 95% CI: 1.18 to 2.22) (see Table 3 in CLINICAL PHARMACOLOGY ). Among all women on the trial (with or without cataracts at baseline), tamoxifen was associated with an increased risk of having cataract surgery (201 tamoxifen; 129 placebo; RR = 1.58, 95% CI: 1.26 to 1.97). Eye examinations were not required during the study. No other conclusions regarding non-cataract ophthalmic events can be made. Pregnancy Category D Tamoxifen may cause fetal harm when administered to a pregnant woman. Women should be advised not to become pregnant while taking tamoxifen or within 2 months of discontinuing tamoxifen and should use barrier or nonhormonal contraceptive measures if sexually active. Tamoxifen does not cause infertility, even in the presence of menstrual irregularity. Effects on reproductive functions are expected from the antiestrogenic properties of the drug. In reproductive studies in rats at dose levels equal to or below the human dose, nonteratogenic developmental skeletal changes were seen and were found reversible. In addition, in fertility studies in rats and in teratology studies in rabbits using doses at or below those used in humans, a lower incidence of embryo implantation and a higher incidence of fetal death or retarded in utero growth were observed, with slower learning behavior in some rat pups when compared to historical controls. Several pregnant marmosets were dosed with 10 mg/kg/day (about 2 fold the daily maximum recommended human dose on a mg/m2 basis) during organogenesis or in the last half of pregnancy. No deformations were seen and, although the dose was high enough to terminate pregnancy in some animals, those that did maintain pregnancy showed no evidence of teratogenic malformations. In rodent models of fetal reproductive tract development, tamoxifen (at doses 0.002 to 2.4 fold the daily maximum recommended human dose on a mg/m2 basis) caused changes in both sexes that are similar to those caused by estradiol, ethynylestradiol and diethylstilbestrol. Although the clinical relevance of these changes is unknown, some of these changes, especially vaginal adenosis, are similar to those seen in young women who were exposed to diethylstilbestrol in utero and who have a 1 in 1,000 risk of developing clear-cell adenocarcinoma of the vagina or cervix. To date, in utero exposure to tamoxifen has not been shown to cause vaginal adenosis, or clear-cell adenocarcinoma of the vagina or cervix, in young women. However, only a small number of young women have been exposed to tamoxifen in utero, and a smaller number have been followed long enough (to age 15 to 20) to determine whether vaginal or cervical neoplasia could occur as a result of this exposure. There are no adequate and well-controlled trials of tamoxifen in pregnant women. There have been a small number of reports of vaginal bleeding, spontaneous abortions, birth defects, and fetal deaths in pregnant women. If this drug is used during pregnancy, or the patient becomes pregnant while taking this drug, or within approximately two months after discontinuing therapy, the patient should be apprised of the potential risks to the fetus including the potential long-term risk of a DES-like syndrome. Reduction in Breast Cancer Incidence in High Risk Women Pregnancy Category D For sexually active women of child-bearing potential, tamoxifen therapy should be initiated during menstruation. In women with menstrual irregularity, a negative B-HCG immediately prior to the initiation of therapy is sufficient (see PRECAUTIONS, Information for Patients, Reduction in Breast Cancer Incidence in High Risk Women ).

DRUG INTERACTIONS

Drug-Drug Interactions In vitro studies showed that erythromycin, cyclosporin, nifedipine and diltiazem competitively inhibited formation of N-desmethyl tamoxifen with apparent K1 of 20, 1, 45 and 30 µM, respectively. The clinical significance of these in vitro studies is unknown. Tamoxifen reduced the plasma concentration of letrozole by 37% when these drugs were coadministered. Rifampin, a cytochrome P-450 3A4 inducer reduced tamoxifen AUC and Cmax by 86% and 55%, respectively. Aminoglutethimide reduces tamoxifen and N-desmethyl tamoxifen plasma concentrations. Medroxyprogesterone reduces plasma concentrations of N-desmethyl, but not tamoxifen. In the anastrozole adjuvant trial, coadministration of anastrozole and tamoxifen in breast cancer patients reduced anastrozole plasma concentration by 27% compared to those achieved with anastrozole alone; however, the coadministration did not affect the pharmacokinetics of tamoxifen or N-desmethyltamoxifen (see PRECAUTIONS, Drug Interactions ). Tamoxifen should not be coadministered with anastrozole.

OVERDOSAGE

Signs observed at the highest doses following studies to determine LD50 in animals were respiratory difficulties and convulsions. Acute overdosage in humans has not been reported. In a study of advanced metastatic cancer patients which specifically determined the maximum tolerated dose of tamoxifen in evaluating the use of very high doses to reverse multidrug resistance, acute neurotoxicity manifested by tremor, hyperreflexia, unsteady gait and dizziness were noted. These symptoms occurred within 3 to 5 days of beginning tamoxifen and cleared within 2 to 5 days after stopping therapy. No permanent neurologic toxicity was noted. One patient experienced a seizure several days after tamoxifen was discontinued and neurotoxic symptoms had resolved. The causal relationship of the seizure to tamoxifen therapy is unknown. Doses given in these patients were all greater than 400 mg/m2 loading dose, followed by maintenance doses of 150 mg/m2 of tamoxifen given twice a day. In the same study, prolongation of the QT interval on the electrocardiogram was noted when patients were given doses higher than 250 mg/m2 loading dose, followed by maintenance doses of 80 mg/m2 of tamoxifen given twice a day. For a woman with a body surface area of 1.5 m2 the minimal loading dose and maintenance doses given at which neurological symptoms and QT changes occurred were at least 6 fold higher in respect to the maximum recommended dose. No specific treatment for overdosage is known; treatment must be symptomatic.

DESCRIPTION

Tamoxifen citrate tablets USP, a nonsteroidal antiestrogen, are for oral administration. Each tablet contains 10 mg or 20 mg tamoxifen (equivalent to 15.2 mg or 30.4 mg, respectively, of tamoxifen citrate). Each tablet contains the following inactive ingredients: croscarmellose sodium, hypromellose, lactose (monohydrate), magnesium stearate, polyethylene glycol 400, povidone, corn starch, and titanium dioxide. Chemically, tamoxifen is the trans-isomer of a triphenylethylene derivative. The chemical name is (Z)2-[4-(1,2-diphenyl-1-butenyl)phenoxy]- N,N-dimethylethanamine 2-hydroxy-1,2,3- propanetricarboxylate (1:1). The structural formula, empirical formula, and molecular weight are as follows: C32H37NO8 M.W. 563.62 Tamoxifen citrate has a pKa’ of 8.85, the equilibrium solubility in water at 37°C is 0.5 mg/mL and in 0.02 N HCl at 37°C, it is 0.2 mg/mL. Structural formula of tamoxifen

CLINICAL STUDIES

Clinical Studies Metastatic Breast Cancer Premenopausal women (tamoxifen vs. ablation) Three prospective, randomized studies (Ingle, Pritchard, Buchanan) compared tamoxifen to ovarian ablation (oophorectomy or ovarian irradiation) in premenopausal women with advanced breast cancer. Although the objective response rate, time to treatment failure, and survival were similar with both treatments, the limited patient accrual prevented a demonstration of equivalence. In an overview analysis of survival data from the 3 studies, the hazard ratio for death (tamoxifen/ovarian ablation) was 1.00 with two-sided 95% confidence intervals of 0.73 to 1.37. Elevated serum and plasma estrogens have been observed in premenopausal women receiving tamoxifen, but the data from the randomized studies do not suggest an adverse effect of this increase. A limited number of premenopausal patients with disease progression during tamoxifen therapy responded to subsequent ovarian ablation. Male breast cancer Published results from 122 patients (119 evaluable) and case reports in 16 patients (13 evaluable) treated with tamoxifen have shown that tamoxifen is effective for the palliative treatment of male breast cancer. Sixty-six of these 132 evaluable patients responded to tamoxifen which constitutes a 50% objective response rate. Adjuvant Breast Cancer Overview The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) conducted worldwide overviews of systemic adjuvant therapy for early breast cancer in 1985, 1990, and again in 1995. In 1998, 10 year outcome data were reported for 36,689 women in 55 randomized trials of adjuvant tamoxifen using doses of 20 to 40 mg/day for 1 to 5+ years. Twenty-five percent of patients received 1 year or less of trial treatment, 52% received 2 years, and 23% received about 5 years. Forty-eight percent of tumors were estrogen receptor (ER) positive (> 10 fmol/mg), 21% were ER poor (< 10 fmol/l), and 31% were ER unknown. Among 29,441 patients with ER positive or unknown breast cancer, 58% were entered into trials comparing tamoxifen to no adjuvant therapy and 42% were entered into trials comparing tamoxifen in combination with chemotherapy vs. the same chemotherapy alone. Among these patients, 54% had node positive disease and 46% had node negative disease. Among women with ER positive or unknown breast cancer and positive nodes who received about 5 years of treatment, overall survival at 10 years was 61.4% for tamoxifen vs. 50.5% for control (logrank 2p < 0.00001). The recurrence-free rate at 10 years was 59.7% for tamoxifen vs. 44.5% for control (logrank 2p < 0.00001). Among women with ER positive or unknown breast cancer and negative nodes who received about 5 years of treatment, overall survival at 10 years was 78.9% for tamoxifen vs. 73.3% for control (logrank 2p < 0.00001). The recurrence-free rate at 10 years was 79.2% for tamoxifen vs. 64.3% for control (logrank 2p < 0.00001). The effect of the scheduled duration of tamoxifen may be described as follows. In women with ER positive or unknown breast cancer receiving 1 year or less, 2 years or about 5 years of tamoxifen, the proportional reductions in mortality were 12%, 17% and 26%, respectively (trend significant at 2p < 0.003). The corresponding reductions in breast cancer recurrence were 21%, 29% and 47% (trend significant at 2p < 0.00001). Benefit is less clear for women with ER poor breast cancer in whom the proportional reduction in recurrence was 10% (2p = 0.007) for all durations taken together, or 9% (2p = 0.02) if contralateral breast cancers are excluded. The corresponding reduction in mortality was 6% (NS). The effects of about 5 years of tamoxifen on recurrence and mortality were similar regardless of age and concurrent chemotherapy. There was no indication that doses greater than 20 mg per day were more effective. Anastrozole adjuvant ATAC trial – study of anastrozole compared to tamoxifen for adjuvant treatment of early breast cancer An anastrozole adjuvant trial was conducted in 9,366 postmenopausal women with operable breast cancer who were randomized to receive adjuvant treatment with either anastrozole 1 mg daily, tamoxifen 20 mg daily, or a combination of these two treatments for 5 years or until recurrence of the disease. At a median follow-up of 33 months, the combination of anastrozole and tamoxifen did not demonstrate any efficacy benefit when compared with tamoxifen therapy alone in all patients as well as in the hormone receptor-positive subpopulation. This treatment arm was discontinued from the trial. Please refer to CLINICAL PHARMACOLOGY , Special Populations and Drug-Drug Interactions ; PRECAUTIONS, Laboratory Tests ; PRECAUTIONS, Drug Interactions and ADVERSE REACTIONS for safety information from this trial. Please refer to the full prescribing information for anastrozole 1 mg tablets for additional information on this trial. Patients in the two monotherapy arms of the ATAC trial were treated for a median of 60 months (5 years) and followed for a median of 68 months. Disease-free survival in the intent-to-treat population was statistically significantly improved [Hazard Ratio (HR) = 0.87, 95% CI: 0.78, 0.97, p = 0.0127] in the anastrozole arm compared to the tamoxifen arm. Node positive – individual studies Two studies (Hubay and NSABP B-09) demonstrated an improved disease-free survival following radical or modified radical mastectomy in postmenopausal women or women 50 years of age or older with surgically curable breast cancer with positive axillary nodes when tamoxifen was added to adjuvant cytotoxic chemotherapy. In the Hubay study, tamoxifen was added to "low-dose" CMF (cyclophosphamide, methotrexate and fluorouracil). In the NSABP B-09 study, tamoxifen was added to melphalan [L-phenylalanine mustard (P)] and fluorouracil (F). In the Hubay study, patients with a positive (more than 3 fmol) estrogen receptor were more likely to benefit. In the NSABP B-09 study in women age 50 to 59 years, only women with both estrogen and progesterone receptor levels 10 fmol or greater clearly benefited, while there was a nonstatistically significant trend toward adverse effect in women with both estrogen and progesterone receptor levels less than 10 fmol. In women age 60 to 70 years, there was a trend toward a beneficial effect of tamoxifen without any clear relationship to estrogen or progesterone receptor status. Three prospective studies (ECOG-1178, Toronto, NATO) using tamoxifen adjuvantly as a single agent demonstrated an improved disease-free survival following total mastectomy and axillary dissection for postmenopausal women with positive axillary nodes compared to placebo/no treatment controls. The NATO study also demonstrated an overall survival benefit. Node negative – individual studies NSABP B-14, a prospective, double-blind, randomized study, compared tamoxifen to placebo in women with axillary node-negative, estrogen-receptor positive (≥ 10 fmol/mg cytosol protein) breast cancer (as adjuvant therapy, following total mastectomy and axillary dissection, or segmental resection, axillary dissection, and breast radiation). After five years of treatment, there was a significant improvement in disease-free survival in women receiving tamoxifen. This benefit was apparent both in women under age 50 and in women at or beyond age 50. One additional randomized study (NATO) demonstrated improved disease-free survival for tamoxifen compared to no adjuvant therapy following total mastectomy and axillary dissection in postmenopausal women with axillary node-negative breast cancer. In this study, the benefits of tamoxifen appeared to be independent of estrogen receptor status. Duration of therapy In the EBCTCG 1995 overview, the reduction in recurrence and mortality was greater in those studies that used tamoxifen for about 5 years than in those that used tamoxifen for a shorter period of therapy. In the NSABP B-14 trial, in which patients were randomized to tamoxifen 20 mg/day for 5 years vs. placebo and were disease-free at the end of this 5 year period were offered rerandomization to an additional 5 years of tamoxifen or placebo. With 4 years of follow-up after this rerandomization, 92% of the women that received 5 years of tamoxifen were alive and disease-free, compared to 86% of the women scheduled to receive 10 years of tamoxifen (p = 0.003). Overall survivals were 96% and 94%, respectively (p = 0.08). Results of the B-14 study suggest that continuation of therapy beyond 5 years does not provide additional benefit. A Scottish trial of 5 years of tamoxifen vs. indefinite treatment found a disease-free survival of 70% in the five-year group and 61% in the indefinite group, with 6.2 years median follow-up (HR = 1.27, 95% CI: 0.87 to 1.85). In a large randomized trial conducted by the Swedish Breast Cancer Cooperative Group of adjuvant tamoxifen 40 mg/day for 2 or 5 years, overall survival at 10 years was estimated to be 80% in the patients in the 5 year tamoxifen group, compared with 74% among corresponding patients in the 2 year treatment group (p = 0.03). Disease-free survival at 10 years was 73% in the 5 year group and 67% in the 2 year group (p = 0.009). Compared with 2 years of tamoxifen treatment, 5 years of treatment resulted in a slightly greater reduction in the incidence of contralateral breast cancer at 10 years, but this difference was not statistically significant. Contralateral breast cancer The incidence of contralateral breast cancer is reduced in breast cancer patients (premenopausal and postmenopausal) receiving tamoxifen compared to placebo. Data on contralateral breast cancer are available from 32,422 out of 36,689 patients in the 1995 overview analysis of the Early Breast Cancer Trialists Collaborative Group (EBCTCG). In clinical trials with tamoxifen of 1 year or less, 2 years, and about 5 years duration, the proportional reductions in the incidence rate of contralateral breast cancer among women receiving tamoxifen were 13% (NS), 26% (2p = 0.004) and 47% (2p < 0.00001), with a significant trend favoring longer tamoxifen duration (2p = 0.008). The proportional reductions in the incidence of contralateral breast cancer were independent of age and ER status of the primary tumor. Treatment with about 5 years of tamoxifen reduced the annual incidence rate of contralateral breast cancer from 7.6 per 1,000 patients in the control group compared with 3.9 per 1,000 patients in the tamoxifen group. In a large randomized trial in Sweden (the Stockholm Trial) of adjuvant tamoxifen 40 mg/day for 2 to 5 years, the incidence of second primary breast tumors was reduced 40% (p < 0.008) on tamoxifen compared to control. In the NSABP B-14 trial in which patients were randomized to tamoxifen 20 mg/day for 5 years vs. placebo, the incidence of second primary breast cancers was also significantly reduced (p < 0.01). In NSABP B-14, the annual rate of contralateral breast cancer was 8.0 per 1,000 patients in the placebo group compared with 5.0 per 1,000 patients in the tamoxifen group, at 10 years after first randomization. Ductal Carcinoma in Situ NSABP B-24, a double-blind, randomized trial included women with ductal carcinoma in situ (DCIS). This trial compared the addition of tamoxifen or placebo to treatment with lumpectomy and radiation therapy for women with DCIS. The primary objective was to determine whether 5 years of tamoxifen therapy (20 mg/day) would reduce the incidence of invasive breast cancer in the ipsilateral (the same) or contralateral (the opposite) breast. In this trial 1,804 women were randomized to receive either tamoxifen or placebo for 5 years: 902 women were randomized to tamoxifen citrate 10 mg tablets twice a day and 902 women were randomized to placebo. As of December 31, 1998, follow-up data were available for 1,798 women and the median duration of follow-up was 74 months. The tamoxifen and placebo groups were well balanced for baseline demographic and prognostic factors. Over 80% of the tumors were less than or equal to 1 cm in their maximum dimension, were not palpable, and were detected by mammography alone. Over 60% of the study population was postmenopausal. In 16% of patients, the margin of the resected specimen was reported as being positive after surgery. Approximately half of the tumors were reported to contain comedo necrosis. For the primary endpoint, the incidence of invasive breast cancer was reduced by 43% among women assigned to tamoxifen (44 cases-tamoxifen, 74 cases-placebo; p = 0.004; relative risk (RR) = 0.57, 95% CI: 0.39 to 0.84). No data are available regarding the ER status of the invasive cancers. The stage distribution of the invasive cancers at diagnosis was similar to that reported annually in the SEER data base. Results are shown in Table 1 . For each endpoint the following results are presented: the number of events and rate per 1,000 women per year for the placebo and tamoxifen groups; and the relative risk (RR) and its associated 95% confidence interval (CI) between tamoxifen and placebo. Relative risks less than 1.0 indicate a benefit of tamoxifen therapy. The limits of the confidence intervals can be used to assess the statistical significance of the benefits of tamoxifen therapy. If the upper limit of the CI is less than 1.0, then a statistically significant benefit exists. Table 1: Major Outcomes of the NSABP B-24 Trial Type of Event Lumpectomy, radiotherapy, and placebo Lumpectomy, radiotherapy, and tamoxifen RR 95% CI limits No. of events Rate per 1,000 women per year No. of events Rate per 1,000 women per year Invasive breast cancer (Primary endpoint) 74 16.73 44 9.60 0.57 0.39 to 0.84 Ipsilateral 47 10.61 27 5.90 0.56 0.33 to 0.91 Contralateral 25 5.64 17 3.71 0.66 0.33 to 1.27 Side undetermined 2 — 0 — — Secondary Endpoints DCIS 56 12.66 41 8.95 0.71 0.46 to 1.08 Ipsilateral 46 10.40 38 8.29 0.71 0.51 to 1.25 Contralateral 10 2.26 3 0.65 0.29 0.05 to 1.13 All Breast Cancer Events 129 29.16 84 18.34 0.63 0.47 to 0.83 All ipsilateral events 96 21.70 65 14.19 0.65 0.47 to 0.91 All contralateral events 37 8.36 20 4.37 0.52 0.29 to 0.92 Deaths 32 28 Uterine Malignancies1 4 9 Endometrial Adenocarcinoma1 4 0.57 8 1.15 Uterine Sarcoma1 0 0.0 1 0.14 Second primary malignancies (other than endometrial and breast) 30 29 Stroke 2 7 Thromboembolic events (DVT, PE) 5 15 1Updated follow-up data (median 8.1 years) Survival was similar in the placebo and tamoxifen groups. At 5 years from study entry, survival was 97% for both groups. Reduction in Breast Cancer Incidence in High Risk Women The Breast Cancer Prevention Trial (BCPT, NSABP P-1) was a double-blind, randomized, placebo-controlled trial with a primary objective to determine whether 5 years of tamoxifen therapy (20 mg/day) would reduce the incidence of invasive breast cancer in women at high risk for the disease (see INDICATIONS AND USAGE ). Secondary objectives included an evaluation of the incidence of ischemic heart disease; the effects on the incidence of bone fractures; and other events that might be associated with the use of tamoxifen, including: endometrial cancer, pulmonary embolus, deep-vein thrombosis, stroke, and cataract formation and surgery (see WARNINGS ). The Gail Model was used to calculate predicted breast cancer risk for women who were less than 60 years of age and did not have lobular carcinoma in situ (LCIS). The following risk factors were used: age; number of first-degree female relatives with breast cancer; previous breast biopsies; presence or absence of atypical hyperplasia; nulliparity; age at first live birth; and age at menarche. A 5 year predicted risk of breast cancer of ≥ 1.67% was required for entry into the trial. In this trial, 13,388 women of at least 35 years of age were randomized to receive either tamoxifen or placebo for five years. The median duration of treatment was 3.5 years. As of January 31, 1998, follow-up data is available for 13,114 women. Twenty-seven percent of women randomized to placebo (1,782) and 24% of women randomized to tamoxifen (1,596) completed 5 years of therapy. The demographic characteristics of women on the trial with follow-up data are shown in Table 2 . Table 2: Demographic Characteristics of Women in the NSABP P-1 Trial Characteristic Placebo Tamoxifen # % # % Age (yrs.) 35 to 39 184 3 158 2 40 to 49 2,394 36 2,411 37 50 to 59 2,011 31 2,019 31 60 to 69 1,588 24 1,563 24 ≥ 70 393 6 393 6 Age at first live birth (yrs.) Nulliparous 1,202 18 1,205 18 12 to 19 915 14 946 15 20 to 24 2,448 37 2,449 37 25 to 29 1,399 21 1,367 21 ≥ 30 606 9 577 9 Race White 6,333 96 6,323 96 Black 109 2 103 2 Other 128 2 118 2 Age at menarche ≥ 14 1,243 19 1,170 18 12 to 13 3,610 55 3,610 55 ≤ 11 1,717 26 1,764 27 # of first degree relatives with breast cancer 0 1,584 24 1,525 23 1 3,714 57 3,744 57 2+ 1,272 19 1,275 20 Prior hysterectomy No 4,173 63.5 4,018 62.4 Yes 2,397 36.5 2,464 37.7 # of previous breast biopsies 0 2,935 45 2,923 45 1 1,833 28 1,850 28 ≥ 2 1,802 27 1,771 27 History of atypical hyperplasia in the breast No 5,958 91 5,969 91 Yes 612 9 575 9 History of LCIS at entry No 6,165 94 6,135 94 Yes 405 6 409 6 5 year predicted breast cancer risk (%) ≤ 2.00 1,646 25 1,626 25 2.01 to 3.00 2,028 31 2,057 31 3.01 to 5.00 1,787 27 1,707 26 ≥ 5.01 1,109 17 1,162 18 Total 6,570 100.0 6,544 100.0 Results are shown in Table 3 . After a median follow-up of 4.2 years, the incidence of invasive breast cancer was reduced by 44% among women assigned to tamoxifen (86 cases-tamoxifen, 156 cases-placebo; p < 0.00001; relative risk (RR) = 0.56, 95% CI: 0.43 to 0.72). A reduction in the incidence of breast cancer was seen in each prospectively specified age group (≤ 49, 50 to 59, ≥ 60), in women with or without LCIS, and in each of the absolute risk levels specified in Table 3. A non-significant decrease in the incidence of ductal carcinoma in situ (DCIS) was seen (23 tamoxifen, 35 placebo; RR = 0.66, 95% CI: 0.39 to 1.11). There was no statistically significant difference in the number of myocardial infarctions, severe angina, or acute ischemic cardiac events between the two groups (61 tamoxifen, 59 placebo; RR = 1.04, 95% CI: 0.73 to 1.49). No overall difference in mortality (53 deaths in tamoxifen group vs. 65 deaths in placebo group) was present. No difference in breast cancer-related mortality was observed (4 deaths in tamoxifen group vs. 5 deaths in placebo group). Although there was a non-significant reduction in the number of hip fractures (9 on tamoxifen, 20 on placebo) in the tamoxifen group, the number of wrist fractures was similar in the two treatment groups (69 on tamoxifen, 74 on placebo). A subgroup analysis of the P-1 trial, suggests a difference in effect in bone mineral density (BMD) related to menopausal status in patients receiving tamoxifen. In postmenopausal women there was no evidence of bone loss of the lumbar spine and hip. Conversely, tamoxifen was associated with significant bone loss of the lumbar spine and hip in premenopausal women. The risks of tamoxifen therapy include endometrial cancer, DVT, PE, stroke, cataract formation, and cataract surgery (see Table 3 ). In the NSABP P-1 trial, 33 cases of endometrial cancer were observed in the tamoxifen group vs. 14 in the placebo group (RR = 2.48, 95% CI: 1.27 to 4.92). Deep-vein thrombosis was observed in 30 women receiving tamoxifen vs. 19 in women receiving placebo (RR = 1.59, 95% CI: 0.86 to 2.98). Eighteen cases of pulmonary embolism were observed in the tamoxifen group vs. 6 in the placebo group (RR = 3.01, 95% CI: 1.15 to 9.27). There were 34 strokes on the tamoxifen arm and 24 on the placebo arm (RR = 1.42, 95% CI: 0.82 to 2.51). Cataract formation in women without cataracts at baseline was observed in 540 women taking tamoxifen vs. 483 women receiving placebo (RR = 1.13, 95% CI: 1.00 to 1.28). Cataract surgery (with or without cataracts at baseline) was performed in 201 women taking tamoxifen vs. 129 women receiving placebo (RR = 1.51, 95% CI: 1.21 to 1.89) (see WARNINGS ). Table 3 summarizes the major outcomes of the NSABP P-1 trial. For each endpoint, the following results are presented: the number of events and rate per 1,000 women per year for the placebo and tamoxifen groups; and the relative risk (RR) and its associated 95% confidence interval (CI) between tamoxifen and placebo. Relative risks less than 1.0 indicate a benefit of tamoxifen therapy. The limits of the confidence intervals can be used to assess the statistical significance of the benefits or risks of tamoxifen therapy. If the upper limit of the CI is less than 1.0, then a statistically significant benefit exists. For most participants, multiple risk factors would have been required for eligibility. This table considers risk factors individually, regardless of other co-existing risk factors, for women who developed breast cancer. The 5 year predicted absolute breast cancer risk accounts for multiple risk factors in an individual and should provide the best estimate of individual benefit (see INDICATIONS AND USAGE ). Table 3. Major Outcomes of the NSABP P-1 Trial TYPE OF EVENT # OF EVENTS RATE/1,000 WOMEN/YEAR 95% CI PLACEBO TAMOXIFEN PLACEBO TAMOXIFEN RR LIMITS Invasive Breast Cancer 156 86 6.49 3.58 0.56 0.43 to 0.72 Age ≤ 49 59 38 6.34 4.11 0.65 0.43 to 0.98 Age 50 to 59 46 25 6.31 3.53 0.56 0.35 to 0.91 Age ≥ 60 51 23 7.17 3.22 0.45 0.27 to 0.74 Risk Factors for Breast Cancer History, LCIS No 140 78 6.23 3.51 0.56 0.43 to 0.74 Yes 16 8 12.73 6.33 0.50 0.21 to 1.17 History, Atypical Hyperplasia No 138 84 6.37 3.89 0.61 0.47 to 0.80 Yes 18 2 8.69 1.05 0.12 0.03 to 0.52 No. First Degree Relatives 0 32 17 5.97 3.26 0.55 0.30 to 0.98 1 80 45 5.81 3.31 0.57 0.40 to 0.82 2 35 18 8.92 4.67 0.52 0.30 to 0.92 ≥ 3 9 6 13.33 7.58 0.57 0.20 to 1.59 5 Year Predicted Breast Cancer Risk (as calculated by the Gail Model) ≤ 2.00% 31 13 5.36 2.26 0.42 0.22 to 0.81 2.01 to 3.00% 39 28 5.25 3.83 0.73 0.45 to 1.18 3.01 to 5.00% 36 26 5.37 4.06 0.76 0.46 to 1.26 ≥ 5.00% 50 19 13.15 4.71 0.36 0.21 to 0.61 DCIS 35 23 1.47 0.97 0.66 0.39 to 1.11 Fractures (protocol-specified sites) 921 761 3.87 3.20 0.61 0.83 to 1.12 Hip 20 9 0.84 0.38 0.45 0.18 to 1.04 Wrist2 74 69 3.11 2.91 0.93 0.67 to 1.29 Total Ischemic Events 59 61 2.47 2.57 1.04 0.71 to 1.51 Myocardial Infarction 27 27 1.13 1.13 1.00 0.57 to 1.78 Fatal 8 7 0.33 0.29 0.88 0.27 to 2.77 Nonfatal 19 20 0.79 0.84 1.06 0.54 to 2.09 Angina3 12 12 0.50 0.50 1.00 0.41 to 2.44 Acute Ischemic Syndrome4 20 22 0.84 0.92 1.11 0.58 to 2.13 Uterine Malignancies (among women with an intact uterus)10 17 57 Endometrial Adenocarcinoma10 17 53 0.71 2.20 Uterine Sarcoma10 0 4 0.0 0.17 Stroke5 24 34 1.00 1.43 1.42 0.82 to 2.51 Transient Ischemic Attack 21 18 0.88 0.75 0.86 0.43 to 1.70 Pulmonary Emboli6 6 18 0.25 0.75 3.01 1.15 to 9.27 Deep-Vein Thrombosis7 19 30 0.79 1.26 1.59 0.86 to 2.98 Cataracts Developing on Study8 483 540 22.51 25.41 1.13 1.00 to 1.28 Underwent Cataract Surgery8 63 101 2.83 4.57 1.62 1.18 to 2.22 Underwent Cataract Surgery9 129 201 5.44 8.56 1.58 1.26 to 1.97 1 Two women had hip and wrist fractures 2 Includes Colles’ and other lower radius fractures 3 Requiring angioplasty or CABG 4 New Q-wave on ECG; no angina or elevation of serum enzymes; or angina requiring hospitalization without surgery 5 Seven cases were fatal; three in the placebo group and four in the tamoxifen group 6 Three cases in the tamoxifen group were fatal 7 All but three cases in each group required hospitalization 8 Based on women without cataracts at baseline (6,230 Placebo, 6,199 Tamoxifen) 9 All women (6,707 Placebo, 6,681 Tamoxifen) 10 Updated long-term follow-up data, (median 6.9 years), from NSABP P-1 study added after cut-off for the other information in this table. Table 4 describes the characteristics of the breast cancers in the NSABP P-1 trial and includes tumor size, nodal status, ER status. Tamoxifen decreased the incidence of small estrogen receptor positive tumors, but did not alter the incidence of estrogen receptor negative tumors or larger tumors. Table 4: Characteristics of Breast Cancer in NSABP P-1 Trial Staging Parameter Placebo Tamoxifen Total N = 156 N = 86 N = 242 Tumor size: T1 117 60 177 T2 28 20 48 T3 7 3 10 T4 1 2 3 Unknown 3 1 4 Nodal status: Negative 103 56 159 1 to 3 positive nodes 29 14 43 ≥ 4 positive nodes 10 12 22 Unknown 14 4 18 Stage: I 88 47 135 II: node negative 15 9 24 II: node positive 33 22 55 III 6 4 10 IV 21 1 3 Unknown 12 3 15 Estrogen receptor: Positive 115 38 153 Negative 27 36 63 Unknown 14 12 26 1 One participant presented with a suspicious bone scan but did not have documented metastases. She subsequently died of metastatic breast cancer. Interim results from 2 trials in addition to the NSABP P-1 trial examining the effects of tamoxifen in reducing breast cancer incidence have been reported. The first was the Italian Tamoxifen Prevention trial. In this trial women between the ages of 35 and 70, who had had a total hysterectomy, were randomized to receive 20 mg tamoxifen or matching placebo for 5 years. The primary endpoints were occurrence of, and death from, invasive breast cancer. Women without any specific risk factors for breast cancer were to be entered. Between 1992 and 1997, 5,408 women were randomized. Hormone Replacement Therapy (HRT) was used in 14% of participants. The trial closed in 1997 due to the large number of dropouts during the first year of treatment (26%). After 46 months of follow-up there were 22 breast cancers in women on placebo and 19 in women on tamoxifen. Although no decrease in breast cancer incidence was observed, there was a trend for reduction in breast cancer among women receiving protocol therapy for at least 1 year (19 placebo, 11 tamoxifen). The small numbers of participants along with the low level of risk in this otherwise healthy group precluded an adequate assessment of the effect of tamoxifen in reducing the incidence of breast cancer. The second trial, the Royal Marsden Trial (RMT) was reported as an interim analysis. The RMT was begun in 1986 as a feasibility study of whether larger scale trials could be mounted. The trial was subsequently extended to a pilot trial to accrue additional participants to further assess the safety of tamoxifen. Twenty-four hundred and seventy-one women were entered between 1986 and 1996; they were selected on the basis of a family history of breast cancer. HRT was used in 40% of participants. In this trial, with a 70 month median follow-up, 34 and 36 breast cancers (8 noninvasive, 4 on each arm) were observed among women on tamoxifen and placebo, respectively. Patients in this trial were younger than those in the NSABP P-1 trial and may have been more likely to develop ER (-) tumors, which are unlikely to be reduced in number by tamoxifen therapy. Although women were selected on the basis of family history and were thought to have a high risk of breast cancer, few events occurred, reducing the statistical power of the study. These factors are potential reasons why the RMT may not have provided an adequate assessment of the effectiveness of tamoxifen in reducing the incidence of breast cancer. In these trials, an increased number of cases of deep-vein thrombosis, pulmonary embolus, stroke, and endometrial cancer were observed on the tamoxifen arm compared to the placebo arm. The frequency of events was consistent with the safety data observed in the NSABP P-1 trial. McCune-Albright Syndrome A single, uncontrolled multicenter trial of tamoxifen 20 mg once a day was conducted in a heterogenous group of girls with McCune-Albright syndrome and precocious puberty manifested by physical signs of pubertal development, episodes of vaginal bleeding and/or advanced bone age (bone age of at least 12 months beyond chronological age). Twenty-eight female pediatric patients, aged 2 to 10 years, were treated for up to 12 months. Effect of treatment on frequency of vaginal bleeding, bone age advancement, and linear growth rate was assessed relative to prestudy baseline. Tamoxifen treatment was associated with a 50% reduction in frequency of vaginal bleeding episodes by patient or family report (mean annualized frequency of 3.56 episodes at baseline and 1.73 episodes on-treatment). Among the patients who reported vaginal bleeding during the prestudy period, 62% (13 out of 21 patients) reported no bleeding for a 6 month period and 33% (7 out of 21 patients) reported no vaginal bleeding for the duration of the trial. Not all patients improved on treatment and a few patients not reporting vaginal bleeding in the 6 months prior to enrollment reported menses on treatment. Tamoxifen therapy was associated with a reduction in mean rate of increase of bone age. Individual responses with regard to bone age advancement were highly heterogeneous. Linear growth rate was reduced during the course of tamoxifen treatment in a majority of patients (mean change of 1.68 cm/year relative to baseline; change from 7.47 cm/year at baseline to 5.79 cm/year on study). This change was not uniformly seen across all stages of bone maturity; all recorded response failures occurred in patients with bone ages less than 7 years at screening. Mean uterine volume increased after 6 months of treatment and doubled at the end of the one-year study. A causal relationship has not been established; however, as an increase in the incidence of endometrial adenocarcinoma and uterine sarcoma has been noted in adults treated with tamoxifen (see BOXED WARNING ), continued monitoring of McCune-Albright patients treated with tamoxifen for long-term uterine effects is recommended. The safety and efficacy of tamoxifen for girls aged 2 to 10 years with McCune-Albright syndrome and precocious puberty have not been studied beyond one year of treatment. The long-term effects of tamoxifen therapy in girls have not been established.

HOW SUPPLIED

Tamoxifen citrate tablets USP, 10 mg (base) are white, round, biconvex, film-coated, unscored tablets debossed “93”and “784” and are supplied in: Boxes of 25×30 UD 750 NDC 63739-269-01 Boxes of 25×30 PC 750 NDC 63739-269-03 Boxes of 10×10 UD 100 NDC 63739-269-10 Tamoxifen citrate tablets USP, 20 mg (base) are white to off-white, round, biconvex, film-coated, unscored tablets debossed “93” and “782” . Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a well-closed, light-resistant container as defined in the USP.

GERIATRIC USE

Geriatric Use In the NSABP P-1 trial, the percentage of women at least 65 years of age was 16%. Women at least 70 years of age accounted for 6% of the participants. A reduction in breast cancer incidence was seen among participants in each of the subsets. A total of 28 and 10 invasive breast cancers were seen among participants 65 and older in the placebo and tamoxifen groups, respectively. Across all other outcomes, the results in this subset reflect the results observed in the subset of women at least 50 years of age. No overall differences in tolerability were observed between older and younger patients (See CLINICAL PHARMACOLOGY, Clinical Studies, Reduction in Breast Cancer Incidence in High Risk Women ). In the NSABP B-24 trial, the percentage of women at least 65 years of age was 23%. Women at least 70 years of age accounted for 10% of participants. A total of 14 and 12 invasive breast cancers were seen among participants 65 and older in the placebo and tamoxifen groups, respectively. This subset is too small to reach any conclusions on efficacy. Across all other endpoints, the results in this subset were comparable to those of younger women enrolled in this trial. No overall differences in tolerability were observed between older and younger patients.

INDICATIONS AND USAGE

Metastatic Breast Cancer Tamoxifen citrate tablets are effective in the treatment of metastatic breast cancer in women and men. In premenopausal women with metastatic breast cancer, tamoxifen is an alternative to oophorectomy or ovarian irradiation. Available evidence indicates that patients whose tumors are estrogen receptor positive are more likely to benefit from tamoxifen therapy. Adjuvant Treatment of Breast Cancer Tamoxifen citrate tablets are indicated for the treatment of node-positive breast cancer in women following total mastectomy or segmental mastectomy, axillary dissection, and breast irradiation. In some tamoxifen adjuvant studies, most of the benefit to date has been in the subgroup with four or more positive axillary nodes. Tamoxifen citrate tablets are indicated for the treatment of axillary node-negative breast cancer in women following total mastectomy or segmental mastectomy, axillary dissection, and breast irradiation. The estrogen and progesterone receptor values may help to predict whether adjuvant tamoxifen therapy is likely to be beneficial. Tamoxifen reduces the occurrence of contralateral breast cancer in patients receiving adjuvant tamoxifen therapy for breast cancer. Ductal Carcinoma in Situ (DCIS) In women with DCIS, following breast surgery and radiation, tamoxifen citrate tablets are indicated to reduce the risk of invasive breast cancer (see BOXED WARNING at the beginning of the label). The decision regarding therapy with tamoxifen for the reduction in breast cancer incidence should be based upon an individual assessment of the benefits and risks of tamoxifen therapy. Current data from clinical trials support 5 years of adjuvant tamoxifen therapy for patients with breast cancer. Reduction in Breast Cancer Incidence in High Risk Women Tamoxifen citrate tablets are indicated to reduce the incidence of breast cancer in women at high risk for breast cancer. This effect was shown in a study of 5 years planned duration with a median follow-up of 4.2 years. Twenty-five percent of the participants received drug for 5 years. The longer-term effects are not known. In this study, there was no impact of tamoxifen on overall or breast cancer-related mortality (see BOXED WARNING at the beginning of the label). Tamoxifen citrate tablets are indicated only for high-risk women. “High risk” is defined as women at least 35 years of age with a 5 year predicted risk of breast cancer ≥ 1.67%, as calculated by the Gail Model. Examples of combinations of factors predicting a 5 year risk ≥ 1.67% are: Age 35 or older and any of the following combination of factors: •One first degree relative with a history of breast cancer, 2 or more benign biopsies, and a history of a breast biopsy showing atypical hyperplasia; or •At least 2 first degree relatives with a history of breast cancer, and a personal history of at least 1 breast biopsy; or •LCIS Age 40 or older and any of the following combination of factors: •One first degree relative with a history of breast cancer, 2 or more benign biopsies, age at first live birth 25 or older, and age at menarche 11 or younger; or •At least 2 first degree relatives with a history of breast cancer, and age at first live birth 19 or younger; or •One first degree relative with a history of breast cancer, and a personal history of a breast biopsy showing atypical hyperplasia. Age 45 or older and any of the following combination of factors: •At least 2 first degree relatives with a history of breast cancer and age at first live birth 24 or younger; or •One first degree relative with a history of breast cancer with a personal history of a benign breast biopsy, age at menarche 11 or less and age at first live birth 20 or more. Age 50 or older and any of the following combination of factors: •At least 2 first degree relatives with a history of breast cancer; or •History of 1 breast biopsy showing atypical hyperplasia, and age at first live birth 30 or older and age at menarche 11 or less; or •History of at least 2 breast biopsies with a history of atypical hyperplasia, and age at first live birth 30 or more. Age 55 or older and any of the following combination of factors: •One first degree relative with a history of breast cancer with a personal history of a benign breast biopsy, and age at menarche 11 or less; or •History of at least 2 breast biopsies with a history of atypical hyperplasia, and age at first live birth 20 or older. Age 60 or older and: •Five-year predicted risk of breast cancer ≥ 1.67%, as calculated by the Gail Model. For women whose risk factors are not described in the above examples, the Gail Model is necessary to estimate absolute breast cancer risk. Health Care Professionals can obtain a Gail Model Risk Assessment Tool by dialing 1-888-838-2872. There are insufficient data available regarding the effect of tamoxifen on breast cancer incidence in women with inherited mutations (BRCA1, BRCA2) to be able to make specific recommendations on the effectiveness of tamoxifen in these patients. After an assessment of the risk of developing breast cancer, the decision regarding therapy with tamoxifen for the reduction in breast cancer incidence should be based upon an individual assessment of the benefits and risks of tamoxifen therapy. In the NSABP P-1 trial, tamoxifen treatment lowered the risk of developing breast cancer during the follow-up period of the trial, but did not eliminate breast cancer risk (see Table 3 in CLINICAL PHARMACOLOGY ).

