norepinephrine (as bitartrate) 4 MG per 4 ML Injection

Generic Name: NOREPINEPHRINE BITARTRATE
Brand Name: Norepinephrine bitartrate
  • Substance Name(s):
  • NOREPINEPHRINE BITARTRATE

WARNINGS

Norepinephrine should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

DRUG INTERACTIONS

Drug Interactions: Cyclopropane and halothane anesthetics increase cardiac autonomic irritability and therefore seem to sensitize the myocardium to the action of intravenously administered epinephrine or norepinephrine. Hence, the use of norepinephrine during cyclopropane and halothane anesthesia is generally considered contraindicated because of the risk of producing ventricular tachycardia or fibrillation. The same type of cardiac arrhythmias may result from the use of norepinephrine in patients with profound hypoxia or hypercarbia. Norepinephrine should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

OVERDOSAGE

Overdosage with norepinephrine may result in headache, severe hypertension, reflex bradycardia, marked increase in peripheral resistance, and decreased cardiac output. In case of accidental overdosage, as evidenced by excessive blood pressure elevation, discontinue norepinephrine until the condition of the patient stabilizes.

DESCRIPTION

Norepinephrine (sometimes referred to as l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic amine which differs from epinephrine by the absence of a methyl group on the nitrogen atom. Norepinephrine bitartrate is (-)-α-(aminomethyl)-3,4-dihydroxybenzyl alcohol tartrate (1:1) (salt) monohydrate and has the following structural formula: Norepinephrine is supplied in sterile aqueous solution in the form of the bitartrate salt to be administered by intravenous infusion following dilution. Norepinephrine is sparingly soluble in water, very slightly soluble in alcohol and ether, and readily soluble in acids. Each mL contains the equivalent of 1 mg base of norepinephrine, sodium chloride for isotonicity. It has a pH of 3 to 4.5. The air in the ampules has been displaced by nitrogen gas. Norephinephrine structure

HOW SUPPLIED

Norepinephrine Bitartrate Injection, USP, contains the equivalent of 4 mg base of norepinephrine per each 4 mL ampule (1 mg/mL), and is available as follows: NDC 36000-162-10 Ampules of 4 mL in shelf carton of 10 Store at 25°C (77°F); excursions permitted to 15 to 30°C (59 to 86°F) [see USP Controlled Room Temperature]. Retain in carton until time of use. Protect from light.

GERIATRIC USE

Geriatric Use: Clinical studies of norepinephrine bitartrate injection did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Norepinephrine infusions should not be administered into the veins in the leg in elderly patients (see PRECAUTIONS, General).

INDICATIONS AND USAGE

For blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions). As an adjunct in the treatment of cardiac arrest and profound hypotension.

PEDIATRIC USE

Pediatric Use: Safety and effectiveness in pediatric patients has not been established.

PREGNANCY

Pregnancy Category C: Animal reproduction studies have not been conducted with norepinephrine. It is also not known whether norepinephrine can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Norepinephrine should be given to a pregnant woman only if clearly needed.

NUSRING MOTHERS

Nursing Mothers: It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when norepinephrine is administered to a nursing woman.

BOXED WARNING

IMPORTANT- Antidote for Extravasation Ischemia: To prevent sloughing and necrosis in areas in which extravasation has taken place, the area should be infiltrated as soon as possible with 10 mL to 15 mL of saline solution containing from 5 mg to 10 mg of phentolamine, an adrenergic blocking agent. A syringe with a fine hypodermic needle should be used, with the solution being infiltrated liberally throughout the area, which is easily identified by its cold, hard, and pallid appearance. Sympathetic blockade with phentolamine causes immediate and conspicuous local hyperemic changes if the area is infiltrated within 12 hours. Therefore, phentolamine should be given as soon as possible after the extravasation is noted.

DOSAGE AND ADMINISTRATION

Norepinephrine Bitartrate Injection is a concentrated, potent drug which must be diluted in dextrose containing solutions prior to infusion. An infusion of norepinephrine should be given into a large vein (see PRECAUTIONS). Restoration of Blood Pressure in Acute Hypotensive States Blood volume depletion should always be corrected as fully as possible before any vasopressor is administered. When, as an emergency measure, intraaortic pressures must be maintained to prevent cerebral or coronary artery ischemia, norepinephrine can be administered before and concurrently with blood volume replacement. Diluent: Norepinephrine should be diluted in 5 percent dextrose injection or 5 percent dextrose and sodium chloride injections. These dextrose containing fluids are protection against significant loss of potency due to oxidation. Administration in saline solution alone is not recommended. Whole blood or plasma, if indicated to increase blood volume, should be administered separately (for example, by use of a Y-tube and individual containers if given simultaneously). Average Dosage: Add a 4 mL ampul (4 mg) of norepinephrine to 1,000 mL of a 5 percent dextrose containing solution. Each mL of this dilution contains 4 mcg of the base of norepinephrine. Give this solution by intravenous infusion. Insert a plastic intravenous catheter through a suitable bore needle well advanced centrally into the vein and securely fixed with adhesive tape, avoiding, if possible, a catheter tie-in technique as this promotes stasis. An IV drip chamber or other suitable metering device is essential to permit an accurate estimation of the rate of flow in drops per minute. After observing the response to an initial dose of 2 mL to 3 mL (from 8 mcg to 12 mcg of base) per minute, adjust the rate of flow to establish and maintain a low normal blood pressure (usually 80 mm Hg to 100 mm Hg systolic) sufficient to maintain the circulation to vital organs. In previously hypertensive patients, it is recommended that the blood pressure should be raised no higher than 40 mm Hg below the preexisting systolic pressure. The average maintenance dose ranges from 0.5 mL to 1 mL per minute (from 2 mcg to 4 mcg of base). High Dosage: Great individual variation occurs in the dose required to attain and maintain an adequate blood pressure. In all cases, dosage of norepinephrine should be titrated according to the response of the patient. Occasionally much larger or even enormous daily doses (as high as 68 mg base or 17 ampules) may be necessary if the patient remains hypotensive, but occult blood volume depletion should always be suspected and corrected when present. Central venous pressure monitoring is usually helpful in detecting and treating this situation. Fluid Intake: The degree of dilution depends on clinical fluid volume requirements. If large volumes of fluid (dextrose) are needed at a flow rate that would involve an excessive dose of the pressor agent per unit of time, a solution more dilute than 4 mcg per mL should be used. On the other hand, when large volumes of fluid are clinically undesirable, a concentration greater than 4 mcg per mL may be necessary. Duration of Therapy: The infusion should be continued until adequate blood pressure and tissue perfusion are maintained without therapy. Infusions of norepinephrine should be reduced gradually, avoiding abrupt withdrawal. In some of the reported cases of vascular collapse due to acute myocardial infarction, treatment was required for up to six days. Adjunctive Treatment in Cardiac Arrest Infusions of norepinephrine are usually administered intravenously during cardiac resuscitation to restore and maintain an adequate blood pressure after an effective heartbeat and ventilation have been established by other means. [Norepinephrine’s powerful beta-adrenergic stimulating action is also thought to increase the strength and effectiveness of systolic contractions once they occur.] Average Dosage: To maintain systemic blood pressure during the management of cardiac arrest, norepinephrine is used in the same manner as described under Restoration of Blood Pressure in Acute Hypotensive States. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to use, whenever solution and container permit. Do not use the solution if its color is pinkish or darker than slightly yellow or if it contains a precipitate. Avoid contact with iron salts, alkalis, or oxidizing agents.

meropenem 500 MG Injection

Generic Name: MEROPENEM
Brand Name: MEROPENEM
  • Substance Name(s):
  • MEROPENEM

DRUG INTERACTIONS

7 Co-administration of Meropenem for Injection with probenecid inhibits renal excretion of meropenem. (7.1) Co-administration of Meropenem for Injection with valproic acid or divalproex sodium reduces the serum concentration of valproic acid potentially increasing the risk of breakthrough seizures. (5.3, 7.2) 7.1 Probenecid Probenecid competes with meropenem for active tubular secretion, resulting in increased plasma concentrations of meropenem. Co-administration of probenecid with meropenem is not recommended. 7.2 Valproic Acid Case reports in the literature have shown that co-administration of carbapenems, including meropenem, to patients receiving valproic acid or divalproex sodium results in a reduction in valproic acid concentrations. The valproic acid concentrations may drop below the therapeutic range as a result of this interaction, therefore increasing the risk of breakthrough seizures. Although the mechanism of this interaction is unknown, data from in vitro and animal studies suggest that carbapenems may inhibit the hydrolysis of valproic acid’s glucuronide metabolite (VPA-g) back to valproic acid, thus decreasing the serum concentrations of valproic acid. If administration of Meropenem for Injection is necessary, then supplemental anti-convulsant therapy should be considered [see Warnings and Precautions (5.3) ].

OVERDOSAGE

10 In mice and rats, large intravenous doses of meropenem (2200 mg/kg to 4000 mg/kg) have been associated with ataxia, dyspnea, convulsions, and mortalities. Intentional overdosing of Meropenem for Injection is unlikely, although accidental overdosing might occur if large doses are given to patients with reduced renal function. The largest dose of meropenem administered in clinical trials has been 2 grams given intravenously every 8 hours. At this dosage, no adverse pharmacological effects or increased safety risks have been observed. Limited post-marketing experience indicates that if adverse events occur following overdosage, they are consistent with the adverse event profile described in the Adverse Reactions section and are generally mild in severity and resolve on withdrawal or dose reduction. Consider symptomatic treatments. In individuals with normal renal function, rapid renal elimination takes place. Meropenem and its metabolite are readily dialyzable and effectively removed by hemodialysis; however, no information is available on the use of hemodialysis to treat overdosage.

DESCRIPTION

11 Meropenem for Injection is a sterile, pyrogen-free, synthetic, broad-spectrum, carbapenem antibacterial for intravenous administration. It is (4R,5S,6S)-3- [[(3S,5S)-5-(Dimethylcarbamoyl)-3-pyrrolidinyl]thio]-6-[(1R)-1 hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxilic acid trihydrate. Its empirical formula is C17H25N3O5S∙3H2O with a molecular weight of 437.52. Its structural formula is: Meropenem for Injection is a white to pale yellow crystalline powder. The solution varies from colorless to yellow depending on the concentration. The pH of freshly constituted solutions is between 7.3 and 8.3. Meropenem is soluble in 5% monobasic potassium phosphate solution, sparingly soluble in water, very slightly soluble in hydrated ethanol, and practically insoluble in acetone or ether. When constituted as instructed, each 1 gram Meropenem for Injection vial will deliver 1 gram of meropenem and 90.2 mg of sodium as sodium carbonate (3.92 mEq). Each 500 mg Meropenem for Injection vial will deliver 500 mg meropenem and 45.1 mg of sodium as sodium carbonate (1.96 mEq) [see Dosage and Administration (2.4) ]. Chemical Structure

CLINICAL STUDIES

14 14.1 Complicated Skin and Skin Structure Infections Adult patients with complicated skin and skin structure infections including complicated cellulitis, complex abscesses, perirectal abscesses, and skin infections requiring intravenous antimicrobials, hospitalization, and surgical intervention were enrolled in a randomized, multi-center, international, double-blind trial. The study evaluated meropenem at doses of 500 mg administered intravenously every 8 hours and imipenem-cilastatin at doses of 500 mg administered intravenously every 8 hours. The study compared the clinical response between treatment groups in the clinically evaluable population at the follow-up visit (test-of-cure). The trial was conducted in the United States, South Africa, Canada, and Brazil. At enrollment, approximately 37% of the patients had underlying diabetes, 12% had underlying peripheral vascular disease and 67% had a surgical intervention. The study included 510 patients randomized to meropenem and 527 patients randomized to imipenem-cilastatin. Two hundred and sixty one (261) patients randomized to meropenem and 287 patients randomized to imipenem-cilastatin were clinically evaluable. The success rates in the clinically evaluable patients at the follow-up visit were 86% (225/261) in the meropenem arm and 83% (238/287) in imipenem-cilastatin arm. The following table provides the results for the overall as well as subgroup comparisons in clinically evaluable population. Success RatePercent of satisfactory clinical response at follow-up evaluation. Population Meropenem for Injection nn=number of patients with satisfactory response./NN=number of patients in the clinically evaluable population or respective subgroup within treatment groups. (%) Imipenem-cilastatin n/N (%) Total 225/261 (86) 238/287 (83) Diabetes mellitus 83/97 (86) 76/105 (72) No diabetes mellitus 142/164 (87) 162/182 (89) Less than 65 years of age 190/218 (87) 205/241 (85) 65 years of age or older 35/43 (81) 33/46 (72) Men 130/148 (88) 137/172 (80) Women 95/113 (84) 101/115 (88) The following clinical efficacy rates were obtained, per organism. The values represent the number of patients clinically cured/number of clinically evaluable patients at the post-treatment follow-up visit, with the percent cure in parentheses (Fully Evaluable analysis set). MICROORGANISMSPatients may have more than one pretreatment pathogen. Meropenem for Injection nn=number of patients with satisfactory response./NN=number of patients in the clinically evaluable population or subgroup within treatment groups. (%)%= Percent of satisfactory clinical response at follow-up evaluation. Imipenem-cilastatin n/N (%) Gram-positive aerobes Staphylococcus aureus, methicillin susceptible 82/88 (93) 84/100 (84) Streptococcus pyogenes (Group A) 26/29 (90) 28/32 (88) Streptococcus agalactiae (Group B) 12/17 (71) 16/19 (84) Enterococcus faecalis 9/12 (75) 14/20 (70) Streptococcus viridans Group, nos 11/12 (92) 5/6 (83) Gram-negative aerobes Escherichia coli 12/15 (80) 15/21 (71) Pseudomonas aeruginosa 11/15 (73) 13/15 (87) Proteus mirabilis 11/13 (85) 6/7 (86) Anaerobes Bacteroides fragilis 10/11 (91) 9/10 (90) Peptostreptococcus species 10/13 (77) 14/16 (88) The proportion of patients who discontinued study treatment due to an adverse event was similar for both treatment groups (meropenem, 2.5% and imipenem-cilastatin, 2.7%). 14.2 Complicated Intra-Abdominal Infections One controlled clinical study of complicated intra-abdominal infection was performed in the United States where meropenem was compared with clindamycin/tobramycin. Three controlled clinical studies of complicated intra-abdominal infections were performed in Europe; meropenem was compared with imipenem (two trials) and cefotaxime/metronidazole (one trial). Using strict evaluability criteria and microbiologic eradication and clinical cures at follow-up which occurred 7 or more days after completion of therapy, the following presumptive microbiologic eradication/clinical cure rates and statistical findings were obtained: Treatment Arm No. evaluable/No. enrolled (%) Microbiologic Eradication Rate Clinical Cure Rate Outcome meropenem 146/516 (28%) 98/146 (67%) 101/146 (69%) imipenem 65/220 (30%) 40/65 (62%) 42/65 (65%) Meropenem equivalent to control cefotaxime/metronidazole 26/85 (30%) 22/26 (85%) 22/26 (85%) Meropenem not equivalent to control clindamycin/tobramycin 50/212 (24%) 38/50 (76%) 38/50 (76%) Meropenem equivalent to control The finding that meropenem was not statistically equivalent to cefotaxime/metronidazole may have been due to uneven assignment of more seriously ill patients to the meropenem arm. Currently there is no additional information available to further interpret this observation. 14.3 Bacterial Meningitis Four hundred forty-six patients (397 pediatric patients 3 months to less than 17 years of age) were enrolled in 4 separate clinical trials and randomized to treatment with meropenem (n=225) at a dose of 40 mg/kg every 8 hours or a comparator drug, i.e., cefotaxime (n=187) or ceftriaxone (n=34), at the approved dosing regimens. A comparable number of patients were found to be clinically evaluable (ranging from 61-68%) and with a similar distribution of pathogens isolated on initial CSF culture. Patients were defined as clinically not cured if any one of the following three criteria were met: At the 5-7 week post-completion of therapy visit, the patient had any one of the following: moderate to severe motor, behavior or development deficits, hearing loss of greater than60 decibels in one or both ears, or blindness. During therapy the patient’s clinical status necessitated the addition of other antibacterial drugs. Either during or post-therapy, the patient developed a large subdural effusion needing surgical drainage, or a cerebral abscess, or a bacteriologic relapse. Using the definition, the following efficacy rates were obtained, per organism. The values represent the number of patients clinically cured/number of clinically evaluable patients, with the percent cure in parentheses. MICROORGANISMS Meropenem for Injection COMPARATOR S. pneumoniae 17/24 (71) 19/30 (63) H. influenzae (+)(+) β-lactamase-producing 8/10 (80) 6/6 (100) H. influenzae (-/NT)(-/NT) non-β-lactamase-producing or not tested 44/59 (75) 44/60 (73) N. meningitidis 30/35 (86) 35/39 (90) Total (including others) 102/131 (78) 108/140 (77) Sequelae were the most common reason patients were assessed as clinically not cured. Five patients were found to be bacteriologically not cured, 3 in the comparator group (1 relapse and 2 patients with cerebral abscesses) and 2 in the meropenem group (1 relapse and 1 with continued growth of Pseudomonas aeruginosa). The adverse events seen were comparable between the two treatment groups both in type and frequency. The meropenem group did have a statistically higher number of patients with transient elevation of liver enzymes [see Adverse Reactions (6.1) ]. Rates of seizure activity during therapy were comparable between patients with no CNS abnormalities who received meropenem and those who received comparator agents. In the Meropenem for Injection treated group, 12/15 patients with seizures had late onset seizures (defined as occurring on day 3 or later) versus 7/20 in the comparator arm. With respect to hearing loss, 263 of the 271 evaluable patients had at least one hearing test performed post-therapy. The following table shows the degree of hearing loss between the meropenem-treated patients and the comparator-treated patients. Degree of Hearing Loss (in one or both ears) Meropenem n = 128 Comparator n = 135 No loss 61% 56% 20-40 decibels 20% 24% Greater than 40-60 decibels 8% 7% Greater than 60 decibels 9% 10%

HOW SUPPLIED

16 /STORAGE AND HANDLING Meropenem for Injection is supplied in 20 mL and 30 mL injection vials containing sufficient meropenem to deliver 500 mg or 1 gram for intravenous administration, respectively. The dry powder should be stored at controlled room temperature 20º-25ºC (68º-77ºF) [see USP]. 500 mg Injection Vial (NDC 0781-3000-94) and packaged in cartons of 10 vials (NDC 0781-3000-95) and cartons of 25 vials (NDC 0781-3000-96). 1 gram Injection Vial (NDC 0781-3098-94) and packaged in cartons of 10 vials (NDC 0781-3098-95) and cartons of 25 vials (NDC 0781-3098-96).

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects in clinical studies of Meropenem for Injection, approximately 1100 (30%) were 65 years of age and older, while 400 (11%) were 75 years and older. Additionally, in a study of 511 patients with complicated skin and skin structure infections, 93 (18%) were 65 years of age and older, while 38 (7%) were 75 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects; spontaneous reports and other reported clinical experience have not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Meropenem is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with renal impairment. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. A pharmacokinetic study with Meropenem for Injection in elderly patients has shown a reduction in the plasma clearance of meropenem that correlates with age-associated reduction in creatinine clearance [see Clinical Pharmacology (12.3) ].

DOSAGE FORMS AND STRENGTHS

3 Single use clear glass vials containing 500 mg or 1 gram (as the trihydrate blend with anhydrous sodium carbonate for constitution) of sterile meropenem powder. 500 mg Injection Vial (3) 1 gram Injection Vial (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Meropenem is an antibacterial drug [see Clinical Pharmacology (12.4) ].

INDICATIONS AND USAGE

1 To reduce the development of drug-resistant bacteria and maintain the effectiveness of Meropenem for Injection and other antibacterial drugs, Meropenem for Injection should only be used to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Meropenem for Injection is useful as presumptive therapy in the indicated condition (e.g. intra-abdominal infections) prior to the identification of the causative organisms because of its broad spectrum of bactericidal activity. For information regarding use in pediatric patients see [ Indications and Usage (1.1), (1.2),(1.3); Dosage and Administration (2.3), Adverse Reactions (6.1) , and Clinical Pharmacology (12.3) ]. Meropenem for Injection is a penem antibacterial indicated as single agent therapy for the treatment of: Complicated skin and skin structure infections (adult patients and pediatric patients 3 months of age and older only). (1.1) Complicated intra-abdominal infections (adult and pediatric patients). (1.2) Bacterial meningitis (pediatric patients 3 months of age and older only). (1.3) To reduce the development of drug-resistant bacteria and maintain the effectiveness of Meropenem for Injection and other antibacterial drugs, Meropenem for Injection should only be used to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. 1.1 Skin and Skin Structure Infections (Adult Patients and Pediatric Patients 3 Months of age and older only) Meropenem for Injection is indicated as a single agent therapy for the treatment of complicated skin and skin structure infections due to Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus pyogenes, Streptococcus agalactiae, viridans group streptococci, Enterococcus faecalis (vancomycin-susceptible isolates only), Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Bacteroides fragilis, and Peptostreptococcus species. 1.2 Intra-abdominal Infections (Adult and Pediatric Patients) Meropenem for Injection is indicated as a single agent therapy for the treatment of complicated appendicitis and peritonitis caused by viridans group streptococci, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacteroides fragilis, B. thetaiotaomicron, and Peptostreptococcus species. 1.3 Bacterial Meningitis (Pediatric Patients 3 Months of age and older only) Meropenem for Injection is indicated as a single agent therapy for the treatment of bacterial meningitis caused by Streptococcus pneumoniaeThe efficacy of meropenem as monotherapy in the treatment of meningitis caused by penicillin nonsusceptible isolates of Streptococcus pneumoniae has not been established., Haemophilus influenzae, and Neisseria meningitidis. Meropenem for Injection has been found to be effective in eliminating concurrent bacteremia in association with bacterial meningitis.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of Meropenem for Injection have been established for pediatric patients 3 months of age and older with complicated skin and skin structure infections and bacterial meningitis, and for pediatric patients of all ages with complicated intra-abdominal infections. Skin and Skin Structure Infections Use of Meropenem for Injection in pediatric patients 3 months of age and older with complicated skin and skin structure infections is supported by evidence from an adequate and well-controlled study in adults and additional data from pediatric pharmacokinetics studies [see Indications and Usage (1.3) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.1) ]. Intra-abdominal Infections Use of Meropenem for Injection in pediatric patients 3 months of age and older with intra-abdominal infections is supported by evidence from adequate and well-controlled studies in adults with additional data from pediatric pharmacokinetics studies and controlled clinical trials in pediatric patients. Use of Meropenem for Injection in pediatric patients less than 3 months of age with intra-abdominal infections is supported by evidence from adequate and well-controlled studies in adults with additional data from a pediatric pharmacokinetic and safety study [see Indications and Usage (1.2) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.2) ]. Bacterial Meningitis Use of Meropenem for Injection in pediatric patients 3 months of age and older with bacterial meningitis is supported by evidence from adequate and well-controlled studies in the pediatric population [see Indications and Usage (1.3) , Dosage and Administration (2.3) , Adverse Reactions (6.1) , Clinical Pharmacology (12.3) and Clinical Studies (14.3) ].

PREGNANCY

8.1 Pregnancy Pregnancy Category B. Reproductive studies have been performed with meropenem in rats at doses of up to 1000 mg/kg/day, and cynomolgus monkeys at doses of up to 360 mg/kg/day (on the basis of AUC comparisons, approximately 1.8 times and 3.7 times, respectively, to the human exposure at the usual dose of 1 gram every 8 hours). These studies revealed no evidence of impaired fertility or harm to the fetus due to meropenem, although there were slight changes in fetal body weight at doses of 250 mg/kg/day (on the basis of AUC comparisons, 0.4 times the human exposure at a dose of 1 gram every 8 hours) and above in rats. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

8.3 Nursing Mothers Meropenem has been reported to be excreted in human milk. Caution should be exercised when Meropenem for Injection is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients receiving β-lactams. (5.1) Seizures and other adverse CNS experiences have been reported during treatment. (5.2) Co-administration of Meropenem for Injection with valproic acid or divalproex sodium reduces the serum concentration of valproic acid potentially increasing the risk of breakthrough seizures. (5.3, 7.2) Clostridium difficile-associated diarrhea (ranging from mild diarrhea to fatal colitis) has been reported. Evaluate if diarrhea occurs. (5.4) In patients with renal dysfunction, thrombocytopenia has been observed. (5.8) 5.1 Hypersensitivity Reactions Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients receiving therapy with β-lactams. These reactions are more likely to occur in individuals with a history of sensitivity to multiple allergens. There have been reports of individuals with a history of penicillin hypersensitivity who have experienced severe hypersensitivity reactions when treated with another β-lactam. Before initiating therapy with Meropenem for Injection, it is important to inquire aboutprevious hypersensitivity reactions to penicillins, cephalosporins, other β-lactams, and other allergens. If an allergic reaction to Meropenem for Injection occurs, discontinue the drug immediately. Serious anaphylactic reactions require immediate emergency treatment with epinephrine, oxygen, intravenous steroids, and airway management, including intubation. Other therapy may also be administered as indicated. 5.2 Seizure Potential Seizures and other adverse CNS experiences have been reported during treatment with Meropenem for Injection These experiences have occurred most commonly in patients with CNS disorders (e.g., brain lesions or history of seizures) or with bacterial meningitis and/or compromised renal function [see Adverse Reactions (6.1) and Drug Interactions (7.2) ]. During clinical investigations, 2904 immunocompetent adult patients were treated for non-CNS infections with the overall seizure rate being 0.7% (based on 20 patients with this adverse event). All meropenemtreated patients with seizures had pre-existing contributing factors. Among these are included prior history of seizures or CNS abnormality and concomitant medications with seizure potential. Dosage adjustment is recommended in patients with advanced age and/or reduced renal function [see Dosage and Administration (2.2) ]. Close adherence to the recommended dosage regimens is urged, especially in patients with known factors that predispose to convulsive activity. Continue anti-convulsant therapy in patients with known seizure disorders. If focal tremors, myoclonus, or seizures occur, evaluate neurologically, placed on anti-convulsant therapy if not already instituted, and the dosage of Meropenem for Injection re-examined to determine whether it should be decreased or the antibacterial drug discontinued. 5.3 Interaction with Valproic Acid Case reports in the literature have shown that co-administration of carbapenems, including meropenem, to patients receiving valproic acid or divalproex sodium results in a reduction in valproic acid concentrations. The valproic acid concentrations may drop below the therapeutic range as a result of this interaction, therefore increasing the risk of breakthrough seizures. Increasing the dose of valproic acid or divalproex sodium may not be sufficient to overcome this interaction. The concomitant use of meropenem and valproic acid or divalproex sodium is generally not recommended. Antibacterials other than carbapenems should be considered to treat infections in patients whose seizures are well controlled on valproic acid or divalproex sodium. If administration of Meropenem for Injection is necessary, supplemental anti-convulsant therapy should be considered [see Drug Interactions (7.2) ]. 5.4 Clostridium difficile-associated Diarrhea Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Meropenem for Injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing isolates of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial drug use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibacterial drug use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial drug treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. 5.5 Development of Drug-Resistant Bacteria Prescribing Meropenem for Injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria. 5.6 Overgrowth of Nonsusceptible Organisms As with other broad-spectrum antibacterial drugs, prolonged use of meropenem may result in overgrowth of nonsusceptible organisms. Repeated evaluation of the patient is essential. If superinfection does occur during therapy, appropriate measures should be taken. 5.7 Laboratory Tests While Meropenem for Injection possesses the characteristic low toxicity of the beta-lactam group of antibacterial drugs, periodic assessment of organ system functions, including renal, hepatic, and hematopoietic, is advisable during prolonged therapy. 5.8 Patients with Renal Impairment In patients with renal impairment, thrombocytopenia has been observed but no clinical bleeding reported [see Dosage and Administration (2.2), Adverse Reactions (6.1), Use In Specific Populations (8.5) and (8.6) , and Clinical Pharmacology (12.3) ]. 5.9 Dialysis There is inadequate information regarding the use of Meropenem for Injection in patients on hemodialysis or peritoneal dialysis. 5.10 Potential for Neuromotor Impairment Patients receiving Meropenem for Injection on an outpatient basis may develop adverse events such as seizures, headaches and/or paresthesias that could interfere with mental alertness and/or cause motor impairment. Until it is reasonably well established that Meropenem for Injection is well tolerated, patients should not operate machinery or motorized vehicles [see Adverse Reactions (6.1) ].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Counsel patients that antibacterial drugs including Meropenem for Injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Meropenem for Injection is prescribed to treat a bacterial infection, tell patients that although it is common to feel better early in the course of therapy, take the medication exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Meropenem for Injection or other antibacterial drugs in the future. Counsel patients that diarrhea is a common problem caused by antibacterial drugs which usually ends when the antibacterial drug is discontinued. Sometimes after starting treatment with antibacterial drugs, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibacterial drug. If this occurs, patients should contact their physician as soon as possible [see Warnings and Precautions (5.4) ]. Counsel patients to inform their physician if they are taking valproic acid or divalproex sodium. Valproic acid concentrations in the blood may drop below the therapeutic range upon co-administration with Meropenem for Injection. If treatment with Meropenem for Injection is necessary and continued, alternative or supplemental anti-convulsant medication to prevent and/or treat seizures may be needed [see Warnings and Precautions (5.3) ]. Patients receiving Meropenem for Injection on an outpatient basis may develop adverse events such as seizures, headaches and/or paresthesias that could interfere with mental alertness and/or cause motor impairment. Until it is reasonably well established that Meropenem for Injection is well tolerated, patients should not operate machinery or motorized vehicles [see Warnings and Precautions (5.10) ].

DOSAGE AND ADMINISTRATION

2 500 mg every 8 hours by intravenous infusion over 15 to 30 minutes for skin and skin structure infections for adult patients. When treating infections caused by Pseudomonas aeruginosa, a dose of 1 gram every 8 hours is recommended. (2.1) 1 gram every 8 hours by intravenous infusion over 15 minutes to 30 minutes for intra-abdominal infections for adult patients. (2.1) 1 gram every 8 hours by intravenous bolus injection (5 mL to 20 mL) over 3 minutes to 5 minutes for adult patients. (2.1) Dosage should be reduced in adult patients with renal impairment. (2.2) Recommended Meropenem for Injection Dosage Schedule for Adult Patients with Renal Impairment Creatinine Clearance (mL/min) Dose (dependent on type of infection) Dosing Interval Greater than 50 Recommended dose (500 mg cSSSI and 1 gram Intra-abdominal) Every 8 hours 26-50 Recommended dose Every 12 hours 10-25 One-half recommended dose Every 12 hours Less than10 One-half recommended dose Every 24 hours Pediatric patients 3 months of age and older Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients 3 Months of Age and Older with Normal Renal Function (2.3) Type of Infection Dose (mg/kg) Up to a Maximum Dose Dosing Interval – Intravenous infusion is to be given over approximately 15 minutes to 30 minutes. -Intravenous bolus injection (5 mL to 20 mL) is to be given over approximately 3 minutes to 5 minutes. -There is no experience in pediatric patients with renal impairment. Complicated skin and skin structure20 mg/kg (or 1 gram for pediatric patients weighing over 50 kg) every 8 hours is recommended when treating complicated skin and skin structure infections caused by P. aeruginosa (2.3). 10 500 mg Every 8 hours Intra-abdominal 20 1 gram Every 8 hours Meningitis 40 2 grams Every 8 hours Pediatric patients less than 3 months of age Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients Less than 3 Months of Age with Complicated Intra-Abdominal Infections and Normal Renal Function (2.3) Age Group Dose (mg/kg) Dosing Interval – Intravenous infusion is to be given over 30 minutes. – There is no experience in pediatric patients with renal impairment. GA: gestational age and PNA: postnatal Infants less than 32 weeks GA and PNA less than 2 weeks 20 Every 12 hours Infants less than 32 weeks GA and PNA 2 weeks and older 20 Every 8 hours Infants 32 weeks and older GA and PNA less than 2 weeks 20 Every 8 hours Infants 32 weeks and older GA and PNA 2 weeks and older 30 Every 8 hours 2.1 Adult Patients The recommended dose of Meropenem for Injection is 500 mg given every 8 hours for skin and skin structure infections and 1 gram given every 8 hours for intra-abdominal infections. When treating complicated skin and skin structure infections caused by P.aeruginosa, a dose of 1 gram every 8 hours is recommended. Meropenem for Injection should be administered by intravenous infusion over approximately 15 minutes to 30 minutes. Doses of 1 gram may also be administered as an intravenous bolus injection (5 mL to 20 mL) over approximately 3 minutes to 5 minutes. 2.2 Use in Adult Patients with Renal Impairment Dosage should be reduced in patients with creatinine clearance of 50 mL/min or less. (See dosing table below.) When only serum creatinine is available, the following formula (Cockcroft and Gault equation)5 may be used to estimate creatinine clearance. Males: Creatinine Clearance (mL/min) = Weight (kg) × (140 – age) 72 × serum creatinine (mg/dL) Females: 0.85 × above value Recommended Meropenem for Injection Dosage Schedule for Adult Patients with Renal Impairment Creatinine Clearance (mL/min) Dose (dependent on type of infection) Dosing Interval Greater than 50 Recommended dose (500 mg cSSSI and 1 gram Intra-abdominal) Every 8 hours Greater than 25-50 Recommended dose Every 12 hours 10-25 One-half recommended dose Every 12 hours Less than 10 One-half recommended dose Every 24 hours There is inadequate information regarding the use of Meropenem for Injection in patients on hemodialysis or peritoneal dialysis. 2.3 Use in Pediatric Patients Pediatric Patients 3 Months of Age and Older For pediatric patients 3 months of age and older, the Meropenem for Injection dose is 10 mg/kg, 20 mg/kg or 40 mg/kg every 8 hours (maximum dose is 2 grams every 8 hours), depending on the type of infection (complicated skin and skin structure, intra-abdominal or meningitis). (See dosing table below.) Pediatric patients weighing over 50 kg should be administered Meropenem for Injection at a dose of 500 mg every 8 hours for complicated skin and skin structure infections, 1 gram every 8 hours for intra-abdominal infections and 2 grams every 8 hours for meningitis. Meropenem for Injection should be given as intravenous infusion over approximately 15 minutes to 30 minutes or as an intravenous bolus injection (5 mL to 20 mL) over approximately 3 minutes-5 minutes. There is limited safety data available to support the administration of a 40 mg/kg (up to a maximum of 2 grams) bolus dose. Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients 3 Months of Age and Older with Normal Renal Function Type of Infection Dose (mg/kg) Up to a Maximum Dose Dosing Interval Complicated skin and skin structure 10 500 mg Every 8 hours Intra-abdominal 20 1 gram Every 8 hours Meningitis 40 2 grams Every 8 hours There is no experience in pediatric patients with renal impairment. When treating complicated skin and skin structure infections caused by P. aeruginosa, a dose of 20 mg/kg (or 1 gram for pediatric patients weighing over 50 kg) every 8 hours is recommended. Pediatric Patients Less Than 3 Months of Age For pediatric patients (with normal renal function) less than 3 months of age, with intra-abdominal infections, the Meropenem for Injection dose is based on gestational age (GA) and postnatal age (PNA). (See dosing table below). Meropenem for Injection should be given as intravenous infusion over 30 minutes. Recommended Meropenem for Injection Dosage Schedule for Pediatric Patients Less than 3 Months of Age with Complicated Intra-Abdominal Infections and Normal Renal Function Age Group Dose (mg/kg) Dose Interval Infants less than 32 weeks GA and PNA less than 2 weeks 20 Every 12 hours Infants less than 32 weeks GA and PNA 2 weeks and older 20 Every 8 hours Infants 32 weeks and older GA and PNA less than 2 weeks 20 Every 8 hours Infants 32 weeks and older GA and PNA 2 weeks and older 30 Every 8 hours There is no experience in pediatric patients with renal impairment. 2.4 Preparation of Solution For Intravenous Bolus Administration Constitute injection vials (500 mg and 1 gram) with sterile Water for Injection (see table below). Shake to dissolve and let stand until clear. Vial Size Amount of Diluent Added (mL) Approximate Withdrawable Volume (mL) Approximate Average Concentration (mg/mL) 500 mg 10 10 50 1 gram 20 20 50 For Infusion Infusion vials (500 mg and 1 gram) may be directly constituted with a compatible infusion fluid. Alternatively, an injection vial may be constituted, then the resulting solution added to an intravenous container and further diluted with an appropriate infusion fluid [see Dosage and Administration (2.5) and (2.6) ]. WARNING: Do not use flexible container in series connections. 2.5 Compatibility Compatibility of Meropenem for Injection with other drugs has not been established. Meropenem for Injection should not be mixed with or physically added to solutions containing other drugs. 2.6 Stability and Storage Freshly prepared solutions of Meropenem for Injection should be used. However, constituted solutions of Meropenem for Injection maintain satisfactory potency under the conditions described below. Solutions of intravenous Meropenem for Injection should not be frozen. Intravenous Bolus Administration Meropenem for Injection vials constituted with sterile Water for Injection for bolus administration (up to 50 mg/mL of Meropenem for Injection) may be stored for up to 3 hours at up to 25°C (77°F) or for 13 hours at up to 5°C (41°F). Intravenous Infusion Administration Solutions prepared for infusion (Meropenem for Injection concentrations ranging from 1 mg/mL to 20 mg/mL) constituted with Sodium Chloride Injection 0.9% may be stored for 1 hour at up to 25°C (77°F) or 15 hours at up to 5°C (41°F). Solutions prepared for infusion (Meropenem for Injection concentrations ranging from 1 mg/mL to 20 mg/mL) constituted with Dextrose Injection 5% should be used immediately. NOTE: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

vancomycin (as vancomycin hydrochloride) 1 GM Injection

Generic Name: VANCOMYCIN HYDROCHLORIDE
Brand Name: Vancomycin Hydrochloride
  • Substance Name(s):
  • VANCOMYCIN HYDROCHLORIDE

WARNINGS

Rapid bolus administration (e.g., over several minutes) may be associated with exaggerated hypotension, including shock and rarely cardiac arrest. Vancomycin hydrochloride for injection should be administered in a diluted solution over a period of not less than 60 minutes to avoid rapid-infusion-related reactions.Stopping the infusion usually results in a prompt cessation of these reactions. Ototoxicity has occurred in patients receiving vancomycin hydrochloride for injection. It may be transient or permanent. It has been reported mostly in patients who have been given excessive doses, who have an underlying hearing loss, or who are receiving concomitant therapy with another ototoxic agent such as an aminoglycoside. Vancomycin should be used with caution in patients with renal insufficiency because the risk of toxicity is appreciably increased by high, prolonged blood concentrations. Dosage of vancomycin hydrochloride for injection must be adjusted for patients with renal dysfunction (see PRECAUTIONS and DOSAGE AND ADMINISTRATION ). Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including vancomycin hydrochloride for injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

DRUG INTERACTIONS

Drug Interactions Concomitant administration of vancomycin and anesthetic agents has been associated with erythema and histamine-like flushing (see Pediatric Use under PRECAUTIONS) and anaphylactoid reactions (see ADVERSE REACTIONS ). Concurrent and/or sequential systemic or topical use of other potentially, neurotoxic and/or nephrotoxic drugs, such as amphotericin B, aminoglycosides, bacitracin, polymyxin B, colistin, viomycin, or cisplatin, when indicated requires careful monitoring.

OVERDOSAGE

Supportive care is advised, with maintenance of glomerular filtration. Vancomycin is poorly removed by dialysis. Hemofiltration and hemoperfusion with polysulfone resin have been reported to result in increased vancomycin clearance. The median lethal intravenous dose is 319 mg/kg in rats and 400 mg/kg in mice. To obtain up-to-date information about the treatment of overdose, a good resource is your certified Regional Poison Control Center. Telephone numbers of certified poison control centers are listed in the Physicians’ Desk Reference (PDR). In managing overdosage, consider the possibility of multiple drug overdoses, interaction among drugs, and unusual drug kinetics in your patient.

DESCRIPTION

Vancomycin Hydrochloride for Injection, USP is a lyophilized powder, for preparing intravenous (IV) infusions, in vials each containing the equivalent of 500 mg or 1 g vancomycin base. 500 mg of the base are equivalent to 0.34 mmol. When reconstituted with Sterile Water for Injection to a concentration of 50 mg/mL, the pH of the solution is between 2.5 and 4.5. Vancomycin Hydrochloride for Injection, USP should be administered intravenously in diluted solution (see DOSAGE AND ADMINISTRATION ), AFTER RECONSTITUTION FURTHER DILUTION IS REQUIRED BEFORE USE. Vancomycin is a tricyclic glycopeptide antibiotic derived from Amycolatopasis orientalis (formerly Nocardia orientalis). The chemical name for Vancomycin hydrochloride is 3S- [3R*,6S*(S*),7S*,22S*,23R*,26R*,36S*,38aS*]]-3-(2-Amino-2-oxoethyl)-44-[[2-O-(3-amino-2,3,6-trideoxy-3-C-methyl-α-L-lyxo-hexopyranosyl)-ß-D-glucopyranosyl]oxy]-10,19-dichloro-2,3,4,5,6,7,23,24,25,26,36,37,38,38a-tetradecahydro-7,22,28,30,32-pentahydroxy-6-[[4-methyl-2-(methylamino)-1-oxopentyl]amino]-2,5,24,38,39-pentaoxo-22H-8,11:18,21-dietheno-23,36-(iminomethano)-13,16:31,35-dimetheno-1H,16H-[1,6,9] oxadiazacyclohexadecino[4,5-m][10,2,16]-benzoxadiazacyclotetracosine-26-carboxylic acid, monohydrochloride. The molecular formula is C66H75Cl2N9O24• HCl and the molecular weight is 1,485.74. Vancomycin hydrochloride has the following structural formula: VAncomycin-structure

HOW SUPPLIED

NDC No. Pack configuration 68083-143-25 Vancomycin Hydrochloride for Injection, USP equivalent to 500 mg vancomycin in one vial, in packages of 25. 68083-144-10 Vancomycin Hydrochloride for Injection, USP equivalent to 1 g vancomycin in one vial, in packages of 10. Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature]. The rubber closure is not made with natural rubber latex.

INDICATIONS AND USAGE

Vancomycin hydrochloride for injection, USP is indicated for the treatment of serious or severe infections caused by susceptible strains of methicillin-resistant (β-lactam-resistant) staphylococci. It is indicated for penicillin-allergic patients, for patients who cannot receive or who have failed to respond to other drugs, including the penicillins or cephalosporins, and for infections caused by vancomycin-susceptible organisms that are resistant to other antimicrobial drugs. Vancomycin hydrochloride for injection, USP is indicated for initial therapy when methicillin-resistant staphylococci are suspected, but after susceptibility data are available, therapy should be adjusted accordingly. Vancomycin hydrochloride for injection, USP is effective in the treatment of staphylococcal endocarditis. Its effectiveness has been documented in other infections due to staphylococci, including septicemia, bone infections, lower respiratory tract infections, and skin and skin structure infections. When staphylococcal infections are localized and purulent, antibiotics are used as adjuncts to appropriate surgical measures. Vancomycin hydrochloride for injection, USP has been reported to be effective alone or in combination with an aminoglycoside for endocarditis caused by S. viridans or S. bovis. For endocarditis caused by enterococci (e.g., E. faecalis), vancomycin has been reported to be effective only in combination with an aminoglycoside. Vancomycin hydrochloride for injection, USP has been reported to be effective for the treatment of diphtheroid endocarditis. Vancomycin hydrochloride for injection, USP has been used successfully in combination with either rifampin, an aminoglycoside, or both in early-onset prosthetic valve endocarditis caused by S. epidermidis or diphtheroids. Specimens for bacteriologic cultures should be obtained in order to isolate and identify causative organisms and to determine their susceptibilities to vancomycin. To reduce the development of drug-resistant bacteria and maintain the effectiveness of vancomycin hydrochloride for injection, USP and other antibacterial drugs, vancomycin hydrochloride for injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. The parenteral form of vancomycin hydrochloride may be administered orally for treatment of antibiotic-associated pseudomembranous colitis produced by C. difficile and for staphylococcal enterocolitis. Parenteral administration of vancomycin hydrochloride alone is of unproven benefit for these indications. Vancomycin is not effective by the oral route for other types of infections.

PEDIATRIC USE

Pediatric Use In pediatric patients, it may be appropriate to confirm desired vancomycin serum concentrations. Concomitant administration of vancomycin and anesthetic agents has been associated with erythema and histamine-like flushing in pediatric patients (see PRECAUTIONS). Geriatrics Use The natural decrement of glomerular filtration with increasing age may lead to elevated vancomycin serum concentrations if dosage is not adjusted. Vancomycin dosage schedules should be adjusted in elderly patients (see DOSAGE AND ADMINISTRATION ). Information for Patients Patients should be counseled that antibacterial drugs including vancomycin hydrochloride for injection, USP should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When vancomycin hydrochloride for injection, USP is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by vancomycin hydrochloride for injection, USP or other antibacterial drugs in the future. Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Animal reproduction studies have not been conducted with vancomycin. It is not known whether vancomycin can affect reproduction capacity. In a controlled clinical study, the potential ototoxic and nephrotoxic effects of vancomycin on infants were evaluated when the drug was administered to pregnant women for serious staphylococcal infections complicating intravenous drug abuse. Vancomycin was found in cord blood. No sensorineural hearing loss or nephrotoxicity attributable to vancomycin was noted. One infant whose mother received vancomycin in the third trimester experienced conductive hearing loss that was not attributed to the administration of vancomycin. Because the number of patients treated in this study was limited and vancomycin was administered only in the second and third trimesters, it is not known whether vancomycin causes fetal harm. Vancomycin should be given to a pregnant womaen only if clearly needed.