PEDIATRIC USE

Pediatric Use The safety and efficacy of tamoxifen for girls aged 2 to 10 years with McCune-Albright syndrome and precocious puberty have not been studied beyond one year of treatment. The long-term effects of tamoxifen therapy for girls have not been established. In adults treated with tamoxifen, an increase in incidence of uterine malignancies, stroke and pulmonary embolism has been noted (see BOXED WARNING and CLINICAL PHARMACOLOGY, Clinical Studies, McCune-Albright Syndrome ).

PREGNANCY

Pregnancy Category D Tamoxifen may cause fetal harm when administered to a pregnant woman. Women should be advised not to become pregnant while taking tamoxifen or within 2 months of discontinuing tamoxifen and should use barrier or nonhormonal contraceptive measures if sexually active. Tamoxifen does not cause infertility, even in the presence of menstrual irregularity. Effects on reproductive functions are expected from the antiestrogenic properties of the drug. In reproductive studies in rats at dose levels equal to or below the human dose, nonteratogenic developmental skeletal changes were seen and were found reversible. In addition, in fertility studies in rats and in teratology studies in rabbits using doses at or below those used in humans, a lower incidence of embryo implantation and a higher incidence of fetal death or retarded in utero growth were observed, with slower learning behavior in some rat pups when compared to historical controls. Several pregnant marmosets were dosed with 10 mg/kg/day (about 2 fold the daily maximum recommended human dose on a mg/m2 basis) during organogenesis or in the last half of pregnancy. No deformations were seen and, although the dose was high enough to terminate pregnancy in some animals, those that did maintain pregnancy showed no evidence of teratogenic malformations. In rodent models of fetal reproductive tract development, tamoxifen (at doses 0.002 to 2.4 fold the daily maximum recommended human dose on a mg/m2 basis) caused changes in both sexes that are similar to those caused by estradiol, ethynylestradiol and diethylstilbestrol. Although the clinical relevance of these changes is unknown, some of these changes, especially vaginal adenosis, are similar to those seen in young women who were exposed to diethylstilbestrol in utero and who have a 1 in 1,000 risk of developing clear-cell adenocarcinoma of the vagina or cervix. To date, in utero exposure to tamoxifen has not been shown to cause vaginal adenosis, or clear-cell adenocarcinoma of the vagina or cervix, in young women. However, only a small number of young women have been exposed to tamoxifen in utero, and a smaller number have been followed long enough (to age 15 to 20) to determine whether vaginal or cervical neoplasia could occur as a result of this exposure. There are no adequate and well-controlled trials of tamoxifen in pregnant women. There have been a small number of reports of vaginal bleeding, spontaneous abortions, birth defects, and fetal deaths in pregnant women. If this drug is used during pregnancy, or the patient becomes pregnant while taking this drug, or within approximately two months after discontinuing therapy, the patient should be apprised of the potential risks to the fetus including the potential long-term risk of a DES-like syndrome.

NUSRING MOTHERS

Nursing Mothers Tamoxifen has been reported to inhibit lactation. Two placebo-controlled studies in over 150 women have shown that tamoxifen significantly inhibits early postpartum milk production. In both studies tamoxifen was administered within 24 hours of delivery for between 5 and 18 days. The effect of tamoxifen on established milk production is not known. There are no data that address whether tamoxifen is excreted into human milk. If excreted, there are no data regarding the effects of tamoxifen in breast milk on the breastfed infant or breastfed animals. However, direct neonatal exposure of tamoxifen to mice and rats (not via breast milk) produced 1) reproductive tract lesions in female rodents (similar to those seen in humans after intrauterine exposure to diethylstilbestrol) and 2) functional defects of the reproductive tract in male rodents such as testicular atrophy and arrest of spermatogenesis. It is not known if tamoxifen is excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from tamoxifen, women taking tamoxifen should not breast feed.

BOXED WARNING

WARNING For Women with Ductal Carcinoma in Situ (DCIS) and Women at High Risk for Breast Cancer Serious and life-threatening events associated with tamoxifen in the risk reduction setting (women at high risk for cancer and women with DCIS) include uterine malignancies, stroke and pulmonary embolism. Incidence rates for these events were estimated from the NSABP P-1 trial (see CLINICAL PHARMACOLOGY, Clinical Studies , Reduction in Breast Cancer Incidence in High Risk Women). Uterine malignancies consist of both endometrial adenocarcinoma (incidence rate per 1,000 women-years of 2.20 for tamoxifen vs. 0.71 for placebo) and uterine sarcoma (incidence rate per 1,000 women-years of 0.17 for tamoxifen vs. 0.4 for placebo)*. For stroke, the incidence rate per 1,000 women-years was 1.43 for tamoxifen vs. 1.00 for placebo**. For pulmonary embolism, the incidence rate per 1,000 women-years was 0.75 for tamoxifen versus 0.25 for placebo**. Some of the strokes, pulmonary emboli, and uterine malignancies were fatal. Health care providers should discuss the potential benefits versus the potential risks of these serious events with women at high risk of breast cancer and women with DCIS considering tamoxifen to reduce their risk of developing breast cancer. The benefits of tamoxifen outweigh its risks in women already diagnosed with breast cancer. * Updated long-term follow-up data (median length of follow-up is 6.9 years) from NSABP P-1 study. See WARNINGS, Effects on the Uterus-Endometrial Cancer and Uterine Sarcoma . ** See Table 3 under CLINICAL PHARMACOLOGY, Clinical Studies .

INFORMATION FOR PATIENTS

Information for Patients Patients should be instructed to read the Medication Guide supplied as required by law when tamoxifen is dispensed. The complete text of the Medication Guide is reprinted at the end of this document. Reduction in Invasive Breast Cancer and DCIS in Women With DCIS Women with DCIS treated with lumpectomy and radiation therapy who are considering tamoxifen to reduce the incidence of a second breast cancer event should assess the risks and benefits of therapy, since treatment with tamoxifen decreased the incidence of invasive breast cancer, but has not been shown to affect survival (see Table 1 in CLINICAL PHARMACOLOGY ). Reduction in Breast Cancer Incidence in High Risk Women Women who are at high risk for breast cancer can consider taking tamoxifen therapy to reduce the incidence of breast cancer. Whether the benefits of treatment are considered to outweigh the risks depends on a woman’s personal health history and on how she weighs the benefits and risks. Tamoxifen therapy to reduce the incidence of breast cancer may therefore not be appropriate for all women at high risk for breast cancer. Women who are considering tamoxifen therapy should consult their health care professional for an assessment of the potential benefits and risks prior to starting therapy for reduction in breast cancer incidence (see Table 3 in CLINICAL PHARMACOLOGY ). Women should understand that tamoxifen reduces the incidence of breast cancer, but may not eliminate risk. Tamoxifen decreased the incidence of small estrogen receptor positive tumors, but did not alter the incidence of estrogen receptor negative tumors or larger tumors. In women with breast cancer who are at high risk of developing a second breast cancer, treatment with about 5 years of tamoxifen reduced the annual incidence rate of a second breast cancer by approximately 50%. Women who are pregnant or who plan to become pregnant should not take tamoxifen to reduce their risk of breast cancer. Effective nonhormonal contraception must be used by all premenopausal women taking tamoxifen and for approximately two months after discontinuing therapy if they are sexually active. Tamoxifen does not cause infertility, even in the presence of menstrual irregularity. For sexually active women of child-bearing potential, tamoxifen therapy should be initiated during menstruation. In women with menstrual irregularity, a negative B-HCG immediately prior to the initiation of therapy is sufficient (see WARNINGS, Pregnancy Category D ). Two European trials of tamoxifen to reduce the risk of breast cancer were conducted and showed no difference in the number of breast cancer cases between the tamoxifen and placebo arms. These studies had trial designs that differed from that of NSABP P-1, were smaller than NSABP P-1, and enrolled women at a lower risk for breast cancer than those in P-1. Monitoring During Tamoxifen Therapy Women taking or having previously taken tamoxifen should be instructed to seek prompt medical attention for new breast lumps, vaginal bleeding, gynecologic symptoms (menstrual irregularities, changes in vaginal discharge, or pelvic pain or pressure), symptoms of leg swelling or tenderness, unexplained shortness of breath, or changes in vision. Women should inform all care providers, regardless of the reason for evaluation, that they take tamoxifen. Women taking tamoxifen to reduce the incidence of breast cancer should have a breast examination, a mammogram, and a gynecologic examination prior to the initiation of therapy. These studies should be repeated at regular intervals while on therapy, in keeping with good medical practice. Women taking tamoxifen as adjuvant breast cancer therapy should follow the same monitoring procedures as for women taking tamoxifen for the reduction in the incidence of breast cancer. Women taking tamoxifen as treatment for metastatic breast cancer should review this monitoring plan with their care provider and select the appropriate modalities and schedule of evaluation.

DOSAGE AND ADMINISTRATION

For patients with breast cancer, the recommended daily dose is 20 to 40 mg. Dosages greater than 20 mg per day should be given in divided doses (morning and evening). In three single agent adjuvant studies in women, one 10 mg tamoxifen citrate tablet was administered two (ECOG and NATO) or three (Toronto) times a day for two years. In the NSABP B-14 adjuvant study in women with node-negative breast cancer, one 10 mg tamoxifen citrate tablet was given twice a day for at least 5 years. Results of the B-14 study suggest that continuation of therapy beyond five years does not provide additional benefit (see CLINICAL PHARMACOLOGY ). In the EBCTCG 1995 overview, the reduction in recurrence and mortality was greater in those studies that used tamoxifen for about 5 years than in those that used tamoxifen for a shorter period of therapy. There was no indication that doses greater than 20 mg per day were more effective. Current data from clinical trials support 5 years of adjuvant tamoxifen therapy for patients with breast cancer. Ductal Carcinoma in Situ (DCIS) The recommended dose is tamoxifen 20 mg daily for 5 years. Reduction in Breast Cancer Incidence in High Risk Women The recommended dose is tamoxifen 20 mg daily for 5 years. There are no data to support the use of tamoxifen other than for 5 years (see CLINICAL PHARMACOLOGY, Clinical Studies, Reduction in Breast Cancer Incidence in High Risk Women ).

sotalol HCl 120 MG Oral Tablet

Generic Name: SOTALOL HYDROCHLORIDE
Brand Name: sotalol hydrochloride
  • Substance Name(s):
  • SOTALOL HYDROCHLORIDE

WARNINGS

Mortality The National Heart, Lung and Blood Institute’s Cardiac Arrhythmia Suppression Trial I (CAST I) was a long-term, multi-center, double-blind study in patients with asymptomatic, non-life-threatening ventricular arrhythmias, 1 to 103 weeks after acute myocardial infarction. Patients in CAST I were randomized to receive placebo or individually optimized doses of encainide, flecainide or moricizine. The Cardiac Arrhythmia Suppression Trial II (CAST II) was similar, except that the recruited patients had had their index infarction 4 to 90 days before randomization, patients with left ventricular ejection fractions greater than 40% were not admitted and the randomized regimens were limited to placebo and moricizine. CAST I was discontinued after an average time-on-treatment of 10 months and CAST II was discontinued after an average time-on-treatment of 18 months. As compared to placebo treatment, all three active therapies were associated with increases in short-term (14-day) mortality and encainide and flecainide were associated with significant increases in longer-term mortality as well. The longer-term mortality rate associated with moricizine treatment could not be statistically distinguished from that associated with placebo. The applicability of these results to other populations (e.g., those without recent myocardial infarction) and to other than Class I antiarrhythmic agents is uncertain. Sotalol hydrochloride tablets are devoid of Class I effects and in a large (n=1,456) controlled trial in patients with a recent myocardial infarction, who did not necessarily have ventricular arrhythmias, sotalol hydrochloride tablets did not produce increased mortality at doses up to 320 mg/day (see CLINICAL PHARMACOLOGY, Clinical Actions ). On the other hand, in the large post-infarction study using a non-titrated initial dose of 320 mg once daily and in a second small randomized trial in high-risk post-infarction patients treated with high doses (320 mg BID), there have been suggestions of an excess of early sudden deaths. Proarrhythmia Like other antiarrhythmic agents, sotalol hydrochloride tablets can provoke new or worsened ventricular arrhythmias in some patients, including sustained ventricular tachycardia or ventricular fibrillation, with potentially fatal consequences. Because of its effect on cardiac repolarization (QTc interval prolongation), torsade de pointes, a polymorphic ventricular tachycardia with prolongation of the QT interval and a shifting electrical axis is the most common form of proarrhythmia associated with sotalol hydrochloride tablets, occurring in about 4% of high risk (history of sustained VT/VF) patients. The risk of torsade de pointes progressively increases with prolongation of the QT interval and is worsened also by reduction in heart rate and reduction in serum potassium (see , Electrolyte Disturbances ). Because of the variable temporal recurrence of arrhythmias, it is not always possible to distinguish between a new or aggravated arrhythmic event and the patient’s underlying rhythm disorder. (Note, however, that torsade de pointes is usually a drug-induced arrhythmia in people with an initially normal QTc). Thus, the incidence of drug-related events cannot be precisely determined, so that the occurrence rates provided must be considered approximations. Note also that drug-induced arrhythmias may often not be identified, particularly if they occur long after starting the drug, due to less frequent monitoring. It is clear from the NIH-sponsored CAST (see , Mortality ) that some antiarrhythmic drugs can cause increased sudden death mortality, presumably due to new arrhythmias or asystole, that do not appear early in treatment but that represent a sustained increased risk. Overall in clinical trials with sotalol, 4.3% of 3,257 patients experienced a new or worsened ventricular arrhythmia. Of this 4.3%, there was new or worsened sustained ventricular tachycardia in approximately 1% of patients and torsade de pointes in 2.4%. Additionally, in approximately 1% of patients, deaths were considered possibly drug-related; such cases, although difficult to evaluate, may have been associated with proarrhythmic events. In patients with a history of sustained ventricular tachycardia, the incidence of torsade de pointes was 4% and worsened VT in about 1%; in patients with other, less serious, ventricular arrhythmias and supraventricular arrhythmias, the incidence of torsade de pointes was 1% and 1.4%, respectively. Torsade de pointes arrhythmias were dose related, as is the prolongation of QT (QTc) interval, as shown in the table below. Percent Incidence of Torsade de Pointes and Mean QTc Interval by Dose for Patients with Sustained VT/VF Daily Dose (mg) Incidence of Torsade de Pointes Mean QTc highest on-therapy value (msec) 80 0 (69) () Number of patients assessed 463 (17) 160 0.5 (832) 467 (181) 320 1.6 (835) 473 (344) 480 4.4 (459) 483 (234) 640 3.7 (324) 490 (185) >640 5.8 (103) 512 (62) In addition to dose and presence of sustained VT, other risk factors for torsade de pointes were gender (females had a higher incidence), excessive prolongation of the QTc interval (see table below) and history of cardiomegaly or congestive heart failure. Patients with sustained ventricular tachycardia and a history of congestive heart failure appear to have the highest risk for serious proarrhythmia (7%). Of the patients experiencing torsade de pointes, approximately two-thirds spontaneously reverted to their baseline rhythm. The others were either converted electrically (D/C cardioversion or overdrive pacing) or treated with other drugs (see OVERDOSAGE ). It is not possible to determine whether some sudden deaths represented episodes of torsade de pointes, but in some instances sudden death did follow a documented episode of torsade de pointes. Although sotalol hydrochloride tablet therapy was discontinued in most patients experiencing torsade de pointes, 17% were continued on a lower dose. Nonetheless, sotalol hydrochloride tablets should be used with particular caution if the QTc is greater than 500 msec on-therapy and serious consideration should be given to reducing the dose or discontinuing therapy when the QTc exceeds 550 msec. Due to the multiple risk factors associated with torsade de pointes, however, caution should be exercised regardless of the QTc interval. The table below relates the incidence of torsade de pointes to on-therapy QTc and change in QTc from baseline. It should be noted, however, that the highest on-therapy QTc was in many cases the one obtained at the time of the torsade de pointes event, so that the table overstates the predictive value of a high QTc. Relationship Between QTc Interval Prolongation and Torsade de Pointes On-Therapy QTc Interval (msec) Incidence of Torsade de Pointes Change in QTc Interval From Baseline (msec) Incidence of Torsade de Pointes <500 1.3% (1,787) 550 10.8% (157) 100-130 5.2% (115) >130 7.1% (99) () Number of patients assessed Proarrhythmic events must be anticipated not only on initiating therapy, but with every upward dose adjustment. Proarrhythmic events most often occur within 7 days of initiating therapy or of an increase in dose; 75% of serious proarrhythmias (torsade de pointes and worsened VT) occurred within 7 days of initiating sotalol hydrochloride tablet therapy, while 60% of such events occurred within 3 days of initiation or a dosage change. Initiating therapy at 80 mg BID with gradual upward dose titration and appropriate evaluations for efficacy (e.g., PES or Holter) and safety (e.g., QT interval, heart rate and electrolytes) prior to dose escalation, should reduce the risk of proarrhythmia. Avoiding excessive accumulation of sotalol in patients with diminished renal function, by appropriate dose reduction, should also reduce the risk of proarrhythmia (see DOSAGE AND ADMINISTRATION ). Congestive Heart Failure Sympathetic stimulation is necessary in supporting circulatory function in congestive heart failure and beta-blockade carries the potential hazard of further depressing myocardial contractility and precipitating more severe failure. In patients who have congestive heart failure controlled by digitalis and/or diuretics, sotalol hydrochloride tablets should be administered cautiously. Both digitalis and sotalol slow AV conduction. As with all beta-blockers, caution is advised when initiating therapy in patients with any evidence of left ventricular dysfunction. In pre-marketing studies, new or worsened congestive heart failure (CHF) occurred in 3.3% (n=3,257) of patients and led to discontinuation in approximately 1% of patients receiving sotalol. The incidence was higher in patients presenting with sustained ventricular tachycardia/fibrillation (4.6%, n=1,363) or a prior history of heart failure (7.3%, n=696). Based on a life-table analysis, the one-year incidence of new or worsened CHF was 3% in patients without a prior history and 10% in patients with a prior history of CHF. NYHA Classification was also closely associated to the incidence of new or worsened heart failure while receiving sotalol (1.8% in 1,395 Class I patients, 4.9% in 1,254 Class II patients and 6.1% in 278 Class III or IV patients). Electrolyte Disturbances Sotalol should not be used in patients with hypokalemia or hypomagnesemia prior to correction of imbalance, as these conditions can exaggerate the degree of QT prolongation and increase the potential for torsade de pointes. Special attention should be given to electrolyte and acid-base balance in patients experiencing severe or prolonged diarrhea or patients receiving concomitant diuretic drugs. Conduction Disturbances Excessive prolongation of the QT interval (>550 msec) can promote serious arrhythmias and should be avoided (see , Proarrhythmia ). Sinus bradycardia (heart rate less than 50 bpm) occurred in 13% of patients receiving sotalol hydrochloride tablets in clinical trials and led to discontinuation in about 3% of patients. Bradycardia itself increases the risk of torsade de pointes. Sinus pause, sinus arrest and sinus node dysfunction occur in less than 1% of patients. The incidence of 2nd- or 3rd-degree AV block is approximately 1%. Recent Acute MI Sotalol hydrochloride tablets can be used safely and effectively in the long-term treatment of life-threatening ventricular arrhythmias following a myocardial infarction. However, experience in the use of sotalol hydrochloride tablets to treat cardiac arrhythmias in the early phase of recovery from acute MI is limited and at least at high initial doses is not reassuring (see , Mortality ). In the first 2 weeks post-MI caution is advised and careful dose titration is especially important, particularly in patients with markedly impaired ventricular function. The following warnings are related to the beta-blocking activity of sotalol hydrochloride tablets. Abrupt Withdrawal Hypersensitivity to catecholamines has been observed in patients withdrawn from beta-blocker therapy. Occasional cases of exacerbation of angina pectoris, arrhythmias and, in some cases, myocardial infarction have been reported after abrupt discontinuation of beta-blocker therapy. Therefore, it is prudent when discontinuing chronically administered sotalol hydrochloride tablets, particularly in patients with ischemic heart disease, to carefully monitor the patient and consider the temporary use of an alternate beta-blocker if appropriate. If possible, the dosage of sotalol hydrochloride tablets should be gradually reduced over a period of one to two weeks. If angina or acute coronary insufficiency develops, appropriate therapy should be instituted promptly. Patients should be warned against interruption or discontinuation of therapy without the physician’s advice. Because coronary artery disease is common and may be unrecognized in patients receiving sotalol hydrochloride tablets, abrupt discontinuation in patients with arrhythmias may unmask latent coronary insufficiency. Non-Allergic Bronchospasm (e.g., chronic bronchitis and emphysema) PATIENTS WITH BRONCHOSPASTIC DISEASES SHOULD IN GENERAL NOT RECEIVE BETA-BLOCKERS. It is prudent, if sotalol hydrochloride tablets are to be administered, to use the smallest effective dose, so that inhibition of bronchodilation produced by endogenous or exogenous catecholamine stimulation of beta2 receptors may be minimized. Anaphylaxis While taking beta-blockers, patients with a history of anaphylactic reaction to a variety of allergens may have a more severe reaction on repeated challenge, either accidental, diagnostic or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat the allergic reaction. Anesthesia The management of patients undergoing major surgery who are being treated with beta-blockers is controversial. Protracted severe hypotension and difficulty in restoring and maintaining normal cardiac rhythm after anesthesia have been reported in patients receiving beta-blockers. Diabetes In patients with diabetes (especially labile diabetes) or with a history of episodes of spontaneous hypoglycemia, sotalol hydrochloride tablets should be given with caution since beta-blockade may mask some important premonitory signs of acute hypoglycemia; e.g., tachycardia. Sick Sinus Syndrome Sotalol hydrochloride tablets should be used only with extreme caution in patients with sick sinus syndrome associated with symptomatic arrhythmias, because it may cause sinus bradycardia, sinus pauses or sinus arrest. Thyrotoxicosis Beta-blockade may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Patients suspected of developing thyrotoxicosis should be managed carefully to avoid abrupt withdrawal of beta-blockade which might be followed by an exacerbation of symptoms of hyperthyroidism, including thyroid storm.

DRUG INTERACTIONS

Drug Interactions Drugs undergoing CYP450 metabolism Sotalol is primarily eliminated by renal excretion; therefore, drugs that are metabolized by CYP450 are not expected to alter the pharmacokinetics of sotalol. Sotalol is not expected to inhibit or induce any CYP450 enzymes; therefore, it is not expected to alter the PK of drugs that are metabolized by these enzymes. Antiarrhythmics Class 1a antiarrhythmic drugs, such as disopyramide, quinidine and procainamide and other Class III drugs (e.g., amiodarone) are not recommended as concomitant therapy with sotalol hydrochloride tablets because of their potential to prolong refractoriness (see WARNINGS ). There is only limited experience with the concomitant use of Class 1b or 1c antiarrhythmics. Additive Class II effects would also be anticipated with the use of other beta-blocking agents concomitantly with sotalol hydrochloride tablets. Digoxin Single and multiple doses of sotalol hydrochloride tablets do not substantially affect serum digoxin levels. Proarrhythmic events were more common in sotalol hydrochloride tablet treated patients also receiving digoxin; it is not clear whether this represents an interaction or is related to the presence of CHF, a known risk factor for proarrhythmia, in the patients receiving digoxin. Calcium-blocking drugs Sotalol hydrochloride tablets should be administered with caution in conjunction with calcium-blocking drugs because of possible additive effects on atrioventricular conduction or ventricular function. Additionally, concomitant use of these drugs may have additive effects on blood pressure, possibly leading to hypotension. Catecholamine-depleting agents Concomitant use of catecholamine-depleting drugs, such as reserpine and guanethidine, with a beta-blocker may produce an excessive reduction of resting sympathetic nervous tone. Patients treated with sotalol hydrochloride tablets plus a catecholamine depletor should therefore be closely monitored for evidence of hypotension and/or marked bradycardia which may produce syncope. Insulin and oral antidiabetics Hyperglycemia may occur and the dosage of insulin or antidiabetic drugs may require adjustment. Symptoms of hypoglycemia may be masked. Beta-2-receptor stimulants Beta-agonists such as salbutamol, terbutaline and isoprenaline may have to be administered in increased dosages when used concomitantly with sotalol hydrochloride tablets. Clonidine Beta-blocking drugs may potentiate the rebound hypertension sometimes observed after discontinuation of clonidine; therefore, caution is advised when discontinuing clonidine in patients receiving sotalol hydrochloride tablets. Other No pharmacokinetic interactions were observed with hydrochlorothiazide or warfarin. Antacids Administration of sotalol hydrochloride tablets within 2 hours of antacids containing aluminum oxide and magnesium hydroxide should be avoided because it may result in a reduction in Cmax and AUC of 26% and 20%, respectively and consequently in a 25% reduction in the bradycardic effect at rest. Administration of the antacid two hours after sotalol hydrochloride tablets has no effect on the pharmacokinetics or pharmacodynamics of sotalol. Drugs prolonging the QT interval Sotalol hydrochloride tablets should be administered with caution in conjunction with other drugs known to prolong the QT interval such as Class I and Class III antiarrhythmic agents, phenothiazines, tricyclic antidepressants, astemizole, bepridil, certain oral macrolides and certain quinolone antibiotics (see WARNINGS ).

OVERDOSAGE

Intentional or accidental overdosage with sotalol hydrochloride has rarely resulted in death. Symptoms and Treatment of Overdosage The most common signs to be expected are bradycardia, congestive heart failure, hypotension, bronchospasm and hypoglycemia. In cases of massive intentional overdosage (2 grams to 16 grams) of sotalol hydrochloride tablets the following clinical findings were seen: hypotension, bradycardia, cardiac asystole, prolongation of QT interval, torsade de pointes, ventricular tachycardia and premature ventricular complexes. If overdosage occurs, therapy with sotalol hydrochloride tablets should be discontinued and the patient observed closely. Because of the lack of protein binding, hemodialysis is useful for reducing sotalol plasma concentrations. Patients should be carefully observed until QT intervals are normalized and the heart rate returns to levels >50 bpm. The occurrence of hypotension following an overdose may be associated with an initial slow drug elimination phase (half life of 30 hours) thought to be due to a temporary reduction of renal function caused by the hypotension. In addition, if required, the following therapeutic measures are suggested: Bradycardia or Cardiac Asystole: Atropine, another anticholinergic drug, a beta-adrenergic agonist or transvenous cardiac pacing. Heart Block:(second and third degree) transvenous cardiac pacemaker. Hypotension:(depending on associated factors) epinephrine rather than isoproterenol or norepinephrine may be useful. Bronchospasm:Aminophylline or aerosol beta-2-receptor stimulant. torsade de pointes:DC cardioversion, transvenous cardiac pacing, epinephrine, magnesium sulfate.

DESCRIPTION

Sotalol hydrochloride USP is an antiarrhythmic drug with Class II (beta-adrenoreceptor blocking) and Class III (cardiac action potential duration prolongation) properties. It is supplied as a light-blue, capsule-shaped tablet for oral administration. Sotalol hydrochloride USP is a white, crystalline solid with a molecular weight of 308.8. It is hydrophilic, soluble in water, propylene glycol and ethanol, but is only slightly soluble in chloroform. Chemically, sotalol hydrochloride USP is d,l-N-[4-[1-hydroxy-2-[(1-methylethyl) amino]ethyl]phenyl]methane-sulfonamide monohydrochloride. The molecular formula is C12H20N2O3S•HCl and is represented by the following structural formula: Each sotalol hydrochloride tablet USP, for oral administration, contains 80 mg, 120 mg, 160 mg or 240 mg of sotalol hydrochloride. Each tablet also contains the following inactive ingredients: colloidal silicon dioxide, FD&C blue No. 1 aluminum lake, hydroxypropyl cellulose, lactose anhydrous, lactose monohydrate, magnesium stearate, pregelatinized starch and sodium starch glycolate. Chemical Structure

HOW SUPPLIED

Sotalol Hydrochloride Tablets USP for oral administration are available as follows: 80 mg: Blue, capsule shaped tablets, debossed “E 171” on one side and bisected on the reverse side and supplied as: NDC 54868-4435-0 bottles of 30 NDC 54868-4435-1 bottles of 60 NDC 54868-4435-3 bottles of 90 NDC 54868-4435-2 bottles of 100 120 mg: Blue, capsule shaped tablets, debossed “E 170” on one side and bisected on the reverse side and supplied as: NDC 54868-5614-1 bottles of 20 NDC 54868-5614-0 bottles of 60 160 mg: Blue, capsule shaped tablets, debossed “E 177” on one side and bisected on the reverse side and supplied as: NDC 54868-5549-1 bottles of 20 NDC 54868-5549-0 bottles of 60 To report SUSPECTED ADVERSE REACTIONS, contact Sandoz Inc. at 1-800-525-8747 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. Sandoz Inc. Princeton, NJ 08540 OS7554 REV. 02/10 MF0171REV02/10 MG #18481 Relabeling and Repackaging by: Physicians Total Care, Inc. Tulsa, Oklahoma 74146

INDICATIONS AND USAGE

Sotalol hydrochloride tablets USP are indicated for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia, that in the judgment of the physician are life-threatening. Because of the proarrhythmic effects of sotalol hydrochloride tablets (see WARNINGS ), including a 1.5% to 2% rate of torsade de pointes or new VT/VF in patients with either NSVT or supraventricular arrhythmias, its use in patients with less severe arrhythmias, even if the patients are symptomatic, is generally not recommended. Treatment of patients with asymptomatic ventricular premature contractions should be avoided. Initiation of sotalol hydrochloride tablet USP treatment or increasing doses, as with other antiarrhythmic agents used to treat life-threatening arrhythmias, should be carried out in the hospital. The response to treatment should then be evaluated by a suitable method (e.g., PES or Holter monitoring) prior to continuing the patient on chronic therapy. Various approaches have been used to determine the response to antiarrhythmic therapy, including sotalol hydrochloride tablets USP. In the ESVEM Trial, response by Holter monitoring was tentatively defined as 100% suppression of ventricular tachycardia, 90% suppression of non-sustained VT, 80% suppression of paired VPCs and 75% suppression of total VPCs in patients who had at least 10 VPCs/hour at baseline; this tentative response was confirmed if VT lasting 5 or more beats was not observed during treadmill exercise testing using a standard Bruce protocol. The PES protocol utilized a maximum of three extrastimuli at three pacing cycle lengths and two right ventricular pacing sites. Response to PES was defined as prevention of induction of the following: 1) monomorphic VT lasting over 15 seconds; 2) non-sustained polymorphic VT containing more than 15 beats of monomorphic VT in patients with a history of monomorphic VT; 3) polymorphic VT or VF greater than 15 beats in patients with VF or a history of aborted sudden death without monomorphic VT; and 4) two episodes of polymorphic VT or VF of greater than 15 beats in a patient presenting with monomorphic VT. Sustained VT or NSVT producing hypotension during the final treadmill test was considered a drug failure. In a multicenter open-label long-term study of sotalol hydrochloride tablets USP in patients with life-threatening ventricular arrhythmias which had proven refractory to other antiarrhythmic medications, response by Holter monitoring was defined as in ESVEM. Response by PES was defined as non-inducibility of sustained VT by at least double extrastimuli delivered at a pacing cycle length of 400 msec. Overall survival and arrhythmia recurrence rates in this study were similar to those seen in ESVEM, although there was no comparative group to allow a definitive assessment of outcome. Antiarrhythmic drugs have not been shown to enhance survival in patients with ventricular arrhythmias. Sotalol is also indicated for the maintenance of normal sinus rhythm [delay in time to recurrence of atrial fibrillation/atrial flutter (AFIB/AFL)] in patients with symptomatic AFIB/AFL who are currently in sinus rhythm and is marketed under the brand name BETAPACE AFTM. Sotalol hydrochloride tablets USP are not approved for the AFIB/AFL indication and should not be substituted for BETAPACE AFTM because only BETAPACE AFTM is distributed with a patient package insert that is appropriate for patients with AFIB/AFL.

PEDIATRIC USE

Pediatric Use The safety and effectiveness of sotalol hydrochloride tablets in children have not been established. However, the Class III electrophysiologic and beta-blocking effects, the pharmacokinetics and the relationship between the effects (QTc interval and resting heart rate) and drug concentrations have been evaluated in children aged between 3 days and 12 years old (see CLINICAL PHARMACOLOGY ).

PREGNANCY

Pregnancy Category B Reproduction studies in rats and rabbits during organogenesis at 100 and 22 times the MRHD as mg/kg (9 and 7 times the MRHD as mg/m2), respectively, did not reveal any teratogenic potential associated with sotalol hydrochloride. In rabbits, a high dose of sotalol hydrochloride (160 mg/kg/day) at 16 times the MRHD as mg/kg (6 times the MRHD as mg/m2) produced a slight increase in fetal death likely due to maternal toxicity. Eight times the maximum dose (80 mg/kg/day or 3 times the MRHD as mg/m2) did not result in an increased incidence of fetal deaths. In rats, 1000 mg/kg/day sotalol hydrochloride, 100 times the MRHD (18 times the MRHD as mg/m2), increased the number of early resorptions, while at 14 times the maximum dose (2.5 times the MRHD as mg/m2), no increase in early resorptions was noted. However, animal reproduction studies are not always predictive of human response. Although there are no adequate and well-controlled studies in pregnant women, sotalol hydrochloride has been shown to cross the placenta and is found in amniotic fluid. There has been a report of subnormal birth weight with sotalol hydrochloride tablets. Therefore, sotalol hydrochloride tablets should be used during pregnancy only if the potential benefit outweighs the potential risk.

NUSRING MOTHERS

Nursing Mothers Sotalol is excreted in the milk of laboratory animals and has been reported to be present in human milk. Because of the potential for adverse reactions in nursing infants from sotalol hydrochloride tablets, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

To minimize the risk of induced arrhythmia, patients initiated or re-initiated on sotalol should be placed for a minimum of three days (on their maintenance dose) in a facility that can provide cardiac resuscitation and continuous electrocardiographic monitoring. Creatinine clearance should be calculated prior to dosing. For detailed instructions regarding dose selection and special cautions for people with renal impairment, see DOSAGE AND ADMINISTRATION. Sotalol is also indicated for the maintenance of normal sinus rhythm [delay in time to recurrence of atrial fibrillation/atrial flutter (AFIB/AFL)] in patients with symptomatic AFIB/AFL who are currently in sinus rhythm and is marketed under the brand name BETAPACE AF™. Sotalol hydrochloride tablets are not approved for the AFIB/AFL indication and should not be substituted for BETAPACE AF™ because only BETAPACE AF™ is distributed with a patient package insert that is appropriate for patients with AFIB/AFL.

DOSAGE AND ADMINISTRATION

As with other antiarrhythmic agents, sotalol hydrochloride tablets should be initiated and doses increased in a hospital with facilities for cardiac rhythm monitoring and assessment (see INDICATIONS AND USAGE ). Sotalol hydrochloride tablets should be administered only after appropriate clinical assessment (see INDICATIONS AND USAGE ) and the dosage of sotalol hydrochloride tablets must be individualized for each patient on the basis of therapeutic response and tolerance. Proarrhythmic events can occur not only at initiation of therapy, but also with each upward dosage adjustment. Adults Dosage of sotalol hydrochloride tablets should be adjusted gradually, allowing 3 days between dosing increments in order to attain steady-state plasma concentrations and to allow monitoring of QT intervals. Graded dose adjustment will help prevent the usage of doses which are higher than necessary to control the arrhythmia. The recommended initial dose is 80 mg twice daily. This dose may be increased, if necessary, after appropriate evaluation to 240 mg/day or 320 mg/day (120 mg to 160 mg twice daily). In most patients, a therapeutic response is obtained at a total daily dose of 160 mg/day to 320 mg/day, given in two or three divided doses. Some patients with life-threatening refractory ventricular arrhythmias may require doses as high as 480 mg/day to 640 mg/day; however, these doses should only be prescribed when the potential benefit outweighs the increased risk of adverse events, in particular proarrhythmia. Because of the long terminal elimination half-life of sotalol hydrochloride tablets, dosing on more than a BID regimen is usually not necessary. Children As in adults the following precautionary measures should be considered when initiating sotalol treatment in children: initiation of treatment in the hospital after appropriate clinical assessment; individualized regimen as appropriate; gradual increase of doses if required; careful assessment of therapeutic response and tolerability; and frequent monitoring of the QTc interval and heart rate. For children aged about 2 years and greater: With normal renal function, doses normalized for body surface area are appropriate for both initial and incremental dosing. Since the Class III potency in children (see CLINICAL PHARMACOLOGY ) is not very different from that in adults, reaching plasma concentrations that occur within the adult dose range is an appropriate guide. From pediatric pharmacokinetic data the following is recommended. For initiation of treatment, 30 mg/m2 three times a day (90 mg/m2 total daily dose) is approximately equivalent to the initial 160 mg total daily dose for adults. Subsequent titration to a maximum of 60 mg/m2 (approximately equivalent to the 360 mg total daily dose for adults) can then occur. Titration should be guided by clinical response, heart rate and QTc, with increased dosing being preferably carried out in-hospital. At least 36 hours should be allowed between dose increments to attain steady-state plasma concentrations of sotalol in patients with age-adjusted normal renal function. For children aged about 2 years or younger: The above pediatric dosage should be reduced by a factor that depends heavily upon age, as shown in the following graph, age plotted on a logarithmic scale in months. For a child aged 20 months, the dosing suggested for children with normal renal function aged 2 years or greater should be multiplied by about 0.97; the initial starting dose would be (30 X 0.97)=29.1 mg/m2, administered three times daily. For a child aged 1 month, the starting dose should be multiplied by 0.68; the initial starting dose would be (30 X 0.68)= 20 mg/m2, administered three times daily. For a child aged about 1 week, the initial starting dose should be multiplied by 0.3; the starting dose would be (30 X 0.3)=9 mg/m2. Similar calculations should be made for increased doses as titration proceeds. Since the half-life of sotalol decreases with decreasing age (below about 2 years), time to steady-state will also increase. Thus, in neonates the time to steady-state may be as long as a week or longer. In all children, individualization of dosage is required. As in adults, sotalol hydrochloride tablets should be used with particular caution in children if the QTc is greater than 500 msec on therapy and serious consideration should be given to reducing the dose or discontinuing therapy when QTc exceeds 550 msec. Dosage In Renal Impairment Adults: Because sotalol is excreted predominantly in urine and its terminal elimination half-life is prolonged in conditions of renal impairment, the dosing interval (time between divided doses) of sotalol should be modified (when creatinine clearance is lower than 60 mL/min) according to the following table. Creatinine Clearance Dosing* Interval mL/min (hours) >60 12 30 – 59 24 10 – 29 36 – 48 <10 Dose should be individualized *The initial dose of 80 mg and subsequent doses should be administered at these intervals. See following paragraph for dosage escalations. Since the terminal elimination half-life of sotalol hydrochloride tablets has increased in patients with renal impairment, a longer duration of dosing is required to reach steady-state. Dose escalations in renal impairment should be done after administration of at least 5 to 6 doses at appropriate intervals (see table above). Extreme caution should be exercised in the use of sotalol in patients with renal failure undergoing hemodialysis. The half-life of sotalol is prolonged (up to 69 hours) in anuric patients. Sotalol, however, can be partly removed by dialysis with subsequent partial rebound in concentrations when dialysis is completed. Both safety (heart rate, QT interval) and efficacy (arrhythmia control) must be closely monitored. Children: The use of sotalol hydrochloride tablets in children with renal impairment has not been investigated. Sotalol elimination is predominantly via the kidney in the unchanged form. Use of sotalol in any age group with decreased renal function should be at lower doses or at increased intervals between doses. Monitoring of heart rate and QTc is more important and it will take much longer to reach steady-state with any dose and/or frequency of administration. Transfer to Sotalol Hydrochloride Tablets Before starting sotalol, previous antiarrhythmic therapy should generally be withdrawn under careful monitoring for a minimum of 2 to 3 plasma half-lives if the patient’s clinical condition permits (see PRECAUTIONS, Drug Interactions ). Treatment has been initiated in some patients receiving I.V. lidocaine without ill effect. After discontinuation of amiodarone, sotalol should not be initiated until the QT interval is normalized (see WARNINGS ). Preparation of Extemporaneous Oral Solution Sotalol Hydrochloride Syrup 5 mg/mL can be compounded using Simple Syrup containing 0.1% sodium benzoate (Syrup, NF) available from Humco Laboratories as follows: Measure 120 mL of Simple Syrup. Transfer the syrup to a 6-ounce amber plastic (polyethylene terephthalate [PET]) prescription bottle. NOTE: An oversized bottle is used to allow for a headspace, so that there will be more effective mixing during shaking of the bottle. Add five (5) sotalol hydrochloride 120 mg tablets to the bottle. These tablets are added intact; it is not necessary to crush the tablets. NOTE: The addition of the tablets can also be done first. The tablets can also be crushed if preferred. If the tablets are crushed, care should be taken to transfer the entire quantity of tablet powder into the bottle containing the syrup. Shake the bottle to wet the entire surface of the tablets. If the tablets have been crushed, shake the bottle until the endpoint is achieved. Allow the tablets to hydrate for at least two hours. After at least two hours have elapsed, shake the bottle intermittently over the course of at least another two hours until the tablets are completely disintegrated. NOTE: The tablets can be allowed to hydrate overnight to simplify the disintegration process. The endpoint is achieved when a dispersion of fine particles in the syrup is obtained. This compounding procedure results in a solution containing 5 mg/mL of sotalol HCl. The fine solid particles are the water-insoluble inactive ingredients of the tablets. This extemporaneously prepared oral solution of sotalol HCl (with suspended inactive particles) must be shaken well prior to administration. This is to ensure that the amount of inactive solid particles per dose remains constant throughout the duration of use. Stability studies indicate that the suspension is stable for three months when stored at controlled room temperature (15° to 30°C/59° to 86°F) and ambient humidity. Transfer to BETAPACETM AF from Sotalol Hydrochloride Tablets Patients with a history of symptomatic AFIB/AFL who are currently receiving sotalol hydrochloride tablets for the maintenance of normal sinus rhythm should be transferred to BETAPACE AFTM because of the significant differences in labeling (i.e., patient package insert for BETAPACE AFTM, dosing administration and safety information). Age Factor Chart

Verapamil hydrochloride 120 MG Extended Release Oral Tablet

Generic Name: VERAPAMIL HYDROCHLORIDE
Brand Name: Verapamil Hydrochloride
  • Substance Name(s):
  • VERAPAMIL HYDROCHLORIDE

WARNINGS

Heart Failure Verapamil has a negative inotropic effect which, in most patients, is compensated by its afterload reduction (decreased systemic vascular resistance) properties without a net impairment of ventricular performance. In clinical experience with 4,954 patients, 87 (1.8%) developed congestive heart failure or pulmonary edema. Verapamil should be avoided in patients with severe left ventricular dysfunction (e.g., ejection fraction less than 30%) or moderate to severe symptoms of cardiac failure and in patients with any degree of ventricular dysfunction if they are receiving a beta-adrenergic blocker (see PRECAUTIONS: Drug Interactions). Patients with milder ventricular dysfunction should, if possible, be controlled with optimum doses of digitalis and/or diuretics before verapamil treatment (see PRECAUTIONS: Drug Interactions: Digitalis). Hypotension Occasionally, the pharmacologic action of verapamil may produce a decrease in blood pressure below normal levels which may result in dizziness or symptomatic hypotension. The incidence of hypotension observed in 4,954 patients enrolled in clinical trials was 2.5%. In hypertensive patients, decreases in blood pressure below normal are unusual. Tilt-table testing (60 degrees) was not able to induce orthostatic hypotension. Elevated Liver Enzymes Elevations of transaminases with and without concomitant elevations in alkaline phosphatase and bilirubin have been reported. Such elevations have sometimes been transient and may disappear even in the face of continued verapamil treatment. Several cases of hepatocellular injury related to verapamil have been proven by rechallenge; half of these had clinical symptoms (malaise, fever, and/or right upper quadrant pain) in addition to elevations of SGOT, SGPT and alkaline phosphatase. Periodic monitoring of liver function in patients receiving verapamil is therefore prudent. Accessory Bypass Tract (Wolff-Parkinson-White or Lown-Ganong-Levine) Some patients with paroxysmal and/or chronic atrial fibrillation or atrial flutter and a coexisting accessory AV pathway have developed increased antegrade conduction across the accessory pathway bypassing the AV node, producing a very rapid ventricular response or ventricular fibrillation after receiving intravenous verapamil (or digitalis). Although a risk of this occurring with oral verapamil has not been established, such patients receiving oral verapamil may be at risk and its use in these patients is contraindicated (see CONTRAINDICATIONS). Treatment is usually DC-cardioversion. Cardioversion has been used safely and effectively after oral verapamil hydrochloride. Atrioventricular Block The effect of verapamil on AV conduction and the SA node may cause asymptomatic first-degree AV block and transient bradycardia, sometimes accompanied by nodal escape rhythms. PR interval prolongation is correlated with verapamil plasma concentrations, especially during the early titration phase of therapy. Higher degrees of AV block, however, were infrequently (0.8%) observed. Marked first-degree block or progressive development to second- or third-degree AV block requires a reduction in dosage or, in rare instances, discontinuation of verapamil hydrochloride and institution of appropriate therapy, depending upon the clinical situation. Patients with Hypertrophic Cardiomyopathy (IHSS) In 120 patients with hypertrophic cardiomyopathy (most of them refractory or intolerant to propranolol) who received therapy with verapamil at doses up to 720 mg/day, a variety of serious adverse effects were seen. Three patients died in pulmonary edema; all had severe left ventricular outflow obstruction and a past history of left ventricular dysfunction. Eight other patients had pulmonary edema and/or severe hypotension; abnormally high (greater than 20 mmHg) pulmonary wedge pressure and a marked left ventricular outflow obstruction were present in most of these patients. Concomitant administration of quinidine (see PRECAUTIONS: Drug Interactions) preceded the severe hypotension in three of the eight patients (two of whom developed pulmonary edema). Sinus bradycardia occurred in 11% of the patients, second-degree AV block in 4% and sinus arrest in 2%. It must be appreciated that this group of patients had a serious disease with a high mortality rate. Most adverse effects responded well to dose reduction, and only rarely did verapamil have to be discontinued.