NUSRING MOTHERS

Nursing Mothers Vancomycin hydrochloride for injection is excreted in human milk. Caution should be exercised when vancomycin hydrochloride for injection is administered to a nursing woman. Because of the potential for adverse events, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

DOSAGE AND ADMINISTRATION

Infusion-related events are related to both the concentration and the rate of administration of vancomycin. Concentrations of no more than 5 mg/mL and rates of no more than 10 mg/min, are recommended in adults (see also age-specific recommendations). In selected patients in need of fluid restriction, a concentration up to 10 mg/mL may be used; use of such higher concentrations may increase the risk of infusion-related events. An infusion rate of 10 mg/min or less is associated with fewer infusion-related events (see ADVERSE REACTIONS). Infusion-related events may occur, however, at any rate or concentration. Patients with Normal Renal Function Adults The usual daily intravenous dose is 2 g divided either as 500 mg every 6 hours or 1 g every 12 hours. Each dose should be administered at no more than 10 mg/min or over a period of at least 60 minutes, whichever is longer. Other patient factors, such as age or obesity, may call for modification of the usual intravenous daily dose. Pediatric Patients The usual intravenous dosage of vancomycin is 10 mg/kg per dose given every 6 hours. Each dose should be administered over a period of at least 60 minutes. Close monitoring of serum concentrations of vancomycin may be warranted in these patients. Neonates In pediatric patients up to the age of 1 month, the total daily intravenous dosage may be lower. In neonates, an initial dose of 15 mg/kg is suggested, followed by 10 mg/kg every 12 hours for neonates in the 1 st week of life and every 8 hours thereafter up to the age of 1 month. Each dose should be administered over 60 minutes. In premature infants, vancomycin clearance decreases as postconceptional age decreases. Therefore, longer dosing intervals may be necessary in premature infants. Close monitoring of serum concentrations of vancomycin is recommended in these patients. Patients with Impaired Renal Function and Elderly Patients Dosage adjustment must be made in patients with impaired renal function. In premature infants and the elderly, greater dosage reductions than expected may be necessary because of decreased renal function. Measurement of vancomycin serum concentrations can be helpful in optimizing therapy, especially in seriously ill patients with changing renal function. Vancomycin serum concentrations can be determined by use of microbiologic assay, radioimmunoassay, fluorescence polarization immunoassay, fluorescence immunoassay, or high-pressure liquid chromatography. If creatinine clearance can be measured or estimated accurately, the dosage for most patients with renal impairment can be calculated using the following table. The dosage of vancomycin hydrochloride for injection per day in mg is about 15 times the glomerular filtration rate in mL/min (see following table). DOSAGE TABLE FOR VANCOMYCIN IN PATIENTS WITH IMPAIRED RENAL FUNCTION (Adapted from Moellering et al.4 ) Creatinine Clearance mL/min Vancomycin Dose mg/24 hr 100 1,545 90 1,390 80 1,235 70 1,080 60 925 50 770 40 620 30 465 20 310 10 155 The initial dose should be no less than 15 mg/kg, even in patients with mild to moderate renal insufficiency. The table is not valid for functionally anephric patients. For such patients, an initial dose of 15 mg/kg of body weight should be given to achieve prompt therapeutic serum concentrations. The dose required to maintain stable concentrations is 1.9 mg/kg/24 hr. In patients with marked renal impairment, it may be more convenient to give maintenance doses of 250 to 1,000 mg once every several days rather than administering the drug on a daily basis. In anuria, a dose of 1,000 mg every 7 to 10 days has been recommended. When only serum creatinine is known, the following formula (based on sex, weight and age of the patient) may be used to calculate creatinine clearance. Calculated creatinine clearances (mL/min) are only estimates. The creatinine clearance should be measured promptly. Men: Weight (kg) x (140 – age in years) 72 x serum creatinine concentration (mg/dL) Women: 0.85 x above value The serum creatinine must represent a steady state of renal function. Otherwise, the estimated value for creatinine clearance is not valid. Such a calculated clearance is an overestimate of actual clearance in patients with conditions: (1) characterized by decreasing renal function, such as shock, severe heart failure, or oliguria; (2) in which a normal relationship between muscle mass and total body weight is not present, such as in obese patients or those with liver disease, edema, or ascites; and (3) accompanied by debilitation, malnutrition, or inactivity.The safety and efficacy of vancomycin administration by the intrathecal (intralumbar or intraventricular) routes have not been established. Intermittent infusion is the recommended method of administration. Compatibility with Other Drugs and IV Fluids The following diluents are physically and chemically compatible (with 4 g/L vancomycin hydrochloride): 5% Dextrose Injection, USP 5% Dextrose Injection and 0.9% Sodium Chloride Injection, USP Lactated Ringer’s Injection, USP 5% Dextrose and Lactated Ringer’s Injection Normosol®-M and 5% Dextrose 0.9% Sodium Chloride Injection, USP Isolyte® E Good professional practice suggests that compounded admixtures should be administered as soon after preparation as is feasible. Vancomycin solution has a low pH and may cause physical instability of other compounds. Mixtures of solutions of vancomycin and beta-lactam antibiotics have been shown to be physically incompatible. The likelihood of precipitation increases with higher concentrations of vancomycin. It is recommended to adequately flush the intravenous lines between the administration of these antibiotics. It is also recommended to dilute solutions of vancomycin to 5 mg/mL or less. Although intravitreal injection is not an approved route of administration for vancomycin, precipitation has been reported after intravitreal injection of vancomycin and ceftazidime for endophthalmitis using different syringes and needles. The precipitates dissolved gradually, with complete clearing of the vitreous cavity over two months and with improvement of visual acuity. Preparation and Stability At the time of use, reconstitute vials of Vancomycin Hydrochloride for Injection, USP with Sterile Water for Injection to a concentration of 50 mg of vancomycin/mL. (See following table for volume of diluent.) Concentration/Vial Volume of Diluent 500 mg 10 mL 1 g 20 mL After reconstitution, the vials may be stored in a refrigerator for 96 hours without significant loss of potency. Reconstituted solutions of vancomycin (500 mg/10 mL) must be further diluted in at least 100 mL of a suitable infusion solution. For doses of 1 gram (20 mL), at least 200 mL of solution must be used. The desired dose diluted in this manner should be administered by intermittent IV infusion over a period of at least 60 minutes. Parenteral drug products should be visually inspected for particulate matter and discoloration prior to administration, whenever solution and container permit. For Oral Administration Oral vancomycin is used in treating antibiotic-associated pseudomembranous colitis caused by C. difficile and for staphylococcal enterocolitis. Vancomycin is not effective by the oral route for other types of infections. The usual adult total daily dosage is 500 mg to 2 g given in 3 or 4 divided doses for 7 to 10 days. The total daily dose in children is 40 mg/kg of body weight in 3 or 4 divided doses for 7 to 10 days. The total daily dosage should not exceed 2 g. The appropriate dose may be diluted in 1 oz of water and given to the patients to drink. Common flavoring syrups may be added to the solution to improve the taste for oral administration. The diluted solution may be administered via a nasogastric tube.

Oseltamivir 75 MG Oral Capsule [Tamiflu]

Generic Name: OSELTAMIVIR PHOSPHATE
Brand Name: Tamiflu
  • Substance Name(s):
  • OSELTAMIVIR PHOSPHATE

DRUG INTERACTIONS

7 Live attenuated influenza vaccine, intranasal (7): Do not administer until 48 hours following cessation of TAMIFLU. Do not administer TAMIFLU until 2 weeks following administration of the live attenuated influenza vaccine, unless medically indicated. Influenza Vaccines The concurrent use of TAMIFLU with live attenuated influenza vaccine (LAIV) intranasal has not been evaluated. However, because of the potential for interference between these products, LAIV should not be administered within 2 weeks before or 48 hours after administration of TAMIFLU, unless medically indicated. The concern about possible interference arises from the potential for antiviral drugs to inhibit replication of live vaccine virus. Trivalent inactivated influenza vaccine can be administered at any time relative to use of TAMIFLU. Overall Drug Interaction Profile for Oseltamivir Information derived from pharmacology and pharmacokinetic studies of oseltamivir suggests that clinically significant drug interactions are unlikely. Oseltamivir is extensively converted to oseltamivir carboxylate by esterases, located predominantly in the liver. Drug interactions involving competition for esterases have not been extensively reported in literature. Low protein binding of oseltamivir and oseltamivir carboxylate suggests that the probability of drug displacement interactions is low. In vitro studies demonstrate that neither oseltamivir nor oseltamivir carboxylate is a good substrate for P450 mixed-function oxidases or for glucuronyl transferases. Clinically important drug interactions involving competition for renal tubular secretion are unlikely due to the known safety margin for most of these drugs, the elimination characteristics of oseltamivir carboxylate (glomerular filtration and anionic tubular secretion) and the excretion capacity of these pathways. Coadministration of probenecid results in an approximate two-fold increase in exposure to oseltamivir carboxylate due to a decrease in active anionic tubular secretion in the kidney. However, due to the safety margin of oseltamivir carboxylate, no dose adjustments are required when coadministering with probenecid. No pharmacokinetic interactions have been observed when coadministering oseltamivir with amoxicillin, acetaminophen, aspirin, cimetidine, antacids (magnesium and aluminum hydroxides and calcium carbonates), or warfarin.

OVERDOSAGE

10 At present, there has been no experience with overdose. Single doses of up to 1000 mg of TAMIFLU have been associated with nausea and/or vomiting.

DESCRIPTION

11 TAMIFLU (oseltamivir phosphate) is available as capsules containing 30 mg, 45 mg, or 75 mg oseltamivir for oral use, in the form of oseltamivir phosphate, and as a powder for oral suspension, which when constituted with water as directed contains 6 mg/mL oseltamivir base. In addition to the active ingredient, each capsule contains pregelatinized starch, talc, povidone K30, croscarmellose sodium, and sodium stearyl fumarate. The 30 mg capsule shell contains gelatin, titanium dioxide, yellow iron oxide, and red iron oxide. The 45 mg capsule shell contains gelatin, titanium dioxide, and black iron oxide. The 75 mg capsule shell contains gelatin, titanium dioxide, yellow iron oxide, black iron oxide, and red iron oxide. Each capsule is printed with blue ink, which includes FD&C Blue No. 2 as the colorant. In addition to the active ingredient, the powder for oral suspension contains sorbitol, monosodium citrate, xanthan gum, titanium dioxide, tutti-frutti flavoring, sodium benzoate, and saccharin sodium. Oseltamivir phosphate is a white crystalline solid with the chemical name (3R,4R,5S)-4-acetylamino-5-amino-3(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid, ethyl ester, phosphate (1:1). The chemical formula is C16H28N2O4 (free base). The molecular weight is 312.4 for oseltamivir free base and 410.4 for oseltamivir phosphate salt. The structural formula is as follows: Chemical Structure

CLINICAL STUDIES

14 14.1 Treatment of Influenza Adult Subjects Two placebo-controlled double-blind clinical trials were conducted: one in the U.S. and one outside the U.S. Subjects were eligible for these trials if they had fever >100ºF, accompanied by at least one respiratory symptom (cough, nasal symptoms, or sore throat) and at least one systemic symptom (myalgia, chills/sweats, malaise, fatigue, or headache) and influenza virus was known to be circulating in the community. In addition, all subjects enrolled in the trials were allowed to take fever-reducing medications. Of 1355 subjects enrolled in these two trials, 849 (63%) subjects were influenza-infected (age range 18 to 65 years; median age 34 years; 52% male; 90% Caucasian; 31% smokers). Of the 849 influenza-infected subjects, 95% were infected with influenza A, 3% with influenza B, and 2% with influenza of unknown type. TAMIFLU was started within 40 hours of onset of symptoms. Subjects participating in the trials were required to self-assess the influenza-associated symptoms as “none,” “mild,” “moderate,” or “severe.” Time to improvement was calculated from the time of treatment initiation to the time when all symptoms (nasal congestion, sore throat, cough, aches, fatigue, headaches, and chills/sweats) were assessed as “none” or “mild.” In both studies, at the recommended dose of TAMIFLU 75 mg twice daily for 5 days, there was a 1.3 day reduction in the median time to improvement in influenza-infected subjects receiving TAMIFLU compared to subjects receiving placebo. Subgroup analyses of these studies by gender showed no differences in the treatment effect of TAMIFLU in men and women. In the treatment of influenza, no increased efficacy was demonstrated in subjects receiving treatment of 150 mg TAMIFLU twice daily for 5 days. Geriatric Subjects Three double-blind placebo-controlled treatment trials were conducted in subjects ≥65 years of age in three consecutive seasons. The enrollment criteria were similar to that of adult trials with the exception of fever being defined as >97.5°F. Of 741 subjects enrolled, 476 (65%) subjects were influenza-infected. Of the 476 influenza-infected subjects, 95% were infected with influenza type A and 5% with influenza type B. In the pooled analysis, at the recommended dose of TAMIFLU 75 mg twice daily for 5 days, there was a 1-day reduction in the median time to improvement in influenza-infected subjects receiving TAMIFLU compared to those receiving placebo (p=NS). However, the magnitude of treatment effect varied between studies. Pediatric Subjects One double-blind placebo-controlled treatment trial was conducted in pediatric subjects aged 1 to 12 years (median age 5 years), who had fever (>100°F) plus one respiratory symptom (cough or coryza) when influenza virus was known to be circulating in the community. Of 698 subjects enrolled in this trial, 452 (65%) were influenza-infected (50% male; 68% Caucasian). Of the 452 influenza-infected subjects, 67% were infected with influenza A and 33% with influenza B. The primary endpoint in this study was the time to freedom from illness, a composite endpoint that required 4 individual conditions to be met. These were: alleviation of cough, alleviation of coryza, resolution of fever, and parental opinion of a return to normal health and activity. TAMIFLU treatment of 2 mg/kg twice daily, started within 48 hours of onset of symptoms, significantly reduced the total composite time to freedom from illness by 1.5 days compared to placebo. Subgroup analyses of this study by gender showed no differences in the treatment effect of TAMIFLU in male and female pediatric subjects. 14.2 Prophylaxis of Influenza Adult Subjects The efficacy of TAMIFLU in preventing naturally occurring influenza illness has been demonstrated in three seasonal prophylaxis studies and a postexposure prophylaxis study in households. The primary efficacy parameter for all these studies was the incidence of laboratory-confirmed clinical influenza. Laboratory-confirmed clinical influenza was defined as oral temperature ≥99.0°F/37.2°C plus at least one respiratory symptom (cough, sore throat, nasal congestion) and at least one constitutional symptom (aches and pain, fatigue, headache, chills/sweats), all recorded within 24 hours, plus either a positive virus isolation or a four-fold increase in virus antibody titers from baseline. In a pooled analysis of two seasonal prophylaxis studies in healthy unvaccinated adults (aged 13 to 65 years), TAMIFLU 75 mg once daily taken for 42 days during a community outbreak reduced the incidence of laboratory-confirmed clinical influenza from 5% (25/519) for the placebo group to 1% (6/520) for the TAMIFLU group. In a seasonal prophylaxis study in elderly residents of skilled nursing homes, TAMIFLU 75 mg once daily taken for 42 days reduced the incidence of laboratory-confirmed clinical influenza from 4% (12/272) for the placebo group to 99.0°F/37.2°C plus cough and/or coryza, all recorded within 24 hours, plus either a positive virus culture or a four-fold increase in virus antibody titers from baseline. The incidence of confirmed clinical influenza was 3% (7/238) in the group not receiving TAMIFLU compared with 2% (5/237) in the group receiving TAMIFLU; this difference was not statistically significant. A secondary analysis was performed using the same clinical symptoms and RT-PCR for laboratory confirmation of influenza. Among subjects who were not already shedding virus at baseline, the incidence of RT-PCR-confirmed clinical influenza was 3% (7/231) in the group not receiving TAMIFLU and <1% (1/232) in the group receiving TAMIFLU.

HOW SUPPLIED

16 /STORAGE AND HANDLING TAMIFLU Capsules 45-mg capsules (45 mg free base equivalent of the phosphate salt): grey hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “45 mg” is printed in blue ink on the grey cap. Available in blister packages of 10 (NDC 54868-6083-0). 75-mg capsules (75 mg free base equivalent of the phosphate salt): grey/light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “75 mg” is printed in blue ink on the light yellow cap. Available in blister packages of 10 (NDC 54868-4476-0). Storage Store the capsules at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. TAMIFLU for Oral Suspension Supplied as a white powder blend in a glass bottle. After constitution, the powder blend produces a white tutti-frutti–flavored oral suspension. After constitution with 55 mL of water, each bottle delivers a usable volume of 60 mL of oral suspension equivalent to 360 mg oseltamivir base (6 mg/mL). Each bottle is supplied with a bottle adapter and a 10 mL oral dispenser (NDC 54868-6315-0). Storage Store dry powder at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Store constituted suspension under refrigeration for up to 17 days at 2° to 8°C (36° to 46°F). Do not freeze. Alternatively, store constituted suspension for up to 10 days at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature].

RECENT MAJOR CHANGES

Dosage and Administration (2.1, 2.2, 2.3, 2.7, 2.8) 3/2011

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects in clinical studies of TAMIFLU for the treatment of influenza, 19% were 65 and over, while 7% were 75 and over. Of the total number of patients in clinical studies of TAMIFLU for the prophylaxis of influenza, 25% were 65 and over, while 18% were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger subjects. The safety of TAMIFLU in geriatric subjects has been established in clinical studies that enrolled 741 subjects (374 received placebo and 362 received TAMIFLU). Some seasonal variability was noted in the clinical efficacy outcomes [see Clinical Studies (14.1)]. Safety and efficacy have been demonstrated in elderly residents of nursing homes who took TAMIFLU for up to 42 days for the prevention of influenza. Many of these individuals had cardiac and/or respiratory disease, and most had received vaccine that season [see Clinical Studies (14.2)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: 30 mg, 45 mg, 75 mg 30-mg capsules (30 mg free base equivalent of the phosphate salt): light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the light yellow body and “30 mg” is printed in blue ink on the light yellow cap. 45-mg capsules (45 mg free base equivalent of the phosphate salt): grey hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “45 mg” is printed in blue ink on the grey cap. 75-mg capsules (75 mg free base equivalent of the phosphate salt): grey/light yellow hard gelatin capsules. “ROCHE” is printed in blue ink on the grey body and “75 mg” is printed in blue ink on the light yellow cap. For Oral Suspension: 6 mg/mL (final concentration when constituted) White powder blend for constitution to a white tutti-frutti–flavored suspension. After constitution, each bottle delivers a usable volume of 60 mL of oral suspension equivalent to 360 mg oseltamivir base (6 mg/mL). Capsules: 30 mg, 45 mg, 75 mg (3) Powder for oral suspension: 360 mg oseltamivir base (constituted to a final concentration of 6 mg/mL) (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Oseltamivir is an antiviral drug [see Clinical Pharmacology (12.4)].

INDICATIONS AND USAGE

1 TAMIFLU is an influenza neuraminidase inhibitor indicated for: Treatment of influenza in patients 1 year and older who have been symptomatic for no more than 2 days. (1.1) Prophylaxis of influenza in patients 1 year and older. (1.2) Important Limitations of Use: Efficacy not established in patients who begin therapy after 48 hours of symptoms. (1.3) Not a substitute for annual influenza vaccination. (1.3) No evidence of efficacy for illness from agents other than influenza viruses types A and B. (1.3) Consider available information on influenza drug susceptibility patterns and treatment effects when deciding whether to use. (1.3) 1.1 Treatment of Influenza TAMIFLU is indicated for the treatment of uncomplicated acute illness due to influenza infection in patients 1 year and older who have been symptomatic for no more than 2 days. 1.2 Prophylaxis of Influenza TAMIFLU is indicated for the prophylaxis of influenza in patients 1 year and older. 1.3 Limitations of Use The following points should be considered before initiating treatment or prophylaxis with TAMIFLU: Efficacy of TAMIFLU in patients who begin treatment after 48 hours of symptoms has not been established. TAMIFLU is not a substitute for early influenza vaccination on an annual basis as recommended by the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices. There is no evidence for efficacy of TAMIFLU in any illness caused by agents other than influenza viruses types A and B. Influenza viruses change over time. Emergence of resistance mutations could decrease drug effectiveness. Other factors (for example, changes in viral virulence) might also diminish clinical benefit of antiviral drugs. Prescribers should consider available information on influenza drug susceptibility patterns and treatment effects when deciding whether to use TAMIFLU.

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of TAMIFLU in pediatric patients younger than 1 year of age have not been studied. TAMIFLU is not indicated for either treatment or prophylaxis of influenza in pediatric patients younger than 1 year of age because of the unknown clinical significance of nonclinical animal toxicology data for human infants [see Nonclinical Toxicology (13.2)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are insufficient human data upon which to base an evaluation of risk of TAMIFLU to the pregnant woman or developing fetus. Studies for effects on embryo-fetal development were conducted in rats (50, 250, and 1500 mg/kg/day) and rabbits (50, 150, and 500 mg/kg/day) by the oral route. Relative exposures at these doses were, respectively, 2, 13, and 100 times human exposure in the rat and 4, 8, and 50 times human exposure in the rabbit. Pharmacokinetic studies indicated that fetal exposure was seen in both species. In the rat study, minimal maternal toxicity was reported in the 1500 mg/kg/day group. In the rabbit study, slight and marked maternal toxicities were observed, respectively, in the 150 and 500 mg/kg/day groups. There was a dose-dependent increase in the incidence rates of a variety of minor skeletal abnormalities and variants in the exposed offspring in these studies. However, the individual incidence rate of each skeletal abnormality or variant remained within the background rates of occurrence in the species studied. Because animal reproductive studies may not be predictive of human response and there are no adequate and well-controlled studies in pregnant women, TAMIFLU should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

8.3 Nursing Mothers In lactating rats, oseltamivir and oseltamivir carboxylate are excreted in the milk. It is not known whether oseltamivir or oseltamivir carboxylate is excreted in human milk. TAMIFLU should, therefore, be used only if the potential benefit for the lactating mother justifies the potential risk to the breast-fed infant.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serious skin/hypersensitivity reactions: Discontinue TAMIFLU and initiate appropriate treatment if allergic-like reactions occur or are suspected. (5.1) Neuropsychiatric events: Patients with influenza, including those receiving TAMIFLU, particularly pediatric patients, may be at an increased risk of confusion or abnormal behavior early in their illness. Monitor for signs of abnormal behavior. (5.2) 5.1 Serious Skin/Hypersensitivity Reactions Cases of anaphylaxis and serious skin reactions including toxic epidermal necrolysis, Stevens-Johnson Syndrome, and erythema multiforme have been reported in postmarketing experience with TAMIFLU. TAMIFLU should be stopped and appropriate treatment instituted if an allergic-like reaction occurs or is suspected. 5.2 Neuropsychiatric Events Influenza can be associated with a variety of neurologic and behavioral symptoms that can include events such as hallucinations, delirium, and abnormal behavior, in some cases resulting in fatal outcomes. These events may occur in the setting of encephalitis or encephalopathy but can occur without obvious severe disease. There have been postmarketing reports (mostly from Japan) of delirium and abnormal behavior leading to injury, and in some cases resulting in fatal outcomes, in patients with influenza who were receiving TAMIFLU. Because these events were reported voluntarily during clinical practice, estimates of frequency cannot be made but they appear to be uncommon based on TAMIFLU usage data. These events were reported primarily among pediatric patients and often had an abrupt onset and rapid resolution. The contribution of TAMIFLU to these events has not been established. Closely monitor patients with influenza for signs of abnormal behavior. If neuropsychiatric symptoms occur, evaluate the risks and benefits of continuing treatment for each patient. 5.3 Bacterial Infections Serious bacterial infections may begin with influenza-like symptoms or may coexist with or occur as complications during the course of influenza. TAMIFLU has not been shown to prevent such complications. 5.4 Limitations of Populations Studied Efficacy of TAMIFLU in the treatment of influenza in patients with chronic cardiac disease and/or respiratory disease has not been established. No difference in the incidence of complications was observed between the treatment and placebo groups in this population. No information is available regarding treatment of influenza in patients with any medical condition sufficiently severe or unstable to be considered at imminent risk of requiring hospitalization. Efficacy of TAMIFLU for treatment or prophylaxis of influenza has not been established in immunocompromised patients.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved Patient Labeling (Patient Information) 17.1 Information for Patients Patients and/or caregivers should be advised of the risk of severe allergic reactions (including anaphylaxis) or serious skin reactions and should stop TAMIFLU and seek immediate medical attention if an allergic-like reaction occurs or is suspected. Patients and/or caregivers should be advised of the risk of neuropsychiatric events in patients with influenza and should contact their physician if they experience signs of abnormal behavior while receiving TAMIFLU. Their physician will determine if TAMIFLU treatment should be continued. Instruct patients to begin treatment with TAMIFLU as soon as possible from the first appearance of flu symptoms. Similarly, prevention should begin as soon as possible after exposure, at the recommendation of a physician. Instruct patients to take any missed doses as soon as they remember, except if it is near the next scheduled dose (within 2 hours), and then continue to take TAMIFLU at the usual times. TAMIFLU is not a substitute for a flu vaccination. Patients should continue receiving an annual flu vaccination according to guidelines on immunization practices. A bottle of TAMIFLU for oral suspension contains approximately 11 g sorbitol. One dose of 75 mg TAMIFLU for oral suspension delivers 2 g sorbitol. For patients with hereditary fructose intolerance, this is above the daily maximum limit of sorbitol and may cause dyspepsia and diarrhea.

DOSAGE AND ADMINISTRATION

2 Treatment of influenza (2.2) Adults and adolescents (13 years and older): 75 mg twice daily for 5 days Pediatric patients (1 year and older): Based on weight twice daily for 5 days Renally impaired patients (creatinine clearance 10-30 mL/min): Reduce to 75 mg once daily for 5 days (2.4) Prophylaxis of influenza (2.3) Adults and adolescents (13 years and older): 75 mg once daily for at least 10 days -Community outbreak: 75 mg once daily for up to 6 weeks Pediatric patients (1 year and older): Based on weight once daily for 10 days -Community outbreak: Based on weight once daily for up to 6 weeks Renally impaired patients (creatinine clearance 10-30 mL/min): Reduce to 75 mg once every other day or 30 mg once daily (2.4) 2.1 Dosing for Treatment and Prophylaxis of Influenza TAMIFLU may be taken with or without food [see Clinical Pharmacology (12.3)]. However, when taken with food, tolerability may be enhanced in some patients. The recommended oral treatment and prophylaxis dose of TAMIFLU for patients 1 year of age and older is shown in Table 1. Table 1 Treatment and Prophylaxis Dosing of Oral TAMIFLU for Influenza For Patients 1 Year of Age and Older Based on Body Weight Weight (kg) Weight (lbs) Treatment Dosing for 5 days Prophylaxis Dosing for 10 days Volume of Oral Suspension (6 mg/mL) for each Dose Number of Bottles of Oral Suspension to Dispense Number of Capsules and Strength to Dispense 15 kg or less 33 lbs or less 30 mg twice daily 30 mg once daily 5 mL 1 bottle 10 Capsules 30 mg 16 kg thru 23 kg 34 lbs thru 51 lbs 45 mg twice daily 45 mg once daily 7.5 mL 2 bottles 10 Capsules 45 mg 24 kg thru 40 kg 52 lbs thru 88 lbs 60 mg twice daily 60 mg once daily 10 mL 2 bottles 20 Capsules 30 mg 41 kg or more 89 lbs or more 75 mg twice daily 75 mg once daily 12.5 mL 3 bottles 10 Capsules 75 mg 2.2 Standard Dosage – Treatment of Influenza Adults and Adolescents The recommended oral dose of TAMIFLU for treatment of influenza in adults and adolescents 13 years and older is 75 mg twice daily for 5 days. Treatment should begin within 2 days of onset of symptoms of influenza. TAMIFLU for oral suspension may be used by patients who cannot swallow a capsule (see Table 1). Pediatric Patients TAMIFLU is not indicated for treatment of influenza in pediatric patients younger than 1 year. The recommended oral dose of TAMIFLU for pediatric patients 1 year and older is shown in Table 1. For pediatric patients who cannot swallow capsules, TAMIFLU for oral suspension is the preferred formulation. If the oral suspension product is not available, TAMIFLU capsules may be opened and mixed with sweetened liquids such as regular or sugar-free chocolate syrup, corn syrup, caramel topping, or light brown sugar (dissolved in water). If the appropriate strengths of TAMIFLU capsules are not available to mix with sweetened liquids and the oral suspension product is not available, then a pharmacist may compound an emergency supply of oral suspension from TAMIFLU 75 mg capsules [see Dosage and Administration (2.8)]. 2.3 Standard Dosage – Prophylaxis of Influenza Adults and Adolescents The recommended oral dose of TAMIFLU for prophylaxis of influenza in adults and adolescents 13 years and older following close contact with an infected individual is 75 mg once daily for at least 10 days. Therapy should begin within 2 days of exposure. The recommended dose for prophylaxis during a community outbreak of influenza is 75 mg once daily. Safety and efficacy have been demonstrated for up to 6 weeks in immunocompetent patients. The duration of protection lasts for as long as dosing is continued. Safety has been demonstrated for up to 12 weeks in immunocompromised patients. TAMIFLU for oral suspension may also be used by patients who cannot swallow a capsule (see Table 1). Pediatric Patients The safety and efficacy of TAMIFLU for prophylaxis of influenza in pediatric patients younger than 1 year of age have not been established. The recommended oral dose of TAMIFLU for pediatric patients 1 year and older following close contact with an infected individual is shown in Table 1. For pediatric patients who cannot swallow capsules, TAMIFLU for oral suspension is the preferred formulation. If the oral suspension product is not available, TAMIFLU capsules may be opened and mixed with sweetened liquids such as regular or sugar-free chocolate syrup, corn syrup, caramel topping, or light brown sugar (dissolved in water). If the appropriate strengths of TAMIFLU capsules are not available to mix with sweetened liquids and the oral suspension product is not available, then a pharmacist may compound an emergency supply of oral suspension from TAMIFLU 75 mg capsules [see Dosage and Administration (2.8)]. Prophylaxis in pediatric patients following close contact with an infected individual is recommended for 10 days. Therapy should begin within 2 days of exposure. For prophylaxis in pediatric patients during a community outbreak of influenza, dosing may be continued for up to 6 weeks. 2.4 Renal Impairment Data are available on plasma concentrations of oseltamivir carboxylate following various dosing schedules in patients with renal impairment [see Clinical Pharmacology (12.3)]. Treatment of Influenza Dose adjustment is recommended for adult patients with creatinine clearance between 10 and 30 mL/min receiving TAMIFLU for the treatment of influenza. In these patients it is recommended that the dose be reduced to 75 mg of TAMIFLU once daily for 5 days. No recommended dosing regimens are available for patients with end-stage renal disease undergoing routine hemodialysis or continuous peritoneal dialysis treatment. Prophylaxis of Influenza For the prophylaxis of influenza, dose adjustment is recommended for adult patients with creatinine clearance between 10 and 30 mL/min receiving TAMIFLU. In these patients it is recommended that the dose be reduced to 75 mg of TAMIFLU every other day or 30 mg TAMIFLU every day. No recommended dosing regimens are available for patients undergoing routine hemodialysis and continuous peritoneal dialysis treatment with end-stage renal disease. 2.5 Hepatic Impairment No dose adjustment is recommended for patients with mild or moderate hepatic impairment (Child-Pugh score ≤9) [see Clinical Pharmacology (12.3)]. 2.6 Geriatric Patients No dose adjustment is required for geriatric patients [see Use in Specific Populations (8.5) and Clinical Pharmacology (12.3)]. 2.7 Preparation of TAMIFLU for Oral Suspension It is recommended that TAMIFLU for oral suspension be constituted by the pharmacist prior to dispensing to the patient: a)Tap the closed bottle several times to loosen the powder. b) Measure 55 mL of water in a graduated cylinder. c)Add the total amount of water for constitution to the bottle and shake the closed bottle well for 15 seconds. d)Remove the child-resistant cap and push bottle adapter into the neck of the bottle. e)Close bottle with child-resistant cap tightly. This will assure the proper seating of the bottle adapter in the bottle and child-resistant status of the cap. Label the bottle with instructions to Shake Well before each use. The constituted TAMIFLU for oral suspension (6 mg/mL) should be used within 17 days of preparation when stored under refrigeration or within 10 days if stored at controlled room temperature; the pharmacist should write the date of expiration of the constituted suspension on a pharmacy label. The patient package insert and oral dispenser should be dispensed to the patient. 2.8 Emergency Compounding of an Oral Suspension from 75 mg TAMIFLU Capsules (Final Concentration 6 mg/mL) The following directions are provided for use only during emergency situations. These directions are not intended to be used if the FDA-approved, commercially manufactured TAMIFLU for oral suspension is readily available from wholesalers or the manufacturer. Compounding an oral suspension with this procedure will provide one patient with enough medication for a 5-day course of treatment or a 10-day course of prophylaxis. Commercially manufactured TAMIFLU for oral suspension (6 mg/mL) is the preferred product for pediatric and adult patients who have difficulty swallowing capsules or where lower doses are needed. In the event that TAMIFLU for oral suspension is not available, the pharmacist may compound a suspension (6 mg/mL) from TAMIFLU capsules 75 mg using one of these vehicles: Cherry Syrup (Humco®), Ora-Sweet® SF (sugar-free) (Paddock Laboratories), or simple syrup. Other vehicles have not been studied. This compounded suspension should not be used for convenience or when the FDA-approved TAMIFLU for oral suspension is commercially available. First, calculate the total volume of an oral suspension needed to be compounded and dispensed for each patient. The total volume required is determined by the weight of the patient (see Table 2). Table 2 Volume of an Oral Suspension (6 mg/mL) Needed to be Compounded Based Upon the Patient’s Body Weight Weight (kg) Weight (lbs) Total Volume to Compound per Patient (mL) 15 kg or less 33 lbs or less 75 mL 16 thru 23 kg 34 thru 51 lbs 100 mL 24 thru 40 kg 52 thru 88 lbs 125 mL 41 kg or more 89 lbs or more 150 mL Second, determine the number of capsules and the amount of water and vehicle (Cherry Syrup, Ora-Sweet® SF, or simple syrup) that are needed to prepare the total volume (determined from Table 2: 75 mL, 100 mL, 125 mL, or 150 mL) of compounded oral suspension (6 mg/mL) (see Table 3). Table 3 Number of TAMIFLU 75 mg Capsules and Amount of Vehicle (Cherry Syrup, Ora-Sweet® SF, or Simple Syrup) Needed to Prepare the Total Volume of a Compounded Oral Suspension (6 mg/mL) Total Volume of Compounded Oral Suspension to be Prepared 75 mL 100 mL 125 mL 150 mL Number of TAMIFLU 75 mg Capsules 6 capsules (450 mg oseltamivir) 8 capsules (600 mg oseltamivir) 10 capsules (750 mg oseltamivir) 12 capsules (900 mg oseltamivir) Amount of Water 5 mL 7 mL 8 mL 10 mL Volume of Vehicle Cherry Syrup (Humco®) OR Ora-Sweet® SF (Paddock Laboratories) OR simple syrup 69 mL 91 mL 115 mL 137 mL Third, follow the procedure below for compounding the oral suspension (6 mg/mL) from TAMIFLU capsules 75 mg: Place the specified amount of water into a polyethyleneterephthalate (PET) or glass bottle (see Table 3). Carefully separate the capsule body and cap and pour the contents of the required number of TAMIFLU 75 mg capsules into the PET or glass bottle. Gently swirl the suspension to ensure adequate wetting of the TAMIFLU powder for at least 2 minutes. Slowly add the specified amount of vehicle to the bottle. Close the bottle using a child-resistant cap and shake well for 30 seconds to completely dissolve the active drug and to ensure homogeneous distribution of the dissolved drug in the resulting suspension. (Note: The active drug, oseltamivir phosphate, readily dissolves in the specified vehicles. The suspension is caused by inert ingredients of TAMIFLU capsules which are insoluble in these vehicles.) Put an ancillary label on the bottle indicating “Shake Well Before Use.” Instruct the parent or caregiver that any unused suspension remaining in the bottle following completion of therapy must be discarded by either affixing an ancillary label to the bottle or adding a statement to the pharmacy label instructions. Place an appropriate expiration date on the label according to storage conditions below. Storage of the Emergency Compounded Suspension Refrigeration: Stable for 5 weeks (35 days) when stored in a refrigerator at 2° to 8°C (36° to 46°F). Room Temperature: Stable for five days (5 days) when stored at room temperature, 25°C (77°F). Note: The storage conditions are based on stability studies of compounded oral suspensions, using the above mentioned vehicles, which were placed in glass and polyethyleneterephthalate (PET) bottles. Stability studies have not been conducted with other vehicles or bottle types. Place a pharmacy label on the bottle that includes the patient’s name, dosing instructions, and drug name and any other required information to be in compliance with all State and Federal Pharmacy Regulations. Dosing of the Compounded Suspension (6 mg/mL) Refer to Table 1 for the proper dosing instructions for the pharmacy label.

Omeprazole 40 MG Delayed Release Oral Capsule

Generic Name: OMEPRAZOLE
Brand Name: Omeprazole
  • Substance Name(s):
  • OMEPRAZOLE

OVERDOSAGE

10 Reports have been received of overdosage with omeprazole in humans. Doses ranged up to 2400 mg (120 times the usual recommended clinical dose). Manifestations were variable, but included confusion, drowsiness, blurred vision, tachycardia, nausea, vomiting, diaphoresis, flushing, headache, dry mouth, and other adverse reactions similar to those seen in normal clinical experience. [See Adverse Reactions (6)] Symptoms were transient, and no serious clinical outcome has been reported when omeprazole was taken alone. No specific antidote for omeprazole overdosage is known. Omeprazole is extensively protein bound and is, therefore, not readily dialyzable. In the event of overdosage, treatment should be symptomatic and supportive. As with the management of any overdose, the possibility of multiple drug ingestion should be considered. For current information on treatment of any drug overdose, contact your local Poison Control Center. Single oral doses of omeprazole at 1350, 1339, and 1200 mg/kg were lethal to mice, rats, and dogs, respectively. Animals given these doses showed sedation, ptosis, tremors, convulsions, and decreased activity, body temperature, and respiratory rate and increased depth of respiration.

DESCRIPTION

11 The active ingredient in omeprazole delayed-release capsules is a substituted benzimidazole, 5-methoxy-2-[[(4-methoxy-3, 5-dimethyl-2-pyridinyl) methyl] sulfinyl]-1H-benzimidazole, a compound that inhibits gastric acid secretion. Its empirical formula is C17H19N3O3S, with a molecular weight of 345.42 . Chemical Structure

INDICATIONS AND USAGE

1 1.1 Duodenal Ulcer (adults) Omeprazole delayed-release capsules are indicated for short-term treatment of active duodenal ulcer in adults. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. Omeprazole delayed-release capsules in combination with clarithromycin and amoxicillin, is indicated for treatment of patients with H. pylori infection and duodenal ulcer disease (active or up to 1-year history) to eradicate H. pylori in adults. Omeprazole delayed-release capsules, in combination with clarithromycin is indicated for treatment of patients with H. pylori infection and duodenal ulcer disease to eradicate H. pylori in adults. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence [see Clinical Studies (14.1) and Dosage and Administration (2) ]. Among patients who fail therapy, Omeprazole delayed-release capsules with clarithromycin is more likely to be associated with the development of clarithromycin resistance as compared with triple therapy. In patients who fail therapy, susceptibility testing should be done. If resistance to clarithromycin is demonstrated or susceptibility testing is not possible, alternative antimicrobial therapy should be instituted. [ See Microbiology section (12.4) ], and the clarithromycin package insert, Microbiology section.) 1.2 Gastric Ulcer (adults) Omeprazole delayed-release capsules are indicated for short-term treatment (4-8 weeks) of active benign gastric ulcer in adults. [See Clinical Studies (14.2) ] 1.3 Treatment of Gastroesophageal Reflux Disease (GERD) (adults and pediatric patients) Symptomatic GERD Omeprazole delayed-release capsules are indicated for the treatment of heartburn and other symptoms associated with GERD in pediatric patients and adults. Erosive Esophagitis Omeprazole delayed-release capsules are indicated for the short-term treatment (4-8 weeks) of erosive esophagitis that has been diagnosed by endoscopy in pediatric patients and adults. [See Clinical Studies (14.4) ] The efficacy of Omeprazole delayed-release capsules used for longer than 8 weeks in these patients has not been established. If a patient does not respond to 8 weeks of treatment, an additional 4 weeks of treatment may be given. If there is recurrence of erosive esophagitis or GERD symptoms (e.g., heartburn), additional 4-8 week courses of omeprazole may be considered. 1.4 Maintenance of Healing of Erosive Esophagitis (adults and pediatric patients) Omeprazole delayed-release capsules are indicated to maintain healing of erosive esophagitis in pediatric patients and adults. Controlled studies do not extend beyond 12 months. [See Clinical Studies (14.4) ] 1.5 Pathological Hypersecretory Conditions (adults) Omeprazole delayed-release capsules are indicated for the long-term treatment of pathological hypersecretory conditions (e.g., Zollinger-Ellison syndrome, multiple endocrine adenomas and systemic mastocytosis) in adults.

DOSAGE AND ADMINISTRATION

NDC: 2 Omeprazole delayed-release capsules should be taken before eating. In the clinical trials, antacids were used concomitantly with omeprazole. Patients should be informed that the omeprazole delayed-release capsule should be swallowed whole. For patients unable to swallow an intact capsule, alternative administration options are available. [See Dosage and Administration (2.8)] 2.1 Short-Term Treatment of Active Duodenal Ulcer The recommended adult oral dose of Omeprazole delayed-release capsules is 20 mg once daily. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy. 2.2 H. pylori Eradication for the Reduction of the Risk of Duodenal Ulcer Recurrence Triple Therapy (omeprazole/clarithromycin/amoxicillin) — The recommended adult oral regimen is omeprazole delayed-release capsules 20 mg plus clarithromycin 500 mg plus amoxicillin 1000 mg each given twice daily for 10 days. In patients with an ulcer present at the time of initiation of therapy, an additional 18 days of omeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. Dual Therapy (omeprazole/clarithromycin) — The recommended adult oral regimen is omeprazole delayed-release capsuels 40 mg once daily plus clarithromycin 500 mg three times daily for 14 days. In patients with an ulcer present at the time of initiation of therapy, an additional 14 days ofomeprazole delayed-release capsules 20 mg once daily is recommended for ulcer healing and symptom relief. 2.3 Gastric Ulcer The recommended adult oral dose is 40 mg once daily for 4-8 weeks. 2.4 Gastroesophageal Reflux Disease (GERD) The recommended adult oral dose for the treatment of patients with symptomatic GERD and no esophageal lesions is 20 mg daily for up to 4 weeks. The recommended adult oral dose for the treatment of patients with erosive esophagitis and accompanying symptoms due to GERD is 20 mg daily for 4 to 8 weeks. 2.5 Maintenance of Healing of Erosive Esophagitis The recommended adult oral dose is 20 mg daily. [See Clinical Studies (14.4) ] 2.6 Pathological Hypersecretory Conditions The dosage of omeprazole delayed-release capsules in patients with pathological hypersecretory conditions varies with the individual patient. The recommended adult oral starting dose is 60 mg once daily. Doses should be adjusted to individual patient needs and should continue for as long as clinically indicated. Doses up to 120 mg three times daily have been administered. Daily dosages of greater than 80 mg should be administered in divided doses. Some patients with Zollinger-Ellison syndrome have been treated continuously with omeprazole delayed-release capsules for more than 5 years. 2.7 Pediatric Patients For the treatment of GERD and maintenance of healing of erosive esophagitis, the recommended daily dose for pediatric patients 2 to 16 years of age is as follows: On a per kg basis, the doses of omeprazole required to heal erosive esophagitis in pediatric patients are greater than those for adults. Alternative administrative options can be used for pediatric patients unable to swallow an intact capsule [See Dosage and Administration (2.8) ]. 2.8 Alternative Administration Options Omeprazole is available as a delayed-release capsule. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsules can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use. 16 HOW SUPPLIED/STORAGE AND HANDLING Omeprazole delayed-release capsules, USP 40 mg are off-white to pale yellow, elliptical to spherical pellets filled in size ‘0el’ hard gelatin capsules with opaque yellow coloured cap and opaque lavender coloured body, imprinted on cap ‘OMEPRAZOLE’ 40 mg and on body ‘R159’ with black ink. NDC: 35356-891-60 Bottles of 60 17 PATIENT COUNSELING INFORMATION Omeprazole delayed-release capsules should be taken before eating. Patients should be informed that the omeprazole delayed-release capsules should be swallowed whole. For patients who have difficulty swallowing capsules, the contents of an omeprazole delayed-release capsule can be added to applesauce. One tablespoon of applesauce should be added to an empty bowl and the capsule should be opened. All of the pellets inside the capsule should be carefully emptied on the applesauce. The pellets should be mixed with the applesauce and then swallowed immediately with a glass of cool water to ensure complete swallowing of the pellets. The applesauce used should not be hot and should be soft enough to be swallowed without chewing. The pellets should not be chewed or crushed. The pellets/applesauce mixture should not be stored for future use.

traMADol HCl 200 MG 24HR Extended Release Oral Tablet

Generic Name: TRAMADOL HYDROCHLORIDE
Brand Name: TRAMADOL HYDROCHLORIDE
  • Substance Name(s):
  • TRAMADOL HYDROCHLORIDE

DRUG INTERACTIONS

7 Table 2 includes clinically significant drug interactions with tramadol hydrochloride extended-release tablets. Table 2: Clinically Significant Drug Interactions with Tramadol Hydrochloride Extended-Release Tablets Inhibitors of CYP2D6 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP2D6 inhibitors may result in an increase in the plasma concentration of tramadol and a decrease in the plasma concentration of M1, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. Since M1 is a more potent µ-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. After stopping a CYP2D6 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease and the M1 plasma concentration will increase which could increase or prolong therapeutic effects but also increase adverse reactions related to opioid toxicity, and may cause potentially fatal respiratory depression [see Clinical Pharmacology (12.3)]. Intervention: If concomitant use of a CYP2D6 inhibitor is necessary, follow patients closely for adverse reactions including opioid withdrawal, seizures, and serotonin syndrome. If a CYP2D6 inhibitor is discontinued, consider lowering tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients closely for adverse events including respiratory depression and sedation. Examples Quinidine, fluoxetine, paroxetine and bupropion Inhibitors of CYP3A4 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inhibitors can increase the plasma concentration of tramadol and may result in a greater amount of metabolism via CYP2D6 and greater levels of M1. Follow patients closely for increased risk of serious adverse events including seizures and serotonin syndrome, and adverse reactions related to opioid toxicity including potentially fatal respiratory depression, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. After stopping a CYP3A4 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease [see Clinical Pharmacology (12.3)], resulting in decreased opioid efficacy and possibly signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Intervention: If concomitant use is necessary, consider dosage reduction of tramadol hydrochloride extended-release tablets until stable drug effects are achieved. Follow patients closely for seizures and serotonin syndrome, and signs of respiratory depression and sedation at frequent intervals. If a CYP3A4 inhibitor is discontinued, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved and follow patients for signs and symptoms of opioid withdrawal. Examples Macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g. ketoconazole), protease inhibitors (e.g., ritonavir) CYP3A4 Inducers Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inducers can decrease the plasma concentration of tramadol [see Clinical Pharmacology (12.3)], resulting in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence to tramadol, [see Warnings and Precautions (5.4)]. After stopping a CYP3A4 inducer, as the effects of the inducer decline, the tramadol plasma concentration will increase [see Clinical Pharmacology (12.3)], which could increase or prolong both the therapeutic effects and adverse reactions, and may cause seizures and serotonin syndrome, and potentially fatal respiratory depression. Intervention: If concomitant use is necessary, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients for signs of opioid withdrawal. If a CYP3A4 inducer is discontinued, consider tramadol hydrochloride extended-release tablets dosage reduction and monitor for seizures and serotonin syndrome, and signs of sedation and respiratory depression. Patients taking carbamazepine, a CYP3A4 inducer, may have a significantly reduced analgesic effect of tramadol. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of tramadol hydrochloride extended-release tablets and carbamazepine is not recommended. Examples: Rifampin, carbamazepine, phenytoin Benzodiazepines and Other Central Nervous System (CNS) Depressants Clinical Impact: Due to additive pharmacologic effect, the concomitant use of benzodiazepines or other CNS depressants, including alcohol, can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death. Intervention: Reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients closely for signs of respiratory depression and sedation [see Warnings and Precautions (5.5)]. Examples: Benzodiazepines and other sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol. Serotonergic Drugs Clinical Impact: The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Intervention: If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. Examples: Selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonin neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), monoamine oxidase (MAO) inhibitors (those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Monoamine Oxidase Inhibitors (MAOIs) Clinical Impact: MAOI interactions with opioids may manifest as serotonin syndrome [see Warnings and Precautions (5.6)] or opioid toxicity (e.g., respiratory depression, coma) [see Warnings and Precautions (5.2)]. Intervention: Do not use tramadol hydrochloride extended-release tablets in patients taking MAOIs or within 14 days of stopping such treatment. Examples: phenelzine, tranylcypromine, linezolid Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics Clinical Impact: May reduce the analgesic effect of tramadol hydrochloride extended-release tablets and/or precipitate withdrawal symptoms. Intervention: Avoid concomitant use. Examples: butorphanol, nalbuphine, pentazocine, buprenorphine Muscle Relaxants Clinical Impact: Tramadol may enhance the neuromuscular blocking action of skeletal muscle relaxants and produce an increased degree of respiratory depression. Intervention: Monitor patients for signs of respiratory depression that may be greater than otherwise expected and decrease the dosage of tramadol hydrochloride extended-release tablets and/or the muscle relaxant as necessary. Diuretics Clinical Impact: Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Intervention: Monitor patients for signs of diminished diuresis and/or effects on blood pressure and increase the dosage of the diuretic as needed. Anticholinergic Drugs Clinical Impact: The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Intervention: Monitor patients for signs of urinary retention or reduced gastric motility when tramadol hydrochloride extended-release tablets are used concomitantly with anticholinergic drugs. Digoxin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of digoxin toxicity. Intervention: Follow patients for signs of digoxin toxicity and adjust the dosage of digoxin as needed. Warfarin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of alteration of warfarin effect, including elevation of prothrombin times. Intervention: Monitor the prothrombin time of patients on warfarin for signs of an interaction and adjust the dosage of warfarin as needed. Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics: Avoid use with tramadol hydrochloride extended-release tablets because they may reduce analgesic effect of tramadol hydrochloride extended-release tablets or precipitate withdrawal symptoms. (5.15, 7)

OVERDOSAGE

10 Clinical Presentation Acute overdosage with tramadol hydrochloride extended-release tablets can be manifested by respiratory depression, somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, and, in some cases, pulmonary edema, bradycardia, hypotension, partial or complete airway obstruction, atypical snoring, and death. Marked mydriasis rather than miosis may be seen with hypoxia in overdose situations [see Clinical Pharmacology (12.2)]. Treatment of Overdose In case of overdose, priorities are the reestablishment of a patent and protected airway and institution of assisted or controlled ventilation, if needed. Employ other supportive measures (including oxygen and vasopressors) in the management of circulatory shock and pulmonary edema as indicated. Cardiac arrest or arrhythmias will require advanced life-support techniques. The opioid antagonists, naloxone or nalmefene, are specific antidotes to respiratory depression resulting from opioid overdose. For clinically significant respiratory or circulatory depression secondary to tramadol overdose, administer an opioid antagonist. Opioid antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to tramadol overdose. While naloxone will reverse some, but not all, symptoms caused by overdosage with tramadol, the risk of seizures is also increased with naloxone administration. In animals, convulsions following the administration of toxic doses of tramadol hydrochloride extended-release tablets could be suppressed with barbiturates or benzodiazepines but were increased with naloxone. Naloxone administration did not change the lethality of an overdose in mice. Hemodialysis is not expected to be helpful in an overdose because it removes less than 7% of the administered dose in a 4-hour dialysis period. Because the duration of opioid reversal is expected to be less than the duration of action of tramadol in tramadol hydrochloride extended-release tablets, carefully monitor the patient until spontaneous respiration is reliably reestablished. Tramadol hydrochloride extended-release tablets will continue to release tramadol and add to the tramadol load for 24 to 48 hours or longer following ingestion, necessitating prolonged monitoring. If the response to an opioid antagonist is suboptimal or only brief in nature, administer additional antagonist as directed by the product’s prescribing information. In an individual physically dependent on opioids, administration of the recommended usual dosage of the antagonist will precipitate an acute withdrawal syndrome. The severity of the withdrawal symptoms experienced will depend on the degree of physical dependence and the dose of the antagonist administered. If a decision is made to treat serious respiratory depression in the physically dependent patient, administration of the antagonist should be initiated with care and by titration with smaller than usual doses of the antagonist.