DRUG INTERACTIONS

Drug Interactions HMG-CoA Reductase Inhibitors The use of HMG-CoA reductase inhibitors that are CYP3A4 substrates in combination with verapamil has been associated with reports of myopathy/rhabdomyolysis. Coadministration of multiple doses of 10 mg of verapamil with 80 mg simvastatin resulted in exposure to simvastatin 2.5-fold than following simvastatin alone. Limit the dose of simvastatin in patients on verapamil to 10 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A4 substrates (e.g., atorvastatin) may be required as verapamil may increase the plasma concentration of these drugs. Beta-Blockers Concomitant therapy with beta-adrenergic blockers and verapamil may result in additive negative effects on heart rate, atrioventricular conduction and/or cardiac contractility. The combination of sustained-release verapamil and beta-adrenergic blocking agents has not been studied. However, there have been reports of excessive bradycardia and AV block, including complete heart block, when the combination has been used for the treatment of hypertension. For hypertensive patients, the risks of combined therapy may outweigh the potential benefits. The combination should be used only with caution and close monitoring. Asymptomatic bradycardia (36 beats/min) with a wandering atrial pacemaker has been observed in a patient receiving concomitant timolol (a beta-adrenergic blocker) eyedrops and oral verapamil. A decrease in metoprolol and propranolol clearance has been observed when either drug is administered concomitantly with verapamil. A variable effect has been seen when verapamil and atenolol were given together. Digitalis Clinical use of verapamil in digitalized patients has shown the combination to be well tolerated if digoxin doses are properly adjusted. However, chronic verapamil treatment can increase serum digoxin levels by 50% to 75% during the first week of therapy, and this can result in digitalis toxicity. In patients with hepatic cirrhosis the influence of verapamil on digoxin kinetics is magnified. Verapamil may reduce total body clearance and extrarenal clearance of digitoxin by 27% and 29%, respectively. Maintenance and digitalization doses should be reduced when verapamil is administered, and the patient should be carefully monitored to avoid over- or under-digitalization. Whenever over-digitalization is suspected, the daily dose of digitalis should be reduced or temporarily discontinued. On discontinuation of verapamil hydrochloride use, the patient should be reassessed to avoid under-digitalization. Antihypertensive Agents Verapamil administered concomitantly with oral antihypertensive agents (e.g., vasodilators, angiotensin-converting enzyme inhibitors, diuretics, beta-blockers) will usually have an additive effect on lowering blood pressure. Patients receiving these combinations should be appropriately monitored. Concomitant use of agents that attenuate alpha-adrenergic function with verapamil may result in a reduction in blood pressure that is excessive in some patients. Such an effect was observed in one study following the concomitant administration of verapamil and prazosin. Antiarrhythmic Agents Disopyramide Until data on possible interactions between verapamil and disopyramide phosphate are obtained, disopyramide should not be administered within 48 hours before or 24 hours after verapamil administration. Flecainide A study in healthy volunteers showed that the concomitant administration of flecainide and verapamil may have additive effects on myocardial contractility, AV conduction, and repolarization. Concomitant therapy with flecainide and verapamil may result in additive negative inotropic effect and prolongation of atrioventricular conduction. Quinidine In a small number of patients with hypertrophic cardiomyopathy (IHSS), concomitant use of verapamil and quinidine resulted in significant hypotension. Until further data are obtained, combined therapy of verapamil and quinidine in patients with hypertrophic cardiomyopathy should probably be avoided. The electrophysiologic effects of quinidine and verapamil on AV conduction were studied in eight patients. Verapamil significantly counteracted the effects of quinidine on AV conduction. There has been a report of increased quinidine levels during verapamil therapy. Other Agents Alcohol Verapamil has been found to inhibit ethanol elimination significantly, resulting in elevated blood ethanol concentrations that may prolong the intoxicating effects of alcohol (see CLINICAL PHARMACOLOGY: Pharmacokinetics and Metabolism). Nitrates Verapamil has been given concomitantly with short- and long-acting nitrates without any undesirable drug interactions. The pharmacologic profile of both drugs and the clinical experience suggest beneficial interactions. Cimetidine The interaction between cimetidine and chronically administered verapamil has not been studied. Variable results on clearance have been obtained in acute studies of healthy volunteers; clearance of verapamil was either reduced or unchanged. Lithium Increased sensitivity to the effects of lithium (neurotoxicity) has been reported during concomitant verapamil-lithium therapy; lithium levels have been observed sometimes to increase, sometimes to decrease, and sometimes to be unchanged. Patients receiving both drugs must be monitored carefully. Carbamazepine Verapamil therapy may increase carbamazepine concentrations during combined therapy. This may produce carbamazepine side effects such as diplopia, headache, ataxia, or dizziness. Rifampin Therapy with rifampin may markedly reduce oral verapamil bioavailability. Phenobarbital Phenobarbital therapy may increase verapamil clearance. Cyclosporine Verapamil therapy may increase serum levels of cyclosporine. Theophylline Verapamil may inhibit the clearance and increase the plasma levels of theophylline. Inhalation Anesthetics Animal experiments have shown that inhalation anesthetics depress cardiovascular activity by decreasing the inward movement of calcium ions. When used concomitantly, inhalation anesthetics and calcium antagonists, such as verapamil, should each be titrated carefully to avoid excessive cardiovascular depression. Neuromuscular Blocking Agents Clinical data and animal studies suggest that verapamil may potentiate the activity of neuromuscular blocking agents (curare-like and depolarizing). It may be necessary to decrease the dose of verapamil and/or the dose of the neuromuscular blocking agent when the drugs are used concomitantly. Telithromycin Hypotension and bradyarrhythmias have been observed in patients receiving concurrent telithromycin, an antibiotic in the ketolide class of antibiotics. Clonidine Sinus bradycardia resulting in hospitalization and pacemaker insertion has been reported in association with the use of clonidine concurrently with verapamil. Monitor heart rate in patients receiving concomitant verapamil and clonidine.

OVERDOSAGE

Overdose with verapamil may lead to pronounced hypotension, bradycardia, and conduction system abnormalities (e.g., junctional rhythm with AV dissociation and high degree AV block, including asystole). Other symptoms secondary to hypoperfusion (e.g., metabolic acidosis, hyperglycemia, hyperkalemia, renal dysfunction, and convulsions) may be evident. Treat all verapamil overdoses as serious and maintain observation for at least 48 hours (especially extended-release verapamil hydrochloride), preferably under continuous hospital care. Delayed pharmacodynamic consequences may occur with the extended-release formulation. Verapamil is known to decrease gastrointestinal transit time. In overdose, verapamil hydrochloride extended-release tablets have occasionally been reported to form concretions within the stomach or intestines. These concretions have not been visible on plain radiographs of the abdomen, and no medical means of gastrointestinal emptying is of proven efficacy in removing them. Endoscopy might reasonably be considered in cases of massive overdose when symptoms are unusually prolonged. Treatment of overdosage should be supportive. Beta-adrenergic stimulation or parenteral administration of calcium solutions may increase calcium ion flux across the slow channel, and have been used effectively in treatment of deliberate overdosage with verapamil. Continued treatment with large doses of calcium may produce a response. In a few reported cases, overdose with calcium channel blockers that was initially refractory to atropine became more responsive to this treatment when the patients received large doses (close to 1 gram/hour for more than 24 hours) of calcium chloride. Verapamil cannot be removed by hemodialysis. Clinically significant hypotensive reactions or high degree AV block should be treated with vasopressor agents or cardiac pacing, respectively. Asystole should be handled by the usual measures including cardiopulmonary resuscitation.

DESCRIPTION

Verapamil hydrochloride is a calcium ion influx inhibitor (slow channel blocker or calcium ion antagonist). The tablets are designed for extended-release of the drug in the gastrointestinal tract; extended-release characteristics are not altered when the tablet is divided in half. The structural formula of verapamil hydrochloride is given below: C27H38N2O4 • HCl M.W. = 491.07 C27H38N2O4 • HCl M.W. = 491.07 (±)-5-[(3,4-Dimethoxyphenethyl)methylamino]-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile monohydrochloride Verapamil hydrochloride, USP is an almost white, crystalline powder, practically free of odor, with a bitter taste. It is soluble in water, chloroform and methanol. Verapamil hydrochloride is not chemically related to other cardioactive drugs. Each extended-release tablet, for oral administration, contains 120 mg, 180 mg or 240 mg of verapamil hydrochloride. In addition, each tablet contains the following inactive ingredients: FD&C Blue No. 1 Aluminum Lake, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polyvinyl alcohol, povidone, sodium alginate, sodium lauryl sulfate, talc, and titanium dioxide. Verapamil Hydrochloride Extended-release Tablets USP, 120 mg meet USP Dissolution Test 1. Verapamil Hydrochloride Extended-release Tablets USP, 180 mg and 240 mg meet USP Dissolution Test 3. Structural Formula

HOW SUPPLIED

Verapamil Hydrochloride Extended-release Tablets, USP are available containing 120 mg, 180 mg or 240 mg of verapamil hydrochloride, USP. The 120 mg tablets are blue film-coated, oval, unscored tablets debossed with MYLAN on one side of the tablet and 244 on the other side. They are available as follows: NDC 60429-197-01 bottles of 100 tablets The 180 mg tablets are blue film-coated, oval tablets debossed with M to the left of the score and 312 to the right of the score on one side of the tablet and blank on the other side. They are available as follows: NDC 60429-198-01 bottles of 100 tablets NDC 60429-198-05 bottles of 500 tablets The 240 mg tablets are blue film-coated, modified capsule-shaped tablets debossed with M to the left of the score and 411 to the right of the score on one side of the tablet and blank on the other side. They are available as follows: NDC 60429-199-01 bottles of 100 tablets NDC 60429-199-05 bottles of 500 tablets Storage and Handling Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] Protect from light and moisture. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Manufactured by: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A. Marketed/ Packaged by: GSMS, Inc. Camarillo, CA 93012 USA REVISED OCTOBER 2013 VERAT:R7

MECHANISM OF ACTION

Mechanism of Action Essential Hypertension Verapamil exerts antihypertensive effects by decreasing systemic vascular resistance, usually without orthostatic decreases in blood pressure or reflex tachycardia; bradycardia (rate less than 50 beats/min) is uncommon (1.4%). During isometric or dynamic exercise, verapamil does not alter systolic cardiac function in patients with normal ventricular function. Verapamil does not alter total serum calcium levels. However, one report suggested that calcium levels above the normal range may alter the therapeutic effect of verapamil. Other Pharmacologic Actions of Verapamil Hydrochloride Include The Following Verapamil dilates the main coronary arteries and coronary arterioles, both in normal and ischemic regions, and is a potent inhibitor of coronary artery spasm, whether spontaneous or ergonovine-induced. This property increases myocardial oxygen delivery in patients with coronary artery spasm and is responsible for the effectiveness of verapamil in vasospastic (Prinzmetal’s or variant) as well as unstable angina at rest. Whether this effect plays any role in classical effort angina is not clear, but studies of exercise tolerance have not shown an increase in the maximum exercise rate-pressure product, a widely accepted measure of oxygen utilization. This suggests that, in general, relief of spasm or dilation of coronary arteries is not an important factor in classical angina. Verapamil regularly reduces the total systemic resistance (afterload) against which the heart works both at rest and at a given level of exercise by dilating peripheral arterioles. Electrical activity through the AV node depends, to a significant degree, upon calcium influx through the slow channel. By decreasing the influx of calcium, verapamil prolongs the effective refractory period within the AV node and slows AV conduction in a rate-related manner. Normal sinus rhythm is usually not affected, but in patients with sick sinus syndrome, verapamil may interfere with sinus-node impulse generation and may induce sinus arrest or sinoatrial block. Atrioventricular block can occur in patients without preexisting conduction defects (see WARNINGS). Verapamil does not alter the normal atrial action potential or intraventricular conduction time, but depresses amplitude, velocity of depolarization, and conduction in depressed atrial fibers. Verapamil may shorten the antegrade effective refractory period of the accessory bypass tract. Acceleration of ventricular rate and/or ventricular fibrillation has been reported in patients with atrial flutter or atrial fibrillation and a coexisting accessory AV pathway following administration of verapamil (see WARNINGS). Verapamil has a local anesthetic action that is 1.6 times that of procaine on an equimolar basis. It is not known whether this action is important at the doses used in man.

INDICATIONS AND USAGE

Verapamil hydrochloride extended-release tablets are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including this drug. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy.

PEDIATRIC USE

Pediatric Use Safety and efficacy of verapamil in pediatric patients below the age of 18 years have not been established.

PREGNANCY

Pregnancy Teratogenic Effects. Pregnancy Category C Reproduction studies have been performed in rabbits and rats at oral doses up to 1.5 (15 mg/kg/day) and 6 (60 mg/kg/day) times the human oral daily dose, respectively, and have revealed no evidence of teratogenicity. In the rat, however, this multiple of the human dose was embryocidal and retarded fetal growth and development, probably because of adverse maternal effects reflected in reduced weight gains of the dams. This oral dose has also been shown to cause hypotension in rats. There are no adequate and well controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. Verapamil crosses the placental barrier and can be detected in umbilical vein blood at delivery.

NUSRING MOTHERS

Nursing Mothers Verapamil is excreted in human milk. Because of the potential for adverse reactions in nursing infants from verapamil, nursing should be discontinued while verapamil is administered.

DOSAGE AND ADMINISTRATION

Essential Hypertension The dose of verapamil hydrochloride extended-release tablets should be individualized by titration and the drug should be administered with food. Initiate therapy with 180 mg of verapamil hydrochloride extended-release tablets given in the morning. Lower initial doses of 120 mg a day may be warranted in patients who may have an increased response to verapamil (e.g., the elderly or small people). Upward titration should be based on therapeutic efficacy and safety evaluated weekly and approximately 24 hours after the previous dose. The antihypertensive effects of verapamil hydrochloride extended-release tablets are evident within the first week of therapy. If adequate response is not obtained with 180 mg of verapamil hydrochloride extended-release tablets, the dose may be titrated upward in the following manner: 1.240 mg each morning, 2.180 mg each morning plus 180 mg each evening; or 240 mg each morning plus 120 mg each evening, 3.240 mg every 12 hours. When switching from verapamil hydrochloride immediate-release tablets to verapamil hydrochloride extended-release tablets, the total daily dose in milligrams may remain the same.

atorvastatin calcium 20 MG Oral Tablet

Generic Name: ATORVASTATIN CALCIUM
Brand Name: Atorvastatin Calcium
  • Substance Name(s):
  • ATORVASTATIN CALCIUM TRIHYDRATE

DRUG INTERACTIONS

7 The risk of myopathy during treatment with statins is increased with concurrent administration of fibric acid derivatives, lipid-modifying doses of niacin, cyclosporine, or strong CYP 3A4 inhibitors (e.g., clarithromycin, HIV protease inhibitors, and itraconazole) [see Warnings and Precautions, Skeletal Muscle (5.1) and Clinical Pharmacology (12.3)]. Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis (2.6, 5.1, 7, 12.3) Interacting Agents Prescribing Recommendations Cyclosporine, HIV protease inhibitors (tipranavir plus ritonavir), hepatitis C protease inhibitor (telaprevir) Avoid atorvastatin HIV protease inhibitor (lopinavir plus ritonavir) Use with caution and lowest dose necessary Clarithromycin, itraconazole, HIV protease inhibitors (saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir) Do not exceed 20 mg atorvastatin daily HIV protease inhibitor (nelfinavir) Hepatitis C protease inhibitor (boceprevir) Do not exceed 40 mg atorvastatin daily Other Lipid-Lowering Medications: Use with fibrate products or lipid-modifying doses (≥ 1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with atorvastatin calcium (7). Digoxin: Patients should be monitored appropriately (7.8). Oral Contraceptives: Values for norethindrone and ethinyl estradiol may be increased (7.9). Rifampin should be simultaneously co-administered with atorvastatin calcium (7.7). 7.1 Strong Inhibitors of CYP 3A4 Atorvastatin calcium is metabolized by cytochrome P450 3A4. Concomitant administration of atorvastatin calcium with strong inhibitors of CYP 3A4 can lead to increases in plasma concentrations of atorvastatin. The extent of interaction and potentiation of effects depend on the variability of effect on CYP 3A4. Clarithromycin: Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin calcium 80 mg with clarithromycin (500 mg twice daily) compared to that of atorvastatin calcium alone [see Clinical Pharmacology (12.3)]. Therefore, in patients taking clarithromycin, caution should be used when the atorvastatin calcium dose exceeds 20 mg [see Warnings and Precautions, Skeletal Muscle (5.1) and Dosage and Administration (2.6)]. Combination of Protease Inhibitors: Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin calcium with several combinations of HIV protease inhibitors, as well as with the hepatitis C protease inhibitor telaprevir, compared to that of atorvastatin calcium alone [see Clinical Pharmacology (12.3)]. Therefore, in patients taking the HIV protease inhibitor tipranavir plus ritonavir, or the hepatitis C protease inhibitor telaprevir, concomitant use of atorvastatin calcium should be avoided. In patients taking the HIV protease inhibitor lopinavir plus ritonavir, caution should be used when prescribing atorvastatin calcium and the lowest dose necessary should be used. In patients taking the HIV protease inhibitors saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, the dose of atorvastatin calcium should not exceed 20 mg and should be used with caution [see Warnings and Precautions, Skeletal Muscle (5.1) and Dosage and Administration (2.6)]. In patients taking the HIV protease inhibitor nelfinavir or the hepatitis C protease inhibitor boceprevir, the dose of atorvastatin calcium should not exceed 40 mg and close clinical monitoring is recommended. Itraconazole: Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin calcium 40 mg and itraconazole 200 mg [see Clinical Pharmacology (12.3)]. Therefore, in patients taking itraconazole, caution should be used when the atorvastatin calcium dose exceeds 20 mg [see Warnings and Precautions, Skeletal Muscle (5.1) and Dosage and Administration (2.6)]. 7.2 Grapefruit Juice Contains one or more components that inhibit CYP 3A4 and can increase plasma concentrations of atorvastatin, especially with excessive grapefruit juice consumption (> 1.2 liters per day). 7.3 Cyclosporine Atorvastatin and atorvastatin-metabolites are substrates of the OATP1B1 transporter. Inhibitors of the OATP1B1 (e.g., cyclosporine) can increase the bioavailability of atorvastatin. Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin calcium 10 mg and cyclosporine 5.2 mg/kg/day compared to that of atorvastatin calcium alone [see Clinical Pharmacology (12.3)]. The co-administration of atorvastatin calcium with cyclosporine should be avoided [see Warnings and Precautions, Skeletal Muscle (5.1)]. 7.4 Gemfibrozil Due to an increased risk of myopathy/rhabdomyolysis when HMG-CoA reductase inhibitors are co-administered with gemfibrozil, concomitant administration of atorvastatin calcium with gemfibrozil should be avoided [see Warnings and Precautions (5.1)]. 7.5 Other Fibrates Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concurrent administration of other fibrates, atorvastatin calcium should be administered with caution when used concomitantly with other fibrates [see Warnings and Precautions (5.1)]. 7.6 Niacin The risk of skeletal muscle effects may be enhanced when atorvastatin calcium is used in combination with niacin; a reduction in atorvastatin calcium dosage should be considered in this setting [see Warnings and Precautions (5.1)]. 7.7 Rifampin or other Inducers of Cytochrome P450 3A4 Concomitant administration of atorvastatin calcium with inducers of cytochrome P450 3A4 (e.g., efavirenz, rifampin) can lead to variable reductions in plasma concentrations of atorvastatin. Due to the dual interaction mechanism of rifampin, simultaneous co-administration of atorvastatin calcium with rifampin is recommended, as delayed administration of atorvastatin calcium after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations. 7.8 Digoxin When multiple doses of atorvastatin calcium and digoxin were co-administered, steady state plasma digoxin concentrations increased by approximately 20%. Patients taking digoxin should be monitored appropriately. 7.9 Oral Contraceptives Co-administration of atorvastatin calcium and an oral contraceptive increased AUC values for norethindrone and ethinyl estradiol [see Clinical Pharmacology (12.3)]. These increases should be considered when selecting an oral contraceptive for a woman taking atorvastatin calcium. 7.10 Warfarin Atorvastatin calcium had no clinically significant effect on prothrombin time when administered to patients receiving chronic warfarin treatment. 7.11 Colchicine Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine.

OVERDOSAGE

10 There is no specific treatment for atorvastatin calcium overdosage. In the event of an overdose, the patient should be treated symptomatically, and supportive measures instituted as required. Due to extensive drug binding to plasma proteins, hemodialysis is not expected to significantly enhance atorvastatin calcium clearance.

DESCRIPTION

11 Atorvastatin calcium is a synthetic lipid-lowering agent. Atorvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin calcium is [R-(R*,R*)]-2-(4-fluorophenyl)-ß, δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic acid, calcium salt (2:1) trihydrate. The molecular formula of atorvastatin calcium is (C33H34FN2O5)2Ca•3H2O and its molecular weight is 1209.42. Its structural formula is: Atorvastatin calcium, USP is a white to off-white crystalline powder. Atorvastatin calcium is insoluble in aqueous solutions of pH 4 and below. Atorvastatin calcium is very slightly soluble to insoluble in water and pH 7.4 phosphate buffer; insoluble in acetonitrile; slightly soluble to very slightly soluble in ethanol; and freely soluble to slightly soluble in methanol. Atorvastatin calcium tablets for oral administration contain 10, 20, 40, or 80 mg atorvastatin and the following inactive ingredients: calcium carbonate; candelilla wax, FCC; croscarmellose sodium; hydroxypropyl cellulose; hypromellose; lactose monohydrate; magnesium stearate; microcrystalline cellulose; polyethylene glycol; polysorbate 80; simethicone emulsion; talc, and titanium dioxide. structure

CLINICAL STUDIES

14 14.1 Prevention of Cardiovascular Disease In the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), the effect of atorvastatin calcium on fatal and non-fatal coronary heart disease was assessed in 10,305 hypertensive patients 40 to 80 years of age (mean of 63 years), without a previous myocardial infarction and with TC levels ≤ 251 mg/dL (6.5 mmol/L). Additionally, all patients had at least 3 of the following cardiovascular risk factors: male gender (81.1%), age > 55 years (84.5%), smoking (33.2%), diabetes (24.3%), history of CHD in a first-degree relative (26%), TC:HDL > 6 (14.3%), peripheral vascular disease (5.1%), left ventricular hypertrophy (14.4%), prior cerebrovascular event (9.8%), specific ECG abnormality (14.3%), proteinuria/albuminuria (62.4%). In this double-blind, placebo-controlled study, patients were treated with anti-hypertensive therapy (Goal BP < 140/90 mm Hg for non-diabetic patients; < 130/80 mm Hg for diabetic patients) and allocated to either atorvastatin calcium 10 mg daily (n = 5168) or placebo (n = 5137), using a covariate adaptive method which took into account the distribution of nine baseline characteristics of patients already enrolled and minimized the imbalance of those characteristics across the groups. Patients were followed for a median duration of 3.3 years. The effect of 10 mg/day of atorvastatin calcium on lipid levels was similar to that seen in previous clinical trials. Atorvastatin calcium significantly reduced the rate of coronary events [either fatal coronary heart disease (46 events in the placebo group vs. 40 events in the atorvastatin calcium group) or non-fatal MI (108 events in the placebo group vs. 60 events in the atorvastatin calcium group)] with a relative risk reduction of 36% [(based on incidences of 1.9% for atorvastatin calcium vs. 3% for placebo), p = 0.0005 (see Figure 1)]. The risk reduction was consistent regardless of age, smoking status, obesity, or presence of renal dysfunction. The effect of atorvastatin calcium was seen regardless of baseline LDL levels. Due to the small number of events, results for women were inconclusive. Figure 1: Effect of Atorvastatin Calcium 10 mg/day on Cumulative Incidence of Non-Fatal Myocardial Infarction or Coronary Heart Disease Death (in ASCOT-LLA) Atorvastatin calcium also significantly decreased the relative risk for revascularization procedures by 42%. Although the reduction of fatal and non-fatal strokes did not reach a pre-defined significance level (p = 0.01), a favorable trend was observed with a 26% relative risk reduction (incidences of 1.7% for atorvastatin calcium and 2.3% for placebo). There was no significant difference between the treatment groups for death due to cardiovascular causes (p = 0.51) or noncardiovascular causes (p = 0.17). In the Collaborative Atorvastatin Diabetes Study (CARDS), the effect of atorvastatin calcium on cardiovascular disease (CVD) endpoints was assessed in 2838 subjects (94% white, 68% male), ages 40 to 75 with type 2 diabetes based on WHO criteria, without prior history of cardiovascular disease and with LDL ≤ 160 mg/dL and TG ≤ 600 mg/dL. In addition to diabetes, subjects had 1 or more of the following risk factors: current smoking (23%), hypertension (80%), retinopathy (30%), or microalbuminuria (9%) or macroalbuminuria (3%). No subjects on hemodialysis were enrolled in the study. In this multicenter, placebo-controlled, double-blind clinical trial, subjects were randomly allocated to either atorvastatin calcium 10 mg daily (1429) or placebo (1411) in a 1:1 ratio and were followed for a median duration of 3.9 years. The primary endpoint was the occurrence of any of the major cardiovascular events: myocardial infarction, acute CHD death, unstable angina, coronary revascularization, or stroke. The primary analysis was the time to first occurrence of the primary endpoint. Baseline characteristics of subjects were: mean age of 62 years, mean HbA1c 7.7%; median LDL-C 120 mg/dL; median TC 207 mg/dL; median TG 151 mg/dL; median HDL-C 52 mg/dL. The effect of atorvastatin calcium 10 mg/day on lipid levels was similar to that seen in previous clinical trials. Atorvastatin calcium significantly reduced the rate of major cardiovascular events (primary endpoint events) (83 events in the atorvastatin calcium group vs. 127 events in the placebo group) with a relative risk reduction of 37%, HR 0.63, 95% CI (0.48, 0.83) (p = 0.001) (see Figure 2). An effect of atorvastatin calcium was seen regardless of age, sex, or baseline lipid levels. Atorvastatin calcium significantly reduced the risk of stroke by 48% (21 events in the atorvastatin calcium group vs. 39 events in the placebo group), HR 0.52, 95% CI (0.31, 0.89) (p = 0.016) and reduced the risk of MI by 42% (38 events in the atorvastatin calcium group vs. 64 events in the placebo group), HR 0.58, 95.1% CI (0.39, 0.86) (p = 0.007). There was no significant difference between the treatment groups for angina, revascularization procedures, and acute CHD death. There were 61 deaths in the atorvastatin calcium group vs. 82 deaths in the placebo group (HR 0.73, p = 0.059). Figure 2: Effect of Atorvastatin Calcium 10 mg/day on Time to Occurrence of Major Cardiovascular Event (myocardial infarction, acute CHD death, unstable angina, coronary revascularization, or stroke) in CARDS In the Treating to New Targets Study (TNT), the effect of atorvastatin calcium 80 mg/day vs. atorvastatin calcium 10 mg/day on the reduction in cardiovascular events was assessed in 10,001 subjects (94% white, 81% male, 38% ≥ 65 years) with clinically evident coronary heart disease who had achieved a target LDL-C level < 130 mg/dL after completing an 8-week, open-label, run-in period with atorvastatin calcium 10 mg/day. Subjects were randomly assigned to either 10 mg/day or 80 mg/day of atorvastatin calcium and followed for a median duration of 4.9 years. The primary endpoint was the time-to-first occurrence of any of the following major cardiovascular events (MCVE): death due to CHD, non-fatal myocardial infarction, resuscitated cardiac arrest, and fatal and non-fatal stroke. The mean LDL-C, TC, TG, non-HDL, and HDL cholesterol levels at 12 weeks were 73, 145, 128, 98, and 47 mg/dL during treatment with 80 mg of atorvastatin calcium and 99, 177, 152, 129, and 48 mg/dL during treatment with 10 mg of atorvastatin calcium. Treatment with atorvastatin calcium 80 mg/day significantly reduced the rate of MCVE (434 events in the 80 mg/day group vs. 548 events in the 10 mg/day group) with a relative risk reduction of 22%, HR 0.78, 95% CI (0.69, 0.89), p = 0.0002 (see Figure 3 and Table 5). The overall risk reduction was consistent regardless of age ( 130 mg/dL. The number of atorvastatin calcium-treated patients who required uptitration to 20 mg after Week 4 during the double-blind phase was 80 (57.1%). Atorvastatin calcium significantly decreased plasma levels of total-C, LDL-C, triglycerides, and apolipoprotein B during the 26-week double-blind phase (see Table 10). TABLE 10. Lipid-altering Effects of Atorvastatin Calcium in Adolescent Boys and Girls with Heterozygous Familial Hypercholesterolemia or Severe Hypercholesterolemia (Mean Percentage Change From Baseline at Endpoint in Intention-to-Treat Population) DOSAGE N Total-C LDL-C HDL-C TG Apolipoprotein B Placebo 47 -1.5 -0.4 -1.9 1 0.7 Atorvastatin Calcium 140 -31.4 -39.6 2.8 -12 -34 The mean achieved LDL-C value was 130.7 mg/dL (range: 70 to 242 mg/dL) in the atorvastatin calcium group compared to 228.5 mg/dL (range: 152 to 385 mg/dL) in the placebo group during the 26-week double-blind phase. The safety and efficacy of doses above 20 mg have not been studied in controlled trials in children. The long-term efficacy of atorvastatin calcium therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

HOW SUPPLIED

16 /STORAGE AND HANDLING Atorvastatin calcium tablets 20 mg are white, elliptical, film-coated tablets, debossed with ‘ RX 828’ on one side and plain on the other side. They are supplied as follows: NDC 33261-0972-30 Bottles of 30 NDC 33261-0972-90 Bottles of 90 Storage Store at 20 – 25° C (68 – 77° F) [See USP Controlled Room Temperature]. Dispense in tight containers (USP).

RECENT MAJOR CHANGES

Dosage and Administration (2.6) 10/2012 Warnings and Precautions (5.1) 10/2012 Drug Interactions (7) 02/2012

GERIATRIC USE

8.5 Geriatric Use Of the 39,828 patients who received atorvastatin calcium in clinical studies, 15,813 (40%) were ≥ 65 years old and 2,800 (7%) were ≥ 75 years old. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older adults cannot be ruled out. Since advanced age (≥ 65 years) is a predisposing factor for myopathy, atorvastatin calcium should be prescribed with caution in the elderly.

DOSAGE FORMS AND STRENGTHS

3 White, elliptical, film-coated tablets containing 10, 20, 40, and 80 mg atorvastatin calcium, USP. 10, 20, 40, and 80 mg tablets (3).

MECHANISM OF ACTION

12.1 Mechanism of Action Atorvastatin calcium is a selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, a precursor of sterols, including cholesterol. Cholesterol and triglycerides circulate in the bloodstream as part of lipoprotein complexes. With ultracentrifugation, these complexes separate into HDL (high-density lipoprotein), IDL (intermediate-density lipoprotein), LDL (low-density lipoprotein), and VLDL (very-low-density lipoprotein) fractions. Triglycerides (TG) and cholesterol in the liver are incorporated into VLDL and released into the plasma for delivery to peripheral tissues. LDL is formed from VLDL and is catabolized primarily through the high-affinity LDL receptor. Clinical and pathologic studies show that elevated plasma levels of total cholesterol (total-C), LDL-cholesterol (LDL-C), and apolipoprotein B (apo B) promote human atherosclerosis and are risk factors for developing cardiovascular disease, while increased levels of HDL-C are associated with a decreased cardiovascular risk. In animal models, atorvastatin calcium lowers plasma cholesterol and lipoprotein levels by inhibiting HMG-CoA reductase and cholesterol synthesis in the liver and by increasing the number of hepatic LDL receptors on the cell surface to enhance uptake and catabolism of LDL; atorvastatin calcium also reduces LDL production and the number of LDL particles. Atorvastatin calcium reduces LDL-C in some patients with homozygous familial hypercholesterolemia (FH), a population that rarely responds to other lipid-lowering medication(s). A variety of clinical studies have demonstrated that elevated levels of total-C, LDL-C, and apo B (a membrane complex for LDL-C) promote human atherosclerosis. Similarly, decreased levels of HDL-C (and its transport complex, apo A) are associated with the development of atherosclerosis. Epidemiologic investigations have established that cardiovascular morbidity and mortality vary directly with the level of total-C and LDL-C, and inversely with the level of HDL-C. Atorvastatin calcium reduces total-C, LDL-C, and apo B in patients with homozygous and heterozygous FH, nonfamilial forms of hypercholesterolemia, and mixed dyslipidemia. Atorvastatin calcium also reduces VLDL-C and TG and produces variable increases in HDL-C and apolipoprotein A-1. Atorvastatin calcium reduces total-C, LDL-C, VLDL-C, apo B, TG, and non-HDL-C, and increases HDL-C in patients with isolated hypertriglyceridemia. Atorvastatin calcium reduces intermediate density lipoprotein cholesterol (IDL-C) in patients with dysbetalipoproteinemia. Like LDL, cholesterol-enriched triglyceride-rich lipoproteins, including VLDL, intermediate density lipoprotein (IDL), and remnants, can also promote atherosclerosis. Elevated plasma triglycerides are frequently found in a triad with low HDL-C levels and small LDL particles, as well as in association with non-lipid metabolic risk factors for coronary heart disease. As such, total plasma TG has not consistently been shown to be an independent risk factor for CHD. Furthermore, the independent effect of raising HDL or lowering TG on the risk of coronary and cardiovascular morbidity and mortality has not been determined.

INDICATIONS AND USAGE

1 Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is recommended as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. In patients with CHD or multiple risk factors for CHD, atorvastatin calcium tablets can be started simultaneously with diet. Atorvastatin calcium tablets are an inhibitor of HMG-CoA reductase (statin) indicated as an adjunct therapy to diet to: Reduce the risk of MI, stroke, revascularization procedures, and angina in patients without CHD, but with multiple risk factors (1.1). Reduce the risk of MI and stroke in patients with type 2 diabetes without CHD, but with multiple risk factors (1.1). Reduce the risk of non-fatal MI, fatal and non-fatal stroke, revascularization procedures, hospitalization for CHF, and angina in patients with CHD (1.1). Reduce elevated total-C, LDL-C, apo B, and TG levels and increase HDL-C in adult patients with primary hyperlipidemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (1.2). Reduce elevated TG in patients with hypertriglyceridemia and primary dysbetalipoproteinemia (1.2). Reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia (HoFH) (1.2). Reduce elevated total-C, LDL-C, and apo B levels in boys and postmenarchal girls, 10 to 17 years of age, with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy (1.2). Limitations of Use Atorvastatin calcium tablets have not been studied in Fredrickson Types I and V dyslipidemias. 1.1 Prevention of Cardiovascular Disease In adult patients without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as age, smoking, hypertension, low HDL-C, or a family history of early coronary heart disease, atorvastatin calcium tablets are indicated to: Reduce the risk of myocardial infarction Reduce the risk of stroke Reduce the risk for revascularization procedures and angina In patients with type 2 diabetes, and without clinically evident coronary heart disease, but with multiple risk factors for coronary heart disease such as retinopathy, albuminuria, smoking, or hypertension, atorvastatin calcium tablets are indicated to: Reduce the risk of myocardial infarction Reduce the risk of stroke In patients with clinically evident coronary heart disease, atorvastatin calcium tablets are indicated to: Reduce the risk of non-fatal myocardial infarction Reduce the risk of fatal and non-fatal stroke Reduce the risk for revascularization procedures Reduce the risk of hospitalization for CHF Reduce the risk of angina 1.2 Hyperlipidemia Atorvastatin calcium tablets are indicated: As an adjunct to diet to reduce elevated total-C, LDL-C, apo B, and TG levels and to increase HDL-C in patients with primary hypercholesterolemia (heterozygous familial and nonfamilial) and mixed dyslipidemia (Fredrickson Types IIa and IIb); As an adjunct to diet for the treatment of patients with elevated serum TG levels (Fredrickson Type IV); For the treatment of patients with primary dysbetalipoproteinemia (Fredrickson Type III) who do not respond adequately to diet; To reduce total-C and LDL-C in patients with homozygous familial hypercholesterolemia as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) or if such treatments are unavailable; As an adjunct to diet to reduce total-C, LDL-C, and apo B levels in boys and postmenarchal girls, 10 to 17 years of age, with heterozygous familial hypercholesterolemia if after an adequate trial of diet therapy the following findings are present: a. LDL-C remains ≥ 190 mg/dL or b. LDL-C remains ≥ 160 mg/dL and: there is a positive family history of premature cardiovascular disease or two or more other CVD risk factors are present in the pediatric patient 1.3 Limitations of Use Atorvastatin calcium tablets have not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in patients 10 to 17 years of age with heterozygous familial hypercholesterolemia have been evaluated in a controlled clinical trial of 6 months’ duration in adolescent boys and postmenarchal girls. Patients treated with atorvastatin calcium had an adverse experience profile generally similar to that of patients treated with placebo. The most common adverse experiences observed in both groups, regardless of causality assessment, were infections. Doses greater than 20 mg have not been studied in this patient population. In this limited controlled study, there was no significant effect on growth or sexual maturation in boys or on menstrual cycle length in girls [see Clinical Studies (14.6); Adverse Reactions, Pediatric Patients (ages 10 to 17 years) (6.3); and Dosage and Administration, Heterozygous Familial Hypercholesterolemia in Pediatric Patients (10 to 17 years of age) (2.2)]. Adolescent females should be counseled on appropriate contraceptive methods while on atorvastatin calcium therapy [see Contraindications, Pregnancy (4.3) and Use in Specific Populations, Pregnancy (8.1)]. Atorvastatin calcium has not been studied in controlled clinical trials involving pre-pubertal patients or patients younger than 10 years of age. Clinical efficacy with doses up to 80 mg/day for 1 year have been evaluated in an uncontrolled study of patients with homozygous FH including 8 pediatric patients [see Clinical Studies, Homozygous Familial Hypercholesterolemia (14.5)].