DESCRIPTION

11 Tramadol hydrochloride is an opioid agonist in an extended-release tablet formulation for oral use. The chemical name is (±)cis-2-[(dimethylamino) methyl]-1-(3-methoxyphenyl) cyclohexanol hydrochloride. Its structural formula is: The molecular weight of tramadol hydrochloride is 299.84. It is a white, crystalline powder that is freely soluble in water and methanol, very slightly soluble in acetone and has a pKa of 9.41. The n-octanol/water log partition coefficient (logP) is 1.35 at pH 7. Tramadol hydrochloride extended-release tablets contain 100 mg, 200 mg or 300 mg of tramadol hydrochloride, USP in an extended-release formulation. The tablets are white in color and contain the inactive ingredients pregelatinized maize starch, hypromellose, mannitol, magnesium stearate, cellulose acetate and polyethylene glycol. Imprinting ink contains, shellac glaze, iron oxide black, N-butyl alcohol, ammonium hydroxide and propylene glycol. tramadol-structure

CLINICAL STUDIES

14 Clinical Trial Experience Tramadol hydrochloride extended-release tablets were studied in patients with chronic, moderate to moderately severe pain due to osteoarthritis and/or low back pain in four 12-week, randomized, double-blind, placebocontrolled trials. To qualify for inclusion into these studies, patients were required to have moderate to moderately severe pain as defined by a pain intensity score of ≥40 mm, off previous medications, on a 0 to 100 mm visual analog scale (VAS). Adequate evidence of efficacy was demonstrated in the following two studies: Study 1 : Osteoarthritis of the Knee and/or Hip In one 12-week randomized, double-blind, placebo-controlled study, patients with moderate to moderately severe pain due to osteoarthritis of the knee and/or hip were administered doses from 100 mg to 400 mg daily. Treatment was initiated at 100 mg QD for four days then increased by 100 mg per day increments every five days to the randomized fixed dose. Between 51% and 59% of patients in the tramadol hydrochloride extended-release tablets treatment groups completed the study and 56% of patients in the placebo group completed the study. Discontinuations due to adverse events were more common in the tramadol hydrochloride extended-release tablets 200 mg, 300 mg and 400 mg treatment groups (20%, 27%, and 30% of discontinuations, respectively) compared to 14% of the patients treated with tramadol hydrochloride extended-release tablets 100 mg and 10% of patients treated with placebo. Pain, as assessed by the WOMAC Pain subscale, was measured at 1, 2, 3, 6, 9, and 12 weeks and change from baseline assessed. A responder analysis based on the percent change in WOMAC Pain subscale demonstrated a statistically significant improvement in pain for the 100 mg and 200 mg treatment groups compared to placebo (see Figure 3). Study 2: Osteoarthritis of the Knee In one 12-week randomized, double-blind, placebo-controlled flexible-dosing trial of tramadol hydrochloride extended-release tablets in patients with osteoarthritis of the knee, patients titrated to an average daily tramadol hydrochloride extended-release tablets dose of approximately 270 mg/day. Forty-nine percent of patients randomized to tramadol hydrochloride extended-release tablets completed the study, while 52% of patients randomized to placebo completed the study. Most of the early discontinuations in the tramadol hydrochloride extended-release tablets treatment group were due to adverse events, accounting for 27% of the early discontinuations in contrast to 7% of the discontinuations from the placebo group. Thirty-seven percent of the placebo-treated patients discontinued the study due to lack of efficacy compared to 15% of tramadol hydrochloride extended-release tablets-treated patients. The tramadol hydrochloride extended-release tablets group demonstrated a statistically significant decrease in the mean VAS score, and a statistically significant difference in the responder rate, based on the percent change from baseline in the VAS score, measured at 1, 2, 4, 8, and 12 weeks, between patients receiving tramadol hydrochloride extended-release tablets and placebo (see Figure 4). tramadol-figure3 tramadol-figure4

HOW SUPPLIED

16 /STORAGE AND HANDLING Tramadol hydrochloride extended-release tablets are supplied in the following package and dose strength forms: 100 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-859-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-859-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-859-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-859-18 200 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-860-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-860-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-860-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-860-18 300 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-861-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-861-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-861-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-861-18 Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F) [see USP Controlled Room Temperature]. Dispense in a tight, light resistant container. Warning: keep out of reach of children.

RECENT MAJOR CHANGES

Boxed Warning 12/2016 Indication and Usage (1) 12/2016 Dosage and Administration (2) 12/2016 Contraindications (4) 12/2016 Warnings and Precautions (5) 12/2016

GERIATRIC USE

8.5 Geriatric Use Nine-hundred-one elderly (65 years of age or older) subjects were exposed to tramadol hydrochloride extended-release tablets in clinical trials. Of those subjects, 156 were 75 years of age and older. In general, higher incidence rates of adverse events were observed for patients older than 65 years of age compared with patients 65 years and younger, particularly for the following adverse events: constipation, fatigue, weakness, postural hypotension and dyspepsia. For this reason, tramadol hydrochloride extended-release tablets should be used with caution in patients over 65 years of age, and with even greater caution in patients older than 75 years of age [see Dosage and Administration (2.4), Clinical Pharmacology (12.3)]. Respiratory depression is the chief risk for elderly patients treated with opioids, and has occurred after large initial doses were administered to patients who were not opioidtolerant or when opioids were co-administered with other agents that depress respiration. Titrate the dosage of tramadol hydrochloride extended-release tablets slowly in geriatric patients and monitor closely for signs of central nervous system and respiratory depression [see Warnings and Precautions (5.10)]. Tramadol is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 DOSAGE FORMS & STRENGTHS Extended-release tablets are available as: 100 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. 200 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. 300 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Extended-release tablets 100 mg, 200 mg, and 300 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Tramadol hydrochloride extended-release tablets contain tramadol, an opioid agonist and an inhibitor of reuptake of norepinephrine and serotonin. Although the mode of action of tramadol is not completely understood, the analgesic effect of tramadol is believed to be due to both binding to μ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin. Opioid activity of tramadol is due to both low affinity binding of the parent compound and higher affinity binding of the O-desmethyl metabolite M1 to μ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opioid antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound. Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin in vitro, as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol. Apart from analgesia, tramadol administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of other opioids. In contrast to morphine, tramadol has not been shown to cause histamine release. At therapeutic doses, tramadol has no effect on heart rate, left-ventricular function, or cardiac index. Orthostatic hypotension has been observed.

INDICATIONS AND USAGE

1 INDICATIONS & USAGE Tramadol hydrochloride extended-release tablets are indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations [see Warnings and Precautions (5.1)], reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. Tramadol hydrochloride is an opioid agonist indicated for the management of pain severe enough to require daily around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. (1) Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations, reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. (1) Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of tramadol hydrochloride extended-release tablets in patients under 18 years of age have not been established. The use of tramadol hydrochloride extended-release tablets in the pediatric population is not recommended.

PREGNANCY

8.1 Pregnancy Risk Summary Prolonged use of opioid analgesics during pregnancy may cause neonatal opioid withdrawal syndrome [see Warnings and Precautions (5.3)]. Available data with tramadol hydrochloride extended-release tablets in pregnant women are insufficient to inform a drug-associated risk for major birth defects and miscarriage. In animal reproduction studies, tramadol administration during organogenesis decreased fetal weights and reduced ossification in mice, rats, and rabbits at 1.4, 0.6, and 3.6 times the maximum recommended human daily dosage (MRHD). Tramadol decreased pup body weight and increased pup mortality at 1.2 and 1.9 times the MRHD [see Data]. Based on animal data, advise pregnant women of the potential risk to a fetus. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. Clinical Considerations Fetal/Neonatal Adverse Reactions Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth. Neonatal opioid withdrawal syndrome presents as irritability, hyperactivity and abnormal sleep pattern, high pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. The onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of the drug by the newborn. Observe newborns for symptoms and signs of neonatal opioid withdrawal syndrome and manage accordingly [see Warnings and Precautions (5.3)]. Neonatal seizures, neonatal withdrawal syndrome, fetal death and stillbirth have been reported with tramadol during post-approval use of tramadol immediate-release products. Labor or Delivery Opioids cross the placenta and may produce respiratory depression and psychophysiologic effects in neonates. An opioid antagonist, such as naloxone, must be available for reversal of opioid-induced respiratory depression in the neonate. Tramadol hydrochloride extended-release tablets are not recommended for use in pregnant women during or immediately prior to labor, when use of shorter-acting analgesics or other analgesic techniques are more appropriate. Opioid analgesics, including tramadol hydrochloride extended-release tablets, can prolong labor through actions which temporarily reduce the strength, duration, and frequency of uterine contractions. However, this effect is not consistent and may be offset by an increased rate of cervical dilation, which tends to shorten labor. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor. The effect of tramadol hydrochloride extended-release tablets, if any, on the later growth, development, and functional maturation of the child is unknown. Data Animal Data Tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg), rats (25 mg/kg) and rabbits (75 mg/kg) at maternally toxic dosages, but was not teratogenic at these dose levels. These doses on a mg/m2 basis are 1.9, 0.8, and 4.9 times the maximum recommended human daily dosage (MRHD) for mouse, rat and rabbit, respectively. No drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg), rats (up to 80 mg/kg) or rabbits (up to 300 mg/kg) treated with tramadol by various routes. Embryo and fetal toxicity consisted primarily of decreased fetal weights, decreased skeletal ossification, and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. Embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg, a dose that would cause extreme maternal toxicity in the rabbit. The dosages listed for mouse, rat, and rabbit are 2.3, 2.6, and 19 times the MRHD, respectively. Tramadol was evaluated in pre- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (1.6 times the MRHD) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (2.6 times the MRHD).

NUSRING MOTHERS

8.3 Females and Males of Reproductive Potential Infertility Chronic use of opioids may cause reduced fertility in females and males of reproductive potential. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Clinical Pharmacology (12.2), Nonclinical Toxicology (13.1)].

BOXED WARNING

WARNING: ADDICTION, ABUSE, AND MISUSE; LIFE-THREATENTING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS Addi ction, Abus e, a nd Misuse Tramadol hydrochloride extended-release tablets expos e pa ti en ts and o th er us ers to the risks of opio id addi ction, abus e, and misus e, w hi ch can l ead to ov erdose and d ea th. Ass ess ea ch pa ti en t’s risk p rior to p res c ribing tramadol hydrochloride extended-release tablets, and moni t or all pa ti en ts regula rly for the d ev elop ment of th ese b ehavio rs and con di tions [s ee Warnings and Pr ecautions (5.1 ) ]. Li f e-Th rea tening Resp i ra to ry D ep ression S erious, li f e-th rea tening, or fa tal respi ra to ry d ep ression may o ccur wi th use of tramadol hydrochloride extended-release tablets. Moni t or for respi ra to ry d ep r e ssion, esp ecially du r ing ini tia tion of tramadol hydrochloride extended-release tablets or follo wing a dose in creas e. Ins tru ct pa ti en ts to s wallow tramadol hydrochloride extended-release tablets in ta ct, and not to cu t, b reak, ch e w, c rush, or dissolve the tabl ets to avoid exposu re to a po ten tially fa tal dose of tra madol [s ee Warnings and Pr e cautions (5.2 ) ]. Accid en tal Ing es tion Accid en tal ing es tion of ev en one dose of tramadol hydrochloride extended-release tablet, esp ecially by child ren, can result in a fa tal ov erdose of tr a madol [s ee War nings and Pr ecautio ns (5.2 ) ]. Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available[ see Warnings and Precautions (5.3)]. Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 [see Warnings and Precautions (5.4), Drug Interactions (7) ]. Risks From Concomitant Use With Benzodiazepines Or Other CNS Depressants Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death [see Warnings and Precautions (5.5), Drug Interactions (7) ]. • Reserve concomitant prescribing of tramadol hydrochloride extended-release injection and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate. • Limit dosages and durations to the minimum required. • Follow patients for signs and symptoms of respiratory depression and sedation. WARNING: ADDICTION, ABUSE, AND MISUSE; LIFETHREATENING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS See full prescribing information for complete boxed warning . Tramadol hydrochloride extended-release tablets expose users to risks of addiction, abuse, and misuse, which can lead to overdose and death. Assess patient’s risk before prescribing and monitor regularly for these behaviors and conditions. (5.1) Serious, life-threatening, or fatal respiratory depression may occur. Monitor closely, especially upon initiation or following a dose increase. Instruct patients to swallow tramadol hydrochloride extended-release tablets intact, and not to cut, break, chew, crush, or dissolve the tablets to avoid exposure to a potentially fatal dose of tramadol. (5.2) Accidental ingestion of tramadol hydrochloride extended-release tablets, especially by children, can result in a fatal overdose of tramadol. (5.2) Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated. If prolonged opioid use is required in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. (5.3) The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 (5.4, 7) Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing for use in patients for whom alternative treatment options are inadequate; limit dosages and durations to the minimum required; and follow patients for signs and symptoms of respiratory depression and sedation. (5.5, 7)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serotonin Syndrome: Potentially life-threatening condition could result from concomitant serotonergic drug administration. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. (5.6) Risk of Seizure: Present within recommended dosage range. Risk is increased with higher than recommended doses and concomitant use of SSRIs, SNRIs, anorectics, tricyclic antidepressants and other tricyclic compounds, other opioids, MAOIs, neuroleptics, other drugs that reduce seizure threshold, in patients with epilepsy or at risk for seizures. (5.7, 7) Risk of Suicide: Do not use tramadol hydrochloride extended-release tablets in suicidal or addiction-prone patients. Use with caution in those taking tranquilizers, antidepressants or abuse alcohol. (5.8) Adrenal Insufficiency: If diagnosed, treat with physiologic replacement of corticosteroids, and wean patient off of the opioid. (5.9) Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients: Monitor closely, particularly during initiation and titration. (5.10) Severe Hypotension: Monitor during dosage initiation and titration. Avoid use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. (5.11) Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness: Monitor for sedation and respiratory depression. Avoid use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. (5.12) 5.1 Addiction, Abuse, and Misuse Tramadol hydrochloride extended-release tablet contains tramadol, a Schedule IV controlled substance. As an opioid, tramadol hydrochloride extended-release tablet exposes users to the risks of addiction, abuse, and misuse. Because extended-release products such as tramadol hydrochloride extended-release tablets deliver the opioid over an extended period of time, there is a greater risk for overdose and death due to the larger amount of tramadol present [see Drug Abuse and Dependence (9)]. Although the risk of addiction in any individual is unknown, it can occur in patients appropriately prescribed tramadol hydrochloride extended-release tablets. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each patient’s risk for opioid addiction, abuse, or misuse prior to prescribing tramadol hydrochloride extended-release tablets, and monitor all patients receiving tramadol hydrochloride extended-release tablets for the development of these behaviors and conditions. Risks are increased in patients with a personal or family history of substance abuse (including drug or alcohol abuse or addiction) or mental illness (e.g., major depression). The potential for these risks should not, however, prevent the proper management of pain in any given patient. Patients at increased risk may be prescribed opioids such as tramadol hydrochloride extended-release tablets, but use in such patients necessitates intensive counseling about the risks and proper use of tramadol hydrochloride extended-release tablets along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse or misuse of tramadol hydrochloride extended-release tablets by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of tramadol and can result in overdose and death [see Overdosage (10)]. Opioids are sought by drug abusers and people with addiction disorders and are subject to criminal diversion. Consider these risks when prescribing or dispensing tramadol hydrochloride extended-release tablets. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity and advising the patient on the proper disposal of unused drug [ see Patient Counseling Information (17)]. Contact local state professional licensing board or state controlled substances authority for information on how to prevent and detect abuse or diversion of this product. 5.2 Life-Threatening Respiratory Depression Serious, life-threatening, or fatal respiratory depression has been reported with the use of opioids, even when used as recommended. Respiratory depression, if not immediately recognized and treated, may lead to respiratory arrest and death. Management of respiratory depression may include close observation, supportive measures, and use of opioid antagonists, depending on the patient’s clinical status [see Overdosage (10)]. Carbon dioxide (CO2) retention from opioid- induced respiratory depression can exacerbate the sedating effects of opioids. While serious, life-threatening, or fatal respiratory depression can occur at any time during the use of tramadol hydrochloride extended-release tablets, the risk is greatest during the initiation of therapy or following a dosage increase. Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy with and following dosage increases of tramadol hydrochloride extended-release tablets. To reduce the risk of respiratory depression, proper dosing and titration of tramadol hydrochloride extended-release tablets are essential [see Dosage and Administration (2)]. Overestimating the tramadol hydrochloride extended-release tablets dosage when converting patients from another opioid product can result in a fatal overdose with the first dose. Accidental ingestion of even one dose of tramadol hydrochloride extended-release tablet, especially by children, can result in respiratory depression and death due to an overdose of tramadol. 5.3 Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in withdrawal in the neonate. Neonatal opioid withdrawal syndrome, unlike opioid withdrawal syndrome in adults, may be life- threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. Observe newborns for signs of neonatal opioid withdrawal syndrome and manage accordingly. Advise pregnant women using opioids for a prolonged period of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available [see Use in Specific Populations (8.1), Patient Counseling Information (17)]. 5.4 Risks of Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors on levels of tramadol and M1 from tramadol hydrochloride extended-release tablets are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol which is a weak serotonin and norepinephrine reuptake inhibitor and µ-opioid agonist, and the active metabolite, M1, which is more potent than tramadol in µ-opioid receptor binding [see Drug Interactions (7)]. Risks of Concomitant Use or Discontinuation of Cytochrome P450 2D6 Inhibitors The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 2D6 inhibitors (e.g., amiodarone, quinidine) may result in an increase in tramadol plasma levels and a decrease in the levels of the active metabolite, M1. A decrease in M1 exposure in patients who have developed physical dependence to tramadol, may result in signs and symptoms of opioid withdrawal and reduced efficacy. The effect of increased tramadol levels may be an increased risk for serious adverse events including seizures and serotonin syndrome. Discontinuation of a concomitantly used cytochrome P450 2D6 inhibitor may result in a decrease in tramadol plasma levels and an increase in active metabolite M1 levels, which could increase or prolong adverse reactions related to opioid toxicity and may cause potentially fatal respiratory depression. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP2D6 inhibitor for the risk of serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity, and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors of CYP2D6 [see Drug Interactions (7)]. Cytochrome P450 3A4 Interaction The concomitant use of tramadol hydrochloride extended-release tablets with cytochrome P450 3A4 inhibitors, such as macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g., ketoconazole), and protease inhibitors (e.g., ritonavir) or discontinuation of a cytochrome P450 3A4 inducer such as rifampin, carbamazepine, and phenytoin, may result in an increase in tramadol plasma concentrations, which could increase or prolong adverse reactions, increase the risk for serious adverse events including seizures and serotonin syndrome, and may cause potentially fatal respiratory depression. The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 3A4 inducers or discontinuation of a cytochrome P450 3A4 inhibitor may result in lower tramadol levels. This may be associated with a decrease in efficacy, and in some patients, may result in signs and symptoms of opioid withdrawal. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP3A4 inhibitor or inducer for the risk for serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors and inducers of CYP3A4 [see Drug Interactions (7)]. 5.5 Risks from Concomitant Use with Benzodiazepines or Other CNS Depressants Profound sedation, respiratory depression, coma, and death may result from the concomitant use of tramadol hydrochloride extended-release tablets with benzodiazepines or other CNS depressants (e.g., non-benzodiazepine sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol). Because of these risks, reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Observational studies have demonstrated that concomitant use of opioid analgesics and benzodiazepines increases the risk of drug-related mortality compared to use of opioid analgesics alone. Because of similar pharmacological properties, it is reasonable to expect similar risk with the concomitant use of other CNS depressant drugs with opioid analgesics [see Drug Interactions (7)]. If the decision is made to prescribe a benzodiazepine or other CNS depressant concomitantly with an opioid analgesic, prescribe the lowest effective dosages and minimum durations of concomitant use. In patients already receiving an opioid analgesic, prescribe a lower initial dose of the benzodiazepine or other CNS depressant than indicated in the absence of an opioid, and titrate based on clinical response. If an opioid analgesic is initiated in a patient already taking a benzodiazepine or other CNS depressant, prescribe a lower initial dose of the opioid analgesic, and titrate based on clinical response. Follow patients closely for signs and symptoms of respiratory depression and sedation. Advise both patients and caregivers about the risks of respiratory depression and sedation when tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants (including alcohol and illicit drugs). Advise patients not to drive or operate heavy machinery until the effects of concomitant use of the benzodiazepine or other CNS depressant have been determined.  Screen patients for risk of substance use disorders, including opioid abuse and misuse, and warn them of the risk for overdose and death associated with the use of additional CNS depressants including alcohol and illicit drugs [see Drug Interactions (7), Patient Counseling Information (17)]. 5.6 Serotonin Syndrome Risk Cases of serotonin syndrome, a potentially life-threatening condition, have been reported with the use of tramadol, including tramadol hydrochloride extended-release tablets, particularly during concomitant use with serotonergic drugs. Serotonergic drugs include selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonergic neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), and drugs that impair metabolism of serotonin (including MAO inhibitors, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue) [see Drug Interactions (7)]. This may occur within the recommended dosage range. Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). The onset of symptoms generally occurs within several hours to a few days of concomitant use, but may occur later than that. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. 5.7 Increased Risk of Seizures Seizures have been reported in patients receiving tramadol within the recommended dosage range. Spontaneous post-marketing reports indicate that seizure risk is increased with doses of tramadol above the recommended range. Concomitant use of tramadol increases the seizure risk in patients taking: [see Drug Interactions (7)]. · Selective serotonin re-uptake inhibitors (SSRIs) and Serotonin-norepinephrine re-uptake inhibitors (SNRIs) antidepressants or anorectics, · Tricyclic antidepressants (TCAs), and other tricyclic compounds (e.g., cyclobenzaprine, promethazine, etc.), · Other opioids, · MAO inhibitors [see Warnings and Precautions (5.9), Drug Interactions (7)] · Neuroleptics, or · Other drugs that reduce the seizure threshold. Risk of seizures may also increase in patients with epilepsy, those with a history of seizures, or in patients with a recognized risk for seizure (such as head trauma, metabolic disorders, alcohol and drug withdrawal, CNS infections). In tramadol overdose, naloxone administration may increase the risk of seizure. 5.8 Suicide Risk Do not prescribe tramadol hydrochloride extended-release tablets for patients who are suicidal or addiction-prone. Consideration should be given to the use of non-narcotic analgesics in patients who are suicidal or depressed. [see Drug Abuse and Dependence (9.2)] Prescribe tramadol hydrochloride extended-release tablets with caution for patients with a history of misuse and/or arecurrently taking CNS-active drugs including tranquilizers, or antidepressant drugs, or alcohol in excess, and patients who suffer from emotional disturbance or depression [see Drug Interactions (7)]. Inform patients not to exceed the recommended dose and to limit their intake of alcohol [see Dosage and Administration (2.1), Warnings and Precautions (5.5, 5.6, 5.12)]. 5.9 Adrenal Insufficiency Cases of adrenal insufficiency have been reported with opioid use, more often following greater than one month of use. Presentation of adrenal insufficiency may include non-specific symptoms and signs including nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. If adrenal insufficiency is suspected, confirm the diagnosis with diagnostic testing as soon as possible. If adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids. Wean the patient off of the opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers. Other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency. The information available does not identify any particular opioids as being more likely to be associated with adrenal insufficiency. 5.10 Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients The use of tramadol hydrochloride extended-release tablets in patients with acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment is contraindicated. Patients with Chronic Pulmonary Disease: Tramadol hydrochloride extended-release tablets-treated patients with significant chronic obstructive pulmonary disease or cor pulmonale, and those with a substantially decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression are at increased risk of decreased respiratory drive including apnea, even at recommended dosages of tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.2)]. Elderly, Cachectic, or Debilitated Patients: Life-threatening respiratory depression is more likely to occur in elderly, cachectic, or debilitated patients because they may have altered pharmacokinetics or altered clearance compared to younger, healthier patients [see Warnings and Precautions (5.2)]. Monitor such patients closely, particularly when initiating and titrating tramadol hydrochloride extended-release tablets and when tramadol hydrochloride extended-release tablets are given concomitantly with other drugs that depress respiration [see Warnings and Precautions (5.2, 5.5)]. Alternatively, consider the use of non-opioid analgesics in these patients. 5.11 Severe Hypotension Tramadol hydrochloride extended-release tablets may cause severe hypotension including orthostatic hypotension and syncope in ambulatory patients. There is increased risk in patients whose ability to maintain blood pressure has already been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines or general anesthetics) [see Drug Interactions (7)]. Monitor these patients for signs of hypotension after initiating or titrating the dosage of tramadol hydrochloride extended-release tablets. In patients with circulatory shock, tramadol hydrochloride extended-release tablets may cause vasodilation that can further reduce cardiac output and blood pressure. Avoid the use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. 5.12 Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness In patients who may be susceptible to the intracranial effects of CO2 retention (e.g., those with evidence of increased intracranial pressure or brain tumors), tramadol hydrochloride extended-release tablets may reduce respiratory drive, and the resultant CO2 retention can further increase intracranial pressure. Monitor such patients for signs of sedation and respiratory depression, particularly when initiating therapy with tramadol hydrochloride extended-release tablets. Opioids may also obscure the clinical course in a patient with a head injury. Avoid the use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. 5.13 Risks of Use in Patients with Gastrointestinal Conditions Tramadol hydrochloride extended-release tablets are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus. The tramadol in tramadol hydrochloride extended-release tablets may cause spasm of the sphincter of Oddi. Opioids may cause increases in serum amylase. Monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms. 5.14 Anaphylaxis and Other Hypersensitivity Reactions Serious and rarely fatal hypersensitive reactions have been reported in patients receiving therapy with tramadol. When these events do occur it is often following the first dose. Other reported hypersensitivity reactions include pruritus, hives, bronchospasm, angioedema, toxic epidermal necrolysis and Stevens-Johnson syndrome. Patients with a history of hypersensitivity reactions to tramadol and other opioids may be at increased risk and therefore should not receive tramadol hydrochloride extended-release tablets. If anaphylaxis or other hypersensitivity occurs, stop administration of tramadol hydrochloride extended-release tablets immediately, discontinue tramadol hydrochloride extended-release tablets permanently, and do not rechallenge with any formulation of tramadol. Advise patients to seek immediate medical attention if they experience any symptoms of a hypersensitivity reaction [see Patient Counseling Information (17)]. 5.15 Withdrawal Avoid the use of mixed agonist/antagonist (e.g., pentazocine, nalbuphine, and butorphanol) or partial agonist (e.g., buprenorphine) analgesics in patients who are receiving a full opioid agonist analgesic, including tramadol hydrochloride extended-release tablets. In these patients, mixed agonist/antagonist and partial agonist analgesics may reduce the analgesic effect and/or may precipitate withdrawal symptoms [see Drug Interactions (7)]. When discontinuing tramadol hydrochloride extended-release tablets, gradually taper the dosage [see Dosage and Administration (2.4)]. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Drug Abuse and Dependence (9.3)]. 5.16 Risks of Driving and Operating Machinery Tramadol hydrochloride extended-release tablets may impair the mental or physical abilities needed to perform potentially hazardous activities such as driving a car or operating machinery. Warn patients not to drive or operate dangerous machinery unless they are tolerant to the effects of tramadol hydrochloride extended-release tablets and know how they will react to the medication [see Patient Counseling Information (17)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Addiction, Abuse, and Misuse Inform patients that the use of tramadol hydrochloride extended-release tablets, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death [see Warnings and Precautions (5.1)]. Instruct patients not to share tramadol hydrochloride extended-release tablets with others and to take steps to protect tramadol hydrochloride extended-release tablets from theft or misuse. Life-Threatening Respiratory Depression Inform patients of the risk of life-threatening respiratory depression, including information that the risk is greatest when starting tramadol hydrochloride extended-release tablets or when the dosage is increased, and that it can occur even at recommended dosages [see Warnings and Precautions (5.2)]. Advise patients how to recognize respiratory depression and to seek medical attention if breathing difficulties develop. Accidental Ingestion Inform patients that accidental ingestion, especially by children, may result in respiratory depression or death [see Warnings and Precautions (5.2)]. Instruct patients to take steps to store tramadol hydrochloride extended-release tablets securely and to dispose of unused tramadol hydrochloride extended-release tablets in accordance with the local state guidelines and/or regulations. Interactions with Benzodiazepines and Other CNS Depressants Inform patients and caregivers that potentially fatal additive effects may occur if tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants, including alcohol, and not to use these concomitantly unless supervised by a healthcare provider [see Warnings and Precautions (5.5), Drug Interactions (7)]. Serotonin Syndrome Inform patients that tramadol could cause a rare but potentially life-threatening condition, particularly during concomitant use with serotonergic drugs. Warn patients of the symptoms of serotonin syndrome and to seek medical attention right away if symptoms develop. Instruct patients to inform their healthcare provider if they are taking, or plan to take serotonergic medications [see Warnings and Precautions (5.6), Drug Interactions (7)]. Seizures Inform patients that tramadol hydrochloride extended-release tablets may cause seizures with concomitant use of serotonergic agents (including SSRIs, SNRIs, and triptans) or drugs that significantly reduce the metabolic clearance of tramadol [see Warnings and Precautions (5.7)]. MAOI Interaction Inform patients not to take tramadol hydrochloride extended-release tablets while using any drugs that inhibit monoamine oxidase. Patients should not start MAOIs while taking tramadol hydrochloride extended-release tablets [see Drug Interactions (7)]. Adrenal Insufficiency Inform patients that opioids could cause adrenal insufficiency, a potentially life-threatening condition. Adrenal insufficiency may present with non-specific symptoms and signs such as nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. Advise patients to seek medical attention if they experience a constellation of these symptoms [see Warnings and Precautions (5.9)]. Important Administration Instructions Instruct patients how to properly take tramadol hydrochloride extended-release tablets, including the following: · Tramadol hydrochloride extended-release tablets are designed to work properly only if swallowed intact. Taking cut, broken, chewed, crushed, or dissolved tramadol hydrochloride extended-release tablets can result in a fatal overdose [see Dosage and Administration (2.1)]. · Advise patients not to exceed the single-dose and 24-hour dose limit and the time interval between doses, since exceeding these recommendations can result in respiratory depression, seizures, hepatic toxicity, and death. [see Dosage and Administration (2.1)]. · Do not discontinue tramadol hydrochloride extended-release tablets without first discussing the need for a tapering regimen with the prescriber [see Dosage and Administration (2.4)]. Hypotension Inform patients that tramadol hydrochloride extended-release tablets may cause orthostatic hypotension and syncope. Instruct patients how to recognize symptoms of low blood pressure and how to reduce the risk of serious consequences should hypotension occur (e.g., sit or lie down, carefully rise from a sitting or lying position) [see Warnings and Precautions (5.11)]. Anaphylaxis Inform patients that anaphylaxis has been reported with ingredients contained in tramadol hydrochloride extended-release tablets. Advise patients how to recognize such a reaction and when to seek medical attention [see Contraindications (4), Adverse Reactions (6)]. Pregnancy Neonatal Opioid Withdrawal Syndrome Inform female patients of reproductive potential that prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated [see Warnings and Precautions (5.3), Use in Specific Populations (8.1)]. Embryo-Fetal Toxicity Inform female patients of reproductive potential that tramadol hydrochloride extended-release tablets can cause fetal harm and to inform their healthcare provider of a known or suspected pregnancy [see Use in Specific Populations (8.1)]. Lactation Advise patients that breastfeeding is not recommended during treatment with tramadol hydrochloride extended-release tablets [see Use in Specific Populations (8.2)]. Infertility Inform patients that chronic use of opioids may cause reduced fertility. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Use in Specific Populations (8.3)]. Driving or Operating Heavy Machinery Inform patients that tramadol hydrochloride extended-release tablets may impair the ability to perform potentially hazardous activities such as driving a car or operating heavy machinery. Advise patients not to perform such tasks until they know how they will react to the medication [see Warnings and Precautions (5.5)]. Constipation Advise patients of the potential for severe constipation, including management instructions and when to seek medical attention [see Adverse Reactions (6), Clinical Pharmacology (12.1)]. Disposal of Unused Tramadol Hydrochloride Extended-Release Tablets Advise patients to throw the unused tramadol hydrochloride extended-release tablets in the household trash following these steps. 1) Remove the drugs from their original containers and mix with an undesirable substance, such as used coffee grounds or kitty litter (this makes the drug less appealing to children and pets, and unrecognizable to people who may intentionally go through the trash seeking drugs). 2) Place the mixture in a sealable bag, empty can, or other container to prevent the drug from leaking or breaking out of a garbage bag.