PREGNANCY

8.1 Pregnancy Pregnancy Category X Atorvastatin calcium is contraindicated in women who are or may become pregnant. Serum cholesterol and triglycerides increase during normal pregnancy. Lipid lowering drugs offer no benefit during pregnancy because cholesterol and cholesterol derivatives are needed for normal fetal development. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy. There are no adequate and well-controlled studies of atorvastatin use during pregnancy. There have been rare reports of congenital anomalies following intrauterine exposure to statins. In a review of about 100 prospectively followed pregnancies in women exposed to other statins, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed the rate expected in the general population. However, this study was only able to exclude a three-to-four-fold increased risk of congenital anomalies over background incidence. In 89% of these cases, drug treatment started before pregnancy and stopped during the first trimester when pregnancy was identified. Atorvastatin crosses the rat placenta and reaches a level in fetal liver equivalent to that of maternal plasma. Atorvastatin was not teratogenic in rats at doses up to 300 mg/kg/day or in rabbits at doses up to 100 mg/kg/day. These doses resulted in multiples of about 30 times (rat) or 20 times (rabbit) the human exposure based on surface area (mg/m2) [see Contraindications, Pregnancy (4.3)]. In a study in rats given 20, 100, or 225 mg/kg/day, from gestation day 7 through to lactation day 21 (weaning), there was decreased pup survival at birth, neonate, weaning, and maturity in pups of mothers dosed with 225 mg/kg/day. Body weight was decreased on days 4 and 21 in pups of mothers dosed at 100 mg/kg/day; pup body weight was decreased at birth and at days 4, 21, and 91 at 225 mg/kg/day. Pup development was delayed (rotorod performance at 100 mg/kg/day and acoustic startle at 225 mg/kg/day; pinnae detachment and eye-opening at 225 mg/kg/day). These doses correspond to 6 times (100 mg/kg) and 22 times (225 mg/kg) the human AUC at 80 mg/day. Statins may cause fetal harm when administered to a pregnant woman. Atorvastatin calcium should be administered to women of childbearing potential only when such patients are highly unlikely to conceive and have been informed of the potential hazards. If the woman becomes pregnant while taking atorvastatin calcium, it should be discontinued immediately and the patient advised again as to the potential hazards to the fetus and the lack of known clinical benefit with continued use during pregnancy.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether atorvastatin is excreted in human milk, but a small amount of another drug in this class does pass into breast milk. Nursing rat pups had plasma and liver drug levels of 50% and 40%, respectively, of that in their mother’s milk. Animal breast milk drug levels may not accurately reflect human breast milk levels. Because another drug in this class passes into human milk and because statins have a potential to cause serious adverse reactions in nursing infants, women requiring atorvastatin calcium treatment should be advised not to nurse their infants [see Contraindications (4)].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): Risks increase when higher doses are used concomitantly with cyclosporine and strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, HIV protease inhibitors). Predisposing factors include advanced age (> 65), uncontrolled hypothyroidism, and renal impairment. Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported. Advise patients to promptly report to their physician unexplained and/or persistent muscle pain, tenderness, or weakness. Atorvastatin calcium therapy should be discontinued if myopathy is diagnosed or suspected (5.1, 8.5). Liver enzyme abnormalities: Persistent elevations in hepatic transaminases can occur. Check liver enzyme tests before initiating therapy and as clinically indicated thereafter (5.2). A higher incidence of hemorrhagic stroke was seen in patients without CHD but with stroke or TIA within the previous 6 months in the atorvastatin calcium 80 mg group vs. placebo (5.5). 5.1 Skeletal Muscle Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with atorvastatin calcium and with other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects. Atorvastatin, like other statins, occasionally causes myopathy, defined as muscle aches or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values > 10 times ULN. The concomitant use of higher doses of atorvastatin with certain drugs such as cyclosporine and strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, and HIV protease inhibitors) increases the risk of myopathy/rhabdomyolysis. There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents. Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevation of CPK. Patients should be advised to report promptly unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing atorvastatin calcium. Atorvastatin calcium therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. The risk of myopathy during treatment with drugs in this class is increased with concurrent administration of cyclosporine, fibric acid derivatives, erythromycin, clarithromycin, the hepatitis C protease inhibitor telaprevir, combinations of HIV protease inhibitors, including saquinavir plus ritonavir, lopinavir plus ritonavir, tipranavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, and fosamprenavir plus ritonavir, niacin, or azole antifungals. Physicians considering combined therapy with atorvastatin calcium and fibric acid derivatives, erythromycin, clarithromycin, a combination of saquinavir plus ritonavir, lopinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, azole antifungals, or lipid-modifying doses of niacin should carefully weigh the potential benefits and risks and should carefully monitor patients for any signs or symptoms of muscle pain, tenderness, or weakness, particularly during the initial months of therapy and during any periods of upward dosage titration of either drug. Lower starting and maintenance doses of atorvastatin should be considered when taken concomitantly with the aforementioned drugs (see Drug Interaction s (7)). Periodic creatine phosphokinase (CPK) determinations may be considered in such situations, but there is no assurance that such monitoring will prevent the occurrence of severe myopathy. Prescribing recommendations for interacting agents are summarized in Table 1 [see also Dosage and Administration (2.6), Drug Interactions (7), Clinical Pharmacology (12.3)]. Table 1. Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis *Use with caution and with the lowest dose necessary (12.3) Interacting Agents Prescribing Recommendations Cyclosporine, HIV protease inhibitors (tipranavir plus ritonavir), hepatitis C protease inhibitor (telaprevir) Avoid atorvastatin HIV protease inhibitor (lopinavir plus ritonavir) Use with caution and lowest dose necessary Clarithromycin, itraconazole, HIV protease inhibitors (saquinavir plus ritonavir*, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir) Do not exceed 20 mg atorvastatin daily HIV protease inhibitor (nelfinavir) Hepatitis C protease inhibitor (boceprevir) Do not exceed 40 mg atorvastatin daily Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine [see Drug Interactions (7.11)]. Atorvastatin calcium therapy should be temporarily withheld or discontinued in any patient with an acute, serious condition suggestive of a myopathy or having a risk factor predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., severe acute infection, hypotension, major surgery, trauma, severe metabolic, endocrine and electrolyte disorders, and uncontrolled seizures). 5.2 Liver Dysfunction Statins, like some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. Persistent elevations (> 3 times the upper limit of normal [ULN] occurring on 2 or more occasions) in serum transaminases occurred in 0.7% of patients who received atorvastatin calcium in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg, respectively. One patient in clinical trials developed jaundice. Increases in liver function tests (LFT) in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent LFT elevations continued treatment with a reduced dose of atorvastatin calcium. It is recommended that liver enzyme tests be obtained prior to initiating therapy with atorvastatin calcium and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including atorvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with atorvastatin calcium, promptly interrupt therapy. If an alternate etiology is not found, do not restart atorvastatin calcium. Atorvastatin calcium should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of liver disease. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of atorvastatin calcium [see Contraindications (4.1)]. 5.3 Endocrine Function Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including atorvastatin calcium. Statins interfere with cholesterol synthesis and theoretically might blunt adrenal and/or gonadal steroid production. Clinical studies have shown that atorvastatin calcium does not reduce basal plasma cortisol concentration or impair adrenal reserve. The effects of statins on male fertility have not been studied in adequate numbers of patients. The effects, if any, on the pituitary-gonadal axis in premenopausal women are unknown. Caution should be exercised if a statin is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones, such as ketoconazole, spironolactone, and cimetidine. 5.4 CNS Toxicity Brain hemorrhage was seen in a female dog treated for 3 months at 120 mg/kg/day. Brain hemorrhage and optic nerve vacuolation were seen in another female dog that was sacrificed in moribund condition after 11 weeks of escalating doses up to 280 mg/kg/day. The 120 mg/kg dose resulted in a systemic exposure approximately 16 times the human plasma area-under-the-curve (AUC, 0 to 24 hours) based on the maximum human dose of 80 mg/day. A single tonic convulsion was seen in each of 2 male dogs (one treated at 10 mg/kg/day and one at 120 mg/kg/day) in a 2-year study. No CNS lesions have been observed in mice after chronic treatment for up to 2 years at doses up to 400 mg/kg/day or in rats at doses up to 100 mg/kg/day. These doses were 6 to 11 times (mouse) and 8 to 16 times (rat) the human AUC (0 to 24) based on the maximum recommended human dose of 80 mg/day. CNS vascular lesions, characterized by perivascular hemorrhages, edema, and mononuclear cell infiltration of perivascular spaces, have been observed in dogs treated with other members of this class. A chemically similar drug in this class produced optic nerve degeneration (Wallerian degeneration of retinogeniculate fibers) in clinically normal dogs in a dose-dependent fashion at a dose that produced plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose. 5.5 Use in Patients with Recent Stroke or TIA In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study where atorvastatin calcium 80 mg vs. placebo was administered in 4,731 subjects without CHD who had a stroke or TIA within the preceding 6 months, a higher incidence of hemorrhagic stroke was seen in the atorvastatin calcium 80 mg group compared to placebo (55, 2.3% atorvastatin vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p = 0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of nonfatal hemorrhagic stroke was significantly higher in the atorvastatin group (38, 1.6%) as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the atorvastatin group [see Adverse Reactions (6.1)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Patients taking atorvastatin calcium tablets should be advised that cholesterol is a chronic condition and they should adhere to their medication along with their National Cholesterol Education Program (NCEP)-recommended diet, a regular exercise program as appropriate, and periodic testing of a fasting lipid panel to determine goal attainment. Patients should be advised about substances they should not take concomitantly with atorvastatin [see Warnings and Precautions (5.1)]. Patients should also be advised to inform other healthcare professionals prescribing a new medication that they are taking atorvastatin calcium tablets. 17.1 Muscle Pain All patients starting therapy with atorvastatin calcium tablets should be advised of the risk of myopathy and told to report promptly any unexplained muscle pain, tenderness, or weakness particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing atorvastatin calcium tablets. The risk of this occurring is increased when taking certain types of medication or consuming larger quantities (> 1 liter) of grapefruit juice. They should discuss all medication, both prescription and over the counter, with their healthcare professional. 17.2 Liver Enzymes It is recommended that liver enzyme tests be performed before the initiation of atorvastatin calcium tablets and if signs or symptoms of liver injury occur. All patients treated with atorvastatin calcium tablets should be advised to report promptly any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine, or jaundice. 17.3 Pregnancy Women of childbearing age should be advised to use an effective method of birth control to prevent pregnancy while using atorvastatin calcium tablets. Discuss future pregnancy plans with your patients, and discuss when to stop atorvastatin calcium tablets if they are trying to conceive. Patients should be advised that if they become pregnant, they should stop taking atorvastatin calcium tablets and call their healthcare professional. 17.4 Breastfeeding Women who are breastfeeding should be advised to not use atorvastatin calcium tablets. Patients who have a lipid disorder and are breastfeeding, should be advised to discuss the options with their healthcare professional. Manufactured for: Ranbaxy Pharmaceuticals Inc. Jacksonville, FL 32257 USA by: Ohm Laboratories Inc. North Brunswick, NJ 08902 USA AND BY: Ranbaxy Laboratories Ltd. New Delhi – 110019, India Repackaged By : Aidarex Pharmaceuticals LLC, Corona, CA 92880 November 2012 PATIENT INFORMATION ATORVASTATIN CALCIUM TABLETS Rx only Read the Patient Information that comes with atorvastatin calcium tablets before you start taking it and each time you get a refill. There may be new information. This leaflet does not take the place of talking with your doctor about your condition or treatment. If you have any questions about atorvastatin calcium tablets, ask your doctor or pharmacist. What are Atorvastatin Calcium Tablets? Atorvastatin calcium tablets are a prescription medicine that lowers cholesterol in your blood. It lowers the LDL-C (“bad” cholesterol) and triglycerides in your blood. It can raise your HDL-C (“good” cholesterol) as well. Atorvastatin calcium tablets are for adults and children over 10 whose cholesterol does not come down enough with exercise and a low-fat diet alone. Atorvastatin calcium tablets can lower the risk for heart attack, stroke, certain types of heart surgery, and chest pain in patients who have heart disease or risk factors for heart disease such as: age, smoking, high blood pressure, low HDL-C, heart disease in the family. Atorvastatin calcium tablets can lower the risk for heart attack or stroke in patients with diabetes and risk factors such as: eye problems, kidney problems, smoking, or high blood pressure. Atorvastatin calcium tablets start to work in about 2 weeks. What is Cholesterol? Cholesterol and triglycerides are fats that are made in your body. They are also found in foods. You need some cholesterol for good health, but too much is not good for you. Cholesterol and triglycerides can clog your blood vessels. It is especially important to lower your cholesterol if you have heart disease, smoke, have diabetes or high blood pressure, are older, or if heart disease starts early in your family. Who Should Not Take Atorvastatin Calcium Tablets? Do not take atorvastatin calcium tablets if you: are pregnant or think you may be pregnant, or are planning to become pregnant. Atorvastatin calcium tablets may harm your unborn baby. If you get pregnant, stop taking atorvastatin calcium tablets and call your doctor right away. are breast feeding. Atorvastatin calcium can pass into your breast milk and may harm your baby. have liver problems. are allergic to atorvastatin calcium tablets or any of its ingredients. The active ingredient is atorvastatin calcium, USP. See the end of this leaflet for a complete list of ingredients in atorvastatin calcium tablets. Atorvastatin calcium tablets have not been studied in children under 10 years of age. Before You Start Atorvastatin Calcium Tablets Tell your doctor if you: have muscle aches or weakness drink more than 2 glasses of alcohol daily have diabetes have a thyroid problem have kidney problems Some medicines should not be taken with atorvastatin calcium tablets. Tell your doctor about all the medicines you take, including prescription and non-prescription medicines, vitamins, and herbal supplements. Atorvastatin calcium tablets and certain other medicines can interact causing serious side effects. Especially tell your doctor if you take medicines for: your immune system cholesterol infections birth control heart failure HIV or AIDS Know all the medicines you take. Keep a list of them with you to show your doctor and pharmacist. How Should I Take Atorvastatin Calcium Tablets? Take atorvastatin calcium tablets exactly as prescribed by your doctor. Do not change your dose or stop atorvastatin calcium tablets without talking to your doctor. Your doctor may do blood tests to check your cholesterol levels during your treatment with atorvastatin calcium tablets. Your dose of atorvastatin calcium tablets may be changed based on these blood test results. Take atorvastatin calcium tablets each day at any time of day at about the same time each day. Atorvastatin calcium tablets can be taken with or without food. Don’t break atorvastatin calcium tablets before taking. Your doctor should start you on a low-fat diet before giving you atorvastatin calcium tablets. Stay on this low-fat diet when you take atorvastatin calcium tablets. If you miss a dose of atorvastatin calcium tablets, take it as soon as you remember. Do not take atorvastatin calcium tablets if it has been more than 12 hours since you missed your last dose. Wait and take the next dose at your regular time. Do not take 2 doses of atorvastatin calcium tablets at the same time. If you take too much atorvastatin calcium tablets or overdose, call your doctor or Poison Control Center right away. Or go to the nearest emergency room. What Should I Avoid While Taking Atorvastatin Calcium Tablets? Talk to your doctor before you start any new medicines. This includes prescription and non-prescription medicines, vitamins, and herbal supplements. Atorvastatin calcium tablets and certain other medicines can interact causing serious side effects. Do not get pregnant. If you get pregnant, stop taking atorvastatin calcium tablets right away and call your doctor. What are the Possible Side Effects of Atorvastatin Calcium Tablets? Atorvastatin calcium tablets can cause serious side effects. These side effects have happened only to a small number of people. Your doctor can monitor you for them. These side effects usually go away if your dose is lowered or atorvastatin calcium tablets are stopped. These serious side effects include: Muscle problems. Atorvastatin calcium tablets can cause serious muscle problems that can lead to kidney problems, including kidney failure. You have a higher chance for muscle problems if you are taking certain other medicines with atorvastatin calcium tablets. Liver problems. Your doctor should do blood tests to check your liver before you start taking atorvastatin calcium tablets, and if you have symptoms of liver problems while you take atorvastatin calcium tablets. Call your doctor right away if you have the following symptoms of liver problems: feel tired or weak loss of appetite upper belly pain dark amber colored urine yellowing of your skin or the whites of your eyes Call your doctor right away if you have: muscle problems like weakness, tenderness, or pain that happen without a good reason, especially if you also have a fever or feel more tired than usual. This may be an early sign of a rare muscle problem. muscle problems that do not go away even after your doctor has advised you to stop taking atorvastatin calcium tablets. Your doctor may do further tests to diagnose the cause of your muscle problems. allergic reactions including swelling of the face, lips, tongue, and/or throat that may cause difficulty in breathing or swallowing which may require treatment right away. nausea and vomiting. passing brown or dark-colored urine. you feel more tired than usual your skin and whites of your eyes get yellow. stomach pain. allergic skin reactions. In clinical studies, patients reported the following common side effects while taking atorvastatin calcium: diarrhea, upset stomach, muscle and joint pain, and alterations in some laboratory blood tests. The following additional side effects have been reported with atorvastatin calcium tablets: tiredness, tendon problems, memory loss, and confusion. Talk to your doctor or pharmacist if you have side effects that bother you or that will not go away. These are not all the side effects of atorvastatin calcium tablets. Ask your doctor or pharmacist for a complete list. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. How do I store Atorvastatin Calcium Tablets Store atorvastatin calcium tablets at room temperature, 68 – 77° F (20 – 25° C). Do not keep medicine that is out of date or that you no longer need. Keep atorvastatin calcium tablets and all medicines out of the reach of children. Be sure that if you throw medicine away, it is out of the reach of children. General Information About Atorvastatin Calcium Tablets Medicines are sometimes prescribed for conditions that are not mentioned in patient information leaflets. Do not use atorvastatin calcium tablets for a condition for which it was not prescribed. Do not give atorvastatin calcium tablets to other people, even if they have the same problem you have. It may harm them. This leaflet summarizes the most important information about atorvastatin calcium tablets. If you would like more information, talk with your doctor. You can ask your doctor or pharmacist for information about atorvastatin calcium tablets that is written for health professionals. What are the Ingredients in Atorvastatin Calcium Tablets? Active Ingredient: atorvastatin calcium, USP Inactive Ingredients: calcium carbonate; candelilla wax, FCC; croscarmellose sodium; hydroxypropyl cellulose; hypromellose; lactose monohydrate; magnesium stearate; microcrystalline cellulose; polyethylene glycol; polysorbate 80; simethicone emulsion; talc, and titanium dioxide. Manufactured for: Ranbaxy Pharmaceuticals Inc. Jacksonville, FL 32257 USA by: Ohm Laboratories Inc. North Brunswick, NJ 08902 USA AND BY: Ranbaxy Laboratories Ltd. New Delhi – 110019, India Repackaged By : Aidarex Pharmaceuticals LLC, Corona, CA 92880 November 2012

DOSAGE AND ADMINISTRATION

2 Dose range: 10 to 80 mg once daily (2.1). Recommended start dose: 10 or 20 mg once daily (2.1). Patients requiring large LDL-C reduction (> 45%) may start at 40 mg once daily (2.1). Pediatric starting dose: 10 mg once daily; maximum recommended dose: 20 mg once daily (2.2). 2.1 Hyperlipidemia (Heterozygous Familial and Nonfamilial) and Mixed Dyslipidemia (Fredrickson Types IIa and IIb) The recommended starting dose of atorvastatin calcium tablets is 10 or 20 mg once daily. Patients who require a large reduction in LDL-C (more than 45%) may be started at 40 mg once daily. The dosage range of atorvastatin calcium tablets is 10 to 80 mg once daily. Atorvastatin calcium tablets can be administered as a single dose at any time of the day, with or without food. The starting dose and maintenance doses of atorvastatin calcium tablets should be individualized according to patient characteristics such as goal of therapy and response (see current NCEP Guidelines). After initiation and/or upon titration of atorvastatin calcium tablets, lipid levels should be analyzed within 2 to 4 weeks and dosage adjusted accordingly. 2.2 Heterozygous Familial Hypercholesterolemia in Pediatric Patients (10 to 17 years of age) The recommended starting dose of atorvastatin calcium tablets is 10 mg/day; the maximum recommended dose is 20 mg/day (doses greater than 20 mg have not been studied in this patient population). Doses should be individualized according to the recommended goal of therapy [see current NCEP Pediatric Panel Guidelines, Clinical Pharmacolog y (12), and Indications and Usage (1.2)]. Adjustments should be made at intervals of 4 weeks or more. 2.3 Homozygous Familial Hypercholesterolemia The dosage of atorvastatin calcium tablets in patients with homozygous FH is 10 to 80 mg daily. Atorvastatin calcium tablets should be used as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) in these patients or if such treatments are unavailable. 2.4 Concomitant Lipid-Lowering Therapy Atorvastatin calcium tablets may be used with bile acid resins. The combination of HMG-CoA reductase inhibitors (statins) and fibrates should generally be used with caution [see Warnings and Precautions, Skeletal Muscle (5.1), Drug Interactions (7)]. 2.5 Dosage in Patients With Renal Impairment Renal disease does not affect the plasma concentrations nor LDL-C reduction of atorvastatin calcium tablets; thus, dosage adjustment in patients with renal dysfunction is not necessary [see Warnings and Precautions, Skeletal Muscle (5.1), Clinical Pharmacology, Pharmacokinetics (12.3)]. 2.6 Dosage in Patients Taking Cyclosporine, Clarithromycin, Itraconazole, or Certain Protease Inhibitors In patients taking cyclosporine or the HIV protease inhibitors (tipranavir plus ritonavir) or the hepatitis C protease inhibitor (telaprevir), therapy with atorvastatin calcium tablets should be avoided. In patients with HIV taking lopinavir plus ritonavir, caution should be used when prescribing atorvastatin calcium tablets and the lowest dose necessary employed. In patients taking clarithromycin, itraconazole, or in patients with HIV taking a combination of saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, therapy with atorvastatin calcium tablets should be limited to 20 mg, and appropriate clinical assessment is recommended to ensure that the lowest dose necessary of atorvastatin calcium tablets is employed. In patients taking the HIV protease inhibitor nelfinavir or the hepatitis C protease inhibitor boceprevir, therapy with atorvastatin calcium tablets should be limited to 40 mg, and appropriate clinical assessment is recommended to ensure that the lowest dose necessary of atorvastatin calcium tablets is employed [see Warnings and Precautions, Skeletal Muscle (5.1), Drug Interactions (7)].

alfuzosin HCl 10 MG 24HR Extended Release Oral Tablet

DRUG INTERACTIONS

7 Concomitant use of PDE5 inhibitors with alpha adrenergic antagonists, including UROXATRAL, can potentially cause symptomatic hypotension (5.4, 7.4) 7.1 CYP3A4 Inhibitors UROXATRAL is contraindicated for use with potent CYP3A4 inhibitors such as ketoconazole, itraconazole, or ritonavir, since alfuzosin blood levels are increased [see Contraindications (4), Warnings and Precautions (5.4) and Clinical Pharmacology (12.3)]. 7.2 Alpha Adrenergic Antagonists The pharmacokinetic and pharmacodynamic interactions between UROXATRAL and other alpha adrenergic antagonists have not been determined. However, interactions may be expected, and UROXATRAL should not be used in combination with other alpha adrenergic antagonists [see Warnings and Precautions (5.4)]. 7.3 Antihypertensive Medication and Nitrates There may be an increased risk of hypotension/postural hypotension and syncope when taking UROXATRAL concomitantly with anti-hypertensive medication and nitrates [see Warnings and Precautions (5.1)]. 7.4 PDE5 Inhibitors Caution is advised when alpha adrenergic antagonists, including UROXATRAL, are co-administered with PDE5 inhibitors. Alpha adrenergic antagonists and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [see Warnings and Precautions (5.4)].

OVERDOSAGE

10 Should overdose of UROXATRAL lead to hypotension, support of the cardiovascular system is of first importance. Restoration of blood pressure and normalization of heart rate may be accomplished by keeping the patient in the supine position. If this measure is inadequate, then the administration of intravenous fluids should be considered. If necessary, vasopressors should then be used, and the renal function should be monitored and supported as needed. Alfuzosin is 82% to 90% protein bound; therefore, dialysis may not be of benefit.

DESCRIPTION

11 Each UROXATRAL extended-release tablet contains 10 mg alfuzosin hydrochloride as the active ingredient. Alfuzosin hydrochloride is a white to off-white crystalline powder that melts at approximately 240°C. It is freely soluble in water, sparingly soluble in alcohol, and practically insoluble in dichloromethane. Alfuzosin hydrochloride is (R,S)-N-[3-[(4-amino-6,7-dimethoxy-2-quinazolinyl) methylamino] propyl] tetrahydro-2-furancarboxamide hydrochloride. The empirical formula of alfuzosin hydrochloride is C19H27N5O4•HCl. The molecular weight of alfuzosin hydrochloride is 425.9. Its structural formula is: The tablet also contains the following inactive ingredients: colloidal silicon dioxide (NF), ethylcellulose (NF), hydrogenated castor oil (NF), hydroxypropyl methylcellulose (USP), magnesium stearate (NF), mannitol (USP), microcrystalline cellulose (NF), povidone (USP), and yellow ferric oxide (NF). Chemical Structure

CLINICAL STUDIES

14 Three randomized placebo-controlled, double-blind, parallel-arm, 12-week trials were conducted with the 10 mg daily dose of alfuzosin. In these three trials, 1,608 patients [mean age 64.2 years, range 49–92 years; Caucasian (96.1%), Black (1.6%), Asian (1.1%), Other (1.2%)] were randomized and 473 patients received UROXATRAL 10 mg daily. Table 4 provides the results of the three trials that evaluated the 10 mg dose. There were two primary efficacy variables in these three studies. The International Prostate Symptom Score (IPSS, or AUA Symptom Score) consists of seven questions that assess the severity of both irritative (frequency, urgency, nocturia) and obstructive (incomplete emptying, stopping and starting, weak stream, and pushing or straining) symptoms, with possible scores ranging from 0 to 35 with higher numerical scores on the IPSS total symptom score representing greater severity of symptoms. The second efficacy variable was peak urinary flow rate. The peak flow rate was measured just prior to the next dose in study 2 and on average at 16 hours post-dosing in trials 1 and 3. There was a statistically significant reduction from baseline to last assessment (Week 12) in the IPSS total symptom score versus placebo in all three studies, indicating a reduction in symptom severity (Table 5 and Figures 2, 3, and 4). Table 4 — Mean Change (SD) from Baseline to week 12 in International Prostate Symptom Score in Three Randomized, Controlled, Double Blind Trials Symptom Score Trial 1 Trial 2 Trial 3 Placebo (n=167) UROXATRAL 10 mg (n=170) Placebo (n=152) UROXATRAL 10 mg (n=137) Placebo (n=150) UROXATRAL 10 mg (n=151) Total symptom score Baseline 18.2 (6.4) 18.2 (6.3) 17.7 (4.1) 17.3 (3.5) 17.7 (5.0) 18.0 (5.4) ChangeDifference between baseline and week 12. -1.6 (5.8) -3.6 (4.8) -4.9 (5.9) -6.9 (4.9) -4.6 (5.8) -6.5 (5.2) p-value 0.001 0.002 0.007 Figure 2 — Mean Change from Baseline in IPSS Total Symptom Score: Trial 1 Figure 3 — Mean Change from Baseline in IPSS Total Symptom Score: Trial 2 Figure 4 — Mean Change from Baseline in IPSS Total Symptom Score: Trial 3 Peak urinary flow rate was increased statistically significantly from baseline to last assessment (Week 12) versus placebo in trials 1 and 2 (Table 5 and Figures 5, 6, and 7). Table 5 — Mean (SD) Change from Baseline to Week 12 in Peak Urine Flow Rate (mL/sec) in Three Randomized, Controlled, Double-Blind Trials Trial 1 Trial 2 Trial 3 Placebo (n=167) UROXATRAL 10 mg (n=170) Placebo (n=147) UROXATRAL 10 mg (n=136) Placebo (n=180) UROXATRAL 10 mg (n=151) Mean Peak flow rate Baseline 10.2 (4.0) 9.9 (3.9) 9.2 (2.0) 9.4 (1.9) 9.3 (2.6) 9.5 (3.0) ChangeDifference between baseline and week 12. 0.2 (3.5) 1.7 (4.2) 1.4 (3.2) 2.3 (3.6) 0.9 (3.0) 1.5 (3.3) p-value 0.0004 0.03 0.22 Figure 5 — Mean Change from Baseline in Peak Urine Flow Rate (mL/s): Trial 1 Figure 6 — Mean Change from Baseline in Peak Urine Flow Rate (mL/s): Trial 2 Figure 7 — Mean Change from Baseline in Peak Urine Flow Rate (mL/s): Trial 3 Mean total IPSS decreased at the first scheduled observation at Day 28 and mean peak flow rate increased starting at the first scheduled observation at Day 14 in trials 2 and 3 and Day 28 in trial 1. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

HOW SUPPLIED

16 /STORAGE AND HANDLING UROXATRAL is supplied as follows: Package NDC Number Bottles of 100 24987-200-10 & 24987-200-20 UROXATRAL (alfuzosin HCl) extended-release tablet 10 mg is available as a round, three-layer tablet: one white layer between two yellow layers, debossed with X10. Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture. Keep UROXATRAL out of reach of children.

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects in clinical studies of UROXATRAL, 48% were 65 years of age and over, whereas 11% were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity of some older individuals cannot be ruled out [see Clinical Pharmacology (12.3)]

DOSAGE FORMS AND STRENGTHS

3 UROXATRAL (alfuzosin HCl) extended-release tablet 10 mg is available as a round, three-layer tablet: one white layer between two yellow layers, debossed with X10. Extended-release tablet: 10 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Alfuzosin is a selective antagonist of post-synaptic alpha1-adrenoreceptors, which are located in the prostate, bladder base, bladder neck, prostatic capsule, and prostatic urethra.

INDICATIONS AND USAGE

1 UROXATRAL is indicated for the treatment of signs and symptoms of benign prostatic hyperplasia. UROXATRAL is an alpha adrenergic antagonist, indicated for the treatment of signs and symptoms of benign prostatic hyperplasia. (1) Important Limitations of Use: UROXATRAL is not indicated for treatment of hypertension. (1.1) UROXATRAL is not indicated for use in the pediatric population. (1.1, 8.4, 12.3) 1.1 Important Limitations of Use UROXATRAL is not indicated for the treatment of hypertension. UROXATRAL is not indicated for use in the pediatric population.

PEDIATRIC USE

8.4 Pediatric Use UROXATRAL is not indicated for use in the pediatric population. Efficacy of alfuzosin hydrochloride was not demonstrated in a randomized, double-blind, placebo-controlled, efficacy and safety trial conducted in 172 patients ages 2 to 16 years with elevated detrusor leak point pressure (LPP≥40 cm H2O) of neurologic origin treated with alfuzosin hydrochloride using pediatric formulations. The trial included a 12-week efficacy phase followed by a 40-week safety extension period. No statistically significant difference in the proportion of patients achieving a detrusor leak point pressure of <40 cmH20 was observed between the alfuzosin and placebo groups. During the placebo-controlled trial, the adverse reactions reported in ≥2% of patients treated with alfuzosin and at a higher incidence than in the placebo group were: pyrexia, headache, respiratory tract infection, cough, epistaxis and diarrhea. The adverse reactions reported for the whole 12-month trial period, which included the open-label extension, were similar in type and frequency to the reactions observed during the 12-week period. Alfuzosin hydrochloride was not studied in patients below the age of 2.

PREGNANCY

8.1 Pregnancy Pregnancy Category B. UROXATRAL is not indicated for use in women, and there are no studies of alfuzosin in pregnant women Alfuzosin was not teratogenic, embryotoxic or fetotoxic in rats at plasma exposure levels (based on AUC of unbound drug) up to 1200 times (maternal oral dose of 250 mg/kg/day) the maximum recommended human dose (MRHD) of 10 mg. In rabbits administered up to 3 times the MRHD (based on body surface area) (maternal oral dose of 100 mg/kg/day) no embryofetal toxicity or teratogenicity was observed. Gestation was slightly prolonged in rats at exposure levels (based on AUC of unbound drug) approximately 12 times (greater than 5 mg/kg/day oral maternal dose) the MRHD, but difficulties with parturition were not observed.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Postural hypotension/syncope: Care should be taken in patients with symptomatic hypotension or who have had a hypotensive response to other medications or are concomitantly treated with antihypertensive medication or nitrates (5.1) Use with caution in patients with severe renal impairment (creatinine clearance <30 mL/min) (5.2, 8.6, 12.3) Use with caution in patients with mild hepatic impairment (5.3, 8.7, 12.3) Should not be used in combination with other alpha adrenergic antagonists (5.4, 7.2) Prostate carcinoma should be ruled out prior to treatment (5.5) Intraoperative Floppy Iris Syndrome (IFIS) during cataract surgery may require modifications to the surgical technique (5.6) Discontinue UROXATRAL if symptoms of angina pectoris appear or worsen (5.8) Use with caution in patients with a history of QT prolongation or who are taking medications which prolong the QT interval (5.9, 12.2) 5.1 Postural Hypotension Postural hypotension with or without symptoms (e.g., dizziness) may develop within a few hours following administration of UROXATRAL. As with other alpha adrenergic antagonists, there is a potential for syncope. Patients should be warned of the possible occurrence of such events and should avoid situations where injury could result should syncope occur. There may be an increased risk of hypotension/postural hypotension and syncope when taking UROXATRAL concomitantly with anti-hypertensive medication and nitrates. Care should be taken when UROXATRAL is administered to patients with symptomatic hypotension or patients who have had a hypotensive response to other medications. 5.2 Patients with Renal Impairment Caution should be exercised when UROXATRAL is administered in patients with severe renal impairment (creatinine clearance < 30 mL/min) [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)]. 5.3 Patients with Hepatic Impairment UROXATRAL is contraindicated for use in patients with moderate or severe hepatic impairment [see Contraindications (4), Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)]. Although the pharmacokinetics of UROXATRAL have not been studied in patients with mild hepatic impairment, caution should be exercised when UROXATRAL is administered to such patients [see Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)]. 5.4 Drug-Drug Interactions Potent CYP3A4 Inhibitors: UROXATRAL is contraindicated for use with potent CYP3A4 inhibitors (e.g. ketoconazole, itraconazole, ritonavir) since alfuzosin blood levels are increased [see Contraindications (4), Drug Interactions (7.1) and Clinical Pharmacology (12.3)]. Other alpha adrenergic antagonists: UROXATRAL is an alpha adrenergic antagonist and should not be used in combination with other alpha adrenergic antagonist [see Drug Interactions (7.2)]. Phosphodiesterase-5 (PDE5) Inhibitors: PDE5-inhibitors are also vasodilators. Caution is advised for concomitant use of PDE5-inhibitors and UROXATRAL, as this combination can potentially cause symptomatic hypotension [see Drug Interactions (7.4)]. 5.5 Prostatic Carcinoma Carcinoma of the prostate and benign prostatic hyperplasia (BPH) cause many of the same symptoms. These two diseases frequently coexist. Therefore, patients thought to have BPH should be examined to rule out the presence of carcinoma of the prostate prior to starting treatment with UROXATRAL. 5.6 Intraoperative Floppy Iris Syndrome (IFIS) IFIS has been observed during cataract surgery in some patients on or previously treated with alpha adrenergic antagonists. This variant of small pupil syndrome is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs, and potential prolapse of the iris toward the phacoemulsification incisions. The patient's ophthalmologist should be prepared for possible modifications to their surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. There does not appear to be a benefit of stopping alpha adrenergic antagonist therapy prior to cataract surgery. 5.7 Priapism Rarely (probably less than 1 in 50,000), alfuzosin, like other alpha adrenergic antagonists, has been associated with priapism (persistent painful penile erection unrelated to sexual activity). Because this condition can lead to permanent impotence if not properly treated, patients should be advised about the seriousness of the condition [see Adverse Reactions (6.2) and Patient Counseling Information [17.3]). 5.8 Coronary Insufficiency If symptoms of angina pectoris should appear or worsen, UROXATRAL should be discontinued. 5.9 Patients with Congenital or Acquired QT Prolongation Use with caution in patients with acquired or congenital QT prolongation or who are taking medications that prolong the QT interval [see Clinical Pharmacology (12.2)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved patient labeling 17.1 Hypotension/Syncope Patients should be told about the possible occurrence of symptoms related to postural hypotension, such as dizziness, when beginning UROXATRAL, and they should be cautioned about driving, operating machinery, or performing hazardous tasks during this period. This is important for those with low blood pressure or who are taking antihypertensive medications or nitrates [see Warnings and Precautions (5.1)]. 17.2 Intraoperative Floppy Iris Syndrome Patients should be instructed to tell their ophthalmologist about their use of UROXATRAL before cataract surgery or other procedures involving the eyes, even if the patient is no longer taking UROXATRAL [see Warnings and Precautions (5.6)]. 17.3 Priapism Patients should be advised about the possibility of priapism resulting from treatment with UROXATRAL and medications in the same class. Although this reaction is extremely rare, but if not brought to immediate medical attention, can lead to permanent erectile dysfunction (impotence) [see Warnings and Precautions (5.7)]. 17.4 Instructions of Use UROXATRAL should be taken with food and with the same meal each day. Patients should be advised not to crush or chew UROXATRAL tablets. Distributed by Covis Pharmaceuticals, Inc. Cary, NC 27511 ©2013, Covis Pharmaceuticals Inc. All rights reserved

DOSAGE AND ADMINISTRATION

2 The recommended dosage is one 10 mg UROXATRAL (alfuzosin HCl) extended-release tablet once daily. The extent of absorption of alfuzosin is 50% lower under fasting conditions. Therefore, Uroxatral should be taken with food and with the same meal each day. The tablets should not be chewed or crushed. 10 mg once daily with food and with the same meal each day. (2) Tablets should not be chewed or crushed (2, 12.3)

Amiodarone hydrochloride 200 MG Oral Tablet

Generic Name: AMIODARONE HYDROCHLORIDE
Brand Name: Amiodarone hydrochloride
  • Substance Name(s):
  • AMIODARONE HYDROCHLORIDE

WARNINGS

Amiodarone is intended for use only in patients with the indicated life-threatening arrhythmias because its use is accompanied by substantial toxicity. Amiodarone has several potentially fatal toxicities, the most important of which is pulmonary toxicity (hypersensitivity pneumonitis or interstitial/alveolar pneumonitis) that has resulted in clinically manifest disease at rates as high as 10 to 17% in some series of patients with ventricular arrhythmias given doses around 400 mg/day, and as abnormal diffusion capacity without symptoms in a much higher percentage of patients. Pulmonary toxicity has been fatal about 10% of the time. Liver injury is common with amiodarone, but is usually mild and evidenced only by abnormal liver enzymes. Overt liver disease can occur, however, and has been fatal in a few cases. Like other antiarrhythmics, amiodarone can exacerbate the arrhythmia, e.g., by making the arrhythmia less well tolerated or more difficult to reverse. This has occurred in 2 to 5% of patients in various series, and significant heart block or sinus bradycardia has been seen in 2 to 5%. All of these events should be manageable in the proper clinical setting in most cases. Although the frequency of such proarrhythmic events does not appear greater with amiodarone than with many other agents used in this population, the effects are prolonged when they occur. Even in patients at high risk of arrhythmic death, in whom the toxicity of amiodarone is an acceptable risk, amiodarone poses major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first. The difficulty of using amiodarone effectively and safely itself poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of amiodarone is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when amiodarone must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when amiodarone is not effective; it still poses the risk of an interaction with whatever subsequent treatment is tried. Mortality: In the National Heart, Lung and Blood Institute’s Cardiac Arrhythmia Suppression Trial (CAST), a long-term, multi-centered, randomized, double-blind study in patients with asymptomatic non-life-threatening ventricular arrhythmias who had had myocardial infarctions more than six days but less than two years previously, an excessive mortality or non-fatal cardiac arrest rate was seen in patients treated with encainide or flecainide (56/730) compared with that seen in patients assigned to matched placebo-treated groups (22/725). The average duration of treatment with encainide or flecainide in this study was ten months. Amiodarone therapy was evaluated in two multi-centered, randomized, double-blind, placebo-controlled trials involving 1202 (Canadian Amiodarone Myocardial Infarction Arrhythmia Trial; CAMIAT) and 1486 (European Myocardial Infarction Amiodarone Trial; EMIAT) post-MI patients followed for up to 2 years. Patients in CAMIAT qualified with ventricular arrhythmias, and those randomized to amiodarone received weight- and response-adjusted doses of 200 to 400 mg/day. Patients in EMIAT qualified with ejection fraction <40%, and those randomized to amiodarone received fixed doses of 200 mg/day. Both studies had weeks-long loading dose schedules. Intent-to-treat all-cause mortality results were as follows: Placebo Amiodarone Relative Risk N Deaths N Deaths 95%CI EMIAT 743 102 743 103 0.99 0.76-1.31 CAMIAT 596 68 606 57 0.88 0.58-1.16 These data are consistent with the results of a pooled analysis of smaller, controlled studies involving patients with structural heart disease (including myocardial infarction). Pulmonary Toxicity: There have been post-marketing reports of acute-onset (days to weeks) pulmonary injury in patients treated with oral amiodarone with or without initial I.V. therapy. Findings have included pulmonary infiltrates and/or mass on X-ray, pulmonary alveolar hemorrhage, pleural effusion, bronchospasm, wheezing, fever, dyspnea, cough, hemoptysis, and hypoxia. Some cases have progressed to respiratory failure and/or death. Post-marketing reports describe cases of pulmonary toxicity in patients treated with low doses of amiodarone; however, reports suggest that the use of lower loading and maintenance doses of amiodarone are associated with a decreased incidence of amiodarone-induced pulmonary toxicity. Amiodarone hydrochloride tablets may cause a clinical syndrome of cough and progressive dyspnea accompanied by functional, radiographic, gallium-scan, and pathological data consistent with pulmonary toxicity, the frequency of which varies from 2 to 7% in most published reports, but is as high as 10 to 17% in some reports. Therefore, when amiodarone therapy is initiated, a baseline chest X-ray and pulmonary-function tests, including diffusion capacity, should be performed. The patient should return for a history, physical exam, and chest X-ray every 3 to 6 months. Pulmonary toxicity secondary to amiodarone seems to result from either indirect or direct toxicity as represented by hypersensitivity pneumonitis (including eosinophilic pneumonia) or interstitial/alveolar pneumonitis, respectively. Patients with preexisting pulmonary disease have a poorer prognosis if pulmonary toxicity develops. Hypersensitivity pneumonitis usually appears earlier in the course of therapy, and rechallenging these patients with amiodarone results in a more rapid recurrence of greater severity. Bronchoalveolar lavage is the procedure of choice to confirm this diagnosis, which can be made when a T suppressor/cytotoxic (CD8-positive) lymphocytosis is noted. Steroid therapy should be instituted and amiodarone therapy discontinued in these patients. Interstitial/alveolar pneumonitis may result from the release of oxygen radicals and/or phospholipidosis and is characterized by findings of diffuse alveolar damage, interstitial pneumonitis or fibrosis in lung biopsy specimens. Phospholipidosis (foamy cells, foamy macrophages), due to inhibition of phospholipase, will be present in most cases of amiodarone-induced pulmonary toxicity; however, these changes also are present in approximately 50% of all patients on amiodarone therapy. These cells should be used as markers of therapy, but not as evidence of toxicity. A diagnosis of amiodarone-induced interstitial/alveolar pneumonitis should lead, at a minimum, to dose reduction or, preferably, to withdrawal of the amiodarone to establish reversibility, especially if other acceptable antiarrhythmic therapies are available. Where these measures have been instituted, a reduction in symptoms of amiodarone-induced pulmonary toxicity was usually noted within the first week, and a clinical improvement was greatest in the first two to three weeks. Chest X-ray changes usually resolve within two to four months. According to some experts, steroids may prove beneficial. Prednisone in doses of 40 to 60 mg/day or equivalent doses of other steroids have been given and tapered over the course of several weeks depending upon the condition of the patient. In some cases rechallenge with amiodarone at a lower dose has not resulted in return of toxicity. In a patient receiving amiodarone, any new respiratory symptoms should suggest the possibility of pulmonary toxicity, and the history, physical exam, chest X-ray, and pulmonary-function tests (with diffusion capacity) should be repeated and evaluated. A 15% decrease in diffusion capacity has a high sensitivity but only a moderate specificity for pulmonary toxicity; as the decrease in diffusion capacity approaches 30%, the sensitivity decreases but the specificity increases. A gallium-scan also may be performed as part of the diagnostic workup. Fatalities, secondary to pulmonary toxicity, have occurred in approximately 10% of cases. However, in patients with life-threatening arrhythmias, discontinuation of amiodarone therapy due to suspected drug-induced pulmonary toxicity should be undertaken with caution, as the most common cause of death in these patients is sudden cardiac death. Therefore, every effort should be made to rule out other causes of respiratory impairment (i.e., congestive heart failure with Swan-Ganz catheterization if necessary, respiratory infection, pulmonary embolism, malignancy, etc.) before discontinuing amiodarone in these patients. In addition, bronchoalveolar lavage, transbronchial lung biopsy and/or open lung biopsy may be necessary to confirm the diagnosis, especially in those cases where no acceptable alternative therapy is available. If a diagnosis of amiodarone-induced hypersensitivity pneumonitis is made, amiodarone should be discontinued, and treatment with steroids should be instituted. If a diagnosis of amiodarone-induced interstitial/alveolar pneumonitis is made, steroid therapy should be instituted and, preferably, amiodarone discontinued or, at a minimum, reduced in dosage. Some cases of amiodarone-induced interstitial/alveolar pneumonitis may resolve following a reduction in amiodarone dosage in conjunction with the administration of steroids. In some patients, rechallenge at a lower dose has not resulted in return of interstitial/alveolar pneumonitis; however, in some patients (perhaps because of severe alveolar damage) the pulmonary lesions have not been reversible. Worsened Arrhythmia: Amiodarone, like other antiarrhythmics, can cause serious exacerbation of the presenting arrhythmia and has been reported in about 2 to 5% in most series, and has included new ventricular fibrillation, incessant ventricular tachycardia, increased resistance to cardioversion, and polymorphic ventricular tachycardia associated with QTc prolongation (Torsade de Pointes [TdP]). In addition, amiodarone has caused symptomatic bradycardia or sinus arrest with suppression of escape foci in 2 to 4% of patients. The risk of exacerbation may be increased when other risk factors are present such as electrolytic disorders or use of concomitant antiarrhythmics or other interacting drugs (see See "Precautions, Drug Interactions"). Correct hypokalemia, hypomagnesemia or hypocalcemia whenever possible before initiating treatment with amiodarone, as these disorders can exaggerate the degree of QTc prolongation and increase the potential for TdP. Give special attention to electrolyte and acid-base balance in patients experiencing severe or prolonged diarrhea or in patients receiving concomitant diuretics and laxatives, systemic corticosteroids, amphotericin B (IV) or other drugs affecting electrolyte levels. The need to co-administer amiodarone with any other drug known to prolong the QTc interval must be based on a careful assessment of the potential risks and benefits of doing so for each patient. Serious Symptomatic Bradycardia When Co-administered with Ledipasvir/Sofosbuvir or with Sofosbuvir with Simeprevir Postmarketing cases of symptomatic bradycardia, some requiring pacemaker insertion and at least one fatal, have been reported when ledipasvir/sofosbuvir or sofosbuvir with simeprevir were initiated in patients on amiodarone. Bradycardia generally occurred within hours to days, but in some cases up to 2 weeks after initiating antiviral treatment. Bradycardia generally resolved after discontinuation of antiviral treatment. The mechanism for this effect is unknown. Monitor heart rate in patients taking or recently discontinuing amiodarone when starting antiviral treatment. Implantable Cardiac Devices In patients with implanted defibrillators or pacemakers, chronic administration of antiarrhythmic drugs may affect pacing or defibrillating thresholds. Therefore, at the inception of and during amiodarone treatment, pacing and defibrillation thresholds should be assessed. Thyrotoxicosis: Amiodarone-induced hyperthyroidism may result in thyrotoxicosis and/or the possibility of arrhythmia breakthrough or aggravation. There have been reports of death associated with amiodarone-induced thyrotoxicosis. IF ANY NEW SIGNS OF ARRHYTHMIA APPEAR, THE POSSIBILITY OF HYPERTHYROIDISM SHOULD BE CONSIDERED (see PRECAUTIONS, Thyroid Abnormalities). Liver Injury: Elevations of hepatic enzyme levels are seen frequently in patients exposed to amiodarone and in most cases are asymptomatic. If the increase exceeds three times normal, or doubles in a patient with an elevated baseline, discontinuation of amiodarone or dosage reduction should be considered. In a few cases in which biopsy has been done, the histology has resembled that of alcoholic hepatitis or cirrhosis. Hepatic failure has been a rare cause of death in patients treated with amiodarone. Loss of Vision: Cases of optic neuropathy and/or optic neuritis, usually resulting in visual impairment, have been reported in patients treated with amiodarone. In some cases, visual impairment has progressed to permanent blindness. Optic neuropathy and/or neuritis may occur at any time following initiation of therapy. A causal relationship to the drug has not been clearly established. If symptoms of visual impairment appear, such as changes in visual acuity and decreases in peripheral vision, prompt ophthalmic examination is recommended. Appearance of optic neuropathy and/or neuritis calls for re-evaluation of amiodarone therapy. The risks and complications of antiarrhythmic therapy with amiodarone must be weighed against its benefits in patients whose lives are threatened by cardiac arrhythmias. Regular ophthalmic examination, including funduscopy and slit-lamp examination, is recommended during administration of amiodarone (see ADVERSE REACTIONS). Neonatal Hypo- or Hyperthyroidism: Amiodarone can cause fetal harm when administered to a pregnant woman. Fetal exposure may increase the potential for adverse experiences including cardiac, thyroid, neurodevelopmental, neurological and growth effects in neonate. Inform the patient of the potential hazard to the fetus if amiodarone hydrochloride tablets are administered during pregnancy or if the patient becomes pregnant while taking amiodarone hydrochloride tablets. In pregnant rats and rabbits, amiodarone hydrochloride in doses of 25 mg/kg/day (approximately 0.4 and 0.9 times, respectively, the maximum recommended human maintenance dose*) had no adverse effects on the fetus. In the rabbit, 75 mg/kg/day (approximately 2.7 times the maximum recommended human maintenance dose*) caused abortions in greater than 90% of the animals. In the rat, doses of 50 mg/kg/day or more were associated with slight displacement of the testes and an increased incidence of incomplete ossification of some skull and digital bones; at 100 mg/kg/day or more, fetal body weights were reduced; at 200 mg/kg/day, there was an increased incidence of fetal resorption. (These doses in the rat are approximately 0.8, 1.6 and 3.2 times the maximum recommended human maintenance dose*). Adverse effects on fetal growth and survival also were noted in one of two strains of mice at a dose of 5 mg/kg/day (approximately 0.04 times the maximum recommended human maintenance dose*). *600 mg in a 50 kg patient (doses compared on a body surface area basis)

DRUG INTERACTIONS

Drug Interactions: In view of the long and variable half-life of amiodarone, potential for drug interactions exists, not only with concomitant medication, but also with drugs administered after discontinuation of amiodarone. Pharmacodynamic interactions Drugs inducing TdP or prolonging QT Co-administration of amiodarone with drugs known to prolong the QT interval (such as class I and III antiarrhythmics, lithium, certain phenothiazines, tricyclic antidepressants, certain fluoroquinolone and macrolide antibiotics, IV pentamidine, and azole antifungals) increases the risk of Torsades de Points. Avoid concomitant use of drugs that prolong the QT interval. Drugs lowering heart rate or causing automaticity or conduction disorders Concomitant use of drugs with depressant effects on the sinus and AV node (e.g., digoxin, beta blockers, verapamil, diltiazem, clonidine) can potentiate the electrophysiologic and hemodynamic effects of amiodarone, resulting in bradycardia, sinus arrest, and AV block. Monitor heart rate in patients on amiodarone and concomitant drugs that slow heart rate. Pharmocokinetic interactions Effects of other medicinal products on amiodarone Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit CYP3A (e.g., certain protease inhibitors, loratadine, cimetidine, trazodone) may decrease the metabolism and increase serum concentrations of amiodarone. Concomitant use of CYP3A inducers (rifampin, St. John’s Wort), may lead to decreased serum concentrations and loss of efficacy. Consider serial measurement of amiodarone serum concentration during concomitant use of drugs affecting CYP3A activity. Grapefruit juice given to healthy volunteers increased amiodarone AUC by 50% and Cmax by 84%, and decreased DEA to unquantifiable concentrations. Grapefruit juice inhibits CYP3A-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone; therefore, grapefruit juice should not be taken during treatment with oral amiodarone. This information should be considered when transitioning from intravenous to oral amiodarone. Cholestyramine reduces enterohepatic circulation of amiodarone thereby increasing its elimination. This results in reduced amiodarone serum levels and half-life. Effects of amiodarone on other medicinal products Amiodarone inhibits P-glycoprotein and certain CYP450 enzymes, including CYP1A2, CYP2C9, CYP2D6, and CYP3A. This inhibition can result in unexpectedly high plasma levels of other drugs which are metabolized by those CYP450 enzymes or are substrates of P-glycoprotein. Reported examples of this interaction include the following: Cyclosporine (CYP3A substrate) administered in combination with oral amiodarone has been reported to produce persistently elevated plasma concentrations of cyclosporine resulting in elevated creatinine, despite reduction in dose of cyclosporine. Monitor cyclosporine drug levels and renal function in patients taking both drugs. HMG-CoA reductase inhibitors: The use of HMG-CoA reductase inhibitors that are CYP3A substrates in combination with amiodarone has been associated with reports of myopathy/rhabdomyolysis. Limit the dose of simvastatin in patients on amiodarone to 20 mg daily. Limit the daily dose of lovastatin to 40 mg. Lower starting and maintenance doses of other CYP3A substrates (e.g., atorvastatin) may be required as amiodarone may increase the plasma concentration of these drugs. Digoxin In patients receiving digoxin therapy, administration of oral amiodarone results in an increase in the serum digoxin concentration. Amiodarone taken concomitantly with digoxin increases the serum digoxin concentration by 70% after one day. On initiation of oral amiodarone, the need for digitalis therapy should be reviewed and the dose reduced by approximately 50% or discontinued. If digitalis treatment is continued, serum levels should be closely monitored and patients observed for clinical evidence of toxicity. Antiarrhythmics The metabolism of quinidine, procainamide, flecainide can be inhibited by amiodarone. Amiodarone taken concomitantly with quinidine increases quinidine serum concentration by 33% after two days. Amiodarone taken concomitantly with procainamide for less than seven days increases plasma concentrations of procainamide and n-acetyl procainamide by 55% and 33%, respectively. In general, any added antiarrhythmic drug should be initiated at a lower than usual dose with careful monitoring. Combination of amiodarone with other antiarrhythmic therapy should be reserved for patients with life-threatening ventricular arrhythmias who are incompletely responsive to a single agent or incompletely responsive to amiodarone. During transition to amiodarone the dose levels of previously administered agents should be reduced by 30 to 50% several days after the addition of amiodarone, when arrhythmia suppression should be beginning. The continued need for the other antiarrhythmic agent should be reviewed after the effects of amiodarone have been established, and discontinuation ordinarily should be attempted. If the treatment is continued, these patients should be particularly carefully monitored for adverse effects, especially conduction disturbances and exacerbation of tachyarrhythmias, as amiodarone is continued. In amiodarone-treated patients who require additional antiarrhythmic therapy, the initial dose of such agents should be approximately half of the usual recommended dose. Metabolism of lidocaine (CYP3A substrate) can be inhibited by amiodarone resulting in increased lidocaine concentrations. Sinus bradycardia and seizure has been reported in patients receiving concomitant lidocaine and amiodarone. Anticoagulants Potentiation of warfarin-type (CYP2C9 and CYP3A substrate) anticoagulant response is almost always seen in patients receiving amiodarone and can result in serious or fatal bleeding. Since the concomitant administration of warfarin with amiodarone increases the prothrombin time by 100% after 3 to 4 days, the dose of the anticoagulant should be reduced by one-third to one-half, and prothrombin times should be monitored closely. A potential interaction between clopidogrel and amiodarone resulting in ineffective inhibition of platelet aggregation has been reported. Dabigatran etexilate when taken concomitantly with amiodarone may result in elevated serum concentration of dabigatran. Fentanyl (CYP3A substrate) in combination with amiodarone may cause hypotension, bradycardia, and decreased cardiac output. Increased steady-state levels of phenytoin during concomitant therapy with amiodarone have been reported. Monitor phenytoin levels in patients taking both drugs. Dextromethorphan is a substrate for both CYP2D6 and CYP3A. Amiodarone inhibits CYP2D6 and CYP3A. Chronic (>2 weeks) amiodarone treatment impairs metabolism of dextromethorphan leading to increased serum concentration.

OVERDOSAGE

There have been cases, some fatal, of amiodarone overdose. In addition to general supportive measures, the patient’s cardiac rhythm and blood pressure should be monitored, and if bradycardia ensues, a β-adrenergic agonist or a pacemaker may be used. Hypotension with inadequate tissue perfusion should be treated with positive inotropic and/or vasopressor agents. Neither amiodarone nor its metabolite is dialyzable. The acute oral LD50 of amiodarone hydrochloride in mice and rats is greater than 3,000 mg/kg.

DESCRIPTION

Amiodarone hydrochloride is a member of a class of antiarrhythmic drugs with predominantly Class III (Vaughan Williams’ classification) effects. Amiodarone is a benzofuran derivative: 2-butyl-3-benzofuranyl 4-[2-(diethylamino)-ethoxy]-3,5-diiodophenyl ketone hydrochloride. The structural formula is as follows: Amiodarone hydrochloride, USP is a white to cream-colored crystalline powder. It is slightly soluble in water, soluble in alcohol and freely soluble in chloroform. It contains 37.3% iodine by weight. Each amiodarone hydrochloride tablet intended for oral administration contains 200 mg of amiodarone hydrochloride. In addition each tablet contains the following inactive ingredients: colloidal silicon dioxide, corn starch, lactose monohydrate, magnesium stearate, povidone and sodium starch glycolate. Structured formula for Amiodarone

HOW SUPPLIED

Amiodarone Hydrochloride Tablets, 200 mg are white to off-white, round-shaped, flat beveled-edge, uncoated tablets with bisect on one side and other side is plain; one side of bisect is debossed with ‘ZE’ and other side is debossed with ’65’ and are supplied as follows: Cartons of 100 tablets (10 tablets each blister pack x 10) NDC 0904-6556-61Storage: Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Protect from light. Dispense in a tight, light-resistant container. Manufactured by: Cadila Healthcare Ltd. India Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 Distributed By: MAJOR® PHARMACEUTICALS 31778 Enterprise Drive Livonia, MI 48150 Rev.: 07/16

GERIATRIC USE

Geriatric Use: Clinical studies of amiodarone hydrochloride tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

INDICATIONS AND USAGE

Because of its life-threatening side effects and the substantial management difficulties associated with its use (see WARNINGS below), amiodarone is indicated only for the treatment of the following documented, life-threatening recurrent ventricular arrhythmias when these have not responded to documented adequate doses of other available antiarrhythmics or when alternative agents could not be tolerated. 1.Recurrent ventricular fibrillation. 2.Recurrent hemodynamically unstable ventricular tachycardia. As is the case for other antiarrhythmic agents, there is no evidence from controlled trials that the use of amiodarone hydrochloride tablets favorably affects survival. Amiodarone should be used only by physicians familiar with and with access to (directly or through referral) the use of all available modalities for treating recurrent life-threatening ventricular arrhythmias, and who have access to appropriate monitoring facilities, including in-hospital and ambulatory continuous electrocardiographic monitoring and electrophysiologic techniques. Because of the life-threatening nature of the arrhythmias treated, potential interactions with prior therapy, and potential exacerbation of the arrhythmia, initiation of therapy with amiodarone should be carried out in the hospital.

PEDIATRIC USE

Pediatric Use: The safety and effectiveness of amiodarone hydrochloride tablets in pediatric patients have not been established.

PREGNANCY

Pregnancy: See “WARNINGS, Neonatal Injury” Teratogenic Effects Amiodarone and desethylamiodarone cross the placenta. Reported risks include: •neonatal bradycardia, QT prolongation, and periodic ventricular extrasystoles •neonatal hypothyroidism (with or without goiter) detected antenatally or in the newborn and reported even after a few days of exposure •neonatal hyperthyroxinemia •neurodevelopmental abnormalities independent of thyroid function, including speech delay and difficulties with written language and arithmetic, delayed motor development, and ataxia. •jerk nystagmus with synchronous head titubation •fetal growth retardation •premature birth

NUSRING MOTHERS

Nursing Mothers: Amiodarone and one of its major metabolites, DEA, are excreted in human milk, suggesting that breast-feeding could expose the nursing infant to a significant dose of the drug. Nursing offspring of lactating rats administered amiodarone have been shown to be less viable and have reduced body-weight gains. The risk of exposing the infant to amiodarone and DEA must be weighed against the potential benefit of arrhythmia suppression in the mother. Advise the mother to discontinue nursing.

BOXED WARNING

Amiodarone is intended for use only in patients with the indicated life-threatening arrhythmias because its use is accompanied by substantial toxicity. Amiodarone has several potentially fatal toxicities, the most important of which is pulmonary toxicity (hypersensitivity pneumonitis or interstitial/alveolar pneumonitis) that has resulted in clinically manifest disease at rates as high as 10 to 17% in some series of patients with ventricular arrhythmias given doses around 400 mg/day, and as abnormal diffusion capacity without symptoms in a much higher percentage of patients. Pulmonary toxicity has been fatal about 10% of the time. Liver injury is common with amiodarone, but is usually mild and evidenced only by abnormal liver enzymes. Overt liver disease can occur, however, and has been fatal in a few cases. Like other antiarrhythmics, amiodarone can exacerbate the arrhythmia, e.g., by making the arrhythmia less well tolerated or more difficult to reverse. This has occurred in 2 to 5% of patients in various series, and significant heart block or sinus bradycardia has been seen in 2 to 5%. All of these events should be manageable in the proper clinical setting in most cases. Although the frequency of such proarrhythmic events does not appear greater with amiodarone than with many other agents used in this population, the effects are prolonged when they occur. Even in patients at high risk of arrhythmic death, in whom the toxicity of amiodarone is an acceptable risk, amiodarone poses major management problems that could be life-threatening in a population at risk of sudden death, so that every effort should be made to utilize alternative agents first. The difficulty of using amiodarone effectively and safely itself poses a significant risk to patients. Patients with the indicated arrhythmias must be hospitalized while the loading dose of amiodarone is given, and a response generally requires at least one week, usually two or more. Because absorption and elimination are variable, maintenance-dose selection is difficult, and it is not unusual to require dosage decrease or discontinuation of treatment. In a retrospective survey of 192 patients with ventricular tachyarrhythmias, 84 required dose reduction and 18 required at least temporary discontinuation because of adverse effects, and several series have reported 15 to 20% overall frequencies of discontinuation due to adverse reactions. The time at which a previously controlled life-threatening arrhythmia will recur after discontinuation or dose adjustment is unpredictable, ranging from weeks to months. The patient is obviously at great risk during this time and may need prolonged hospitalization. Attempts to substitute other antiarrhythmic agents when amiodarone must be stopped will be made difficult by the gradually, but unpredictably, changing amiodarone body burden. A similar problem exists when amiodarone is not effective; it still poses the risk of an interaction with whatever subsequent treatment is tried.

INFORMATION FOR PATIENTS

Information for Patients Patients should be instructed to read the accompanying Medication Guide each time they refill their prescription. The complete text of the Medication Guide is reprinted at the end of this document.

DOSAGE AND ADMINISTRATION

BECAUSE OF THE UNIQUE PHARMACOKINETIC PROPERTIES, DIFFICULT DOSING SCHEDULE, AND SEVERITY OF THE SIDE EFFECTS IF PATIENTS ARE IMPROPERLY MONITORED, AMIODARONE SHOULD BE ADMINISTERED ONLY BY PHYSICIANS WHO ARE EXPERIENCED IN THE TREATMENT OF LIFE-THREATENING ARRHYTHMIAS WHO ARE THOROUGHLY FAMILIAR WITH THE RISKS AND BENEFITS OF AMIODARONE THERAPY, AND WHO HAVE ACCESS TO LABORATORY FACILITIES CAPABLE OF ADEQUATELY MONITORING THE EFFECTIVENESS AND SIDE EFFECTS OF TREATMENT. In order to insure that an antiarrhythmic effect will be observed without waiting several months, loading doses are required. A uniform, optimal dosage schedule for administration of amiodarone has not been determined. Because of the food effect on absorption, amiodarone should be administered consistently with regard to meals (see CLINICAL PHARMACOLOGY). Individual patient titration is suggested according to the following guidelines: For life-threatening ventricular arrhythmias, such as ventricular fibrillation or hemodynamically unstable ventricular tachycardia: Close monitoring of the patients is indicated during the loading phase, particularly until risk of recurrent ventricular tachycardia or fibrillation has abated. Because of the serious nature of the arrhythmia and the lack of predictable time course of effect, loading should be performed in a hospital setting. Loading doses of 800 to 1,600 mg/day are required for 1 to 3 weeks (occasionally longer) until initial therapeutic response occurs. (Administration of amiodarone in divided doses with meals is suggested for total daily doses of 1,000 mg or higher, or when gastrointestinal intolerance occurs.) If side effects become excessive, the dose should be reduced. Elimination of recurrence of ventricular fibrillation and tachycardia usually occurs within 1 to 3 weeks, along with reduction in complex and total ventricular ectopic beats. Since grapefruit juice is known to inhibit CYP3A4-mediated metabolism of oral amiodarone in the intestinal mucosa, resulting in increased plasma levels of amiodarone, grapefruit juice should not be taken during treatment with oral amiodarone (see PRECAUTIONS, Drug Interactions ). Upon starting amiodarone therapy, an attempt should be made to gradually discontinue prior antiarrhythmic drugs (see section on Drug Interactions ). When adequate arrhythmia control is achieved, or if side effects become prominent, amiodarone dose should be reduced to 600 to 800 mg/day for one month and then to the maintenance dose, usually 400 mg/day (see CLINICAL PHARMACOLOGY-Monitoring Effectiveness ). Some patients may require larger maintenance doses, up to 600 mg/day, and some can be controlled on lower doses. Amiodarone may be administered as a single daily dose, or in patients with severe gastrointestinal intolerance, as a b.i.d. dose. In each patient, the chronic maintenance dose should be determined according to antiarrhythmic effect as assessed by symptoms, Holter recordings, and/or programmed electrical stimulation and by patient tolerance. Plasma concentrations may be helpful in evaluating nonresponsiveness or unexpectedly severe toxicity (see CLINICAL PHARMACOLOGY ). The lowest effective dose should be used to prevent the occurrence of side effects. In all instances, the physician must be guided by the severity of the individual patient’s arrhythmia and response to therapy. When dosage adjustments are necessary, the patient should be closely monitored for an extended period of time because of the long and variable half-life of amiodarone and the difficulty in predicting the time required to attain a new steady-state level of drug. Dosage suggestions are summarized below: Loading Dose (Daily) Adjustment and Maintenance Dose (Daily) Ventricular Arrhythmias 1 to 3 weeks ~1 month usual maintenance 800 to 1,600 mg 600 to 800 mg 400 mg

QUEtiapine fumarate 300 MG Oral Tablet

DRUG INTERACTIONS

Drug Interactions Section Concomitant use of strong CYP3A4 inhibitors: Reduce quetiapine dose to one sixth when coadministered with strong CYP3A4 inhibitors (e.g., ketoconazole, ritonavir) (2.5, 7.1, 12.3) Concomitant use of strong CYP3A4 inducers: Increase quetiapine dose up to 5 fold when used in combination with a chronic treatment (more than 7 to 14 days) of potent CYP3A4 inducers (e.g., phenytoin, rifampin, St. John’s wort) (2.6, 7.1, 12.3) Discontinuation of strong CYP3A4 inducers: Reduce quetiapine dose by 5 fold within 7 to 14 days of discontinuation of CYP3A4 inducers (2.6, 7.1, 12.3) The risks of using quetiapine in combination with other drugs have not been extensively evaluated in systematic studies. Given the primary CNS effects of quetiapine, caution should be used when it is taken in combination with other centrally acting drugs. Quetiapine potentiated the cognitive and motor effects of alcohol in a clinical trial in subjects with selected psychotic disorders, and alcoholic beverages should be limited while taking quetiapine. Quetiapine exposure is increased by the prototype CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, indinavir, ritonavir, nefazodone, etc.)and decreased by the prototype CYP3A4 inducers (e.g., phenytoin, carbamazepine, rifampin, avasimibe, St. John’s wort etc.). Dose adjustment of quetiapine will be necessary if it is coadministered with potent CYP3A4 inducers or inhibitors. CYP3A4 inhibitors: Coadministration of ketoconazole, a potent inhibitor of cytochrome CYP3A4, resulted in significant increase in quetiapine exposure. The dose of quetiapine should be reduced to one sixth of the original dose if coadministered with a strong CYP3A4 inhibitor [see Dosage and Administration (2.5) and Clinical Pharmacology (12.3)]. CYP3A4 inducers: Coadministration of quetiapine and phenytoin, a CYP3A4 inducer increased the mean oral clearance of quetiapine by 5-fold. Increased doses of quetiapine up to 5 fold may be required to maintain control of symptoms of schizophrenia in patients receiving quetiapine and phenytoin, or other known potent CYP3A4 inducers [see Dosage and Administration (2.6) and Clinical Pharmacology (12.3)]. When the CYP3A4 inducer is discontinued, the dose of quetiapine should be reduced to the original level within 7 to 14 days [see Dosage and Administration (2.6)]. The potential effects of several concomitant medications on quetiapine pharmacokinetics were studied [see Clinical Pharmacology (12.3)]. Because of its potential for inducing hypotension, quetiapine may enhance the effects of certain antihypertensive agents. Quetiapine may antagonize the effects of levodopa and dopamine agonists. There are no clinically relevant pharmacokinetic interactions of quetiapine on other drugs based on the CYP pathway. Quetiapine and its metabolites are non-inhibitors of major metabolizing CYP’s (1A2, 2C9, 2C19, 2D6 and 3A4).

OVERDOSAGE

Overdosage Section In clinical trials, survival has been reported in acute overdoses of up to 30 grams of quetiapine. Most patients who overdosed experienced no adverse reactions or recovered fully from the reported reactions. Death has been reported in a clinical trial following an overdose of 13.6 grams of quetiapine alone. In general, reported signs and symptoms were those resulting from an exaggeration of the drug’s known pharmacological effects, i.e., drowsiness and sedation, tachycardia and hypotension. Patients with preexisting severe cardiovascular disease may be at an increased risk of the effects of overdose [see Warnings and Precautions (5.11)]. One case, involving an estimated overdose of 9600 mg, was associated with hypokalemia and first degree heart block. In postmarketing experience, there were cases reported of QT prolongation with overdose. There were also very rare reports of overdose of quetiapine alone resulting in death or coma. In case of acute overdosage, establish and maintain an airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation, if patient is unconscious) and administration of activated charcoal together with a laxative should be considered. The possibility of obtundation, seizure or dystonic reaction of the head and neck following overdose may create a risk of aspiration with induced emesis. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. If antiarrhythmic therapy is administered, disopyramide, procainamide and quinidine carry a theoretical hazard of additive QT-prolonging effects when administered in patients with acute overdosage of quetiapine. Similarly it is reasonable to expect that the alpha-adrenergic-blocking properties of bretylium might be additive to those of quetiapine, resulting in problematic hypotension. There is no specific antidote to quetiapine. Therefore, appropriate supportive measures should be instituted. The possibility of multiple drug involvement should be considered. Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids and/or sympathomimetic agents (epinephrine and dopamine should not be used, since beta stimulation may worsen hypotension in the setting of quetiapine-induced alpha blockade). In cases of severe extrapyramidal symptoms, anticholinergic medication should be administered. Close medical supervision and monitoring should continue until the patient recovers.

DESCRIPTION

Description Section Quetiapine fumarate is a psychotropic agent belonging to a chemical class, the dibenzothiazepine derivatives. The chemical designation is 2-[2-(4-dibenzo [b,f] [1,4]thiazepin-11-yl-1-piperazinyl)ethoxy]-ethanol fumarate (2:1) (salt). It is present in tablets as the fumarate salt. All doses and tablet strengths are expressed as milligrams of base, not as fumarate salt. Its molecular formula is C42H50N6O4S2•C4H4O4 and it has a molecular weight of 883.10 (fumarate salt). The structural formula is: Quetiapine fumarate is a white to off-white powder which is insoluble in water. Quetiapine fumarate tablets are supplied for oral administration as 25 mg (round, peach), 50 mg (round, white), 100 mg (round, yellow), 200 mg (round, white), 300 mg (capsule-shaped, white), and 400 mg (capsule-shaped, yellow) tablets. Inactive ingredients are microcrystalline cellulose, colloidal silicon dioxide, silicon dioxide, crospovidone, anhydrous citric acid, polysorbate 80, magnesium stearate, lactose monohydrate, hypromellose, polyethylene glycol and titanium dioxide. The 25 mg tablets contain red ferric oxide and yellow ferric oxide and the 100 mg and 400 mg tablets contain only yellow ferric oxide. MM1

CLINICAL STUDIES

Clinical Studies Section Short-term Trials – Adults The efficacy of quetiapine in the treatment of schizophrenia was established in 3 short-term (6-­week) controlled trials of inpatients with schizophrenia who met DSM III-R criteria for schizophrenia. Although a single fixed dose haloperidol arm was included as a comparative treatment in one of the three trials, this single haloperidol dose group was inadequate to provide a reliable and valid comparison of quetiapine and haloperidol. Several instruments were used for assessing psychiatric signs and symptoms in these studies, among them the Brief Psychiatric Rating Scale (BPRS), a multi-item inventory of general psychopathology traditionally used to evaluate the effects of drug treatment in schizophrenia. The BPRS psychosis cluster (conceptual disorganization, hallucinatory behavior, suspiciousness, and unusual thought content) is considered a particularly useful subset for assessing actively psychotic schizophrenic patients. A second traditional assessment, the Clinical Global Impression (CGI), reflects the impression of a skilled observer, fully familiar with the manifestations of schizophrenia, about the overall clinical state of the patient. The results of the trials follow: In a 6-week, placebo-controlled trial (n=361) (study 1) involving 5 fixed doses of quetiapine (75 mg/day, 150 mg/day, 300 mg/day, 600 mg/day and 750 mg/day given in divided doses three times per day), the 4 highest doses of quetiapine were generally superior to placebo on the BPRS total score, the BPRS psychosis cluster and the CGI severity score, with the maximal effect seen at 300 mg/day, and the effects of doses of 150 mg/day to 750 mg/day were generally indistinguishable. In a 6-week, placebo-controlled trial (n=286) (study 2) involving titration of quetiapine in high (up to 750 mg/day given in divided doses three times per day) and low (up to 250 mg/day given in divided doses three times per day) doses, only the high dose quetiapine group (mean dose, 500 mg/day) was superior to placebo on the BPRS total score, the BPRS psychosis cluster, and the CGI severity score. In a 6-week dose and dose regimen comparison trial (n=618) (study 3) involving two fixed doses of quetiapine (450 mg/day given in divided doses both twice daily and three times daily and 50 mg/day given in divided doses twice daily), only the 450 mg/day (225 mg given twice daily) dose group was superior to the 50 mg/day (25 mg given twice daily) quetiapine dose group on the BPRS total score, the BPRS psychosis cluster, and the CGI severity score. The primary efficacy results of these three studies in the treatment of schizophrenia in adults is presented in Table 19. Examination of population subsets (race, gender, and age) did not reveal any differential responsiveness on the basis of race or gender, with an apparently greater effect in patients under the age of 40 years compared to those older than 40. The clinical significance of this finding is unknown. Adolescents (ages 13 to 17) The efficacy of quetiapine in the treatment of schizophrenia in adolescents (13 to 17 years of age) was demonstrated in a 6-week, double-blind, placebo-controlled trial (study 4). Patients who met DSM-IV diagnostic criteria for schizophrenia were randomized into one of three treatment groups: quetiapine 400 mg/day (n = 73), quetiapine 800 mg/day (n = 74), or placebo (n = 75). Study medication was initiated at 50 mg/day and on day 2 increased to 100 mg/per day (divided and given two or three times per day). Subsequently, the dose was titrated to the target dose of 400 mg/day or 800 mg/day using increments of 100 mg/day, divided and given two or three times daily. The primary efficacy variable was the mean change from baseline in total Positive and Negative Syndrome Scale (PANSS). Quetiapine at 400 mg/day and 800 mg/day was superior to placebo in the reduction of PANSS total score. The primary efficacy results of this study in the treatment of schizophrenia in adolescents is presented in Table 19. Table 19: Schizophrenia Short-Term Trials Study Number Treatment Group Primary Efficacy Endpoint: BPRS Total Mean Baseline Score (SD) LS Mean Change from Baseline (SE) Placebo-subtracted Difference * (95% CI) Study 1 Quetiapine(75 mg/day) 45.7 (10.9) -2.2 (2) -4 (-11.2, 3.3) Quetiapine(150 mg/day)† 47.2 (10.1) -8.7 (2.1) -10.4 (-17.8, -3) Quetiapine(300 mg/day) 45.3 (10.9) -8.6 (2.1) -10.3 (-17.6, -3) Quetiapine(600 mg/day) 43.5 (11.3) -7.7 (2.1) -9.4 (-16.7, -2.1) Quetiapine(750 mg/day) 45.7 (11) -6.3 (2) -8 (-15.2, -0.8) Placebo 45.3 (9.2) 1.7 (2.1) — Study 2 Quetiapine(250 mg/day) 38.9 (9.8) -4.2 (1.6) -3.2 (-7.6, 1.2) Quetiapine(750 mg/day) 41 (9.6) -8.7 (1.6) -7.8 (-12.2, -3.4) Placebo 38.4 (9.7) -1 (1.6) — Study 3 Quetiapine(450 mg/day BID) 42.1 (10.7) -10 (1.3) -4.6 (-7.8, -1.4) Quetiapine(450 mg/day TID) 42.7 (10.4) -8.6 (1.3) -3.2 (-6.4, 0) Quetiapine (50 mg BID) 41.7 (10) -5.4 (1.3) — Primary Efficacy Endpoint: PANSS Total Mean Baseline Score (SD) LS Mean Change from Baseline (SE) Placebo-subtracted Difference (95% CI) Study 4 Quetiapine(400 mg/day) 96.2 (17.7) -27.3 (2.6) -8.2 (-16.1, -0.3) Quetiapine(800 mg/day) 96.9 (15.3) -28.4 (1.8) -9.3 (-16.2, -2.4) Placebo 96.2 (17.7) -19.2 (3) — SD: standard deviation; SE: standard error; LS Mean: least-squares mean; CI: unadjusted confidence interval. # Doses that are statistically significant superior to quetiapine 50 mg BID. Difference (drug minus placebo) in least-squares mean change from baseline. Doses that are statistically significant superior to placebo. Bipolar I disorder, manic or mixed episodes Adults The efficacy of quetiapine in the acute treatment of manic episodes was established in 3 placebo-controlled trials in patients who met DSM-IV criteria for bipolar I disorder with manic episodes. These trials included patients with or without psychotic features and excluded patients with rapid cycling and mixed episodes. Of these trials, 2 were monotherapy (12 weeks) and 1 was adjunct therapy (3 weeks) to either lithium or divalproex. Key outcomes in these trials were change from baseline in the Young Mania Rating Scale (YMRS) score at 3 and 12 weeks for monotherapy and at 3 weeks for adjunct therapy. Adjunct therapy is defined as the simultaneous initiation or subsequent administration of quetiapine with lithium or divalproex. The primary rating instrument used for assessing manic symptoms in these trials was YMRS, an 11-­item clinician-rated scale traditionally used to assess the degree of manic symptomatology (irritability, disruptive/aggressive behavior, sleep, elevated mood, speech, increased activity, sexual interest, language/thought disorder, thought content, appearance, and insight) in a range from 0 (no manic features) to 60 (maximum score). The results of the trials follow: Monotherapy The efficacy of quetiapine in the acute treatment of bipolar mania was established in 2 placebo-controlled trials. In two 12-week trials (n=300, n=299) comparing quetiapine to placebo, quetiapine was superior to placebo in the reduction of the YMRS total score at weeks 3 and 12. The majority of patients in these trials taking quetiapine were dosed in a range between 400 mg/day and 800 mg per day (studies 1 and 2 in Table 20). Adjunct Therapy In this 3-week placebo-controlled trial, 170 patients with bipolar mania (YMRS ≥ 20) were randomized to receive quetiapine or placebo as adjunct treatment to lithium or divalproex. Patients may or may not have received an adequate treatment course of lithium or divalproex prior to randomization. Quetiapine was superior to placebo when added to lithium or divalproex alone in the reduction of YMRS total score. (study 3 in Table 20). The majority of patients in this trial taking quetiapine were dosed in a range between 400 mg/day and 800 mg per day. In a similarly designed trial (n=200), quetiapine was associated with an improvement in YMRS scores but did not demonstrate superiority to placebo, possibly due to a higher placebo effect. The primary efficacy results of these studies in the treatment of mania in adults is presented in Table 20. Children and Adolescents (ages 10 to 17) The efficacy of quetiapine in the acute treatment of manic episodes associated with bipolar I disorder in children and adolescents (10 to 17 years of age) was demonstrated in a 3-week, double-blind, placebo-controlled, multicenter trial (study 4 in Table 20). Patients who met DSM-IV diagnostic criteria for a manic episode were randomized into one of three treatment groups: quetiapine 400 mg/day (n = 95), quetiapine 600 mg/day (n = 98), or placebo (n = 91). Study medication was initiated at 50 mg/day and on day 2 increased to 100 mg/day (divided doses given two or three times daily). Subsequently, the dose was titrated to a target dose of 400 mg/day or 600 mg/day using increments of 100 mg/day, given in divided doses two or three times daily. The primary efficacy variable was the mean change from baseline in total YMRS score. Quetiapine 400 mg/day and 600 mg/day were superior to placebo in the reduction of YMRS total score (Table 20). Table 20: Mania Trials Study Number Treatment Group Primary Efficacy Measure: YMRS Total Mean Baseline Score (SD)* LS Mean Change from Baseline (SE) Placebo-subtracted Difference † (95% CI) Study 1 Quetiapine(200 to 800 mg/day)‡ § 34 (6.1) -12.3 (1.3) -4 (-7, -1) Haloperidol 32.3 (6) -15.7 (1.3) -7.4 (-10.4, -4.4) Placebo 33.1 (6.6) -8.3 (1.3) — Study 2 Quetiapine(200 to 800 mg/day) 32.7 (6.5) -14.6 (1.5) -7.9 (-10.9, -5) Lithium 33.3 (7.1) -15.2 (1.6) -8.5 (-11.5, -5.5) Placebo 34 (6.9) -6.7 (1.6) — Study 3 Quetiapine(200 to 800 mg/day) + mood stabilizer 31.5 (5.8) -13.8 (1.6) -3.8 (-7.1, -0.6) Placebo + mood stabilizer 31.1 (5.5) -10 (1.5) — Study 4 Quetiapine(400 mg/day) 29.4 (5.9) -14.3 (0.96) -5.2 (-8.1, -2.3) Quetiapine(600 mg/day) 29.6 (6.4) -15.6 (0.97) -6.6 (-9.5, -3.7) Placebo 30.7 (5.9) -9 (1.1) — Mood stabilizer: lithium or divalproex; SD: standard deviation; SE: standard error; LS Mean: least-squares mean; CI: unadjusted confidence interval. Adult data mean baseline score is based on patients included in the primary analysis; pediatric mean baseline score is based on all patients in the ITT population Difference (drug minus placebo) in least-squares mean change from baseline. Doses that are statistically significantly superior to placebo. Included in the trial as an active comparator Bipolar Disorder, Depressive Episodes Adults The efficacy of quetiapine for the acute treatment of depressive episodes associated with bipolar disorder was established in 2 identically designed 8-week, randomized, double-blind, placebo-controlled studies (N=1045) (studies 5 and 6 in Table 21). These studies included patients with either bipolar I or II disorder and those with or without a rapid cycling course. Patients randomized to quetiapine were administered fixed doses of either 300 mg or 600 mg once daily. The primary rating instrument used to assess depressive symptoms in these studies was the Montgomery-Asberg Depression Rating Scale (MADRS), a 10-item clinician-rated scale with scores ranging from 0 to 60. The primary endpoint in both studies was the change from baseline in MADRS score at week 8. In both studies, quetiapine was superior to placebo in reduction of MADRS score. Improvement in symptoms, as measured by change in MADRS score relative to placebo, was seen in both studies at Day 8 (week 1) and onwards. In these studies, no additional benefit was seen with the 600 mg dose. For the 300 mg dose group, statistically significant improvements over placebo were seen in overall quality of life and satisfaction related to various areas of functioning, as measured using the Q-LES-Q(SF). The primary efficacy results of these studies in the acute treatment of depressive episodes associated with bipolar disorder in adults is presented in Table 21. Table 21: Depressive Episodes Associated with Bipolar Disorder Study Number Treatment Group Primary Efficacy Measure: MADRS Total Mean Baseline Score (SD) LS Mean Change from Baseline (SE) Placebo-subtracted Difference* (95% CI) Study 5 Quetiapine (300 mg/day)† 30.3 (5) -16.4 (0.9) -6.1 (-8.3, -3.9) Quetiapine (600 mg/day) 30.3 (5.3) -16.7 (0.9) -6.5 (-8.7, -4.3) Placebo 30.6 (5.3) -10.3 (0.9) — Study 6 Quetiapine (300 mg/day) 31.1 (5.7) -16.9 (1) -5 (-7.3, -2.7) Quetiapine (600 mg/day) 29.9 (5.6) -16 (1) -4.1 (-6.4, -1.8) Placebo 29.6 (5.4) -11.9 (1) — SD: standard deviation; SE: standard error; LS Mean: least-squares mean; CI: unadjusted confidence interval. Difference (drug minus placebo) in least-squares mean change from baseline. Doses that are statistically significantly superior to placebo. Maintenance Treatment as an Adjunct to Lithium or Divalproex The efficacy of quetiapine in the maintenance treatment of bipolar I disorder was established in 2 placebo-controlled trials in patients (n=1326) who met DSM-IV criteria for bipolar I disorder (studies 7 and 8 in Figures 1 and 2). The trials included patients whose most recent episode was manic, depressed, or mixed, with or without psychotic features. In the open-label phase, patients were required to be stable on quetiapine plus lithium or divalproex for at least 12 weeks in order to be randomized. On average, patients were stabilized for 15 weeks. In the randomization phase, patients continued treatment with lithium or divalproex and were randomized to receive either quetiapine (administered twice daily totaling 400 mg/day to 800 mg/day) or placebo. Approximately 50% of the patients had discontinued from the quetiapine group by day 280 and 50% of the placebo group had discontinued by day 117 of double-blind treatment. The primary endpoint in these studies was time to recurrence of a mood event (manic, mixed or depressed episode). A mood event was defined as medication initiation or hospitalization for a mood episode; YMRS score ≥ 20 or MADRS score ≥ 20 at 2 consecutive assessments; or study discontinuation due to a mood event. (Figure 1 and Figure 2) In both studies, quetiapine was superior to placebo in increasing the time to recurrence of any mood event. The treatment effect was present for increasing time to recurrence of both manic and depressed episodes. The effect of quetiapine was independent of any specific subgroup (assigned mood stabilizer, sex, age, race, most recent bipolar episode, or rapid cycling course). MM2

HOW SUPPLIED

How Supplied Section 25 mg tablets are peach, round, biconvex, film-coated tablets, debossed with ‘25’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-902-83 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-902-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-902-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-902-61 50 mg tablets are white, round, biconvex, film-coated tablets, debossed with ‘50’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-903-83 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-903-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-903-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-903-61 100 mg tablets are yellow, round, biconvex, film-coated tablets, debossed with ‘904’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-904-83 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-904-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-904-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-904-61 200 mg tablets are white, round, biconvex, film-coated tablets, debossed with ‘905’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-905-83 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-905-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-905-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-905-61 300 mg tablets are white, capsule-shaped, biconvex, film-coated tablets, debossed with ‘906’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-906-83 Bottles of 60’s with Child Resistant Cap ……………… NDC 47335-906-86 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-906-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-906-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-906-61 400 mg tablets are yellow, capsule-shaped, biconvex, film-coated tablets, debossed with ‘907’ on one side and plain on the other side and are supplied as: Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-907-83 Bottles of 100’s with Child Resistant Cap …………….. NDC 47335-907-88 Bottles of 1000’s with Non Child Resistant Cap …..….. NDC 47335-907-18 Unit-dose blister pack of 100 (10 × 10) tablets ..………. NDC 47335-907-61 Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F) [see USP Controlled Room Temperature].