DOSAGE AND ADMINISTRATION

2 DOSAGE & ADMINISTRATION To be prescribed only by healthcare providers knowledgeable in use of potent opioids for management of chronic pain. (2.1) Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals (2.1). Individualize dosing based on the severity of pain, patient response, prior analgesic experience, and risk factors for addiction, abuse, and misuse. (2.1) Do not exceed a daily dose of 300 mg tramadol. Do not use with other tramadol products. (2.1) For opioid-naïve and opioid non-tolerant patients, initiate tramadol hydrochloride extended-release tablets at a dose of 100 mg once daily, then titrate up by 100 mg increments every 5 days according to need and tolerance. (2.2) For patients currently on tramadol IR, calculate total 24-hr IR dose, and initiate tramadol hydrochloride extended-release tablets at a dose rounded down to next lower 100 mg increment; then adjust dose according to need and tolerance. See full prescribing information for instructions on conversion, titration, and maintenance of therapy. (2.2, 2.3) Do not abruptly discontinue tramadol hydrochloride extended-release tablets in a physically-dependent patient. (2.4) 2.1 Important Dosage and Administration Instructions Tramadol hydrochloride extended-release tablets should be prescribed only by healthcare professionals who are knowledgeable in the use of potent opioids for the management of chronic pain. Do not use tramadol hydrochloride extended-release tablets concomitantly with other tramadol products [ see Warnings and Precautions (5.4), (5.12)]. Do not administer tramadol hydrochloride extended-release tablets at a dose exceeding 300 mg per day. Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals [see Warnings and Precautions (5.5)]. Initiate the dosing regimen for each patient individually, taking into account the patient’s severity of pain, patient response, prior analgesic treatment experience, and risk factors for addiction, abuse, and misuse [see Warnings and Precautions (5.1)] Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy and following dosage increases with tramadol hydrochloride extended-release tablets and adjust the dosage accordingly [see Warnings and Precautions (5.2)]. Instruct patients to swallow tramadol hydrochloride extended-release tablets whole [see Patient Counseling Information (17)], and to take it with liquid. Crushing, chewing, splitting, or dissolving tramadol hydrochloride extended-release tablets will result in uncontrolled delivery of tramadol and can lead to overdose or death [see Warnings and Precautions (5.1)]. Tramadol hydrochloride extended-release tablets may be taken without regard to food, It is recommended that tramadol hydrochloride extended-release tablets be taken in a consistent manner [ see Clinical Pharmacology (12.3)]. 2.2 Initial Dosage Patients Not Currently on a Tramadol Product The initial dose of tramadol hydrochloride extended-release tablet is 100 mg once daily. Patients Currently on Tramadol Immediate-Release (IR) Products Calculate the 24-hour tramadol IR dose and initiate a total daily dose of tramadol hydrochloride extended-release tablets rounded down to the next lower 100 mg increment. The dose may subsequently be individualized according to patient need. Due to limitations in flexibility of dose selection with tramadol hydrochloride extended-release tablets, some patients maintained on tramadol IR products may not be able to convert to tramadol hydrochloride extended-release tablets. Conversion from Other Opioids to Tramadol Hydrochloride Extended-Release Tablets Discontinue all other around-the-clock opioid drugs when tramadol hydrochloride extended-release tablets therapy is initiated. There are no established conversion ratios for conversion from other opioids to tramadol hydrochloride extended-release tablets defined by clinical trials. Initiate dosing using tramadol hydrochloride extended-release tablet 100 mg once a day. 2.3 Titration and Maintenance of Therapy Individually titrate tramadol hydrochloride extended-release tablets by 100 mg every five days to a dose that provides adequate analgesia and minimizes adverse reactions. The maximum daily dose of tramadol hydrochloride extended-release tablets is 300 mg per day. Continually reevaluate patients receiving tramadol hydrochloride extended-release tablets to assess the maintenance of pain control and the relative incidence of adverse reactions, as well as monitoring for the development of addiction, abuse, or misuse [see Warnings and Precautions (5.1)]. Frequent communication is important among the prescriber, other members of the healthcare team, the patient, and the caregiver/family during periods of changing analgesic requirements, including initial titration. During chronic therapy, periodically reassess the continued need for the use of opioid analgesics. Patients who experience breakthrough pain may require a dosage adjustment of tramadol hydrochloride extended-release tablets, or may need rescue medication with an appropriate dose of an immediate-release analgesic. If the level of pain increases after dosage stabilization, attempt to identify the source of increased pain before increasing the tramadol hydrochloride extended-release tablets dosage. If unacceptable opioid-related adverse reactions are observed, consider reducing the dosage. Adjust the dosage to obtain an appropriate balance between management of pain and opioid- related adverse reactions. 2.4 Discontinuation of Tramadol Hydrochloride Extended-Release Tablets When a patient no longer requires therapy with tramadol hydrochloride extended-release tablets, taper the dose gradually, by 25% to 50% every 2 to 4 days, while monitoring carefully for signs and symptoms of withdrawal. If the patient develops these signs or symptoms, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.15), Drug Abuse and Dependence (9.3)].

Suboxone 2 MG / 0.5 MG Sublingual Tablet

Generic Name: BUPRENORPHINE AND NALOXONE
Brand Name: Suboxone
  • Substance Name(s):
  • NALOXONE HYDROCHLORIDE
  • BUPRENORPHINE HYDROCHLORIDE

DRUG INTERACTIONS

7 Monitor patients starting or ending CYP3A4 inhibitors or inducers for potential over or under dosing. (7.1) Use caution in prescribing SUBOXONE sublingual film for patients receiving benzodiazepines or other CNS depressants and warn patients against concomitant self-administration/misuse. (7.3) 7.1 Cytochrome P-450 3A4 (CYP3A4) Inhibitors and Inducers Buprenorphine is metabolized to norbuprenorphine primarily by cytochrome CYP3A4; therefore, potential interactions may occur when SUBOXONE sublingual film is given concurrently with agents that affect CYP3A4 activity. The concomitant use of SUBOXONE sublingual film with CYP3A4 inhibitors (e.g., azole antifungals such as ketoconazole, macrolide antibiotics such as erythromycin, and HIV protease inhibitors) should be monitored and may require dose-reduction of one or both agents. The interaction of buprenorphine with CYP3A4 inducers has not been studied; therefore, it is recommended that patients receiving SUBOXONE sublingual film be monitored for signs and symptoms of opioid withdrawal if inducers of CYP3A4 (e.g., efavirenz, phenobarbital, carbamazepine, phenytoin, rifampicin) are co-administered [see Clinical Pharmacology (12.3)]. 7.2 Antiretrovirals Three classes of antiretroviral agents have been evaluated for CYP3A4 interactions with buprenorphine. Nucleoside reverse transcriptase inhibitors (NRTIs) do not appear to induce or inhibit the P450 enzyme pathway, thus no interactions with buprenorphine are expected. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are metabolized principally by CYP3A4. Efavirenz, nevirapine and etravirine are known CYP3A inducers whereas delaviridine is a CYP3A inhibitor. Significant pharmacokinetic interactions between NNRTIs (e.g., efavirenz and delavirdine) and buprenorphine have been shown in clinical studies, but these pharmacokinetic interactions did not result in any significant pharmacodynamic effects. It is recommended that patients who are on chronic buprenorphine treatment have their dose monitored if NNRTIs are added to their treatment regimen. Studies have shown some antiretroviral protease inhibitors (PIs) with CYP3A4 inhibitory activity (nelfinavir, lopinavir/ritonavir, ritonavir) have little effect on buprenorphine pharmacokinetic and no significant pharmacodynamic effects. Other PIs with CYP3A4 inhibitory activity (atazanavir and atazanavir/ritonavir) resulted in elevated levels of buprenorphine and norbuprenorphine and patients in one study reported increased sedation. Symptoms of opioid excess have been found in post-marketing reports of patients receiving buprenorphine and atazanavir with and without ritonavir concomitantly. Monitoring of patients taking buprenorphine and atazanavir with and without ritonavir is recommended, and dose reduction of buprenorphine may be warranted. 7.3 Benzodiazepines There have been a number of post-marketing reports regarding coma and death associated with the concomitant use of buprenorphine and benzodiazepines. In many, but not all, of these cases, buprenorphine was misused by self-injection. Preclinical studies have shown that the combination of benzodiazepines and buprenorphine altered the usual ceiling effect on buprenorphine-induced respiratory depression, making the respiratory effects of buprenorphine appear similar to those of full opioid agonists. SUBOXONE sublingual film should be prescribed with caution to patients taking benzodiazepines or other drugs that act on the CNS, regardless of whether these drugs are taken on the advice of a physician or are being abused/misused. Patients should be warned that it is extremely dangerous to self-administer non-prescribed benzodiazepines while taking SUBOXONE sublingual film, and should also be cautioned to use benzodiazepines concurrently with SUBOXONE sublingual film only as directed by their physician.

OVERDOSAGE

10 The manifestations of acute overdose include pinpoint pupils, sedation, hypotension, respiratory depression, and death. In the event of overdose, the respiratory and cardiac status of the patient should be monitored carefully. When respiratory or cardiac functions are depressed, primary attention should be given to the re-establishment of adequate respiratory exchange through provision of a patent airway and institution of assisted or controlled ventilation. Oxygen, IV fluids, vasopressors, and other supportive measures should be employed as indicated. In the case of overdose, the primary management should be the re-establishment of adequate ventilation with mechanical assistance of respiration, if required. Naloxone may be of value for the management of buprenorphine overdose. Higher than normal doses and repeated administration may be necessary.

DESCRIPTION

11 SUBOXONE (buprenorphine and naloxone) sublingual film is an orange film, imprinted with a logo identifying the product and strength in white ink. It contains buprenorphine HCl, a mu-opioid receptor partial agonist and a kappa-opioid receptor antagonist, and naloxone HCl dihydrate, an opioid receptor antagonist, at a ratio of 4:1 (ratio of free bases). It is intended for sublingual administration and is available in two dosage strengths, 2 mg buprenorphine with 0.5 mg naloxone and 8 mg buprenorphine with 2 mg naloxone. Each sublingual film also contains polyethylene oxide, hydroxypropyl methylcellulose, maltitol, acesulfame potassium, lime flavor, citric acid, sodium citrate, FD&C yellow #6, and white ink. Chemically, buprenorphine HCl is (2S)-2-[17-Cyclopropylmethyl-4,5α-epoxy-3-hydroxy-6-methoxy-6α,14-ethano-14α-morphinan-7α-yl]-3,3-dimethylbutan-2-ol hydrochloride. It has the following chemical structure: Buprenorphine HCl has the molecular formula C29 H41 NO4 • HCl and the molecular weight is 504.10. It is a white or off-white crystalline powder, sparingly soluble in water, freely soluble in methanol, soluble in alcohol, and practically insoluble in cyclohexane. Chemically, naloxone HCl dihydrate is 17-Allyl-4,5 α -epoxy-3, 14-dihydroxymorphinan-6-one hydrochloride dihydrate. It has the following chemical structure: Naloxone hydrochloride dihydrate has the molecular formula C19H21NO4 • HCl • 2H20 and the molecular weight is 399.87. It is a white to slightly off-white powder and is freely soluble in water, soluble in alcohol, and practically insoluble in toluene and ether.

GERIATRIC USE

8.5 Geriatric Use Clinical studies of SUBOXONE sublingual film, SUBOXONE (buprenorphine and naloxone) sublingual tablets, or SUBUTEX (buprenorphine) sublingual tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently than younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 SUBOXONE sublingual film is supplied as an orange rectangular sublingual film with a white printed logo in two dosage strengths: buprenorphine/naloxone 2 mg/0.5 mg, and buprenorphine/naloxone 8 mg/2 mg. Sublingual film: 2 mg buprenorphine with 0.5 mg naloxone and 8 mg buprenorphine with 2 mg naloxone. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action SUBOXONE sublingual film contains buprenorphine and naloxone. Buprenorphine is a partial agonist at the mu-opioid receptor and an antagonist at the kappa-opioid receptor. Naloxone is a potent antagonist at mu- opioid receptors and produces opioid withdrawal signs and symptoms in individuals physically dependent on full opioid agonists when administered parenterally.

INDICATIONS AND USAGE

1 SUBOXONE sublingual film is indicated for maintenance treatment of opioid dependence and should be used as part of a complete treatment plan to include counseling and psychosocial support. Under the Drug Addiction Treatment Act (DATA) codified at 21 U.S.C. 823(g), prescription use of this product in the treatment of opioid dependence is limited to physicians who meet certain qualifying requirements, and who have notified the Secretary of Health and Human Services (HHS) of their intent to prescribe this product for the treatment of opioid dependence and have been assigned a unique identification number that must be included on every prescription. SUBOXONE sublingual film is indicated for maintenance treatment of opioid dependence. Prescription use of this product is limited under the Drug Addiction Treatment Act. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of SUBOXONE sublingual film have not been established in pediatric patients.