RECENT MAJOR CHANGES

Recent Major Changes Section Warnings and Precautions, Cerebrovascular Adverse Reactions, Including Stroke, in Elderly Patients with Dementia-Related Psychosis (5.3) ———————4/2013

DOSAGE FORMS AND STRENGTHS

Dosage Forms & Strengths Section 25 mg tablets are peach, round, biconvex, film-coated tablets, debossed with ‘25’ on one side and plain on the other side 50 mg tablets are white, round, biconvex, film-coated tablets, debossed with ‘50’ on one side and plain on the other side 100 mg tablets are yellow, round, biconvex, film-coated tablets, debossed with ‘904’ on one side and plain on the other side 200 mg tablets are white, round, biconvex, film-coated tablets, debossed with ‘905’ on one side and plain on the other side 300 mg tablets are white, capsule-shaped, biconvex, film-coated tablets, debossed with ‘906’ on one side and plain on the other side 400 mg tablets are yellow, capsule-shaped, biconvex, film-coated tablets, debossed with ‘907’ on one side and plain on the other side

INDICATIONS AND USAGE

Indications & Usage Section Quetiapine fumarate tablets are atypical antipsychotic indicated for the treatment of: Schizophrenia (1.1) Bipolar I disorder manic episodes (1.2) Bipolar disorder, depressive episodes (1.2) Quetiapine fumarate tablets are indicated for the treatment of schizophrenia. The efficacy of quetiapine fumarate tablets in schizophrenia was established in three 6-week trials in adults and one 6-week trial in adolescents (13 to ¬17 years). The effectiveness of quetiapine fumarate tablets for the maintenance treatment of schizophrenia has not been systematically evaluated in controlled clinical trials [see Clinical Studies (14.1)]. Quetiapine fumarate tablets are indicated for the acute treatment of manic episodes associated with bipolar I disorder, both as monotherapy and as an adjunct to lithium or divalproex. Efficacy was established in two 12-week monotherapy trials in adults, in one 3-week adjunctive trial in adults, and in one 3-week monotherapy trial in pediatric patients (10 to 17 years) [see Clinical Studies (14.2)]. Quetiapine fumarate tablets are indicated as monotherapy for the acute treatment of depressive episodes associated with bipolar disorder. Efficacy was established in two 8-week monotherapy trials in adult patients with bipolar I and bipolar II disorder [see Clinical Studies (14.2)]. Quetiapine fumarate tablets are indicated for the maintenance treatment of bipolar I disorder, as an adjunct to lithium or divalproex. Efficacy was established in two maintenance trials in adults. The effectiveness of quetiapine fumarate tablets as monotherapy for the maintenance treatment of bipolar disorder has not been systematically evaluated in controlled clinical trials [see Clinical Studies (14.2)]. Pediatric schizophrenia and bipolar I disorder are serious mental disorders, however, diagnosis can be challenging. For pediatric schizophrenia, symptom profiles can be variable, and for bipolar I disorder, patients may have variable patterns of periodicity of manic or mixed symptoms. It is recommended that medication therapy for pediatric schizophrenia and bipolar I disorder be initiated only after a thorough diagnostic evaluation has been performed and careful consideration given to the risks associated with medication treatment. Medication treatment for both pediatric schizophrenia and bipolar I disorder is indicated as part of a total treatment program that often includes psychological, educational and social interventions.

BOXED WARNING

Boxed Warning Section Increased Mortality in Elderly Patients with Dementia-Related Psychosis Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death [see Warnings and Precautions (5.1)]. Quetiapine is not approved for the treatment of patients with dementia-related psychosis [see Warnings and Precautions (5.1)]. Suicidal Thoughts and Behaviors Antidepressants increased the risk of suicidal thoughts and behavior in children, adolescents, and young adults in short-term studies. These studies did not show an increase in the risk of suicidal thoughts and behavior with antidepressant use in patients over age 24; there was a reduction in risk with antidepressant use in patients aged 65 and older [see Warnings and Precautions (5.2)]. In patients of all ages who are started on antidepressant therapy, monitor closely for worsening, and for emergence of suicidal thoughts and behaviors. Advise families and caregivers of the need for close observation and communication with the prescriber [see Warnings and Precautions (5.2)]. Quetiapine is not approved for use in pediatric patients under ten years of age [see Use in Specific Populations (8.4)].

WARNING AND CAUTIONS

Warnings And Precautions Section Cerebrovascular Adverse Reactions: Increased incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack) has been seen in elderly patients with dementia-related psychoses treated with atypical antipsychotic drugs (5.3) Neuroleptic Malignant Syndrome (NMS): Manage with immediate discontinuation and close monitoring (5.4) Metabolic Changes: Atypical antipsychotics have been associated with metabolic changes. These metabolic changes include hyperglycemia, dyslipidemia, and weight gain (5.5) Hyperglycemia and Diabetes Mellitus: Monitor patients for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Monitor glucose regularly in patients with diabetes or at risk for diabetes Dyslipidemia: Undesirable alterations have been observed in patients treated with atypical antipsychotics. Appropriate clinical monitoring is recommended, including fasting blood lipid testing at the beginning of, and periodically, during treatment Weight Gain: Gain in body weight has been observed; clinical monitoring of weight is recommended Tardive Dyskinesia: Discontinue if clinically appropriate (5.6) Hypotension: Use with caution in patients with known cardiovascular or cerebrovascular disease (5.7) Increased Blood Pressure in Children and Adolescents: Monitor blood pressure at the beginning of, and periodically during treatment in children and adolescents (5.8) Leukopenia, Neutropenia and Agranulocytosis: Monitor complete blood count frequently during the first few months of treatment in patients with a preexisting low white cell count or a history of leukopenia/neutropenia and discontinue quetiapine at the first sign of a decline in WBC in absence of other causative factors (5.9) Cataracts: Lens changes have been observed in patients during long-term quetiapine treatment. Lens examination is recommended when starting treatment and at 6-month intervals during chronic treatment (5.10) Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death. Analysis of 17 placebo-controlled trials (modal duration of 10 weeks), largely in patients taking atypical antipsychotic drugs, revealed a risk of death in drug-treated patients of between 1.6 to 1.7 times the risk of death in placebo-treated patients. Over the course of a typical 10-­week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group. Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature. Observational studies suggest that, similar to atypical antipsychotic drugs, treatment with conventional antipsychotic drugs may increase mortality. The extent to which the findings of increased mortality in observational studies may be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear. Quetiapine fumarate tablets are not approved for the treatment of patients with dementia-related psychosis [ see Boxed Warning ] . Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 2. Table 2 Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 14 additional cases 18 to 24 5 additional cases Decreases Compared to Placebo 25 to 64 1 fewer case ≥65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms. Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to healthcare providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for quetiapine fumarate tablets should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder:A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, including quetiapine, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression In placebo-controlled trials with risperidone, aripiprazole, and olanzapine in elderly subjects with dementia, there was a higher incidence of cerebrovascular adverse reactions (cerebrovascular accidents and transient ischemic attacks) including fatalities compared to placebo-treated subjects. Quetiapine is not approved for the treatment of patients with dementia-related psychosis [see also Boxed Warning and Warnings and Precautions (5.1)]. A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs, including quetiapine fumarate tablets. Rare cases of NMS have been reported with quetiapine fumarate tablets. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia). Additional signs may include elevated creatine phosphokinase, myoglobinuria (rhabdomyolysis) and acute renal failure. The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to exclude cases where the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever and primary central nervous system (CNS) pathology. The management of NMS should include: 1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy; 2) intensive symptomatic treatment and medical monitoring; and 3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for NMS. If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered. The patient should be carefully monitored since recurrences of NMS have been reported. Atypical antipsychotic drugs have been associated with metabolic changes that include hyperglycemia/diabetes mellitus, dyslipidemia, and body weight gain. While all of the drugs in the class have been shown to produce some metabolic changes, each drug has its own specific risk profile. In some patients, a worsening of more than one of the metabolic parameters of weight, blood glucose, and lipids was observed in clinical studies. Changes in these metabolic profiles should be managed as clinically appropriate. Hyperglycemia and Diabetes Mellitus Hyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics, including quetiapine. Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population. Given these confounders, the relationship between atypical antipsychotic use and hyperglycemia-related adverse reactions is not completely understood. However, epidemiological studies suggest an increased risk of treatment-emergent hyperglycemia-related adverse reactions in patients treated with the atypical antipsychotics. Precise risk estimates for hyperglycemia-related adverse reactions in patients treated with atypical antipsychotics are not available. Patients with an established diagnosis of diabetes mellitus who are started on atypical antipsychotics should be monitored regularly for worsening of glucose control. Patients with risk factors for diabetes mellitus (e.g., obesity, family history of diabetes) who are starting treatment with atypical antipsychotics should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment. Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness. Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing. In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of anti-diabetic treatment despite discontinuation of the suspect drug. Adults: Table 3: Fasting Glucose—Proportion of Patients Shifting to ≥ 126 mg/dL in Short-Term (≤ 12 weeks) Placebo-Controlled Studies* Laboratory Analyte Category Change (At Least Once) from Baseline Treatment Arm N Patients n(%) Fasting Glucose Normal to High (<100 mg/dL to ≥ 126 mg/dL) Quetiapine 2907 71 (2.4%) Placebo 1346 19 (1.4%) Borderline to High (≥ 100 mg/dL and <126 mg/dL to ≥ 126 mg/dL) Quetiapine 572 67 (11.7%) Placebo 279 33 (11.8%) Includes quetiapine fumarate tablets and quetiapine fumarate extended-release tablets data. In a 24-week trial (active-controlled, 115 patients treated with quetiapine) designed to evaluate glycemic status with oral glucose tolerance testing of all patients, at week 24 the incidence of a treatment-emergent post-glucose challenge glucose level ≥ 200 mg/dL was 1.7% and the incidence of a fasting treatment-emergent blood glucose level ≥ 126 mg/dL was 2.6%. The mean change in fasting glucose from baseline was 3.2 mg/dL and mean change in 2 hour glucose from baseline was -1.8 mg/dL for quetiapine. In 2 long-term placebo-controlled randomized withdrawal clinical trials for bipolar I disorder maintenance, mean exposure of 213 days for quetiapine (646 patients) and 152 days for placebo (680 patients), the mean change in glucose from baseline was +5 mg/dL for quetiapine and –0.05 mg/dL for placebo. The exposure-adjusted rate of any increased blood glucose level (≥ 126 mg/dL) for patients more than 8 hours since a meal (however, some patients may not have been precluded from calorie intake from fluids during fasting period) was 18 per 100 patient years for quetiapine (10.7% of patients; n=556) and 9.5 for placebo per 100 patient years (4.6% of patients; n=581). Children and Adolescents: In a placebo-controlled quetiapine monotherapy study of adolescent patients (13 to 17 years of age) with schizophrenia (6 weeks duration), the mean change in fasting glucose levels for quetiapine (n=138) compared to placebo (n=67) was –0.75 mg/dL versus –1.7 mg/dL. In a placebo-controlled quetiapine monotherapy study of children and adolescent patients (10 to 17 years of age) with bipolar mania (3 weeks duration), the mean change in fasting glucose level for quetiapine (n=170) compared to placebo (n=81) was 3.62 mg/dL versus –1.17 mg/dL. No patient in either study with a baseline normal fasting glucose level (<100 mg/dL) or a baseline borderline fasting glucose level (≥100 mg/dL and <126 mg/dL) had a treatment-emergent blood glucose level of ≥126 mg/dL. In a placebo-controlled quetiapine fumarate extended-release tablets monotherapy study (8 weeks duration) of children and adolescent patients (10 to 17 years of age) with bipolar depression, in which efficacy was not established, the mean change in fasting glucose levels for quetiapine fumarate extended-release tablets (n = 60) compared to placebo (n = 62) was 1.8 mg/dL versus 1.6 mg/dL. In this study, there were no patients in the quetiapine fumarate extended-release tablets or placebo-treated groups with a baseline normal fasting glucose level ( 126 mg/dL. There was one patient in the quetiapine fumarate extended-release tablets group with a baseline borderline fasting glucose level (> 100 mg/dL) and ( 126 mg/dL compared to zero patients in the placebo group. Dyslipidemia Adults: Table 4 shows the percentage of adult patients with changes in total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol from baseline by indication in clinical trials with quetiapine. Table 4: Percentage of Adult Patients with Shifts in Total Cholesterol, Triglycerides, LDL-Cholesterol and HDL-Cholesterol from Baseline to Clinically Significant Levels by Indication Laboratory Analyte Indication Treatment Arm N Patients n (%) Total Cholesterol ≥240 mg/dL Schizophrenia* Quetiapine 137 24 (18%) Placebo 92 6 (7%) Bipolar Depression† Quetiapine 463 41 (9%) Placebo 250 15 (6%) Triglycerides ≥200 mg/dL Schizophrenia Quetiapine 120 26 (22%) Placebo 70 11 (16%) Bipolar Depression Quetiapine 436 59 (14%) Placebo 232 20 (9%) LDL-Cholesterol ≥ 160 mg/dL Schizophrenia Quetiapine na‡ na Placebo na na Bipolar Depression Quetiapine 465 29 (6%) Placebo 256 12 (5%) HDL-Cholesterol ≤ 40 mg/dL Schizophrenia Quetiapine na na Placebo na na Bipolar Depression Quetiapine 393 56 (14%) Placebo 214 29 (14%) 6 weeks duration 8 weeks duration Parameters not measured in the quetiapine registration studies for schizophrenia. Lipid parameters also were not measured in the bipolar mania registration studies. Children and Adolescents: Table 5 shows the percentage of children and adolescents with changes in total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol from baseline in clinical trials with quetiapine. Table 5: Percentage of Children and Adolescents with Shifts in Total Cholesterol, Triglycerides, LDL-Cholesterol and HDL-Cholesterol from Baseline to Clinically Significant Levels Laboratory Analyte Indication Treatment Arm N Patients n (%) Total Cholesterol ≥200 mg/dL Schizophrenia* Quetiapine 107 13 (12%) Placebo 56 1 (2%) Bipolar Mania† Quetiapine 159 16 (10%) Placebo 66 2 (3%) Triglycerides ≥150 mg/dL Schizophrenia Quetiapine 103 17 (17%) Placebo 51 4 (8%) Bipolar Mania Quetiapine 149 32 (22%) Placebo 60 8 (13%) LDL-Cholesterol ≥ 130 mg/dL Schizophrenia Quetiapine 112 4 (4%) Placebo 60 1 (2%) Bipolar Mania Quetiapine 169 13 (8%) Placebo 74 4 (5%) HDL-Cholesterol ≤ 40 mg/dL Schizophrenia Quetiapine 104 16 (15%) Placebo 54 10 (19%) Bipolar Mania Quetiapine 154 16 (10%) Placebo 61 4 (7%) 13 to 17 years, 6 weeks duration 10 to 17 years, 3 weeks duration In a placebo-controlled quetiapine fumarate extended-release tablets monotherapy study (8 weeks duration) of children and adolescent patients (10 to 17 years of age) with bipolar depression, in which efficacy was not established, the percentage of children and adolescents with shifts in total cholesterol (≥200 mg/dL), triglycerides (≥150 mg/dL), LDL-cholesterol (≥ 130 mg/dL) and HDL-cholesterol (≤40 mg/dL) from baseline to clinically significant levels were: total cholesterol 8% (7/83) for quetiapine fumarate extended-release tablets vs. 6% (5/84) for placebo; triglycerides 28% (22/80) for quetiapine fumarate extended-release tablets vs. 9% (7/82) for placebo; LDL-cholesterol 2% (2/86) for quetiapine fumarate extended-release tablets vs. 4% (3/85) for placebo and HDL-cholesterol 20% (13/65) for quetiapine fumarate extended-release tablets vs. 15% (11/74) for placebo. Weight Gain Increases in weight have been observed in clinical trials. Patients receiving quetiapine should receive regular monitoring of weight. Adults: In clinical trials with quetiapine the following increases in weight have been reported. Table 6: Proportion of Patients with Weight Gain ≥7% of Body Weight (Adults) Vital Sign Indication Treatment Arm N Patients n (%) Weight Gain ≥7% of Body Weight Schizophrenia* Quetiapine 391 89 (23%) Placebo 206 11 (6%) Bipolar Mania (monotherapy)† Quetiapine 209 44 (21%) Placebo 198 13 (7%) Bipolar Mania (adjunct therapy)‡ Quetiapine 196 25 (13%) Placebo 203 8 (4%) Bipolar Depression§ Quetiapine 554 47 (8%) Placebo 295 7 (2%) up to 6 weeks duration up to 12 weeks duration up to 3 weeks duration up to 8 weeks duration Children and Adolescents: In two clinical trials with quetiapine, one in bipolar mania and one in schizophrenia, reported increases in weight are included in table 7. Table 7: Proportion of Patients with Weight Gain ≥7% of Body Weight (Children and Adolescents) Vital Sign Indication Treatment Arm N Patients n (%) Weight Gain ≥7% of Body Weight Schizophrenia* Quetiapine 111 23 (21%) Placebo 44 3 (7%) Bipolar Mania† Quetiapine 157 18 (12%) Placebo 68 0 (0%) 6 weeks duration 3 weeks duration The mean change in body weight in the schizophrenia trial was 2 kg in the quetiapine group and -0.4 kg in the placebo group and in the bipolar mania trial it was 1.7 kg in the quetiapine group and 0.4 kg in the placebo group. In an open-label study that enrolled patients from the above two pediatric trials, 63% of patients (241/380) completed 26 weeks of therapy with quetiapine. After 26 weeks of treatment, the mean increase in body weight was 4.4 kg. Forty-five percent of the patients gained ≥ 7% of their body weight, not adjusted for normal growth. In order to adjust for normal growth over 26 weeks an increase of at least 0.5 standard deviation from baseline in BMI was used as a measure of a clinically significant change; 18.3% of patients on quetiapine met this criterion after 26 weeks of treatment. In a clinical trial for quetiapine fumarate extended-release tablets in children and adolescents (10 to 17 years of age) with bipolar depression, in which efficacy was not established, the percentage of patients with weight gain ≥7% of body weight at any time was 15% (14/92) for quetiapine fumarate extended-release tablets vs. 10% (10/100) for placebo. The mean change in body weight was 1.4 kg in the quetiapine fumarate extended-release tablets group vs. 0.6 kg in the placebo group. When treating pediatric patients with quetiapine fumarate tablets for any indication, weight gain should be assessed against that expected for normal growth. A syndrome of potentially irreversible, involuntary, dyskinetic movements may develop in patients treated with antipsychotic drugs, including quetiapine. Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome. Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown. The risk of developing tardive dyskinesia and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase. However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses or may even arise after discontinuation of treatment. There is no known treatment for established cases of tardive dyskinesia, although the syndrome may remit, partially or completely, if antipsychotic treatment is withdrawn. Antipsychotic treatment, itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process. The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown. Given these considerations, quetiapine should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia. Chronic antipsychotic treatment should generally be reserved for patients who appear to suffer from a chronic illness that (1) is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate. In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought. The need for continued treatment should be reassessed periodically. If signs and symptoms of tardive dyskinesia appear in a patient on quetiapine, drug discontinuation should be considered. However, some patients may require treatment with quetiapine despite the presence of the syndrome. Quetiapine may induce orthostatic hypotension associated with dizziness, tachycardia and, in some patients, syncope, especially during the initial dose-titration period, probably reflecting its α1­-adrenergic antagonist properties. Syncope was reported in 1% (28/3265) of the patients treated with quetiapine, compared with 0.2% (2/954) on placebo and about 0.4% (2/527) on active control drugs. Orthostatic hypotension, dizziness, and syncope may lead to falls. Quetiapine should be used with particular caution in patients with known cardiovascular disease (history of myocardial infarction or ischemic heart disease, heart failure or conduction abnormalities), cerebrovascular disease or conditions which would predispose patients to hypotension (dehydration, hypovolemia and treatment with antihypertensive medications). The risk of orthostatic hypotension and syncope may be minimized by limiting the initial dose to 25 mg twice daily [see Dosage and Administration (2.2)]. If hypotension occurs during titration to the target dose, a return to the previous dose in the titration schedule is appropriate. In placebo-controlled trials in children and adolescents with schizophrenia (6-week duration) or bipolar mania (3-week duration), the incidence of increases at any time in systolic blood pressure (≥20 mmHg) was 15.2% (51/335) for quetiapine and 5.5% (9/163) for placebo; the incidence of increases at any time in diastolic blood pressure (≥10 mmHg) was 40.6% (136/335) for quetiapine and 24.5% (40/163) for placebo. In the 26-week open-label clinical trial, one child with a reported history of hypertension experienced a hypertensive crisis. Blood pressure in children and adolescents should be measured at the beginning of, and periodically during treatment. In a placebo-controlled quetiapine fumarate extended-release tablets clinical trial (8 weeks duration) in children and adolescents (10 to 17 years of age) with bipolar depression, in which efficacy was not established, the incidence of increases at any time in systolic blood pressure (≥20 mmHg) was 6.5% (6/92) for quetiapine fumarate extended-release tablets and 6% (6/100) for placebo; the incidence of increases at any time in diastolic blood pressure (≥10 mmHg) was 46.7% (43/92) for quetiapine fumarate extended-release tablets and 36% (36/100) for placebo. In clinical trial and postmarketing experience, events of leukopenia/neutropenia have been reported temporally related to atypical antipsychotic agents, including quetiapine. Agranulocytosis (including fatal cases) has also been reported. Possible risk factors for leukopenia/neutropenia include preexisting low white cell count (WBC) and history of drug induced leukopenia/neutropenia. Patients with a preexisting low WBC or a history of drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and should discontinue quetiapine at the first sign of a decline in WBC in absence of other causative factors. Patients with neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count <1000/mm3) should discontinue quetiapine and have their WBC followed until recovery. The development of cataracts was observed in association with quetiapine treatment in chronic dog studies [see Nonclinical Toxicology ( 13.2)]. Lens changes have also been observed in adults, children and adolescents during long-term quetiapine treatment, but a causal relationship to quetiapine use has not been established. Nevertheless, the possibility of lenticular changes cannot be excluded at this time. Therefore, examination of the lens by methods adequate to detect cataract formation, such as slit lamp exam or other appropriately sensitive methods, is recommended at initiation of treatment or shortly thereafter, and at 6-month intervals during chronic treatment. In clinical trials quetiapine was not associated with a persistent increase in QT intervals. However, the QT effect was not systematically evaluated in a thorough QT study. In post marketing experience, there were cases reported of QT prolongation in patients who overdosed on quetiapine [see Overdosage (10.1)], in patients with concomitant illness, and in patients taking medicines known to cause electrolyte imbalance or increase QT interval [see Drug Interactions (7.1)]. The use of quetiapine should be avoided in combination with other drugs that are known to prolong QTc including Class 1A antiarrythmics (e.g., quinidine, procainamide) or Class III antiarrythmics (e.g., amiodarone, sotalol), antipsychotic medications (e.g., ziprasidone, chlorpromazine, thioridazine), antibiotics (e.g., gatifloxacin, moxifloxacin), or any other class of medications known to prolong the QTc interval (e.g., pentamidine, levomethadyl acetate, methadone). Quetiapine should also be avoided in circumstances that may increase the risk of occurrence of torsade de pointes and/or sudden death including (1) a history of cardiac arrhythmias such as bradycardia; (2) hypokalemia or hypomagnesemia; (3) concomitant use of other drugs that prolong the QTc interval; and (4) presence of congenital prolongation of the QT interval. Caution should also be exercised when quetiapine is prescribed in patients with increased risk of QT prolongation (e.g. cardiovascular disease, family history of QT prolongation, the elderly, congestive heart failure and heart hypertrophy). During clinical trials, seizures occurred in 0.5% (20/3490) of patients treated with quetiapine compared to 0.2% (2/954) on placebo and 0.7% (4/527) on active control drugs. As with other antipsychotics, quetiapine should be used cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold, e.g., Alzheimer’s dementia. Conditions that lower the seizure threshold may be more prevalent in a population of 65 years or older. Adults: Clinical trials with quetiapine demonstrated dose-related decreases in thyroid hormone levels. The reduction in total and free thyroxine (T4) of approximately 20% at the higher end of the therapeutic dose range was maximal in the first six weeks of treatment and maintained without adaptation or progression during more chronic therapy. In nearly all cases, cessation of quetiapine treatment was associated with a reversal of the effects on total and free T4, irrespective of the duration of treatment. The mechanism by which quetiapine effects the thyroid axis is unclear. If there is an effect on the hypothalamic-pituitary axis, measurement of TSH alone may not accurately reflect a patient’s thyroid status. Therefore, both TSH and free T4, in addition to clinical assessment, should be measured at baseline and at follow-up. In the mania adjunct studies, where quetiapine was added to lithium or divalproex, 12% (24/196) of quetiapine treated patients compared to 7% (15/203) of placebo-treated patients had elevated TSH levels. Of the quetiapine treated patients with elevated TSH levels, 3 had simultaneous low free T4 levels (free T4 <0.8 LLN). About 0.7% (26/3489) of quetiapine patients did experience TSH increases in monotherapy studies. Some patients with TSH increases needed replacement thyroid treatment. In all quetiapine trials, the incidence of significant shifts in thyroid hormones and TSH were*: decrease in free T4 (free T4 20 mcg/L males; > 26 mcg/L females at any time) was 13.4% (18/134) for quetiapine compared to 4% (3/75) for placebo in males and 8.7% (9/104) for quetiapine compared to 0% (0/39) for placebo in females. Like other drugs that antagonize dopamine D2 receptors, quetiapine elevates prolactin levels in some patients and the elevation may persist during chronic administration. Hyperprolactinemia, regardless of etiology, may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotrophin secretion. This, in turn, may inhibit reproductive function by impairing gonadal steroidogenesis in both female and male patients. Galactorrhea, amenorrhea, gynecomastia, and impotence have been reported in patients receiving prolactin-elevating compounds. Long-standing hyperprolactinemia when associated with hypogonadism may lead to decreased bone density in both female and male subjects. Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro, a factor of potential importance if the prescription of these drugs is considered in a patient with previously detected breast cancer. As is common with compounds which increase prolactin release, mammary gland, and pancreatic islet cell neoplasia (mammary adenocarcinomas, pituitary and pancreatic adenomas) was observed in carcinogenicity studies conducted in mice and rats. Neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans, but the available evidence is too limited to be conclusive [see Nonclinical Toxicology (13.1)]. Somnolence was a commonly reported adverse event reported in patients treated with quetiapine especially during the 3 to 5 day period of initial dose-titration. In schizophrenia trials, somnolence was reported in 18% (89/510) of patients on quetiapine compared to 11% (22/206) of placebo patients. In acute bipolar mania trials using quetiapine as monotherapy, somnolence was reported in 16% (34/209) of patients on quetiapine compared to 4% of placebo patients. In acute bipolar mania trials using quetiapine as adjunct therapy, somnolence was reported in 34% (66/196) of patients on quetiapine compared to 9% (19/203) of placebo patients. In bipolar depression trials, somnolence was reported in 57% (398/698) of patients on quetiapine compared to 15% (51/347) of placebo patients. Since quetiapine has the potential to impair judgment, thinking, or motor skills, patients should be cautioned about performing activities requiring mental alertness, such as operating a motor vehicle (including automobiles) or operating hazardous machinery until they are reasonably certain that quetiapine therapy does not affect them adversely. Somnolence may lead to falls. Although not reported with quetiapine, disruption of the body’s ability to reduce core body temperature has been attributed to antipsychotic agents. Appropriate care is advised when prescribing quetiapine for patients who will be experiencing conditions which may contribute to an elevation in core body temperature, e.g., exercising strenuously, exposure to extreme heat, receiving concomitant medication with anticholinergic activity, or being subject to dehydration. Esophageal dysmotility and aspiration have been associated with antipsychotic drug use. Aspiration pneumonia is a common cause of morbidity and mortality in elderly patients, in particular those with advanced Alzheimer’s dementia. Quetiapine and other antipsychotic drugs should be used cautiously in patients at risk for aspiration pneumonia. Acute withdrawal symptoms, such as insomnia, nausea, and vomiting have been described after abrupt cessation of atypical antipsychotic drugs, including quetiapine. In short-term placebo-controlled, monotherapy clinical trials with quetiapine fumarate extended-release tablets that included a discontinuation phase which evaluated discontinuation symptoms, the aggregated incidence of patients experiencing one or more discontinuation symptoms after abrupt cessation was 12.1% (241/1993) for quetiapine fumarate extended-release tablets and 6.7% (71/1065) for placebo. The incidence of the individual adverse events (i.e., insomnia, nausea, headache, diarrhea, vomiting, dizziness and irritability) did not exceed 5.3% in any treatment group and usually resolved after 1 week post-discontinuation. Gradual withdrawal is advised.

INFORMATION FOR PATIENTS

Information For Patients Section See FDA-approved patient labeling (Medication Guide) Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with quetiapine fumarate tablets and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for quetiapine fumarate tablets. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking quetiapine fumarate tablets. Increased Mortality in Elderly Patients with Dementia-Related Psychosis Patients and caregivers should be advised that elderly patients with dementia-related psychosis treated with atypical antipsychotic drugs are at increased risk of death compared with placebo. Quetiapine is not approved for elderly patients with dementia-related psychosis [see Warnings and Precautions (5.1)]. Suicidal Thoughts and Behaviors Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication [see Warnings and Precautions (5.2)]. Neuroleptic Malignant Syndrome (NMS) Patients should be advised to report to their physician any signs or symptoms that may be related to NMS. These may include muscle stiffness and high fever [see Warnings and Precautions (5.4)]. Hyperglycemia and Diabetes Mellitus Patients should be aware of the symptoms of hyperglycemia (high blood sugar) and diabetes mellitus. Patients who are diagnosed with diabetes, those with risk factors for diabetes, or those that develop these symptoms during treatment should have their blood glucose monitored at the beginning of and periodically during treatment [see Warnings and Precautions (5.5)]. Hyperlipidemia Patients should be advised that elevations in total cholesterol, LDL-cholesterol and triglycerides and decreases in HDL-cholesterol may occur. Patients should have their lipid profile monitored at the beginning of and periodically during treatment [see Warnings and Precautions (5.5)]. Weight Gain Patients should be advised that they may experience weight gain. Patients should have their weight monitored regularly [see Warnings and Precautions (5.5)]. Orthostatic Hypotension Patients should be advised of the risk of orthostatic hypotension (symptoms include feeling dizzy or lightheaded upon standing, which may lead to falls), especially during the period of initial dose titration, and also at times of re-initiating treatment or increases in dose [see Warnings and Precautions (5.7)]. Increased Blood Pressure in Children and Adolescents Children and adolescent patients should have their blood pressure measured at the beginning of, and periodically during, treatment [see Warnings and Precautions (5.8)]. Leukopenia/Neutropenia Patients with a preexisting low WBC or a history of drug induced leukopenia/neutropenia should be advised that they should have their CBC monitored while taking quetiapine fumarate tablets [see Warnings and Precautions (5.9)]. Interference with Cognitive and Motor Performance Patients should be advised of the risk of somnolence or sedation (which may lead to falls), especially during the period of initial dose titration. Patients should be cautioned about performing any activity requiring mental alertness, such as operating a motor vehicle (including automobiles) or operating machinery, until they are reasonably certain quetiapine therapy does not affect them adversely. [see Warnings and Precautions (5.15)]. Heat Exposure and Dehydration Patients should be advised regarding appropriate care in avoiding overheating and dehydration [see Warnings and Precautions (5.16)]. Concomitant Medication As with other medications, patients should be advised to notify their physicians if they are taking, or plan to take, any prescription or over-the-counter drugs. [see Drug Interactions (7.1)]. Pregnancy and Nursing Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy with quetiapine fumarate tablets. [see Use in Specific Populations (8.1) and (8.3)]. Need for Comprehensive Treatment Program Quetiapine fumarate tablets are indicated as an integral part of a total treatment program for adolescents with schizophrenia and pediatric bipolar disorder that may include other measures (psychological, educational, and social). Effectiveness and safety of quetiapine fumarate tablets have not been established in pediatric patients less than 13 years of age for schizophrenia or less than 10 years of age for bipolar mania. Appropriate educational placement is essential and psychosocial intervention is often helpful. The decision to prescribe atypical antipsychotic medication will depend upon the physician’s assessment of the chronicity and severity of the patient’s symptoms [see Indications and Usage (1.3)].

DOSAGE AND ADMINISTRATION

Dosage & Administration Section Quetiapine fumarate tablets can be taken with or without food (2.1) Indication Initial Dose Recommended Dose Maximum Dose Schizophrenia-Aults (2.2) 25 mg twice daily 150 to 750 mg/day 750 mg/day Schizophrenia-Adolescents (13 to 17 years) (2.2) 25 mg twice daily 400 to 800 mg/day 800 mg/day Bipolar Mania- Adults Monotherapy or as an adjunct to lithium or divalproex (2.2) 50 mg twice daily 400 to 800 mg/day 800 mg/day Bipolar Mania- Children and Adolescents (10 to 17 years), Monotherapy (2.2) 25 mg twice daily 400 to 600 mg/day 600 mg/day Bipolar Depression-Adults (2.2) 50 mg once daily at bedtime 300 mg/day 300 mg/day Geriatric Use: Consider a lower starting dose (50 mg/day), slower titration and careful monitoring during the initial dosing period in the elderly (2.3, 8.5) Hepatic Impairment: Lower starting dose (25 mg/day) and slower titration may be needed (2.4, 8.7, 12.3) Quetiapine fumarate tablets can be taken with or without food. The recommended initial dose, titration, dose range and maximum quetiapine fumarate tablets dose for each approved indication is displayed in Table 1. After initial dosing, adjustments can be made upwards or downwards, if necessary, depending upon the clinical response and tolerability of the patient [see Clinical Studies (14.1 and 14.2)]. Table 1: Recommended Dosing for Quetiapine Fumarate Tablets Indication Initial Dose and Titration Recommended Dose Maximum Dose Schizophrenia-Adults Day 1: 25 mg twice daily. Increase in increments of 25 mg to 50 mg divided two or three times on Days 2 and 3 to range of 300 to 400 mg by Day 4. Further adjustments can be made in increments of 25 to 50 mg twice a day, in intervals of not less than 2 days. 150 to 750 mg/day 750 mg/day Schizophrenia- Adolescents (13 to 17 years) Day 1: 25 mg twice daily. Day 2: Twice daily dosing totaling 100 mg. Day 3: Twice daily dosing totaling 200 mg. Day 4: Twice daily dosing totaling 300 mg. Day 5: Twice daily dosing totaling 400 mg. Further adjustments should be in increments no greater than 100 mg/day within the recommended dose range of 400 to 800 mg/day. Based on response and tolerability, may be administered three times daily. 400 to 800 mg/day 800 mg/day Schizophrenia-Maintenance N/A* 400 to 800 mg/day 800 mg/day Bipolar Mania- Adults Monotherapy or as an adjunct to lithium or divalproex Day 1: Twice daily dosing totaling 100 mg. Day 2: Twice daily dosing totaling 200 mg. Day 3: Twice daily dosing totaling 300 mg. Day 4: Twice daily dosing totaling 400 mg. Further dosage adjustments up to 800 mg/day by Day 6 should be in increments of no greater than 200 mg/day. 400 to 800 mg/day 800 mg/day Bipolar Mania-Children and Adolescents (10 to 17 years), Monotherapy Day 1: 25 mg twice daily. Day 2: Twice daily dosing totaling 100 mg. Day 3: Twice daily dosing totaling 200 mg. Day 4: Twice daily dosing totaling 300 mg. Day 5: Twice daily dosing totaling 400 mg. Further adjustments should be in increments no greater than 100 mg/day within the recommended dose range of 400 to 600 mg/day. Based on response and tolerability, may be administered three times daily. 400 to 600 mg/day 600 mg/day Bipolar Depression- Adults Administer once daily at bedtime. Day 1: 50 mg Day 2: 100 mg Day 3: 200 mg Day 4: 300 mg 300 mg/day 300 mg/day Bipolar I Disorder Maintenance Therapy- Adults Administer twice daily totaling 400 to 800 mg/day as adjunct to lithium or divalproex. Generally, in the maintenance phase, patients continued on the same dose on which they were stabilized. 400 to 800 mg/day 800 mg/day N/A Not applicable Maintenance Treatment for Schizophrenia and Bipolar I Disorder Maintenance Treatment—Patients should be periodically reassessed to determine the need for maintenance treatment and the appropriate dose for such treatment [see Clinical Studies (14.2)]. Consideration should be given to a slower rate of dose titration and a lower target dose in the elderly and in patients who are debilitated or who have a predisposition to hypotensive reactions [see Clinical Pharmacology (12.3)]. When indicated, dose escalation should be performed with caution in these patients. Elderly patients should be started on quetiapine fumarate tablets 50 mg/day and the dose can be increased in increments of 50 mg/day depending on the clinical response and tolerability of the individual patient. Patients with hepatic impairment should be started on 25 mg/day. The dose should be increased daily in increments of 25 mg/day to 50 mg/day to an effective dose, depending on the clinical response and tolerability of the patient. Quetiapine fumarate tablets dose should be reduced to one sixth of original dose when co-medicated with a potent CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, indinavir, ritonavir, nefazodone, etc.). When the CYP3A4 inhibitor is discontinued, the dose of quetiapine fumarate tablets should be increased by 6 fold [see Clinical Pharmacology (12.3) and Drug Interactions (7.1)]. Quetiapine fumarate tablets dose should be increased up to 5 fold of the original dose when used in combination with a chronic treatment (e.g., greater than 7 to 14 days) of a potent CYP3A4 inducer (e.g., phenytoin, carbamazepine, rifampin, avasimibe, St. John’s wort etc.). The dose should be titrated based on the clinical response and tolerability of the individual patient. When the CYP3A4 inducer is discontinued, the dose of quetiapine fumarate tablets should be reduced to the original level within 7 to 14 days [see Clinical Pharmacology (12.3) and Drug Interactions (7.1)]. Although there are no data to specifically address re-initiation of treatment, it is recommended that when restarting therapy of patients who have been off quetiapine fumarate tablets for more than one week, the initial dosing schedule should be followed. When restarting patients who have been off quetiapine fumarate tablets for less than one week, gradual dose escalation may not be required and the maintenance dose may be reinitiated. There are no systematically collected data to specifically address switching patients with schizophrenia from antipsychotics to quetiapine fumarate tablets, or concerning concomitant administration with antipsychotics. While immediate discontinuation of the previous antipsychotic treatment may be acceptable for some patients with schizophrenia, more gradual discontinuation may be most appropriate for others. In all cases, the period of overlapping antipsychotic administration should be minimized. When switching patients with schizophrenia from depot antipsychotics, if medically appropriate, initiate quetiapine fumarate tablets therapy in place of the next scheduled injection. The need for continuing existing EPS medication should be re-evaluated periodically.

pramipexole dihydrochloride 4.5 MG 24 HR Extended Release Oral Tablet

Generic Name: PRAMIPEXOLE DIHYDROCHLORIDE
Brand Name: Pramipexole dihydrochloride
  • Substance Name(s):
  • PRAMIPEXOLE DIHYDROCHLORIDE

DRUG INTERACTIONS

7 Dopamine antagonists: May diminish the effectiveness of pramipexole (7.1). 7.1 Dopamine Antagonists Since pramipexole is a dopamine agonist, it is possible that dopamine antagonists, such as the neuroleptics (phenothiazines, butyrophenones, thioxanthenes) or metoclopramide, may diminish the effectiveness of pramipexole dihydrochloride extended-release tablets.