PREGNANCY

8.1 Pregnancy Pregnancy Category C. There are no adequate and well-controlled studies of SUBOXONE sublingual film or buprenorphine/naloxone in pregnant women. SUBOXONE sublingual film should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Teratogenic Effects: Effects on embryo-fetal development were studied in Sprague-Dawley rats and Russian white rabbits following oral (1:1) and intramuscular (IM) (3:2) administration of mixtures of buprenorphine and naloxone. Following oral administration to rats and rabbits, no teratogenic effects were observed at buprenorphine doses up to 250 mg/kg/day and 40 mg/kg/day, respectively (estimated exposure approximately 150 times and 50 times, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). No definitive drug-related teratogenic effects were observed in rats and rabbits at IM doses up to 30 mg/kg/day (estimated exposure approximately 20 times and 35 times, respectively, the recommended human daily dose of 16 mg on a mg/m2 basis). Acephalus was observed in one rabbit fetus from the low-dose group and omphalocele was observed in two rabbit fetuses from the same litter in the mid-dose group; no findings were observed in fetuses from the high-dose group. Following oral administration of buprenorphine to rats, dose-related post-implantation losses, evidenced by increases in the numbers of early resorptions with consequent reductions in the numbers of fetuses, were observed at doses of 10 mg/kg/day or greater (estimated exposure approximately 6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). In the rabbit, increased post-implantation losses occurred at an oral dose of 40 mg/kg/day. Following IM administration in the rat and the rabbit, post-implantation losses, as evidenced by decreases in live fetuses and increases in resorptions, occurred at 30 mg/kg/day. Buprenorphine was not teratogenic in rats or rabbits after IM or subcutaneous (SC) doses up to 5 mg/kg/day (estimated exposure was approximately 3 and 6 times, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), after IV doses up to 0.8 mg/kg/day (estimated exposure was approximately 0.5 times and equal to, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), or after oral doses up to 160 mg/kg/day in rats (estimated exposure was approximately 95 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) and 25 mg/kg/day in rabbits (estimated exposure was approximately 30 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Significant increases in skeletal abnormalities (e.g., extra thoracic vertebra or thoraco-lumbar ribs) were noted in rats after SC administration of 1 mg/kg/day and up (estimated exposure was approximately 0.6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), but were not observed at oral doses up to 160 mg/kg/day. Increases in skeletal abnormalities in rabbits after IM administration of 5 mg/kg/day (estimated exposure was approximately 6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) or oral administration of 1 mg/kg/day or greater (estimated exposure was approximately equal to the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) were not statistically significant. In rabbits, buprenorphine produced statistically significant pre-implantation losses at oral doses of 1 mg/kg/day or greater and post-implantation losses that were statistically significant at IV doses of 0.2 mg/kg/day or greater (estimated exposure approximately 0.3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Non-teratogenic Effects: Dystocia was noted in pregnant rats treated intramuscularly with buprenorphine 5 mg/kg/day (approximately 3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Fertility, peri-, and post-natal development studies with buprenorphine in rats indicated increases in neonatal mortality after oral doses of 0.8 mg/kg/day and up (approximately 0.5 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), after IM doses of 0.5 mg/kg/day and up (approximately 0.3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), and after SC doses of 0.1 mg/kg/day and up (approximately 0.06 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Delays in the occurrence of righting reflex and startle response were noted in rat pups at an oral dose of 80 mg/kg/day (approximately 50 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis).

NUSRING MOTHERS

8.3 Nursing Mothers Buprenorphine passes into breast milk. Breast-feeding is not advised in mothers treated with buprenorphine products. An apparent lack of milk production during general reproduction studies with buprenorphine in rats caused decreased viability and lactation indices.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Buprenorphine can be abused in a similar manner to other opioids. Clinical monitoring appropriate to the patient’s level of stability is essential. Multiple refills should not be prescribed early in treatment or without appropriate patient follow-up visits. (5.1) Significant respiratory depression and death have occurred in association with buprenorphine, particularly when taken by the intravenous (IV) route in combination with benzodiazepines or other CNS depressants (including alcohol). (5.2) Consider dose reduction of CNS depressants, SUBOXONE sublingual film or both in situations of concomitant prescription. (5.3) Store SUBOXONE sublingual film safely out of the sight and reach of children. Buprenorphine can cause severe, possibly fatal, respiratory depression in children. (5.4) Chronic administration produces opioid-type physical dependence. Abrupt discontinuation or rapid dose taper may result in opioid withdrawal syndrome. (5.5) Monitor liver function tests prior to initiation and during treatment and evaluate suspected hepatic events. (5.6) Do not administer SUBOXONE sublingual film to patients with known hypersensitivity to buprenorphine or naloxone. (5.7) A marked and intense opioid withdrawal syndrome is highly likely to occur with parenteral misuse of SUBOXONE sublingual film by individuals physically dependent on full opioid agonists or by sublingual administration before the agonist effects of other opioids have subsided. (5.8) Neonatal withdrawal has been reported following use of buprenorphine by the mother during pregnancy. (5.9) SUBOXONE sublingual film is not appropriate as an analgesic. There have been reported deaths of opioid naïve individuals who received a 2 mg sublingual dose. (5.10) Caution patients about the risk of driving or operating hazardous machinery. (5.11) 5.1 Abuse Potential Buprenorphine can be abused in a manner similar to other opioids, legal or illicit. Prescribe and dispense buprenorphine with appropriate precautions to minimize risk of misuse, abuse, or diversion, and ensure appropriate protection from theft, including in the home. Clinical monitoring appropriate to the patient’s level of stability is essential. Multiple refills should not be prescribed early in treatment or without appropriate patient follow-up visits. [see Drug Abuse and Dependence (9.2)]. 5.2 Respiratory Depression Buprenorphine, particularly when taken by the IV route, in combination with benzodiazepines or other CNS depressants (including alcohol), has been associated with significant respiratory depression and death. Many, but not all post-marketing reports regarding coma and death associated with the concomitant use of buprenorphine and benzodiazepines, involved misuse by self-injection. Deaths have also been reported in association with concomitant administration of buprenorphine with other depressants such as alcohol or other CNS depressant drugs. Patients should be warned of the potential danger of self-administration of benzodiazepines or other depressants while under treatment with SUBOXONE sublingual film. [see Drug Interactions (7.3)] In the case of overdose, the primary management should be the re-establishment of adequate ventilation with mechanical assistance of respiration, if required. Naloxone may be of value for the management of buprenorphine overdose. Higher than normal doses and repeated administration may be necessary. SUBOXONE sublingual film should be used with caution in patients with compromised respiratory function (e.g., chronic obstructive pulmonary disease, cor pulmonale, decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression). 5.3 CNS Depression Patients receiving buprenorphine in the presence of opioid analgesics, general anesthetics, benzodiazepines, phenothiazines, other tranquilizers, sedative/hypnotics or other CNS depressants (including alcohol) may exhibit increased CNS depression. Consider dose reduction of CNS depressants, SUBOXONE sublingual film, or both in situations of concomitant prescription. [see Drug Interactions (7.3)]. 5.4 Unintentional Pediatric Exposure Buprenorphine can cause severe, possibly fatal, respiratory depression in children who are accidentally exposed to it. Store buprenorphine-containing medications safely out of the sight and reach of children and destroy any unused medication appropriately [see Disposal of Unused SUBOXONE Sublingual Film (17.2)]. 5.5 Dependence Buprenorphine is a partial agonist at the mu-opioid receptor and chronic administration produces physical dependence of the opioid type, characterized by withdrawal signs and symptoms upon abrupt discontinuation or rapid taper. The withdrawal syndrome is typically milder than seen with full agonists and may be delayed in onset. Buprenorphine can be abused in a manner similar to other opioids. This should be considered when prescribing or dispensing buprenorphine in situations when the clinician is concerned about an increased risk of misuse, abuse, or diversion. [see Drug Abuse and Dependence (9.3)] 5.6 Hepatitis, Hepatic Events Cases of cytolytic hepatitis and hepatitis with jaundice have been observed in individuals receiving buprenorphine in clinical trials and through post-marketing adverse event reports. The spectrum of abnormalities ranges from transient asymptomatic elevations in hepatic transaminases to case reports of death, hepatic failure, hepatic necrosis, hepatorenal syndrome, and hepatic encephalopathy. In many cases, the presence of pre-existing liver enzyme abnormalities, infection with hepatitis B or hepatitis C virus, concomitant usage of other potentially hepatotoxic drugs, and ongoing injecting drug use may have played a causative or contributory role. In other cases, insufficient data were available to determine the etiology of the abnormality. Withdrawal of buprenorphine has resulted in amelioration of acute hepatitis in some cases; however, in other cases no dose reduction was necessary. The possibility exists that buprenorphine had a causative or contributory role in the development of the hepatic abnormality in some cases. Liver function tests, prior to initiation of treatment is recommended to establish a baseline. Periodic monitoring of liver function during treatment is also recommended. A biological and etiological evaluation is recommended when a hepatic event is suspected. Depending on the case, SUBOXONE sublingual film may need to be carefully discontinued to prevent withdrawal signs and symptoms and a return by the patient to illicit drug use, and strict monitoring of the patient should be initiated. 5.7 Allergic Reactions Cases of hypersensitivity to buprenorphine and naloxone containing products have been reported both in clinical trials and in the post-marketing experience. Cases of bronchospasm, angioneurotic edema, and anaphylactic shock have been reported. The most common signs and symptoms include rashes, hives, and pruritus. A history of hypersensitivity to buprenorphine or naloxone is a contraindication to the use of SUBOXONE sublingual film. 5.8 Precipitation of Opioid Withdrawal Signs and Symptoms Because it contains naloxone, SUBOXONE sublingual film is highly likely to produce marked and intense withdrawal signs and symptoms if misused parenterally by individuals dependent on full opioid agonists such as heroin, morphine, or methadone. Because of the partial agonist properties of buprenorphine, SUBOXONE sublingual film may precipitate opioid withdrawal signs and symptoms in such persons if administered sublingually before the agonist effects of the opioid have subsided. 5.9 Neonatal Withdrawal Neonatal withdrawal has been reported in the infants of women treated with buprenorphine during pregnancy. From post-marketing reports, the time to onset of neonatal withdrawal signs ranged from Day 1 to Day 8 of life with most cases occurring on Day 1. Adverse events associated with the neonatal withdrawal syndrome included hypertonia, neonatal tremor, neonatal agitation, and myoclonus, and there have been reports of convulsions, apnea, respiratory depression, and bradycardia. 5.10 Use in Opioid Naïve Patients There have been reported deaths of opioid naive individuals who received a 2 mg dose of buprenorphine as a sublingual tablet for analgesia. SUBOXONE sublingual film is not appropriate as an analgesic. 5.11 Impairment of Ability to Drive or Operate Machinery SUBOXONE sublingual film may impair the mental or physical abilities required for the performance of potentially dangerous tasks such as driving a car or operating machinery, especially during treatment induction and dose adjustment. Patients should be cautioned about driving or operating hazardous machinery until they are reasonably certain that SUBOXONE sublingual film therapy does not adversely affect his or her ability to engage in such activities. 5.12 Orthostatic Hypotension Like other opioids, SUBOXONE sublingual film may produce orthostatic hypotension in ambulatory patients. 5.13 Elevation of Cerebrospinal Fluid Pressure Buprenorphine, like other opioids, may elevate cerebrospinal fluid pressure and should be used with caution in patients with head injury, intracranial lesions and other circumstances when cerebrospinal pressure may be increased. Buprenorphine can produce miosis and changes in the level of consciousness that may interfere with patient evaluation. 5.14 Elevation of Intracholedochal Pressure Buprenorphine has been shown to increase intracholedochal pressure, as do other opioids, and thus should be administered with caution to patients with dysfunction of the biliary tract. 5.15 Effects in Acute Abdominal Conditions As with other opioids, buprenorphine may obscure the diagnosis or clinical course of patients with acute abdominal conditions. 5.16 General Precautions SUBOXONE sublingual film should be administered with caution in debilitated patients and those with myxedema or hypothyroidism, adrenal cortical insufficiency (e.g., Addison’s disease); CNS depression or coma; toxic psychoses; prostatic hypertrophy or urethral stricture; acute alcoholism; delirium tremens; or kyphoscoliosis.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.1 Safe Use Before initiating treatment with Suboxone, explain the points listed below to caregivers and patients. Instruct patients to read the Medication Guide each time Suboxone is dispensed because new information may be available. Patients should be warned that it is extremely dangerous to self-administer non-prescribed benzodiazepines or other CNS depressants (including alcohol) while taking SUBOXONE sublingual film. Patients prescribed benzodiazepines or other CNS depressants should be cautioned to use them only as directed by their physician. [see Warnings and Precautions (5.2), Drug Interactions (7.3)] Patients should be advised that SUBOXONE sublingual film contains an opioid that can be a target for people who abuse prescription medications or street drugs. Patients should be cautioned to keep their films in a safe place, and to protect them from theft. Patients should be instructed to keep SUBOXONE sublingual film in a secure place, out of the sight and reach of children. Accidental or deliberate ingestion by a child may cause respiratory depression that can result in death. Patients should be advised that if a child is exposed to SUBOXONE sublingual film, medical attention should be sought immediately. Patients should be advised never to give SUBOXONE sublingual film to anyone else, even if he or she has the same signs and symptoms. It may cause harm or death. Patients should be advised that selling or giving away this medication is against the law. Patients should be cautioned that SUBOXONE sublingual film may impair the mental or physical abilities required for the performance of potentially dangerous tasks such as driving or operating machinery. Caution should be taken especially during drug induction and dose adjustment and until individuals are reasonably certain that buprenorphine therapy does not adversely affect their ability to engage in such activities. [see Warnings and Precautions (5.11)] Patients should be advised not to change the dosage of SUBOXONE sublingual film without consulting their physician. Patients should be advised to take SUBOXONE sublingual film once a day. Patients should be informed that SUBOXONE sublingual film can cause drug dependence and that withdrawal signs and symptoms may occur when the medication is discontinued. Patients seeking to discontinue treatment with buprenorphine for opioid dependence should be advised to work closely with their physician on a tapering schedule and should be apprised of the potential to relapse to illicit drug use associated with discontinuation of opioid agonist/partial agonist medication-assisted treatment. Patients should be cautioned that, like other opioids, SUBOXONE sublingual film may produce orthostatic hypotension in ambulatory individuals. [see Warnings and Precautions. (5.12)] Patients should inform their physician if any other prescription medications, over-the-counter medications, or herbal preparations are prescribed or currently being used. [see Drug Interactions (7.1, 7.2 and 7.3)] Women of childbearing potential who become pregnant or are planning to become pregnant, should be advised to consult their physician regarding the possible effects of using SUBOXONE sublingual film during pregnancy. [see Use in Specific Populations (8.1)] Patients should be warned that buprenorphine passes into breast milk. Breast-feeding is not advised in mothers treated with buprenorphine products. [see Use in Specific Populations (8.3)]. Patients should inform their family members that, in the event of emergency, the treating physician or emergency room staff should be informed that the patient is physically dependent on an opioid and that the patient is being treated with SUBOXONE sublingual film. Refer to the Medication Guide for additional information regarding the counseling information. 17.2 Disposal of Unused SUBOXONE Sublingual Film Unopened SUBOXONE sublingual films should be disposed of as soon as they are no longer needed: Remove the SUBOXONE film from its foil pouch. Drop the SUBOXONE film into the toilet. Repeat steps 1 and 2 for each SUBOXONE film. Flush the toilet after all unneeded films have been put into the toilet. Foil pouches or cartons should not be flushed down the toilet. RA016 09/2010 Revised 9/7/2010 Manufactured for Reckitt Benckiser Pharmaceuticals Inc., Richmond, VA 23235 by: MonoSol Rx, LLC, Warren, NJ 07059 Distributed by: Reckitt Benckiser Pharmaceuticals Inc. Richmond, VA 23235

DOSAGE AND ADMINISTRATION

2 SUBOXONE sublingual film is administered sublingually as a single daily dose. SUBOXONE sublingual film should be used in patients who have been initially inducted using SUBUTEX® (buprenorphine) sublingual tablets. Administer SUBOXONE sublingual film sublingually as a single daily dose. (2) The recommended daily dose for maintenance is 16/4 mg. 2.1 Maintenance SUBOXONE sublingual film is indicated for maintenance treatment. The recommended target dosage of SUBOXONE sublingual film is 16/4 mg buprenorphine/naloxone/day, as a single daily dose. The dosage of SUBOXONE sublingual film should be progressively adjusted in increments/decrements of 2/0.5 mg or 4/1 mg buprenorphine/naloxone to a level that holds the patient in treatment and suppresses opioid withdrawal signs and symptoms. The maintenance dose of SUBOXONE sublingual film is generally in the range of 4/1 mg buprenorphine/naloxone to 24/6 mg buprenorphine/naloxone per day depending on the individual patient. Dosages higher than this have not been demonstrated to provide any clinical advantage. 2.2 Method of Administration Place the SUBOXONE sublingual film under the tongue. If an additional SUBOXONE sublingual film is necessary to achieve the prescribed dose, place the additional sublingual film sublingually on the opposite side from the first film. Place the sublingual film in a manner to minimize overlapping as much as possible. The sublingual film must be kept under the tongue until the film is completely dissolved. SUBOXONE sublingual film should NOT be chewed, swallowed, or moved after placement. Proper administration technique should be demonstrated to the patient. 2.3 Clinical Supervision Treatment should be initiated with supervised administration, progressing to unsupervised administration as the patient’s clinical stability permits. SUBOXONE sublingual film is subject to diversion and abuse. When determining the prescription quantity for unsupervised administration, consider the patient’s level of stability, the security of his or her home situation, and other factors likely to affect the ability to manage supplies of take-home medication. Ideally patients should be seen at reasonable intervals (e.g., at least weekly during the first month of treatment) based upon the individual circumstances of the patient. Medication should be prescribed in consideration of the frequency of visits. Provision of multiple refills is not advised early in treatment or without appropriate patient follow-up visits. Periodic assessment is necessary to determine compliance with the dosing regimen, effectiveness of the treatment plan, and overall patient progress. Once a stable dosage has been achieved and patient assessment (e.g., urine drug screening) does not indicate illicit drug use, less frequent follow-up visits may be appropriate. A once-monthly visit schedule may be reasonable for patients on a stable dosage of medication who are making progress toward their treatment objectives. Continuation or modification of pharmacotherapy should be based on the physician’s evaluation of treatment outcomes and objectives such as: Absence of medication toxicity. Absence of medical or behavioral adverse effects. Responsible handling of medications by the patient. Patient’s compliance with all elements of the treatment plan (including recovery-oriented activities, psychotherapy, and/or other psychosocial modalities). Abstinence from illicit drug use (including problematic alcohol and/or benzodiazepine use). If treatment goals are not being achieved, the physician should re-evaluate the appropriateness of continuing the current treatment. 2.4 Unstable Patients Physicians will need to decide when they cannot appropriately provide further management for particular patients. For example, some patients may be abusing or dependent on various drugs, or unresponsive to psychosocial intervention such that the physician does not feel that he/she has the expertise to manage the patient. In such cases, the physician may want to assess whether to refer the patient to a specialist or more intensive behavioral treatment environment. Decisions should be based on a treatment plan established and agreed upon with the patient at the beginning of treatment. Patients who continue to misuse, abuse, or divert buprenorphine products or other opioids should be provided with, or referred to, more intensive and structured treatment. 2.5 Stopping Treatment The decision to discontinue therapy with SUBOXONE sublingual film after a period of maintenance should be made as part of a comprehensive treatment plan. Both gradual and abrupt discontinuation of buprenorphine has been used, but the data are insufficient to determine the best method of dose taper at the end of treatment. 2.6 Switching between SUBOXONE (buprenorphine and naloxone) Sublingual Tablets and SUBOXONE Sublingual film Patients being switched between SUBOXONE (buprenorphine and naloxone) sublingual tablets and SUBOXONE sublingual film should be started on the same dosage as the previously administered product. However, dosage adjustments may be necessary when switching between products. Because of the potentially greater relative bioavailability of SUBOXONE sublingual film compared to SUBOXONE (buprenorphine and naloxone) sublingual tablets, patients switching from SUBOXONE (buprenorphine and naloxone) sublingual tablets to SUBOXONE sublingual film should be monitored for over-medication. Those switching from SUBOXONE sublingual film to SUBOXONE (buprenorphine and naloxone) sublingual tablets should be monitored for withdrawal or other indications of under-dosing. In clinical studies, pharmacokinetics of SUBOXONE sublingual film was similar to the respective dosage strengths of SUBOXONE (buprenorphine and naloxone) sublingual tablets, although not all doses and dose combinations met bioequivalence criteria.

TEGretol 200 MG Oral Tablet

Generic Name: CARBAMAZEPINE
Brand Name: Tegretol
  • Substance Name(s):
  • CARBAMAZEPINE

WARNINGS

Serious Dermatologic Reactions Serious and sometimes fatal dermatologic reactions, including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS), have been reported with Tegretol treatment. The risk of these events is estimated to be about 1 to 6 per 10,000 new users in countries with mainly Caucasian populations. However, the risk in some Asian countries is estimated to be about 10 times higher. Tegretol should be discontinued at the first sign of a rash, unless the rash is clearly not drug-related. If signs or symptoms suggest SJS/TEN, use of this drug should not be resumed and alternative therapy should be considered. SJS/TEN and HLA -B*1502 Allele Retrospective case-control studies have found that in patients of Chinese ancestry there is a strong association between the risk of developing SJS/TEN with carbamazepine treatment and the presence of an inherited variant of the HLA-B gene, HLA-B*1502. The occurrence of higher rates of these reactions in countries with higher frequencies of this allele suggests that the risk may be increased in allele-positive individuals of any ethnicity. Across Asian populations, notable variation exists in the prevalence of HLA-B*1502. Greater than 15% of the population is reported positive in Hong Kong, Thailand, Malaysia, and parts of the Philippines, compared to about 10% in Taiwan and 4% in North China. South Asians, including Indians, appear to have intermediate prevalence of HLA-B*1502, averaging 2% to 4%, but higher in some groups. HLA-B*1502 is present in less than 1% of the population in Japan and Korea. HLA-B*1502 is largely absent in individuals not of Asian origin (e.g., Caucasians, African-Americans, Hispanics, and Native Americans). Prior to initiating Tegretol therapy, testing for HLA -B*1502 should be performed in patients with ancestry in populations in which HLA -B*1502 may be present. In deciding which patients to screen, the rates provided above for the prevalence of HLA-B*1502 may offer a rough guide, keeping in mind the limitations of these figures due to wide variability in rates even within ethnic groups, the difficulty in ascertaining ethnic ancestry, and the likelihood of mixed ancestry. Tegretol should not be used in patients positive for HLA-B*1502 unless the benefits clearly outweigh the risks. Tested patients who are found to be negative for the allele are thought to have a low risk of SJS/TEN (see BOXED WARNING and PRECAUTIONS, Laboratory Tests). Over 90% of Tegretol treated patients who will experience SJS/TEN have this reaction within the first few months of treatment. This information may be taken into consideration in determining the need for screening of genetically at-risk patients currently on Tegretol. The HLA-B*1502 allele has not been found to predict risk of less severe adverse cutaneous reactions from Tegretol such as maculopapular eruption (MPE) or to predict Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS). Limited evidence suggests that HLA-B*1502 may be a risk factor for the development of SJS/TEN in patients of Chinese ancestry taking other antiepileptic drugs associated with SJS/TEN, including phenytoin. Consideration should be given to avoiding use of other drugs associated with SJS/TEN in HLA-B*1502 positive patients, when alternative therapies are otherwise equally acceptable. Hypersensitivity Reactions and HLA-A*3101 Allele Retrospective case-control studies in patients of European, Korean, and Japanese ancestry have found a moderate association between the risk of developing hypersensitivity reactions and the presence of HLA-A*3101, an inherited allelic variant of the HLA-A gene, in patients using carbamazepine. These hypersensitivity reactions include SJS/TEN, maculopapular eruptions, and Drug Reaction with Eosinophilia and Systemic Symptoms (see DRESS/Multiorgan hypersensitivity below). HLA-A*3101 is expected to be carried by more than 15% of patients of Japanese, Native American, Southern Indian (for example, Tamil Nadu) and some Arabic ancestry; up to about 10% in patients of Han Chinese, Korean, European, Latin American, and other Indian ancestry; and up to about 5% in African-Americans and patients of Thai, Taiwanese, and Chinese (Hong Kong) ancestry. The risks and benefits of Tegretol therapy should be weighed before considering Tegretol in patients known to be positive for HLA-A*3101. Application of HLA genotyping as a screening tool has important limitations and must never substitute for appropriate clinical vigilance and patient management. Many HLA-B*1502-positive and HLA-A*3101-positive patients treated with Tegretol will not develop SJS/TEN or other hypersensitivity reactions, and these reactions can still occur infrequently in HLA-B*1502-negative and HLA-A*3101-negative patients of any ethnicity. The role of other possible factors in the development of, and morbidity from, SJS/TEN and other hypersensitivity reactions, such as antiepileptic drug (AED) dose, compliance, concomitant medications, comorbidities, and the level of dermatologic monitoring, have not been studied. Aplastic Anemia and Agranulocytosis Aplastic anemia and agranulocytosis have been reported in association with the use of TEGRETOL (see BOXED WARNING). Patients with a history of adverse hematologic reaction to any drug may be particularly at risk of bone marrow depression. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, has occurred with Tegretol. Some of these events have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematologic abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity (e.g., fever, lymphadenopathy) may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Tegretol should be discontinued if an alternative etiology for the signs or symptoms cannot be established. Hypersensitivity Hypersensitivity reactions to carbamazepine have been reported in patients who previously experienced this reaction to anticonvulsants including phenytoin, primidone, and phenobarbital. If such history is present, benefits and risks should be carefully considered and, if carbamazepine is initiated, the signs and symptoms of hypersensitivity should be carefully monitored. Patients should be informed that about a third of patients who have had hypersensitivity reactions to carbamazepine also experience hypersensitivity reactions with oxcarbazepine (Trileptal ®). Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including Tegretol, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 1 shows absolute and relative risk by indication for all evaluated AEDs. Table 1 Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1,000 Patients Drug Patients with Events Per 1,000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1,000 Patients Epilepsy 1.0 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1.0 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing Tegretol or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. General Tegretol has shown mild anticholinergic activity that may be associated with increased intraocular pressure; therefore, patients with increased intraocular pressure should be closely observed during therapy. Because of the relationship of the drug to other tricyclic compounds, the possibility of activation of a latent psychosis and, in elderly patients, of confusion or agitation should be borne in mind. The use of Tegretol should be avoided in patients with a history of hepatic porphyria (e.g., acute intermittent porphyria, variegate porphyria, porphyria cutanea tarda). Acute attacks have been reported in such patients receiving Tegretol therapy. Carbamazepine administration has also been demonstrated to increase porphyrin precursors in rodents, a presumed mechanism for the induction of acute attacks of porphyria. As with all antiepileptic drugs, Tegretol should be withdrawn gradually to minimize the potential of increased seizure frequency. Hyponatremia can occur as a result of treatment with Tegretol. In many cases, the hyponatremia appears to be caused by the syndrome of inappropriate antidiuretic hormone secretion (SIADH). The risk of developing SIADH with Tegretol treatment appears to be dose-related. Elderly patients and patients treated with diuretics are at greater risk of developing hyponatremia. Consider discontinuing Tegretol in patients with symptomatic hyponatremia. Signs and symptoms of hyponatremia include headache, new or increased seizure frequency, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which can lead to falls. Consider discontinuing Tegretol in patients with symptomatic hyponatremia.