OVERDOSAGE

10 There is no clinical experience with significant overdosage. One patient took 11 mg/day of pramipexole for 2 days in a clinical trial for an investigational use. Blood pressure remained stable, although pulse rate increased to between 100 and 120 beats/minute. No other adverse reactions were reported related to the increased dose. There is no known antidote for overdosage of a dopamine agonist. If signs of central nervous system stimulation are present, a phenothiazine or other butyrophenone neuroleptic agent may be indicated; the efficacy of such drugs in reversing the effects of overdosage has not been assessed. Management of overdose may require general supportive measures along with gastric lavage, intravenous fluids, and electrocardiogram monitoring.

DESCRIPTION

11 pramipexole dihydrochloride extended-release tablets contain pramipexole, a non-ergot dopamine agonist. The chemical name of pramipexole dihydrochloride is (S)-2-amino-4,5,6,7-tetrahydro-6(propylamino)benzothiazole dihydrochloride monohydrate. Its molecular formula is C10 H17 N3 S · 2HCl · H2O, and its molecular weight is 302.26. The structural formula is: Pramipexole dihydrochloride USP is a white to almost white, crystalline powder. It is freely soluble in water, soluble in methanol, slightly soluble in alcohol (99.6%) and practically insoluble in methylene chloride. Melting occurs in the range of 293°C to 306°C, with decomposition. Pramipexole dihydrochloride extended-release tablets, for oral administration, contain 0.375 mg, 0.75 mg, 1.5 mg, 3 mg, or 4.5 mg of pramipexole dihydrochloride monohydrate. Inactive ingredients are carbomer homopolymer, colloidal silicon dioxide, hypromellose, magnesium stearate, microcrystalline cellulose and pregelatinized starch.

CLINICAL STUDIES

14 The effectiveness of pramipexole dihydrochloride extended-release tablets in the treatment of Parkinson’s disease was supported by clinical pharmacokinetic data [see Clinical Pharmacology (12.3) ] and two randomized, double-blind, placebo-controlled, multicenter clinical trials in early and advanced Parkinson’s disease. In both randomized studies, the Unified Parkinson’s Disease Rating Scale (UPDRS) served as a primary outcome assessment measure. The UPDRS is a four-part multi-item rating scale intended to evaluate mentation (Part I), activities of daily living (Part II), motor performance (Part III), and complications of therapy (Part IV). Part II of the UPDRS contains 13 questions related to activities of daily living, which are scored from 0 (normal) to 4 (maximal severity) for a maximum (worst) score of 52. Part III of the UPDRS contains 14 items designed to assess the severity of the cardinal motor findings in patients with Parkinson’s disease (e.g., tremor, rigidity, bradykinesia, postural instability, etc.), scored for different body regions and has a maximum (worst) score of 108. Early Parkinson’s Disease The effectiveness of pramipexole dihydrochloride extended-release tablets in early Parkinson’s disease patients (Hoehn & Yahr Stages I-III) who were not on levodopa therapy was established in a randomized, double-blind, placebo-controlled, 3-parallel-group clinical study. Patients were treated with pramipexole dihydrochloride extended-release tablets, immediate-release pramipexole tablets, or placebo; those treated with pramipexole extended-release tablets or immediate-release pramipexole tablets had a starting dose of 0.375 mg/day followed by a flexible up-titration, based on efficacy and tolerability, up to 4.5 mg/day. Levodopa was permitted during the study as rescue medication. Stable doses of concomitant MAO-B inhibitors, anticholinergics, or amantadine, individually or in combination, were allowed. The primary efficacy endpoint was the mean change from baseline in the UPDRS Parts II+III score for pramipexole dihydrochloride extended-release tablets versus placebo following 18 weeks of treatment. At 18 weeks of treatment, the mean change from baseline UPDRS Parts II+III score was –8.1 points in patients receiving pramipexole dihydrochloride extended-release tablets (n=102) and –5.1 points in patients receiving placebo (n=50), a difference that was statistically significant (p<0.03). Seven patients treated with placebo (14%) and 3 patients treated with pramipexole dihydrochloride extended-release tablets (3%) received levodopa rescue medication. At 18 weeks, the mean dose of pramipexole dihydrochloride extended-release was 3 mg/day. At 33-weeks the adjusted mean improvement from baseline UPDRS Parts II+III score was –8.6 points in patients receiving pramipexole dihydrochloride extended-release tablets (n=213), compared to –3.8 points in patients receiving placebo (n=103). At 18 and 33 weeks, the mean dose of pramipexole dihydrochloride extended-release tablets was approximately 3 mg/day. Twenty-two patients treated with placebo (21%) and 15 patients treated with pramipexole dihydrochloride extended-release tablets (7%) received levodopa rescue medication before the final assessment No differences in effectiveness based on age or gender were detected. Patients receiving MAOB-I, anticholinergics, or amantadine had responses similar to patients not receiving these drugs. Advanced Parkinson’s Disease The effectiveness of pramipexole dihydrochloride extended-release tablets in advanced Parkinson's disease patients (Hoehn & Yahr Stages II-IV at "on" time) who were on concomitant levodopa therapy (at an optimized dose) and who had motor fluctuations (at least 2 cumulative hours of "off" time per day) was established in a randomized, double-blind, placebo-controlled, 3-parallel-group clinical study. Patients were treated with pramipexole extended-release tablets, immediate-release pramipexole tablets, or placebo; those treated with pramipexole extended-release tablets or immediate-release pramipexole tablets had a starting dose of 0.375 mg/day followed by a flexible up-titration over 7 weeks, based on efficacy and tolerability, up to 4.5 mg/day, followed by a 26 week maintenance period. Levodopa dosage reduction was permitted only in the case of dopaminergic adverse events. The primary efficacy endpoint was the adjusted mean change from baseline in the UPDRS Parts II+III score for pramipexole dihydrochloride extended-release tablets versus placebo following 18 weeks of treatment. At 18 weeks of treatment, the adjusted mean improvement from baseline UPDRS Parts II+III score was – 11 points in patients receiving pramipexole dihydrochloride extended-release tablets (n=161) and – 6.1 points in patients receiving placebo (n=174), (p=0.0001). At week 18, the adjusted mean improvement from baseline in “off" time was -2.1 hours for pramipexole dihydrochloride extended-release and -1.4 hours for placebo (p=0.0199). At 33-weeks the adjusted mean improvement from baseline UPDRS Parts II+III score was –11.1 points in patients receiving pramipexole dihydrochloride extended-release tablets (n=117) and –6.8 points in patients receiving placebo (n=136) (p=0.0135). At both 18 and 33 weeks the mean daily dose of pramipexole dihydrochloride extended-release was 2.6 mg/day. At week 18, 4 patients (3%) in the placebo group and 14 patients (11%) in the pramipexole dihydrochloride extended-release tablets group had decreased their levodopa daily dose compared to baseline due to dopaminergic adverse events. No clinically relevant difference in effectiveness was observed in the sub-group analyses based on gender, age, race (White vs. Asian), or concomitant use of antiparkinsonian treatment (MAOB-I, amantadine or anticholinergics).

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 How Supplied Pramipexole dihydrochloride extended-release tablets are available as follows: 0. 375 mg: Off white, round shaped, biconvex, uncoated tablet, debossed with ‘RDY’ on one one side and ‘611’ on other side and are supplied in bottle of 30’s count. Bottles of 30 NDC 55111-611-30 0.75 mg: Off white, round shaped, biconvex, uncoated tablet, debossed with ‘RDY’ on one one side and ‘612’ on other side and are supplied in bottle of 30’s count. Bottles of 30 NDC 55111-612-30 1.5 mg: Off white, oval shaped, biconvex, uncoated tablet, debossed with ‘RDY’ on one one side and ‘613’ on other side and are supplied in bottle of 30’s count. Bottles of 30 NDC 55111-613-30 3 mg: Off white, oval shaped, biconvex, uncoated tablet, debossed with ‘RDY’ on one one side and ‘614’ on other side and are supplied in bottle of 30’s count. Bottles of 30 NDC 55111-614-30 4.5 mg: Off white, oval shaped, biconvex, uncoated tablet, debossed with ‘RDY’ on one one side and ‘615’ on other side and are supplied in bottle of 30’s count. Bottles of 30 NDC 55111-615-30 16.2 Storage and Handling ­­Store at 20°-25°C (68°-77°F); [see USP Controlled Room Temperature]. Protect from exposure to high humidity. Store in a safe place out of the reach of children.

GERIATRIC USE

8.5 Geriatric Use Pramipexole total oral clearance is approximately 30% lower in subjects older than 65 years compared with younger subjects, because of a decline in pramipexole renal clearance due to an age-related reduction in renal function. This resulted in an increase in elimination half-life from approximately 8.5 hours to 12 hours. In a placebo-controlled clinical trial of pramipexole dihydrochloride extended-release tablets in early Parkinson’s disease, 47% of the 259 patients were ≥65 years of age. Among patients receiving pramipexole dihydrochloride extended-release tablets, hallucinations were more common in the elderly, occurring in 13% of the patients ≥ 65 years of age compared to 2% of the patients <65 years of age.

DOSAGE FORMS AND STRENGTHS

3 0. 375 mg: Off white, round shaped, biconvex, un coated tablet, debossed with ‘RDY’ on one side and ‘611’ on other side. 0.75 mg: Off white, round shaped, biconvex, un coated tablet, debossed with ‘RDY’ on one side and ‘612’ on other side. 1.5 mg: Off white, oval shaped, biconvex, un coated tablet, debossed with ‘RDY’ on one side and ‘613’ on other side. 3 mg: Off white, oval shaped, biconvex, un coated tablet, debossed with ‘RDY’ on one side and ‘614’ on other side. 4.5 mg: Off white, oval shaped, biconvex, un coated tablet, debossed with ‘RDY’ on one side and ‘615’ on other side. Extended-release tablets: 0.375 mg, 0.75 mg, 1.5 mg, 3 mg, and 4.5 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Pramipexole is a non-ergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The precise mechanism of action of pramipexole as a treatment for Parkinson’s disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. The relevance of D3 receptor binding in Parkinson’s disease is unknown.

INDICATIONS AND USAGE

1 Pramipexole dihydrochloride extended-release tablets are indicated for the treatment of Parkinson’s disease. Pramipexole dihydrochloride extended-release is a non-ergot dopamine agonist indicated for the treatment of Parkinson’s disease (PD) (1)

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of pramipexole dihydrochloride extended-release tablets in pediatric patients have not been evaluated.

PREGNANCY

8.1 Pregnancy Risk Summary There are no adequate data on the developmental risk associated with the use of pramipexole dihydrochloride extended-release in pregnant women. No adverse developmental effects were observed in animal studies in which pramipexole was administered to rabbits during pregnancy. Effects on embryofetal development could not be adequately assessed in pregnant rats; however, postnatal growth was inhibited at clinically relevant exposures [see Data]. In the U.S. general population, the estimated background risk of major birth defects and of miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. The background risk of major birth defects and miscarriage for the indicated population is unknown. Data Animal Data Oral administration of pramipexole (0.1, 0.5, or 1.5 mg/kg/day) to pregnant rats during the period of organogenesis resulted in a high incidence of total resorption of embryos at the highest dose tested. This increase in embryolethality is thought to result from the prolactin-lowering effect of pramipexole; prolactin is necessary for implantation and maintenance of early pregnancy in rats but not in rabbits or humans. Because of pregnancy disruption and early embryonic loss in this study, the teratogenic potential of pramipexole could not be adequately assessed in rats. The highest no-effect dose for embryolethality in rats was associated with maternal plasma drug exposures (AUC) approximately equal to those in humans receiving the maximum recommended human dose (MRHD) of 4.5 mg/day. There were no adverse effects on embryo-fetal development following oral administration of pramipexole (0.1, 1, or 10 mg/kg/day) to pregnant rabbits during organogenesis (plasma AUC up to approximately 70 times that in humans at the MRHD). Postnatal growth was inhibited in the offspring of rats treated with pramipexole (0.1, 0.5, or 1.5 mg/kg/day) during the latter part of pregnancy and throughout lactation. The no-effect dose for adverse effects on offspring growth (0.1 mg/kg/day) was associated with maternal plasma drug esposure lower than that in humans at the MRHD.

NUSRING MOTHERS

8.2 Lactation Risk Summary There are no data on the presence of pramipexole in human milk, the effects of pramipexole on the breastfed infant, or the effects of pramipexole on milk production. However, inhibition of lactation is expected because pramipexole inhibits secretion of prolactin in humans. Pramipexole or metabolites, or both, are present in rat milk [see Data]. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for pramipexole dihydrochloride extended-release and any potential adverse effects on the breastfed infant from pramipexole dihydrochloride extended-release or from the underlying maternal condition. Data In a study of radiolabeled pramipexole, pramipexole or metabolites, or both, were present in rat milk at concentrations three to six times higher than those in maternal plasma.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Falling asleep during activities of daily living: Sudden onset of sleep may occur without warning; advise patients to report symptoms. (5.1) Symptomatic orthostatic hypotension: Monitor closely especially during dose escalation (5.2) Impulse control/Compulsive behaviors: Patients may experience compulsive behaviors and other intense urges (5.3) Hallucinations and Psychotic-like Behavior: May occur. Risk increases with age (5.4) Dyskinesia: May be caused or exacerbated by pramipexole dihydrochloride extended-release (5.5) Events reported with dopaminergic therapy: Include withdrawal-emergent hyperpyrexia and confusion, fibrotic complications, and melanoma. (5.9) 5.1 Falling Asleep During Activities of Daily Living and Somnolence Patients treated with pramipexole have reported falling asleep while engaged in activities of daily living, including the operation of motor vehicles, which sometimes resulted in accidents. Although many of these patients reported somnolence while on pramipexole tablets, some perceived that they had no warning signs (sleep attack) such as excessive drowsiness, and believed that they were alert immediately prior to the event. Some of these events had been reported as late as one year after the initiation of treatment. In placebo-controlled clinical trials in Parkinson’s disease, the sudden onset of sleep or sleep attacks were reported in 8 of 387 (2%) patients treated with pramipexole dihydrochloride extended-release tablets compared to 2 of 281 (1%) patients on placebo. In early Parkinson’s disease, somnolence was reported in 36% of 223 patients treated with pramipexole dihydrochloride extended-release, median dose 3 mg/day, compared to 15% of 103 patients on placebo. In advanced Parkinson’s disease, somnolence was reported in 15% of 164 patients treated with pramipexole dihydrochloride extended-release tablets, median dose 3 mg/day, compared to 16% of 178 patients on placebo. It has been reported that falling asleep while engaged in activities of daily living usually occurs in a setting of preexisting somnolence, although patients may not give such a history. For this reason, prescribers should reassess patients for drowsiness or sleepiness, especially since some of the events occur well after the start of treatment. Prescribers should also be aware that patients may not acknowledge drowsiness or sleepiness until directly questioned about drowsiness or sleepiness during specific activities. Before initiating treatment with pramipexole dihydrochloride extended-release tablets, advise patients of the potential to develop drowsiness, and specifically ask about factors that may increase the risk for somnolence such as the use of concomitant sedating medications or alcohol, the presence of sleep disorders, and concomitant medications that increase pramipexole plasma levels (e.g., cimetidine) [see Clinical Pharmacology (12.3) ]. If a patient develops significant daytime sleepiness or episodes of falling asleep during activities that require active participation (e.g., conversations, eating, etc.), pramipexole dihydrochloride extended-release tablets should ordinarily be discontinued. If a decision is made to continue pramipexole dihydrochloride extended-release tablets, advise patients not to drive and to avoid other potentially dangerous activities that might result in harm if the patients become somnolent. While dose reduction reduces the degree of somnolence, there is insufficient information to establish that dose reduction will eliminate episodes of falling asleep while engaged in activities of daily living. 5.2 Symptomatic Orthostatic Hypotension Dopamine agonists, in clinical studies and clinical experience, appear to impair the systemic regulation of blood pressure, with resulting orthostatic hypotension, especially during dose escalation. Parkinson’s disease patients, in addition, appear to have an impaired capacity to respond to an orthostatic challenge. For these reasons, Parkinson’s disease patients being treated with dopaminergic agonists, including pramipexole dihydrochloride extended-release, ordinarily require careful monitoring for signs and symptoms of orthostatic hypotension, especially during dose escalation, and should be informed of this risk. In placebo-controlled clinical trials in Parkinson’s disease, symptomatic orthostatic hypotension was reported in 10 of 387 (3%) patients treated with pramipexole dihydrochloride extended-release tablets compared to 3 of 281 (1%) patients on placebo. One patient of 387 on pramipexole dihydrochloride extended-release tablets discontinued treatment due to hypotension. 5.3 Impulse Control/Compulsive Behaviors Case reports and the results of cross-sectional studies suggest that patients can experience intense urges to gamble, increased sexual urges, intense urges to spend money, binge eating, and/or other intense urges, and the inability to control these urges while taking one or more of the medications, including pramipexole dihydrochloride extended-release, that increase central dopaminergic tone and that are generally used for the treatment of Parkinson’s disease. In some cases, although not all, these urges were reported to have stopped when the dose was reduced or the medication was discontinued. Because patients may not recognize these behaviors as abnormal, it is important for prescribers to specifically ask patients or their caregivers about the development of new or increased gambling urges, sexual urges, uncontrolled spending or other urges while being treated with pramipexole dihydrochloride extended-release. Physicians should consider dose reduction or stopping the medication if a patient develops such urges while taking pramipexole dihydrochloride extended-release. A total of 1056 patients with Parkinson’s disease who participated in two pramipexole dihydrochloride extended-release placebo-controlled studies of up to 33 weeks duration were specifically asked at each visit about the occurrence of these symptoms. A total of 14 of 387 (4%) treated with pramipexole dihydrochloride extended-release tablets, 12 of 388 (3%) treated with immediate-release pramipexole tablets, and 4 of 281 (1%) treated with placebo reported compulsive behaviors, including pathological gambling, hypersexuality, and/or compulsive buying. 5.4 Hallucinations and Psychotic-like Behavior In placebo-controlled clinical trials in Parkinson’s disease, hallucinations (visual or auditory or mixed) were reported in 25 of 387 (6%) patients treated with pramipexole dihydrochloride extended-release tablets compared to 5 of 281 (2%) patients receiving placebo. Hallucinations led to discontinuation of treatment in 5 of 387 (1%) patients on pramipexole dihydrochloride extended-release tablets. Age appears to increase the risk of hallucinations attributable to pramipexole. In placebo-controlled clinical trials in Parkinson’s disease, hallucinations were reported in 15 of 162 (9%)patients ≥ 65 years of age taking pramipexole dihydrochloride extended-release tablets compared to 10 of 225 (4%)patients <65 years of age taking pramipexole dihydrochloride extended-release tablets. Postmarketing reports with dopamine agonists, including pramipexole dihydrochloride extended-release, indicate that patients may experience new or worsening mental status and behavioral changes, which may be severe, including psychotic-like behavior during treatment with pramipexole dihydrochloride extended-release or after starting or increasing the dose of pramipexole dihydrochloride extended-release. Other drugs prescribed to improve the symptoms of Parkinson’s disease can have similar effects on thinking and behavior. This abnormal thinking and behavior can consist of one or more of a variety of manifestations including paranoid ideation, delusions, hallucinations, confusion, psychotic-like behavior, disorientation, aggressive behavior, agitation, and delirium. Patients with a major psychotic disorder should ordinarily not be treated with dopamine agonists, including pramipexole dihydrochloride extended-release, because of the risk of exacerbating the psychosis. In addition, certain medications used to treat psychosis may exacerbate the symptoms of Parkinson’s disease and may decrease the effectiveness of pramipexole dihydrochloride extended-release [see Drug Interactions ( 7.1 )]. 5.5 Dyskinesia Pramipexole dihydrochloride extended-release tablets may potentiate the dopaminergic side effects of levodopa and may cause or exacerbate preexisting dyskinesia. 5.6 Renal Impairment The elimination of pramipexole is dependent on renal function [see Clinical Pharmacology (12.3) ]. Patients with mild renal impairment (a creatinine clearance above 50 mL/min) require no reduction in daily dose. Pramipexole dihydrochloride extended-release tablets have not been studied in patients with moderate to severe renal impairment (creatinine clearance <50 mL/min) or on hemodialysis [see Dosage and Administration (2.2) , Use in Specific Populations (8.6) , and Clinical Pharmacology (12.3) ]. 5.7 Rhabdomyolysis In the clinical development program for immediate-release pramipexole tablets, a single case of rhabdomyolysis occurred in a 49 year old male with advanced Parkinson's disease. The patient was hospitalized with an elevated CPK (10,631 IU/L). The symptoms resolved with discontinuation of the medication. Advise patients to contact a physician if they experience any unexplained muscle pain, tenderness, or weakness, as these may be symptoms of rhabdomyolysis. 5.8 Retinal Pathology Human Data A two-year open-label, randomized, parallel-group safety study of retinal deterioration and vision compared immediate-release pramipexole tablets and immediate-release ropinirole. Two hundred thirty four Parkinson’s disease patients (115 on pramipexole, mean dose 3 mg/day and 119 on ropinirole, mean dose 9.5 mg/day) were evaluated using a panel of clinical ophthalmological assessments. Of 234 patients who were evaluable, 196 had been treated for two years and 29 were judged to have developed clinical abnormalities that were considered meaningful (19 patients in each treatment arm had received treatment for less than two years). There was no statistical difference in retinal deterioration between the treatment arms; however, the study was only capable of detecting a very large difference between treatments. In addition, because the study did not include an untreated comparison group (placebo treated), it is unknown whether the findings reported in patients treated with either drug are greater than the background rate in an aging population. Animal Data Pathologic changes (degeneration and loss of photoreceptor cells) were observed in the retina of albino rats in a 2 year carcinogenicity study. While retinal degeneration was not diagnosed in pigmented rats treated for 2 years, a thinning in the outer nuclear layer of the retina was slightly greater in rats given drug compared with controls. Evaluation of the retinas of albino mice, monkeys, and minipigs did not reveal similar changes. The potential significance of this effect for humans has not been established, but cannot be disregarded because disruption of a mechanism that is universally present in vertebrates (i.e., disk shedding) may be involved [see Nonclinical Toxicology (13.2) ]. 5.9 Events Reported with Dopaminergic Therapy Although the events enumerated below may not have been reported with the use of pramipexole in its development program, they are associated with the use of other dopaminergic drugs. The expected incidence of these events, however, is so low that even if pramipexole caused these events at rates similar to those attributable to other dopaminergic therapies, it would be unlikely that even a single case would have occurred in a cohort of the size exposed to pramipexole in studies to date. Hyperpyrexia and Confusion Although not reported with pramipexole in the clinical development program, a symptom complex resembling the neuroleptic malignant syndrome (characterized by elevated temperature, muscular rigidity, altered consciousness, and autonomic instability), with no other obvious etiology, has been reported in association with rapid dose reduction, withdrawal of, or changes in dopaminergic therapy. If possible, avoid sudden discontinuation or rapid dose reduction in patients taking pramipexole dihydrochloride extended-release tablets. If the decision is made to discontinue pramipexole dihydrochloride extended-release tablets, the dose should be tapered to reduce the risk of hyperpyrexia and confusion [see Dosage and Administration ( 2.2 )]. Fibrotic Complications Cases of retroperitoneal fibrosis, pulmonary infiltrates, pleural effusion, pleural thickening, pericarditis, and cardiac valvulopathy have been reported in patients treated with ergot-derived dopaminergic agents. While these complications may resolve when the drug is discontinued, complete resolution does not always occur. Although these adverse events are believed to be related to the ergoline structure of these compounds, whether other, non-ergot derived dopamine agonists can cause them is unknown. Cases of possible fibrotic complications, including peritoneal fibrosis, pleural fibrosis, and pulmonary fibrosis have been reported in the postmarketing experience with immediate-release pramipexole tablets. While the evidence is not sufficient to establish a causal relationship between pramipexole and these fibrotic complications, a contribution of pramipexole cannot be completely ruled out. Melanoma Epidemiologic studies have shown that patients with Parkinson’s disease have a higher risk (2- to approximately 6-fold higher) of developing melanoma than the general population. Whether the observed increased risk was due to Parkinson’s disease or other factors, such as drugs used to treat Parkinson’s disease, is unclear. For the reasons stated above, patients and providers are advised to monitor for melanomas frequently and on a regular basis when using pramipexole dihydrochloride extended-release tablets for any indication. Ideally, periodic skin examinations should be performed by appropriately qualified individuals (e.g., dermatologists).

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Patient Information). Dosing Instructions Instruct patients to take pramipexole dihydrochloride extended-release tablets only as prescribed. If a dose is missed, pramipexole dihydrochloride extended-release tablets should be taken as soon as possible, but no later than 12 hours after the regularly scheduled time. After 12 hours, the missed dose should be skipped and the next dose should be taken on the following day at the regularly scheduled time. Pramipexole dihydrochloride extended-release tablets can be taken with or without food. If patients develop nausea, advise that taking pramipexole dihydrochloride extended-release tablets with food may reduce the occurrence of nausea. Inform patients that residue in stool which may resemble a swollen original pramipexole dihydrochloride extended-release tablet or swollen pieces of the original tablet have been reported [see Adverse Reactions (6.2)]. Instruct patients to contact their physician if this occurs. Pramipexole dihydrochloride extended-release tablets should be swallowed whole. They should not be chewed, crushed, or divided [see Dosage and Administration ( 2.1 )]. Pramipexole is the active ingredient that is in both pramipexole dihydrochloride extended-release tablets and immediate-release pramipexole tablets. Ensure that patients do not take both immediate-release pramipexole and extended-release pramipexole. Sedating Effects Alert patients to the potential sedating effects of pramipexole dihydrochloride extended-release tablets, including somnolence and the possibility of falling asleep while engaged in activities of daily living. Since somnolence is a frequent adverse reaction with potentially serious consequences, patients should neither drive a car nor engage in other potentially dangerous activities until they have gained sufficient experience with pramipexole dihydrochloride extended-release tablets to gauge whether or not it affects their mental and/or motor performance adversely. Advise patients that if increased somnolence or new episodes of falling asleep during activities of daily living (e.g., conversations or eating) are experienced at any time during treatment, they should not drive or participate in potentially dangerous activities until they have contacted their physician. Because of possible additive effects, advise caution when patients are taking other sedating medications or alcohol in combination with pramipexole dihydrochloride extended-release and when taking concomitant medications that increase plasma levels of pramipexole (e.g., cimetidine) [see Warnings and Precautions ( 5.1 )]. Impulse Control Symptoms Including Compulsive Behaviors Alert patients and their caregivers to the possibility that they may experience intense urges to spend money, intense urges to gamble, increased sexual urges, binge eating and/or other intense urges and the inability to control these urges while taking pramipexole dihydrochloride extended-release tablets. [See Warnings and Precautions ( 5.3 )]. Hallucinations and Psychotic-like Behavior Inform patients that hallucinations and other psychotic-like behavior can occur and that the elderly are at a higher risk than younger patients with Parkinson’s disease [see Warnings and Precautions ( 5.4 )]. Postural (Orthostatic) Hypotension Advise patients that they may develop postural (orthostatic) hypotension, with or without symptoms such as dizziness, nausea, fainting, or blackouts, and sometimes, sweating. Hypotension may occur more frequently during initial therapy. Accordingly, caution patients against rising rapidly after sitting or lying down, especially if they have been doing so for prolonged periods and especially at the initiation of treatment with pramipexole dihydrochloride extended-release [see Warnings and Precautions ( 5.2 )]. Pregnancy Because the teratogenic potential of pramipexole has not been completely established in laboratory animals, and because experience in humans is limited, advise women to notify their physicians if they become pregnant or intend to become pregnant during therapy [see Use in Specific Populations ( 8.1 )]. Lactation Because of the possibility that pramipexole may be excreted in breast milk, advise women to notify their physicians if they intend to breast-feed or are breast-feeding an infant [see Use in Specific Populations ( 8.2 )].

DOSAGE AND ADMINISTRATION

2 Pramipexole dihydrochloride extended-release tablets are taken once daily, with or without food (2.1) Tablets must be swallowed whole and must not be chewed, crushed, or divided (2.1) Starting dose is 0.375 mg given once daily (2.2) Dose may be increased gradually, not more frequently than every 5 to 7 days, first to 0.75 mg per day and then by 0.75 mg increments up to a maximum recommended dose of 4.5 mg per day. Assess therapeutic response and tolerability at a minimal interval of 5 days or longer after each dose increment. (2.2) Patients may be switched overnight from immediate-release pramipexole tablets to extended-release pramipexole tablets at the same daily dose. Dose adjustment may be needed in some patients (2.3) Pramipexole dihydrochloride extended-release tablets should be discontinued gradually. (2.2) 2.1 General Dosing Considerations Pramipexole dihydrochloride extended-release tablets are taken orally once daily, with or without food. Pramipexole dihydrochloride extended-release tablets must be swallowed whole and must not be chewed, crushed, or divided. If a significant interruption in therapy with pramipexole dihydrochloride extended-release tablets has occurred, re-titration of therapy may be warranted. 2.2 Dosing for Parkinson’s Disease The starting dose is 0.375 mg given once per day. Based on efficacy and tolerability, dosages may be increased gradually, not more frequently than every 5 to 7 days, first to 0.75 mg per day and then by 0.75 mg increments up to a maximum recommended dose of 4.5 mg per day. In clinical trials, dosage was initiated at 0.375 mg/day and gradually titrated based on individual therapeutic response and tolerability. Doses greater than 4.5 mg/day have not been studied in clinical trials. Patients should be assessed for therapeutic response and tolerability at a minimal interval of 5 days or longer after each dose increment [see Clinical Studies ( 14) ]. Due to the flexible dose design used in clinical trials, specific dose-response information could not be determined [see Clinical Studies (14) ]. Pramipexole dihydrochloride extended-release tablets may be tapered off at a rate of 0.75 mg per day until the daily dose has been reduced to 0.75 mg. Thereafter, the dose may be reduced by 0.375 mg per day [see Warnings and Precautions (5.9)]. Dosing in Patients with Renal Impairment: In patients with moderate renal impairment (creatinine clearance between 30 and 50 mL/min), pramipexole dihydrochloride extended-release tablets should initially be taken every other day. Caution should be exercised and careful assessment of therapeutic response and tolerability should be made before increasing to daily dosing after one week, and before any additional titration in 0.375 mg increments up to 2.25 mg per day. Dose adjustment should occur no more frequently than at weekly intervals. Pramipexole dihydrochloride extended-release tablets have not been studied in patients with severe renal impairment (creatinine clearance <30 mL/min) or patients on hemodialysis, and are not recommended in these patients. 2.3 Switching from Immediate-Release Pramipexole Tablets to Extended-Release Pramipexole Tablets Patients may be switched overnight from immediate-release pramipexole tablets to extended-release pramipexole tablets at the same daily dose. When switching between immediate-release pramipexole tablets and extended-release pramipexole tablets, patients should be monitored to determine if dosage adjustment is necessary.

levothyroxine sodium 100 MCG Oral Tablet

Generic Name: LEVOTHYROXINE SODIUM
Brand Name: LEVOTHYROXINE SODIUM
  • Substance Name(s):
  • LEVOTHYROXINE SODIUM

WARNINGS

WARNING: Thyroid hormones, including Levothyroxine Sodium Tablets, USP, either alone or with other therapeutic agents, should not be used for the treatment of obesity for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects. Levothyroxine sodium should not be used in the treatment of male or female infertility unless this condition is associated with hypothyroidism. In patients with nontoxic diffuse goiter or nodular thyroid disease, particularly the elderly or those with underlying cardiovascular disease, levothyroxine sodium therapy is contraindicated if the serum TSH level is already suppressed due to the risk of precipitating overt thyrotoxicosis (see CONTRAINDICATIONS ). If the serum TSH level is not suppressed, Levothyroxine Sodium Tablets, USP should be used with caution in conjunction with careful monitoring of thyroid function for evidence of hyperthyroidism and clinical monitoring for potential associated adverse cardiovascular signs and symptoms of hyperthyroidism.

DRUG INTERACTIONS

Drug Interactions Many drugs affect thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to Levothyroxine Sodium Tablets, USP. In addition, thyroid hormones and thyroid status have varied effects on the pharmacokinetics and action of other drugs. A listing of drug-thyroidal axis interactions is contained in Table 2. The list of drug-thyroidal axis interactions in Table 2 may not be comprehensive due to the introduction of new drugs that interact with the thyroidal axis or the discovery of previously unknown interactions. The prescriber should be aware of this fact and should consult appropriate reference sources (e.g., package inserts of newly approved drugs, medical literature) for additional information if a drug-drug interaction with levothyroxine is suspected. Table 2: Drug-Thyroidal Axis Interactions Drug or Drug Class Effect Drugs that may reduce TSH secretion – the reduction is not sustained; therefore, hypothyroidism does not occur Dopamine/Dopamine Agonists Glucocorticoids Octreotide Use of these agents may result in a transient reduction in TSH secretion when administered at the following doses: dopamine ( ≥ 1 mcg/kg/min); Glucocorticoids (hydrocortisone ≥ 100 mg/day or equivalent); Octreotide ( > 100 mcg/day). Drugs that alter thyroid hormone secretion Drugs that may decrease thyroid hormone secretion, which may result in hypothyroidism Aminoglutethimide Amiodarone Iodide (including iodine-containing Radiographic contrast agents) Lithium Methimazole Propylthioracil (PTU) Sulfonamides Tolbutamide Long-term lithium therapy can result in goiter in up to 50% of patients, and either subclinical or overt hypothyroidism, each in up to 20% of patients. The fetus, neonate, elderly and euthyroid patients with underlying thyroid disease (e.g., Hashimoto’s thyroiditis or with Grave’s disease previously treated with radioiodine or surgery) are among those individuals who are particularly susceptible to iodine-induced hypothyroidism. Oral cholecystographic agents and amiodarone are slowly excreted, producing more prolonged hypothyroidism than parenterally administered iodinated contrast agents. Long-term amino-glu-tethimide therapy may minimally decrease T4 and T3 levels and increase TSH, although all values remain within normal limits in most patients. Drugs that may increase thyroid hormone secretion, which may result in hyperthyroidism Amiodarone Iodide (including iodine-containing Radiographic contrast agents) Iodide and drugs that contain pharmacologic amounts of iodide may cause hyperthyroidism in euthyroid patients with Grave’s disease previously treated with antithyroid drugs or in euthyroid patients with thyroid autonomy (e.g., multinodular goiter or hyper functioning thyroid adenoma). Hyperthyroidism may develop over several weeks and may persist for several months after therapy discontinuation. Amiodarone may induce hyperthyroidism by causing thyroiditis. Drugs that may decrease T 4 absorption, which may result in hypothyroidism Antacids – Aluminum & Magnesium Hydroxides – Simethicone Bile Acid Sequestrants – Cholestyramine – Colestipol Calcium Carbonate Cation Exchange Resins – Kayexalate Ferrous Sulfate Orlistat Sucralfate Concurrent use may reduce the efficacy of levothyroxine by binding and delaying or preventing absorption, potentially resulting in hypothyroidism. Calcium carbonate may form an insoluble chelate with levothyroxine, and ferrous sulfate likely forms a ferric-thyroxine complex. Administer levothyroxine at least 4 hours apart from these agents. Patients treated concomitantly with orlistat and levothyroxine should be monitored for changes in thyroid function. Drugs that may alter T 4 and T 3 serum transport – but FT 4 concentration remains normal; and, therefore, the patient remains euthyroid Drugs that may increase serum TBG concentration Drugs that may decrease serum TBG concentration Clofibrate Estrogen-containing oral contraceptives Estrogens (oral) Heroin / Methadone 5-Fluorouracil Mitotane Tamoxifen Androgens / Anabolic Steroids Asparaginase Glucocorticoids Slow-Release Nicotinic Acid Drugs that may cause protein-binding site displacement Furosemide ( > 80 mg IV) Heparin Hydantoins Non Steroidal Anti-lnflammatory Drugs – Fenamates – Phenylbutazone Salicylates ( > 2 g/day) Administration of these agents with levothyroxine results in an initial transient increase in FT4. Continued administration results in a decrease in serum T4 and normal FT4 and TSH concentrations and, therefore, patients are clinically euthyroid. Salicylates inhibit binding of T4 and T3 to TBG and transthyretin. An initial increase in serum FT4, is followed by return of FT4 to normal levels with sustained therapeutic serum salicylate concentrations, although total-T4 levels may decrease by as much as 30%. Drugs that may alter T 4 and T 3 metabolism Drugs that may increase hepatic metabolism, which may result in hypothyroidism Carbamazepine Hydantoins Phenobarbital Rifampin Stimulation of hepatic microsomal drug-metabolizing enzyme activity may cause increased hepatic degradation of levothyroxine, resulting in increased Ievothyroxine requirements. Phenytoin and carbamazepine reduce serum protein binding of levothyroxine, and total- and free-T4 may be reduced by 20% to 40%, but most patients have normal serum TSH levels and are clinically euthyroid. Drugs that may decrease T 4 5′ – deiodinase activity Amiodarone Beta-adrenergic antagonists – (e.g., Propranolol > 160 mg/day) Glucocorticoids -(e.g., Dexamethasone ≥ 4 mg/day) Propylthiouracil (PTU) Administration of these enzyme inhibitors decrease the peripheral conversion of T4 to T3, leading to decreased T3 levels. However, serum T4 levels are usually normal but may occasionally be slightly increased. In patients treated with large doses of propranolol ( > 160 mg/day), T3 and T4 levels change slightly, TSH levels remain normal, and patients are clinically euthyroid. It should be noted that actions of particular beta-adrenergic antagonists may be impaired when the hypothyroid patient is converted to the euthyroid state. Short-term administration of large doses of glucocorticoids may decrease serum T3 concentrations by 30% with minimal change in serum T4 levels. However, long-term glucocorticoid therapy may result in slightly decreased T3 and T4 levels due to decreased TBG production (see above). Miscellaneous Anticoagulants (oral) – Coumarin Derivatives – Indandione Derivatives Thyroid hormones appear to increase the catabolism of vitamin K-dependent clotting factors, thereby increasing the anticoagulant activity of oral anticoagulants. Concomitant use of these agents impairs the compensatory increases in clotting factor synthesis. Prothrombin time should be carefully monitored in patients taking levothyroxine and oral anticoagulants and the dose of anticoagulant therapy adjusted accordingly. Antidepressants – Tricyclics (e.g., Amitriptyline) – Tetracyclics (e.g., Maprotiline) – Selective Serotonin Reuptake Inhibitors (SSRIs; e.g., Sertraline) Concurrent use of tri/tetracyclic antidepressants and levothyroxine may increase the therapeutic and toxic effects of both drugs, possibly due to increased receptor sensitivity to catecholamines.Toxic effects may include increased risk of cardiac arrhythmias and CNS stimulation; onset of action of tricyclics may be accelerated. Administration of sertraline in patients stabilized on levothyroxine may result in increased levothyroxine requirements. Antidiabetic Agents – Biguanides – Meglitinides – Sulfonylureas – Thiazolidediones – Insulin Addition of levothyroxine to antidiabetic or insulin therapy may result in increased antidiabetic agent or insulin requirements. Careful monitoring of diabetic control is recommended, especially when thyroid therapy is started, changed, or discontinued. Cardiac Glycosides Serum digitalis glycoside levels may be reduced in hyperthyroidism or when the hypothyroid patient is converted to the euthyroid state. Therapeutic effect of digitalis glycosides may be reduced. Cytokines – Interferon-α – Interleukin-2 Therapy with interferon-α has been associated with the development of antithyroid microsomal antibodies in 20% of patients and some have transient hypothyroidism, hyperthyroidism, or both. Patients who have antithyroid antibodies before treatment are at higher risk for thyroid dysfunction during treatment. Interleukin-2 has been associated with transient painless thyroiditis in 20% of patients. Interferon-β and -γ have not been reported to cause thyroid dysfunction. Growth Hormones – Somatrem – Somatropin Excessive use of thyroid hormones with growth hormones may accelerate epiphyseal closure. However, untreated hypothyroidism may interfere with growth response to growth hormone. Ketamine Concurrent use may produce marked hypertension and tachycardia; cautious administration to patients receiving thyroid hormone therapy is recommended. Methylxanthine Bronchodilators – (e.g., Theophylline) Decreased theophylline clearance may occur in hypothyroid patients; clearance returns to normal when the euthyroid state is achieved. Radiographic Agents Thyroid hormones may reduce the uptake of 123I, 131I, and 99mTc. Sympathomimetics Concurrent use may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease. Chloral Hydrate Diazepam Ethionamide Lovastatin Metoclopramide 6-Mercaptopurine Nitroprusside Para-aminosalicylate sodium Perphenazine Resorcinol (excessive topical use) Thiazide Diuretics These agents have been associated with thyroid hormone and/or TSH level alterations by various mechanisms. Oral anticoagulants – Levothyroxine increases the response to oral anticoagulant therapy. Therefore, a decrease in the dose of anticoagulant may be warranted with correction of the hypothyroid state or when the Levothyroxine Sodium Tablets, USP dose is increased. Prothrombin time should be closely monitored to permit appropriate and timely dosage adjustments (see Table 2). Digitalis glycosides – The therapeutic effects of digitalis glycosides may be reduced by levothyroxine. Serum digitalis glycoside levels may be decreased when a hypothyroid patient becomes euthyroid, necessitating an increase in the dose of digitalis glycosides (see Table 2).

OVERDOSAGE

The signs and symptoms of overdosage are those of hyperthyroidism (see PRECAUTIONS and ADVERSE REACTIONS ). In addition, confusion and disorientation may occur. Cerebral embolism, shock, coma, and death have been reported. Seizures have occurred in a child ingesting 18 mg of levothyroxine. Symptoms may not necessarily be evident or may not appear until several days after ingestion of levothyroxine sodium. Treatment of Overdosage Levothyroxine sodium should be reduced in dose or temporarily discontinued if signs or symptoms of overdosage occur. Acute Massive Overdosage – This may be a life-threatening emergency, therefore, symptomatic and supportive therapy should be instituted immediately. If not contraindicated (e.g., by seizures, coma, or loss of the gag reflex), the stomach should be emptied by emesis or gastric lavage to decrease gastrointestinal absorption. Activated charcoal or cholestyramine may also be used to decrease absorption. Central and peripheral increased sympathetic activity may be treated by administering β-receptor antagonists, e.g., propranolol, provided there are no medical contraindications to their use. Provide respiratory support as needed; control congestive heart failure and arrhythmia; control fever, hypoglycemia, and fluid loss as necessary. Large doses of antithyroid drugs (e.g., methimazole or propylthiouracil) followed in one to two hours by large doses of iodine may be given to inhibit synthesis and release of thyroid hormones. Glucocorticoids may be given to inhibit the conversion of T4 to T3. Plasmapheresis, charcoal hemoperfusion and exchange transfusion have been reserved for cases in which continued clinical deterioration occurs despite conventional therapy. Because T4 is highly protein bound, very little drug will be removed by dialysis.

DESCRIPTION

Levothyroxine Sodium Tablets, USP contain synthetic crystalline L-3,3′,5,5′-tetraiodothyronine sodium salt [levothyroxine (T4) sodium]. Synthetic T4 is identical to that produced in the human thyroid gland. Levothyroxine (T4) sodium has an empirical formula of C15H10I4N NaO4 • H2O, molecular weight of 798.86 g/mol (anhydrous), and structural formula as shown: Chemical Structure Inactive Ingredients Colloidal silicon dioxide, lactose, magnesium stearate, microcrystalline cellulose, corn starch, acacia and sodium starch glycolate. The following are the coloring additives per tablet strength: Strength (mcg) Color Additive(s) 25 FD&C Yellow No. 6 Aluminum Lake 50 None 75 FD&C Red No. 40 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake 88 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake 100 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake 112 D&C Red No. 27 Aluminum Lake 125 FD&C Yellow No. 6 Aluminum Lake, FD&C Red No. 40 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake 137 FD&C Blue No. 1 Aluminum Lake 150 FD&C Blue No. 2 Aluminum Lake 175 FD&C Blue No. 1 Aluminum Lake, D&C Red No. 27 Aluminum Lake 200 FD&C Red No. 40 Aluminum Lake 300 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake

HOW SUPPLIED

Levothyroxine Sodium 50 mcg Tablets, USP are round, white, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-403-30 Bottles of 100 – NDC # 16590-403-71 Bottles of 180 – NDC # 16590-403-82 Levothyroxine Sodium 100 mcg Tablets, USP are round, yellow, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-302-30 Bottles of 60 – NDC # 16590-302-60 Bottles of 90 – NDC # 16590-302-90 Bottles of 100 – NDC # 16590-302-71 Levothyroxine Sodium 112 mcg Tablets, USP are round, rose colored, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-977-30 STORAGE CONDITIONS: 20°C to 25°C (68°F to 77°F) with excursions between 15°C to 30°C (59°F to 86°F) Rx only Manufactured for: Lannett Company, Inc. Philadelphia, PA 19136 Manufactured by: Jerome Stevens Pharmaceuticals, Inc. Bohemia, NY 11716 Rev. 10/07 Relabeling and Repackaging by: STAT Rx USA LLC Gainesville, GA 30501

GERIATRIC USE

Geriatric Use Because of the increased prevalence of cardiovascular disease among the elderly, levothyroxine therapy should not be initiated at the full replacement dose (see WARNINGS, PRECAUTIONS and DOSAGE AND ADMINISTRATION ).

INDICATIONS AND USAGE

Levothyroxine sodium is used for the following indications: Hypothyroidism – As replacement or supplemental therapy in congenital or acquired hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. Specific indications include: primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) hypothyroidism and subclinical hypothyroidism. Primary hypothyroidism may result from functional deficiency, primary atrophy, partial or total congenital absence of the thyroid gland, or from the effects of surgery, radiation, or drugs, with or without the presence of goiter. Pituitary TSH Suppression – In the treatment or prevention of various types of euthyroid goiters (see WARNINGS and PRECAUTIONS ), including thyroid nodules (see WARNINGS and PRECAUTIONS ), subacute or chronic Iymphocytic thyroiditis (Hashimoto’s thyroiditis), multinodular goiter (see WARNINGS and PRECAUTIONS ), and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer.

PEDIATRIC USE

Pediatric Use General The goal of treatment in pediatric patients with hypothyroidism is to achieve and maintain normal intellectual and physical growth and development. The initial dose of levothyroxine varies with age and body weight (see DOSAGE AND ADMINISTRATION , Table 3). Dosing adjustments are based on an assessment of the individual patient’s clinical and laboratory parameters (see PRECAUTIONS, Laboratory Tests ). In children in whom a diagnosis of permanent hypothyroidism has not been established, it is recommended that levothyroxine administration be discontinued for a 30-day trial period, but only after the child is at least 3 years of age. Serum T4 and TSH levels should then be obtained. If the T4 is low and the TSH high, the diagnosis of permanent hypothyroidism is established, and levothyroxine therapy should be reinstituted. If the T4 and TSH levels are normal, euthyroidism may be assumed and, therefore, the hypothyroidism can be considered to have been transient. In this instance, however, the physician should carefully monitor the child and repeat the thyroid function tests if any signs or symptoms of hypothyroidism develop. In this setting, the clinician should have a high index of suspicion of relapse. If the results of the levothyroxine withdrawal test are inconclusive, careful follow-up and subsequent testing will be necessary. Since some more severely affected children may become clinically hypothyroid when treatment is discontinued for 30 days, an alternate approach is to reduce the replacement dose of levothyroxine by half during the 30-day trial period. If, after 30 days, the serum TSH is elevated above 20 mU/L, the diagnosis of permanent hypothyroidism is confirmed, and full replacement therapy should be resumed. However, if the serum TSH has not risen to greater than 20 mU/L, levothyroxine treatment should be discontinued for another 30-day trial period followed by repeat serum T4 and TSH. The presence of concomitant medical conditions should be considered in certain clinical circumstances and, if present, appropriately treated (see PRECAUTIONS ). Congenital Hypothyroidism (see PRECAUTIONS, Laboratory Tests and DOSAGE AND ADMINISTRATION ) Rapid restoration of normal serum T4 concentrations is essential for preventing the adverse effects of congenital hypothyroidism on intellectual development as well as on overall physical growth and maturation. Therefore, Levothyroxine Sodium Tablets, USP therapy should be initiated immediately upon diagnosis and is generally continued for life. During the first 2 weeks of Levothyroxine Sodium Tablets, USP therapy, infants should be closely monitored for cardiac overload, arrhythmias, and aspiration from avid suckling. The patient should be monitored closely to avoid undertreatment or overtreatment. Undertreatment may have deleterious effects on intellectual development and linear growth. Overtreatment has been associated with craniosynostosis in infants, and may adversely affect the tempo of brain maturation and accelerate the bone age with resultant premature closure of the epiphyses and compromised adult stature. Acquired Hypothyroidism in Pediatric Patients The patient should be monitored closely to avoid undertreatment and overtreatment. Undertreatment may result in poor school performance due to impaired concentration and slowed mentation and in reduced adult height. Overtreatment may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature. Treated children may manifest a period of catch-up growth, which may be adequate in some cases to normalize adult height. In children with severe or prolonged hypothyroidism, catch-up growth may not be adequate to normalize adult height.

PREGNANCY

Pregnancy – Category A Studies in women taking levothyroxine sodium during pregnancy have not shown an increased risk of congenital abnormalities. Therefore, the possibility of fetal harm appears remote. Levothyroxine Sodium Tablets, USP should not be discontinued during pregnancy and hypothyroidism diagnosed during pregnancy should be promptly treated. Hypothyroidism during pregnancy is associated with a higher rate of complications, including spontaneous abortion, pre-eclampsia, stillbirth and premature delivery. Maternal hypothyroidism may have an adverse effect on fetal and childhood growth and development. During pregnancy, serum T4 levels may decrease and serum TSH levels increase to values outside the normal range. Since elevations in serum TSH may occur as early as 4 weeks gestation, pregnant women taking Levothyroxine Sodium Tablets, USP should have their TSH measured during each trimester. An elevated serum TSH level should be corrected by an increase in the dose of Levothyroxine Sodium Tablets, USP. Since postpartum TSH levels are similar to preconception values, the Levothyroxine Sodium Tablets, USP dosage should return to the pre-pregnancy dose immediately after delivery. A serum TSH level should be obtained 6-8 weeks postpartum. Thyroid hormones cross the placental barrier to some extent as evidenced by levels in cord blood of athyroceotic fetuses being approximately one third maternal levels. Transfer of thyroid hormone from the mother to the fetus, however, may not be adequate to prevent in utero, hypothyroidism.

NUSRING MOTHERS

Nursing Mothers Although thyroid hormones are excreted only minimally in human milk, caution should be exercised when Levothyroxine Sodium Tablets, USP is administered to a nursing woman. However, adequate replacement doses of levothyroxine are generally needed to maintain normal lactation.

BOXED WARNING

WARNING: Thyroid hormones, including Levothyroxine Sodium Tablets, USP, either alone or with other therapeutic agents, should not be used for the treatment of obesity for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects.

INFORMATION FOR PATIENTS

Information for Patients Patients should be informed of the following information to aid in the safe and effective use of Levothyroxine Sodium Tablets, USP: Notify your physician if you are allergic to any foods or medicines, are pregnant or intend to become pregnant, are breast-feeding or are taking any other medications, including prescription and over-the-counter preparations. Notify your physician of any other medical conditions you may have, particularly heart disease, diabetes, clotting disorders, and adrenal or pituitary gland problems. Your dose of medications used to control these other conditions may need to be adjusted while you are taking Levothyroxine Sodium Tablets, USP. If you have diabetes, monitor your blood and/or urinary glucose levels as directed by your physician and immediately report any changes to your physician. If you are taking anticoagulants (blood thinners), your clotting status should be checked frequently. Use Levothyroxine Sodium Tablets, USP only as prescribed by your physician. Do not discontinue or change the amount you take or how often you take it, unless directed to do so by your physician. The levothyroxine in Levothyroxine Sodium Tablets, USP is intended to replace a hormone that is normally produced by your thyroid gland. Generally, replacement therapy is to be taken for life, except in cases of transient hypothyroidism, which is usually associated with an inflammation of the thyroid gland (thyroiditis). Take Levothyroxine Sodium Tablets, USP in the morning on an empty stomach, at least one-half hour to one hour before eating any food. It may take several weeks before you notice an improvement in your symptoms. Notify your physician if you experience any of the following symptoms: rapid or irregular heartbeat, chest pain, shortness of breath, leg cramps, headache, nervousness, irritability, sleeplessness, tremors, change in appetite, weight gain or loss, vomiting, diarrhea, excessive sweating, heat intolerance, fever, changes in menstrual periods, hives or skin rash, or any other unusual medical event. Notify your physician if you become pregnant while taking Levothyroxine Sodium Tablets, USP. It is likely that your dose of Levothyroxine Sodium Tablets, USP will need to be increased while you are pregnant. Notify your physician or dentist that you are taking Levothyroxine Sodium Tablets, USP prior to any surgery. Partial hair loss may occur rarely during the first few months of Levothyroxine Sodium Tablets, USP therapy, but this is usually temporary. Levothyroxine Sodium Tablets, USP should not be used as a primary or adjunctive therapy in a weight control program. Keep Levothyroxine Sodium Tablets, USP out of the reach of children. Store Levothyroxine Sodium Tablets, USP away from heat, moisture, and light. Agents such as iron and calcium supplements and antacids can decrease the absorption of levothyroxine sodium tablets. Therefore, levothyroxine sodium tablets should not be administered within 4 hrs of these agents.

DOSAGE AND ADMINISTRATION

General Principles: The goal of replacement therapy is to achieve and maintain a clinical and biochemical euthyroid state. The goal of suppressive therapy is to inhibit growth and/or function of abnormal thyroid tissue. The dose of Levothyroxine Sodium Tablets, USP that is adequate to achieve these goals depends on a variety of factors including the patient’s age, body weight, cardiovascular status, concomitant medical conditions, including pregnancy, concomitant medications, and the specific nature of the condition being treated (see WARNINGS and PRECAUTIONS ). Hence, the following recommendations serve only as dosing guidelines. Dosing must be individualized and adjustments made based on periodic assessment of the patient’s clinical response and laboratory parameters (see PRECAUTIONS, Laboratory Tests ). Levothyroxine Sodium Tablets, USP should be taken in the morning on an empty stomach, at least one-half hour to one hour before any food is eaten. Levothyroxine Sodium Tablets, USP should be taken at least 4 hours apart from drugs that are known to interfere with its absorption (see PRECAUTIONS, Drug Interactions ). Due to the long half-life of levothyroxine, the peak therapeutic effect at a given dose of levothyroxine sodium may not be attained for 4-6 weeks. Caution should be exercised when administering Levothyroxine Sodium Tablets, USP to patients with underlying cardiovascular disease, to the elderly, and to those with concomitant adrenal insufficiency (see PRECAUTIONS ). Specific Patient Populations: Hypothyroidism in Adults and in Children in Whom Growth and Puberty are Complete (see WARNINGS and PRECAUTIONS, Laboratory Tests ). Therapy may begin at full replacement doses in otherwise healthy individuals less than 50 years old and in those older than 50 years who have been recently treated for hyperthyroidism or who have been hypothyroid for only a short time (such as a few months). The average full replacement dose of levothyroxine sodium is approximately 1.7 mcg/kg/day (e.g., 100-125 mcg/day for a 70 kg adult). Older patients may require less than 1 mcg/kg/day. Levothyroxine sodium doses greater than 200 mcg/day are seldom required. An inadequate response to daily doses ≥ 300 mcg/day is rare and may indicate poor compliance, malabsorption, and/or drug interactions. For most patients older than 50 years or for patients under 50 years of age with underlying cardiac disease, an initial starting dose of 25-50 mcg/day of levothyroxine sodium is recommended, with gradual increments in dose at 6-8 week intervals, as needed. The recommended starting dose of levothyroxine sodium in elderly patients with cardiac disease is 12.5-25 mcg/day, with gradual dose increments at 4-6 week intervals. The levothyroxine sodium dose is generally adjusted in 12.5-25 mcg increments until the patient with primary hypothyroidism is clinically euthyroid and the serum TSH has normalized. In patients with severe hypothyroidism, the recommended initial levothyroxine sodium dose is 12.5-25 mcg/day with increases of 25 mcg/day every 2-4 weeks, accompanied by clinical and laboratory assessment, until the TSH level is normalized. In patients with secondary (pituitary) or tertiary (hypothalamic) hypothyroidism, the levothyroxine sodium dose should be titrated until the patient is clinically euthyroid and the serum free-T4 level is restored to the upper half of the normal range. Pediatric Dosage – Congenital or Acquired Hypothyroidism (see PRECAUTIONS, Laboratory Tests ) General Principles In general, levothyroxine therapy should be instituted at full replacement doses as soon as possible. Delays in diagnosis and institution of therapy may have deleterious effects on the child’s intellectual and physical growth and development. Undertreatment and overtreatment should be avoided (see PRECAUTIONS, Pediatric Use ). Levothyroxine Sodium Tablets, USP may be administered to infants and children who cannot swallow intact tablets by crushing the tablet and suspending the freshly crushed tablet in a small amount (5-10 mL or 1-2 teaspoons) of water. This suspension can be administered by spoon or dropper. DO NOT STORE THE SUSPENSION. Foods that decrease absorption of levothyroxine, such as soybean infant formula, should not be used for administering levothyroxine sodium tablets. (see PRECAUTIONS, Drug-Food Interactions ). Newborns The recommended starting dose of levothyroxine sodium in newborn infants is 10-15 mcg/kg/day. A lower starting dose (e.g., 25 mcg/day) should be considered in infants at risk for cardiac failure, and the dose should be increased in 4-6 weeks as needed based on clinical and laboratory response to treatment. In infants with very low (12 years but growth and puberty incomplete 2-3 mcg/kg/day Growth and puberty complete 1.7 mcg/kg/day Pregnancy- Pregnancy may increase levothyroxine requirements (see PREGNANCY ). Subclinical Hypothyroidism- If this condition is treated, a lower levothyroxine sodium dose (e.g., 1 mcg/kg/day) than that used for full replacement may be adequate to normalize the serum TSH level. Patients who are not treated should be monitored yearly for changes in clinical status and thyroid laboratory parameters. TSH Suppression in Well-differentiated Thyroid Cancer and Thyroid Nodules- The target level for TSH suppression in these conditions has not been established with controlled studies. In addition, the efficacy of TSH suppression for benign nodular disease is controversial. Therefore, the dose of Levothyroxine Sodium Tablets, USP used for TSH suppression should be individualized based on the specific disease and the patient being treated. In the treatment of well differentiated (papillary and follicular) thyroid cancer, levothyroxine is used as an adjunct to surgery and radioiodine therapy. Generally, TSH is suppressed to <0.1 mU/L, and this usually requires a levothyroxine sodium dose of greater than 2 mcg/kg/day. However, in patients with high-risk tumors, the target level for TSH suppression may be <0.01 mU/L. In the treatment of benign nodules and nontoxic multinodular goiter, TSH is generally suppressed to a higher target (e.g., 0.1-0.5 mU/L for nodules and 0.5-1.0 mU/L for multinodular goiter) than that used for the treatment of thyroid cancer. Levothyroxine sodium is contraindicated if the serum TSH is already suppressed due to the risk of precipitating overt thyrotoxicosis (see CONTRAINDICATIONS, WARNINGS and PRECAUTIONS ). Myxedema Coma – Myxedema coma is a life-threatening emergency characterized by poor circulation and hypometabolism, and may result in unpredictable absorption of levothyroxine sodium from the gastrointestinal tract. Therefore, oral thyroid hormone drug products are not recommended to treat this condition. Thyroid hormone products formulated for intravenous administration should be administered.

Fenofibrate 145 MG Oral Tablet

Generic Name: FENOFIBRATE
Brand Name: Fenofibrate
  • Substance Name(s):
  • FENOFIBRATE

DRUG INTERACTIONS

7 •Coumarin anticoagulants: (7.1). •Immunosuppressants: (7.2). •Bile acid resins: (7.3). 7.1 Coumarin Anticoagulants Potentiation of coumarin-type anticoagulant effects has been observed with prolongation of the PT/INR. Caution should be exercised when coumarin anticoagulants are given in conjunction with fenofibrate. The dosage of the anticoagulants should be reduced to maintain the PT/INR at the desired level to prevent bleeding complications. Frequent PT/INR determinations are advisable until it has been definitely determined that the PT/INR has stabilized [see Warnings and Precautions (5.6)]. 7.2 Immunosuppressants Immunosuppressants such as cyclosporine and tacrolimus can produce nephrotoxicity with decreases in creatinine clearance and rises in serum creatinine and because renal excretion is the primary elimination route of fibrate drugs including fenofibrate, there is a risk that an interaction will lead to deterioration of renal function. The benefits and risks of using fenofibrate tablets with immunosuppressants and other potentially nephrotoxic agents should be carefully considered and the lowest effective dose employed and renal function monitored. 7.3 Bile Acid Binding Resins Since bile acid binding resins may bind other drugs given concurrently, patients should take fenofibrate at least 1 hour before or 4 to 6 hours after a bile acid binding resin to avoid impeding its absorption. 7.4 Colchicine Cases of myopathy, including rhabdomyolysis, have been reported with fenofibrates coadministered with colchicine, and caution should be exercised when prescribing fenofibrate with colchicine.

OVERDOSAGE

10 There is no specific treatment for overdose with fenofibrate. General supportive care of the patient is indicated, including monitoring of vital signs and observation of clinical status, should an overdose occur. If indicated, elimination of unabsorbed drug should be achieved by emesis or gastric lavage; usual precautions should be observed to maintain the airway. Because fenofibric acid is highly bound to plasma proteins, hemodialysis should not be considered.

DESCRIPTION

11 Fenofibrate tablets, USP are a lipid regulating agent available as tablets for oral administration. Each tablet contains 48 mg or 145 mg of fenofibrate, USP. The chemical name for fenofibrate is 2-[4-(4-chlorobenzoyl) phenoxy]-2-methyl-propanoic acid, 1-methylethyl ester with the following structural formula: The molecular formula is C20H21O4Cl and the molecular weight is 360.83; fenofibrate is freely soluble in methylene chloride, slightly soluble in alcohol (methanol and ethanol) and practically insoluble in water. The melting point is 79° to 82°C. Fenofibrate is a white or almost white crystalline powder which is stable under ordinary conditions. Inactive Ingredients: Each tablet contains croscarmellose sodium, crospovidone, hypromellose, lactose monohydrate, lecithin, magnesium stearate, microcrystalline cellulose, polyvinyl alcohol, sodium lauryl sulfate, sucrose, talc, titanium dioxide and xanthan gum. Fenofibrate Structural Formula

CLINICAL STUDIES

14 14.1 Primary Hypercholesterolemia (Heterozygous Familial and Nonfamilial) and Mixed Dyslipidemia The effects of fenofibrate at a dose equivalent to 145 mg fenofibrate tablets per day were assessed from four randomized, placebo-controlled, double-blind, parallel-group studies including patients with the following mean baseline lipid values: total-C 306.9 mg/dL; LDL-C 213.8 mg/dL; HDL-C 52.3 mg/dL; and triglycerides 191.0 mg/dL. Fenofibrate therapy lowered LDL-C, Total-C and the LDL-C/HDL-C ratio. Fenofibrate therapy also lowered triglycerides and raised HDL-C (see Table 4). Table 4. Mean Percent Change in Lipid Parameters at End of TreatmentDuration of study treatment was 3 to 6 months. Treatment Group Total-C LDL-C HDL-C TG Pooled Cohort Mean baseline lipid values (n = 646) 306.9 mg/dL 213.8 mg/dL 52.3 mg/dL 191 mg/dL All FEN (n = 361) – 18.7%p = 160 mg/dL and TG 160 mg/dL and TG ≥ 150 mg/dL Mean baseline lipid values (n = 242) 312.8 mg/dL 219.8 mg/dL 46.7 mg/dL 231.9 mg/dL All FEN (n = 126) – 16.8% – 20.1% + 14.6% – 35.9% Placebo (n = 116) – 3% – 6.6% + 2.3% + 0.9% In a subset of the subjects, measurements of apo B were conducted. Fenofibrate treatment significantly reduced apo B from baseline to endpoint as compared with placebo (-25.1% vs. 2.4%, p < 0.0001, n = 213 and 143 respectively). 14.2 Severe Hypertriglyceridemia The effects of fenofibrate on serum triglycerides were studied in two randomized, double-blind, placebo-controlled clinical trials of 147 hypertriglyceridemic patients. Patients were treated for 8 weeks under protocols that differed only in that one entered patients with baseline TG levels of 500 to 1500 mg/dL and the other TG levels of 350 to 500 mg/dL. In patients with hypertriglyceridemia and normal cholesterolemia with or without hyperchylomicronemia, treatment with fenofibrate at dosages equivalent to fenofibrate 145 mg per day decreased primarily very low density lipoprotein (VLDL) triglycerides and VLDL cholesterol. Treatment of patients with elevated triglycerides often results in an increase of LDL-C (see Table 5). Table 5. Effects of Fenofibrate in Patients with Hypertriglyceridemia Study 1 Placebo Fenofibrate Baseline TG levels 350 to 499 mg/dL N Baseline (Mean) Endpoint (Mean) % Change (Mean) N Baseline (Mean) Endpoint (Mean) % Change (Mean) Triglycerides 28 449 450 -0.5 27 432 223 -46.2p = < 0.05 vs. Placebo VLDL Triglycerides 19 367 350 2.7 19 350 178 -44.1 Total Cholesterol 28 255 261 2.8 27 252 227 -9.1 HDL Cholesterol 28 35 36 4 27 34 40 19.6 LDL Cholesterol 28 120 129 12 27 128 137 14.5 VLDL Cholesterol 27 99 99 5.8 27 92 46 -44.7 Study 2 Placebo Fenofibrate Baseline TG levels 500 to 1500 mg/dL N Baseline (Mean) Endpoint (Mean) % Change (Mean) N Baseline (Mean) Endpoint (Mean) % Change (Mean) Triglycerides 44 710 750 7.2 48 726 308 -54.5 VLDL Triglycerides 29 537 571 18.7 33 543 205 -50.6 Total Cholesterol 44 272 271 0.4 48 261 223 -13.8 HDL Cholesterol 44 27 28 5 48 30 36 22.9 LDL Cholesterol 42 100 90 -4.2 45 103 131 45 VLDL Cholesterol 42 137 142 11 45 126 54 -49.4 The effect of fenofibrate on cardiovascular morbidity and mortality has not been determined.

HOW SUPPLIED

16 /STORAGE AND HANDLING Fenofibrate tablets, USP are available containing 48 mg and 145 mg of fenofibrate, USP. The 48 mg tablets are white film-coated, oval, unscored tablets debossed with M on one side of the tablet and FE3 on the other side. They are available as follows: NDC 0378-3065-93 bottles of 30 tablets NDC 0378-3065-77 bottles of 90 tablets NDC 0378-3065-05 bottles of 500 tablets The 145 mg tablets are white film-coated, oval, unscored tablets debossed with M on one side of the tablet and FE4 on the other side. They are available as follows: NDC 0378-3066-93 bottles of 30 tablets NDC 0378-3066-77 bottles of 90 tablets NDC 0378-3066-05 bottles of 500 tablets Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] Protect from moisture. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Keep out of the reach of children.

GERIATRIC USE

8.5 Geriatric Use Fenofibric acid is known to be substantially excreted by the kidney and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Fenofibric acid exposure is not influenced by age. Since elderly patients have a higher incidence of renal impairment, dose selection for the elderly should be made on the basis of renal function [see Dosage and Administration (2.5) and Clinical Pharmacology (12.3)]. Elderly patients with normal renal function should require no dose modifications. Consider monitoring renal function in elderly patients taking fenofibrate.

DOSAGE FORMS AND STRENGTHS

3 •The 48 mg tablets are white film-coated, oval, unscored tablets debossed with M on one side of the tablet and FE3 on the other side. •The 145 mg tablets are white film-coated, oval, unscored tablets debossed with M on one side of the tablet and FE4 on the other side. Oral Tablets: 48 mg and 145 mg (3).

MECHANISM OF ACTION

12.1 Mechanism of Action The active moiety of fenofibrate tablets is fenofibric acid. The pharmacological effects of fenofibric acid in both animals and humans have been extensively studied through oral administration of fenofibrate. The lipid-modifying effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα). Through this mechanism, fenofibrate increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of apoprotein C-III (an inhibitor of lipoprotein lipase activity). The resulting decrease in TG produces an alteration in the size and composition of LDL from small, dense particles (which are thought to be atherogenic due to their susceptibility to oxidation) to large buoyant particles. These larger particles have a greater affinity for cholesterol receptors and are catabolized rapidly. Activation of PPARα also induces an increase in the synthesis of apolipoproteins A-I, A-II and HDL-cholesterol. Fenofibrate also reduces serum uric acid levels in hyperuricemic and normal individuals by increasing the urinary excretion of uric acid.

INDICATIONS AND USAGE

1 Fenofibrate is a peroxisome proliferator receptor alpha (PPARα) activator indicated as an adjunct to diet: •To reduce elevated LDL-C, Total-C, TG and Apo B and to increase HDL-C in adult patients with primary hypercholesterolemia or mixed dyslipidemia (1.1). •For treatment of adult patients with severe hypertriglyceridemia (1.2). Important Limitations of Use: Fenofibrate tablets were not shown to reduce coronary heart disease morbidity and mortality in patients with type 2 diabetes mellitus (5.1). 1.1 Primary Hypercholesterolemia or Mixed Dyslipidemia Fenofibrate tablets are indicated as adjunctive therapy to diet to reduce elevated low-density lipoprotein cholesterol (LDL-C), total cholesterol (Total-C), Triglycerides and apolipoprotein B (Apo B), and to increase high-density lipoprotein cholesterol (HDL-C) in adult patients with primary hypercholesterolemia or mixed dyslipidemia. 1.2 Severe Hypertriglyceridemia Fenofibrate tablets are also indicated as adjunctive therapy to diet for treatment of adult patients with severe hypertriglyceridemia. Improving glycemic control in diabetic patients showing fasting chylomicronemia will usually obviate the need for pharmacologic intervention. Markedly elevated levels of serum triglycerides (e.g., > 2000 mg/dL) may increase the risk of developing pancreatitis. The effect of fenofibrate tablet therapy on reducing this risk has not been adequately studied. 1.3 Important Limitations of Use Fenofibrate at a dose equivalent to 145 mg of fenofibrate was not shown to reduce coronary heart disease morbidity and mortality in a large, randomized controlled trial of patients with type 2 diabetes mellitus [see Warnings and Precautions (5.1)].

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness have not been established in pediatric patients.

PREGNANCY

8.1 Pregnancy Teratogenic Effects: Pregnancy Category C Safety in pregnant women has not been established. There are no adequate and well controlled studies of fenofibrate in pregnant women. Fenofibrate should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. In female rats given oral dietary doses of 15, 75 and 300 mg/kg/day of fenofibrate from 15 days prior to mating through weaning, maternal toxicity was observed at 0.3 times the MRHD, based on body surface area comparisons; mg/m2. In pregnant rats given oral dietary doses of 14, 127 and 361 mg/kg/day from gestation day 6 to 15 during the period of organogenesis, adverse developmental findings were not observed at 14 mg/kg/day (less than 1 times the MRHD, based on body surface area comparisons; mg/m2). At higher multiples of human doses evidence of maternal toxicity was observed. In pregnant rabbits given oral gavage doses of 15, 150 and 300 mg/kg/day from gestation day 6 to 18 during the period of organogenesis and allowed to deliver, aborted litters were observed at 150 mg/kg/day (10 times the MRHD, based on body surface area comparisons: mg/m2). No developmental findings were observed at 15 mg/kg/day (at less than 1 times the MRHD, based on body surface area comparisons; mg/m2). In pregnant rats given oral dietary doses of 15, 75 and 300 mg/kg/day from gestation day 15 through lactation day 21 (weaning), maternal toxicity was observed at less than 1 times the maximum recommended human dose (MRHD), based on body surface area comparisons; mg/m2

NUSRING MOTHERS

8.3 Nursing Mothers Fenofibrate should not be used in nursing mothers. A decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Myopathy and rhabdomyolysis have been reported in patients taking fenofibrate. The risks for myopathy and rhabdomyolysis are increased when fibrates are coadministered with a statin (with a significantly higher rate observed for gemfibrozil), particularly in elderly patients and patients with diabetes, renal failure or hypothyroidism (5.2). •Fenofibrate can increase serum transaminases. Monitor liver tests, including ALT, periodically during therapy (5.3). •Fenofibrate can reversibly increase serum creatinine levels (5.4). Monitor renal function periodically in patients with renal impairment (8.6). •Fenofibrate increases cholesterol excretion into the bile, leading to risk of cholelithiasis. If cholelithiasis is suspected, gallbladder studies are indicated (5.5). •Exercise caution in concomitant treatment with oral coumarin anticoagulants. Adjust the dosage of coumarin anticoagulant to maintain the prothrombin time/INR at the desired level to prevent bleeding complications (5.6). 5.1 Mortality and Coronary Heart Disease Morbidity The effect of fenofibrate on coronary heart disease morbidity and mortality and non-cardiovascular mortality has not been established. The Action to Control Cardiovascular Risk in Diabetes Lipid (ACCORD Lipid) trial was a randomized placebo-controlled study of 5,518 patients with type 2 diabetes mellitus on background statin therapy treated with fenofibrate. The mean duration of follow-up was 4.7 years. Fenofibrate plus statin combination therapy showed a non-significant 8% relative risk reduction in the primary outcome of major adverse cardiovascular events (MACE), a composite of nonfatal myocardial infarction, nonfatal stroke and cardiovascular disease death (hazard ratio [HR] 0.92, 95% CI 0.79 to 1.08) (p = 0.32) as compared to statin monotherapy. In a gender subgroup analysis, the hazard ratio for MACE in men receiving combination therapy versus statin monotherapy was 0.82 (95% CI 0.69 to 0.99), and the hazard ratio for MACE in women receiving combination therapy versus statin monotherapy was 1.38 (95% CI 0.98 to 1.94) (interaction p = 0.01). The clinical significance of this subgroup finding is unclear. The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a 5-year randomized, placebo-controlled study of 9,795 patients with type 2 diabetes mellitus treated with fenofibrate. Fenofibrate demonstrated a non-significant 11% relative reduction in the primary outcome of coronary heart disease events (hazard ratio [HR] 0.89, 95% CI 0.75 to 1.05, p = 0.16) and a significant 11% reduction in the secondary outcome of total cardiovascular disease events (HR 0.89 [0.80 to 0.99], p = 0.04). There was a non-significant 11% (HR 1.11 [0.95, 1.29], p = 0.18) and 19% (HR 1.19 [0.90, 1.57], p = 0.22) increase in total and coronary heart disease mortality, respectively, with fenofibrate as compared to placebo. Because of chemical, pharmacological and clinical similarities between fenofibrate tablets, clofibrate and gemfibrozil, the adverse findings in four large randomized, placebo-controlled clinical studies with these other fibrate drugs may also apply to fenofibrate. In the Coronary Drug Project, a large study of post myocardial infarction of patients treated for 5 years with clofibrate, there was no difference in mortality seen between the clofibrate group and the placebo group. There was however, a difference in the rate of cholelithiasis and cholecystitis requiring surgery between the two groups (3% vs. 1.8%). In a study conducted by the World Health Organization (WHO), 5,000 subjects without known coronary artery disease were treated with placebo or clofibrate for 5 years and followed for an additional one year. There was a statistically significant, higher age – adjusted all-cause mortality in the clofibrate group compared with the placebo group (5.70% vs. 3.96%, p = 3 times the upper limit of normal occurred in 5.3% of patients taking fenofibrate vs. 1.1% of patients treated with placebo. When transaminase determinations were followed either after discontinuation of treatment or during continued treatment, a return to normal limits was usually observed. The incidence of increases in transaminases related to fenofibrate therapy appear to be dose related. In an 8-week dose-ranging study, the incidence of ALT or AST elevations to at least 3 times the upper limit of normal was 13% in patients receiving dosages equivalent to 96 mg to 145 mg fenofibrate per day and was 0% in those receiving dosages equivalent to 48 mg or less fenofibrate per day or placebo. Hepatocellular, chronic active and cholestatic hepatitis associated with fenofibrate therapy have been reported after exposures of weeks to several years. In extremely rare cases, cirrhosis has been reported in association with chronic active hepatitis. Baseline and regular periodic monitoring of liver function, including serum ALT (SGPT) should be performed for the duration of therapy with fenofibrate and therapy discontinued if enzyme levels persist above 3 times the normal limit. 5.4 Serum Creatinine Elevations in serum creatinine have been reported in patients on fenofibrate. These elevations tend to return to baseline following discontinuation of fenofibrate. The clinical significance of these observations is unknown. Monitor renal function in patients with renal impairment taking fenofibrate. Renal monitoring should also be considered for patients taking fenofibrate at risk for renal insufficiency such as the elderly and patients with diabetes. 5.5 Cholelithiasis Fenofibrate, like clofibrate and gemfibrozil, may increase cholesterol excretion into the bile, leading to cholelithiasis. If cholelithiasis is suspected, gallbladder studies are indicated. Fenofibrate therapy should be discontinued if gallstones are found. 5.6 Coumarin Anticoagulants Caution should be exercised when coumarin anticoagulants are given in conjunction with fenofibrate because of the potentiation of coumarin-type anticoagulant effects in prolonging the Prothrombin Time/ International Normalized Ratio (PT/INR). To prevent bleeding complications, frequent monitoring of PT/INR and dose adjustment of the anticoagulant are recommended until PT/INR has stabilized [see Drug Interactions (7.1)]. 5.7 Pancreatitis Pancreatitis has been reported in patients taking fenofibrate, gemfibrozil and clofibrate. This occurrence may represent a failure of efficacy in patients with severe hypertriglyceridemia, a direct drug effect, or a secondary phenomenon mediated through biliary tract stone or sludge formation with obstruction of the common bile duct. 5.8 Hematologic Changes Mild to moderate hemoglobin, hematocrit and white blood cell decreases have been observed in patients following initiation of fenofibrate therapy. However, these levels stabilize during long-term administration. Thrombocytopenia and agranulocytosis have been reported in individuals treated with fenofibrate. Periodic monitoring of red and white blood cell counts are recommended during the first 12 months of fenofibrate administration. 5.9 Hypersensitivity Reactions Acute hypersensitivity reactions such as Stevens-Johnson Syndrome and toxic epidermal necrolysis requiring patient hospitalization and treatment with steroids have been reported in individuals treated with fenofibrates. Urticaria was seen in 1.1 vs. 0% and rash in 1.4 vs. 0.8% of fenofibrate and placebo patients respectively in controlled trials. 5.10 Venothromboembolic Disease In the FIELD trial, pulmonary embolus (PE) and deep vein thrombosis (DVT) were observed at higher rates in the fenofibrate- than the placebo-treated group. Of 9,795 patients enrolled in FIELD, there were 4,900 in the placebo group and 4,895 in the fenofibrate group. For DVT, there were 48 events (1%) in the placebo group and 67 (1%) in the fenofibrate group (p = 0.074); and for PE, there were 32 (0.7%) events in the placebo group and 53 (1%) in the fenofibrate group (p = 0.022). In the Coronary Drug Project, a higher proportion of the clofibrate group experienced definite or suspected fatal or nonfatal pulmonary embolism or thrombophlebitis than the placebo group (5.2% vs. 3.3% at 5 years; p < 0.01). 5.11 Paradoxical Decreases in HDL Cholesterol Levels There have been post-marketing and clinical trial reports of severe decreases in HDL cholesterol levels (as low as 2 mg/dL) occurring in diabetic and non-diabetic patients initiated on fibrate therapy. The decrease in HDLC is mirrored by a decrease in apolipoprotein A1. This decrease has been reported to occur within 2 weeks to years after initiation of fibrate therapy. The HDL-C levels remain depressed until fibrate therapy has been withdrawn; the response to withdrawal of fibrate therapy is rapid and sustained. The clinical significance of this decrease in HDL-C is unknown. It is recommended that HDL-C levels be checked within the first few months after initiation of fibrate therapy. If a severely depressed HDL-C level is detected, fibrate therapy should be withdrawn and the HDL-C level monitored until it has returned to baseline, and fibrate therapy should not be re-initiated.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Patients should be advised: •of the potential benefits and risks of fenofibrate tablets. •not to use fenofibrate tablets if there is a known hypersensitivity to fenofibrate or fenofibric acid. •of medications that should not be taken in combination with fenofibrate tablets. •that if they are taking coumarin anticoagulants, fenofibrate tablets may increase their anti-coagulant effect and increased monitoring may be necessary. •to continue to follow an appropriate lipid-modifying diet while taking fenofibrate tablets. •to take fenofibrate tablets once daily, without regard to food, at the prescribed dose, swallowing each tablet whole. •to return for routine monitoring. •to inform their physician of all medications, supplements and herbal preparations they are taking and any change to their medical condition. Patients should also be advised to inform their physicians prescribing a new medication that they are taking fenofibrate tablets. •to inform their physician of any muscle pain, tenderness or weakness; onset of abdominal pain; or any other new symptoms. Manufactured for: Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A. Manufactured in India by: Mylan Laboratories Limited Hyderabad—500 034, India Code No. MH/DRUGS/25/NKD/89 REVISED APRIL 2013 75051702 MX:FNFBR:R2

DOSAGE AND ADMINISTRATION

2 •Primary hypercholesterolemia or mixed dyslipidemia: Initial dose of 145 mg once daily (2.2). •Severe hypertriglyceridemia: Initial dose of 48 mg to 145 mg once daily. •Maximum dose is 145 mg (2.3). •Renally impaired patients: Initial dose of 48 mg once daily (2.4). •Geriatric patients: Select the dose on the basis of renal function (2.5). •Maybe taken without regard to meals (2.1). 2.1 General Considerations Patients should be placed on an appropriate lipid-lowering diet before receiving fenofibrate tablets and should continue this diet during treatment with fenofibrate tablets. Fenofibrate tablets can be given without regard to meals. The initial treatment for dyslipidemia is dietary therapy specific for the type of lipoprotein abnormality. Excess body weight and excess alcoholic intake may be important factors in hypertriglyceridemia and should be addressed prior to any drug therapy. Physical exercise can be an important ancillary measure. Diseases contributory to hyperlipidemia, such as hypothyroidism or diabetes mellitus should be looked for and adequately treated. Estrogen therapy, thiazide diuretics and beta-blockers, are sometimes associated with massive rises in plasma triglycerides, especially in subjects with familial hypertriglyceridemia. In such cases, discontinuation of the specific etiologic agent may obviate the need for specific drug therapy of hypertriglyceridemia. Lipid levels should be monitored periodically and consideration should be given to reducing the dosage of fenofibrate tablets if lipid levels fall significantly below the targeted range. Therapy should be withdrawn in patients who do not have an adequate response after 2 months of treatment with the maximum recommended dose of 145 mg once daily. 2.2 Primary Hypercholesterolemia or Mixed Dyslipidemia The initial dose of fenofibrate tablets is 145 mg once daily. 2.3 Severe Hypertriglyceridemia The initial dose is 48 mg to 145 mg per day. Dosage should be individualized according to patient response and should be adjusted if necessary following repeat lipid determinations at 4 to 8 week intervals. The maximum dose is 145 mg once daily. 2.4 Impaired Renal Function Treatment with fenofibrate tablets should be initiated at a dose of 48 mg per day in patients having mild to moderately impaired renal function and increased only after evaluation of the effects on renal function and lipid levels at this dose. The use of fenofibrate tablets should be avoided in patients with severe renal impairment [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)]. 2.5 Geriatric Patients Dose selection for the elderly should be made on the basis of renal function [see Use in Specific Populations (8.5)].