DRUG INTERACTIONS

Drug Interactions There has been a report of a patient who passed an orange rubbery precipitate in his stool the day after ingesting Tegretol suspension immediately followed by Thorazine ®* solution. Subsequent testing has shown that mixing Tegretol suspension and chlorpromazine solution (both generic and brand name) as well as Tegretol suspension and liquid Mellaril ®, resulted in the occurrence of this precipitate. Because the extent to which this occurs with other liquid medications is not known, Tegretol suspension should not be administered simultaneously with other liquid medicinal agents or diluents (see DOSAGE AND ADMINISTRATION). Clinically meaningful drug interactions have occurred with concomitant medications and include (but are not limited to) the following: Agents That May Affect Tegretol Plasma Levels When carbamazepine is given with drugs that can increase or decrease carbamazepine levels, close monitoring of carbamazepine levels is indicated and dosage adjustment may be required. Agents That Increase Carbamazepine Levels CYP3A4 inhibitors inhibit Tegretol metabolism and can thus increase plasma carbamazepine levels. Drugs that have been shown, or would be expected, to increase plasma carbamazepine levels include aprepitant, cimetidine, ciprofloxacin, danazol, diltiazem, macrolides, erythromycin, troleandomycin, clarithromycin, fluoxetine, fluvoxamine, trazodone, olanzapine, loratadine, terfenadine, omeprazole, oxybutynin, dantrolene, isoniazid, niacinamide, nicotinamide, ibuprofen, propoxyphene, azoles (e.g., ketaconazole, itraconazole, fluconazole, voriconazole), acetazolamide, verapamil, ticlopidine, grapefruit juice, and protease inhibitors. Human microsomal epoxide hydrolase has been identified as the enzyme responsible for the formation of the 10,11-transdiol derivative from carbamazepine-10,11 epoxide. Coadministration of inhibitors of human microsomal epoxide hydrolase may result in increased carbamazepine-10,11 epoxide plasma concentrations. Accordingly, the dosage of Tegretol should be adjusted and/or the plasma levels monitored when used concomitantly with loxapine, quetiapine, or valproic acid. Agents That Decrease Carbamazepine Levels CYP3A4 inducers can increase the rate of Tegretol metabolism. Drugs that have been shown, or that would be expected, to decrease plasma carbamazepine levels include cisplatin, doxorubicin HCl, felbamate, fosphenytoin, rifampin, phenobarbital, phenytoin, primidone, methsuximide, theophylline, aminophylline. Effect of Tegretol on Plasma Levels of Concomitant Agents Decreased Levels of Concomitant Medications Tegretol is a potent inducer of hepatic 3A4 and is also known to be an inducer of CYP1A2, 2B6, 2C9/19 and may therefore reduce plasma concentrations of co-medications mainly metabolized by CYP 1A2, 2B6, 2C9/19 and 3A4, through induction of their metabolism. When used concomitantly with Tegretol, monitoring of concentrations or dosage adjustment of these agents may be necessary: When carbamazepine is added to aripiprazole, the aripiprazole dose should be doubled. Additional dose increases should be based on clinical evaluation. If carbamazepine is later withdrawn, the aripiprazole dose should be reduced. When carbamazepine is used with tacrolimus, monitoring of tacrolimus blood concentrations and appropriate dosage adjustments are recommended. The use of concomitant strong CYP3A4 inducers such as carbamazepine should be avoided with temsirolimus. If patients must be coadministered carbamazepine with temsirolimus, an adjustment of temsirolimus dosage should be considered. The use of carbamazepine with lapatinib should generally be avoided. If carbamazepine is started in a patient already taking lapatinib, the dose of lapatinib should be gradually titrated up. If carbamazepine is discontinued, the lapatinib dose should be reduced. Concomitant use of carbamazepine with nefazodone results in plasma concentrations of nefazodone and its active metabolite insufficient to achieve a therapeutic effect. Coadministration of carbamazepine with nefazodone is contraindicated (see CONTRAINDICATIONS). Monitor concentrations of valproate when Tegretol is introduced or withdrawn in patients using valproic acid. In addition, Tegretol causes, or would be expected to cause, decreased levels of the following drugs, for which monitoring of concentrations or dosage adjustment may be necessary: acetaminophen, albendazole, alprazolam, aprepitant, buprenorphone, bupropion, citalopram, clonazepam, clozapine, corticosteroids (e.g., prednisolone, dexamethasone), cyclosporine, dicumarol, dihydropyridine calcium channel blockers (e.g., felodipine), doxycycline, ethosuximide, everolimus, haloperidol, imatinib, itraconazole, lamotrigine, levothyroxine, methadone, methsuximide, mianserin, midazolam, olanzapine, oral and other hormonal contraceptives, oxcarbazepine, paliperidone, phensuximide, phenytoin, praziquantel, protease inhibitors, risperidone, sertraline, sirolimus, tadalafil, theophylline, tiagabine, topiramate, tramadol, trazodone, tricyclic antidepressants (e.g., imipramine, amitriptyline, nortriptyline), valproate, warfarin, ziprasidone, zonisamide. Other Drug Interactions Cyclophosphamide is an inactive prodrug and is converted to its active metabolite in part by CYP3A. The rate of metabolism and the leukopenic activity of cyclophosphamide are reportedly increased by chronic coadministration of CYP3A4 inducers. There is a potential for increased cyclophosphamide toxicity when coadministered with carbamazepine. Concomitant administration of carbamazepine and lithium may increase the risk of neurotoxic side effects. Concomitant use of carbamazepine and isoniazid has been reported to increase isoniazid-induced hepatotoxicity. Alterations of thyroid function have been reported in combination therapy with other anticonvulsant medications. Concomitant use of Tegretol with hormonal contraceptive products (e.g., oral, and levonorgestrel subdermal implant contraceptives) may render the contraceptives less effective because the plasma concentrations of the hormones may be decreased. Breakthrough bleeding and unintended pregnancies have been reported. Alternative or back-up methods of contraception should be considered. Resistance to the neuromuscular blocking action of the nondepolarizing neuromuscular blocking agents pancuronium, vecuronium, rocuronium and cisatracurium has occurred in patients chronically administered carbamazepine. Whether or not carbamazepine has the same effect on other non-depolarizing agents is unknown. Patients should be monitored closely for more rapid recovery from neuromuscular blockade than expected, and infusion rate requirements may be higher.

OVERDOSAGE

Acute Toxicity Lowest known lethal dose: adults, 3.2 g (a 24-year-old woman died of a cardiac arrest and a 24-year-old man died of pneumonia and hypoxic encephalopathy); children, 4 g (a 14-year-old girl died of a cardiac arrest), 1.6 g (a 3-year-old girl died of aspiration pneumonia). Oral LD 50 in animals (mg/kg): mice, 1100 to 3750; rats, 3850 to 4025; rabbits, 1500 to 2680; guinea pigs, 920. Signs and Symptoms The first signs and symptoms appear after 1 to 3 hours. Neuromuscular disturbances are the most prominent. Cardiovascular disorders are generally milder, and severe cardiac complications occur only when very high doses (greater than 60 g) have been ingested. Respiration: Irregular breathing, respiratory depression. Cardiovascular System: Tachycardia, hypotension or hypertension, shock, conduction disorders. Nervous System and Muscles: Impairment of consciousness ranging in severity to deep coma. Convulsions, especially in small children. Motor restlessness, muscular twitching, tremor, athetoid movements, opisthotonos, ataxia, drowsiness, dizziness, mydriasis, nystagmus, adiadochokinesia, ballism, psychomotor disturbances, dysmetria. Initial hyperreflexia, followed by hyporeflexia. Gastrointestinal Tract: Nausea, vomiting. Kidneys and Bladder: Anuria or oliguria, urinary retention. Laboratory Findings: Isolated instances of overdosage have included leukocytosis, reduced leukocyte count, glycosuria, and acetonuria. EEG may show dysrhythmias. Combined Poisoning: When alcohol, tricyclic antidepressants, barbiturates, or hydantoins are taken at the same time, the signs and symptoms of acute poisoning with Tegretol may be aggravated or modified. Treatment The prognosis in cases of severe poisoning is critically dependent upon prompt elimination of the drug, which may be achieved by inducing vomiting, irrigating the stomach, and by taking appropriate steps to diminish absorption. If these measures cannot be implemented without risk on the spot, the patient should be transferred at once to a hospital, while ensuring that vital functions are safeguarded. There is no specific antidote. Elimination of the Drug: Induction of vomiting. Gastric lavage. Even when more than 4 hours have elapsed following ingestion of the drug, the stomach should be repeatedly irrigated, especially if the patient has also consumed alcohol. Measures to Reduce Absorption: Activated charcoal, laxatives. Measures to Accelerate Elimination: Forced diuresis. Dialysis is indicated only in severe poisoning associated with renal failure. Replacement transfusion is indicated in severe poisoning in small children. Respiratory Depression: Keep the airways free; resort, if necessary, to endotracheal intubation, artificial respiration, and administration of oxygen. Hypotension, Shock: Keep the patient’s legs raised and administer a plasma expander. If blood pressure fails to rise despite measures taken to increase plasma volume, use of vasoactive substances should be considered. Convulsions: Diazepam or barbiturates. Warning: Diazepam or barbiturates may aggravate respiratory depression (especially in children), hypotension, and coma. However, barbiturates should not be used if drugs that inhibit monoamine oxidase have also been taken by the patient either in overdosage or in recent therapy (within 1 week). Surveillance: Respiration, cardiac function (ECG monitoring), blood pressure, body temperature, pupillary reflexes, and kidney and bladder function should be monitored for several days. Treatment of Blood Count Abnormalities: If evidence of significant bone marrow depression develops, the following recommendations are suggested: (1) stop the drug, (2) perform daily CBC, platelet, and reticulocyte counts, (3) do a bone marrow aspiration and trephine biopsy immediately and repeat with sufficient frequency to monitor recovery. Special periodic studies might be helpful as follows: (1) white cell and platelet antibodies, (2) 59Fe-ferrokinetic studies, (3) peripheral blood cell typing, (4) cytogenetic studies on marrow and peripheral blood, (5) bone marrow culture studies for colony-forming units, (6) hemoglobin electrophoresis for A 2 and F hemoglobin, and (7) serum folic acid and B 12 levels. A fully developed aplastic anemia will require appropriate, intensive monitoring and therapy, for which specialized consultation should be sought.

DESCRIPTION

Tegretol, carbamazepine USP, is an anticonvulsant and specific analgesic for trigeminal neuralgia, available for oral administration as chewable tablets of 100 mg, tablets of 200 mg, XR tablets of 100, 200, and 400 mg, and as a suspension of 100 mg/5 mL (teaspoon). Its chemical name is 5 H-dibenz[ b,f ]azepine-5-carboxamide, and its structural formula is: Carbamazepine USP is a white to off-white powder, practically insoluble in water and soluble in alcohol and in acetone. Its molecular weight is 236.27. Inactive Ingredients Tablets: Colloidal silicon dioxide, D&C Red No. 30 Aluminum Lake (chewable tablets only), FD&C Red No. 40 (200 mg tablets only), flavoring (chewable tablets only), gelatin, glycerin, magnesium stearate, sodium starch glycolate (chewable tablets only), starch, stearic acid, and sucrose (chewable tablets only). Suspension: Citric acid, FD&C Yellow No. 6, flavoring, polymer, potassium sorbate, propylene glycol, purified water, sorbitol, sucrose, and xanthan gum. Tegretol-XR tablets: cellulose compounds, dextrates, iron oxides, magnesium stearate, mannitol, polyethylene glycol, sodium lauryl sulfate, titanium dioxide (200 mg tablets only). Tegretol, carbamazepine structural formula

HOW SUPPLIED

Chewable Tablets 100 mg – round, red-speckled, pink, single-scored (imprinted Tegretol on one side and 52 twice on the scored side) Bottles of 100………………………………………………………………………………….NDC 0078-0492-05 Unit Dose (blister pack) Box of 100 (strips of 10)……………………………………………………………………….NDC 0078-0492-35 Do not store above 30°C (86°F). Protect from light and moisture. Dispense in tight, light-resistant container (USP). Meets USP Dissolution Test 1. Tablets 200 mg – capsule-shaped, pink, single-scored (imprinted Tegretol on one side and 27 twice on the partially scored side) Bottles of 100……………………………………………………………………………………………………………..NDC 0078-0509-05 Do not store above 30°C (86°F). Protect from moisture. Dispense in tight container (USP). Meets USP Dissolution Test 2. XR Tablets 100 mg – round, yellow, coated (imprinted T on one side and 100 mg on the other), release portal on one side Bottles of 100……………………………………………………………………………………………………………..NDC 0078-0510-05 XR Tablets 200 mg – round, pink, coated (imprinted T on one side and 200 mg on the other), release portal on one side Bottles of 100……………………………………………………………………………………………………………..NDC 0078-0511-05 XR Tablets 400 mg – round, brown, coated (imprinted T on one side and 400 mg on the other), release portal on one side Bottles of 100……………………………………………………………………………………………………………..NDC 0078-0512-05 Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) Protect from moisture. Dispense in tight container (USP). Suspension 100 mg/5 mL (teaspoon) – yellow-orange, citrus-vanilla flavored Bottles of 450 mL………………………………………………………………………………………………………………………NDC 0078-0508-83 Shake well before using. Do not store above 30°C (86°F). Dispense in tight, light -resistant container (USP). *Thorazine ® is a registered trademark of GlaxoSmithKline. T2015-136 September 2015

GERIATRIC USE

Geriatric Use No systematic studies in geriatric patients have been conducted.

MECHANISM OF ACTION

Mechanism of Action Tegretol has demonstrated anticonvulsant properties in rats and mice with electrically and chemically induced seizures. It appears to act by reducing polysynaptic responses and blocking the post-tetanic potentiation. Tegretol greatly reduces or abolishes pain induced by stimulation of the infraorbital nerve in cats and rats. It depresses thalamic potential and bulbar and polysynaptic reflexes, including the linguomandibular reflex in cats. Tegretol is chemically unrelated to other anticonvulsants or other drugs used to control the pain of trigeminal neuralgia. The mechanism of action remains unknown. The principal metabolite of Tegretol, carbamazepine-10,11-epoxide, has anticonvulsant activity as demonstrated in several in vivo animal models of seizures. Though clinical activity for the epoxide has been postulated, the significance of its activity with respect to the safety and efficacy of Tegretol has not been established.

INDICATIONS AND USAGE

Epilepsy Tegretol is indicated for use as an anticonvulsant drug. Evidence supporting efficacy of Tegretol as an anticonvulsant was derived from active drug-controlled studies that enrolled patients with the following seizure types: Partial seizures with complex symptomatology (psychomotor, temporal lobe). Patients with these seizures appear to show greater improvement than those with other types. Generalized tonic-clonic seizures (grand mal). Mixed seizure patterns which include the above, or other partial or generalized seizures. Absence seizures (petit mal) do not appear to be controlled by Tegretol (see PRECAUTIONS, General). Trigeminal Neuralgia Tegretol is indicated in the treatment of the pain associated with true trigeminal neuralgia. Beneficial results have also been reported in glossopharyngeal neuralgia. This drug is not a simple analgesic and should not be used for the relief of trivial aches or pains.

PEDIATRIC USE

Pediatric Use Substantial evidence of Tegretol’s effectiveness for use in the management of children with epilepsy (see INDICATIONS AND USAGE for specific seizure types) is derived from clinical investigations performed in adults and from studies in several in vitro systems which support the conclusion that (1) the pathogenetic mechanisms underlying seizure propagation are essentially identical in adults and children, and (2) the mechanism of action of carbamazepine in treating seizures is essentially identical in adults and children. Taken as a whole, this information supports a conclusion that the generally accepted therapeutic range of total carbamazepine in plasma (i.e. 4 to 12 mcg/mL) is the same in children and adults. The evidence assembled was primarily obtained from short-term use of carbamazepine. The safety of carbamazepine in children has been systematically studied up to 6 months. No longer-term data from clinical trials is available.

PREGNANCY

Usage in Pregnancy Carbamazepine can cause fetal harm when administered to a pregnant woman. Epidemiological data suggest that there may be an association between the use of carbamazepine during pregnancy and congenital malformations, including spina bifida. There have also been reports that associate carbamazepine with developmental disorders and congenital anomalies (e.g., craniofacial defects, cardiovascular malformations, and anomalies involving various body systems). Developmental delays based on neurobehavioral assessments have been reported. When treating or counseling women of childbearing potential, the prescribing physician will wish to weigh the benefits of therapy against the risks. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Retrospective case reviews suggest that, compared with monotherapy, there may be a higher prevalence of teratogenic effects associated with the use of anticonvulsants in combination therapy. Therefore, if therapy is to be continued, monotherapy may be preferable for pregnant women. In humans, transplacental passage of carbamazepine is rapid (30 to 60 minutes), and the drug is accumulated in the fetal tissues, with higher levels found in liver and kidney than in brain and lung. Carbamazepine has been shown to have adverse effects in reproduction studies in rats when given orally in dosages 10 to 25 times the maximum human daily dosage (MHDD) of 1200 mg on a mg/kg basis or 1.5 to 4 times the MHDD on a mg/m 2 basis. In rat teratology studies, 2 of 135 offspring showed kinked ribs at 250 mg/kg and 4 of 119 offspring at 650 mg/kg showed other anomalies (cleft palate, 1; talipes, 1; anophthalmos, 2). In reproduction studies in rats, nursing offspring demonstrated a lack of weight gain and an unkempt appearance at a maternal dosage level of 200 mg/kg. Antiepileptic drugs should not be discontinued abruptly in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In individual cases where the severity and frequency of the seizure disorder are such that removal of medication does not pose a serious threat to the patient, discontinuation of the drug may be considered prior to and during pregnancy, although it cannot be said with any confidence that even minor seizures do not pose some hazard to the developing embryo or fetus. Tests to detect defects using currently accepted procedures should be considered a part of routine prenatal care in childbearing women receiving carbamazepine. There have been a few cases of neonatal seizures and/or respiratory depression associated with maternal Tegretol and other concomitant anticonvulsant drug use. A few cases of neonatal vomiting, diarrhea, and/or decreased feeding have also been reported in association with maternal Tegretol use. These symptoms may represent a neonatal withdrawal syndrome. To provide information regarding the effects of in utero exposure to Tegretol, physicians are advised to recommend that pregnant patients taking Tegretol enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

NUSRING MOTHERS

Nursing Mothers Tegretol and its epoxide metabolite are transferred to breast milk. The ratio of the concentration in breast milk to that in maternal plasma is about 0.4 for Tegretol and about 0.5 for the epoxide. The estimated doses given to the newborn during breastfeeding are in the range of 2 to 5 mg daily for Tegretol and 1 to 2 mg daily for the epoxide. Because of the potential for serious adverse reactions in nursing infants from carbamazepine, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNINGS SERIOUS DERMATOLOGIC REACTIONS AND HLA-B*1502 ALLELE SERIOUS AND SOMETIMES FATAL DERMATOLOGIC REACTIONS, INCLUDING TOXIC EPIDERMAL NECROLYSIS (TEN) AND STEVENS-JOHNSON SYNDROME (SJS), HAVE BEEN REPORTED DURING TREATMENT WITH TEGRETOL. THESE REACTIONS ARE ESTIMATED TO OCCUR IN 1 TO 6 PER 10,000 NEW USERS IN COUNTRIES WITH MAINLY CAUCASIAN POPULATIONS, BUT THE RISK IN SOME ASIAN COUNTRIES IS ESTIMATED TO BE ABOUT 10 TIMES HIGHER. STUDIES IN PATIENTS OF CHINESE ANCESTRY HAVE FOUND A STRONG ASSOCIATION BETWEEN THE RISK OF DEVELOPING SJS/TEN AND THE PRESENCE OF HLA-B*1502, AN INHERITED ALLELIC VARIANT OF THE HLA-B GENE. HLA-B*1502 IS FOUND ALMOST EXCLUSIVELY IN PATIENTS WITH ANCESTRY ACROSS BROAD AREAS OF ASIA. PATIENTS WITH ANCESTRY IN GENETICALLY AT-RISK POPULATIONS SHOULD BE SCREENED FOR THE PRESENCE OF HLA-B*1502 PRIOR TO INITIATING TREATMENT WITH TEGRETOL. PATIENTS TESTING POSITIVE FOR THE ALLELE SHOULD NOT BE TREATED WITH TEGRETOL UNLESS THE BENEFIT CLEARLY OUTWEIGHS THE RISK (SEE WARNINGS AND PRECAUTIONS, LABORATORY TESTS). APLASTIC ANEMIA AND AGRANULOCYTOSIS APLASTIC ANEMIA AND AGRANULOCYTOSIS HAVE BEEN REPORTED IN ASSOCIATION WITH THE USE OF TEGRETOL. DATA FROM A POPULATION-BASED CASE CONTROL STUDY DEMONSTRATE THAT THE RISK OF DEVELOPING THESE REACTIONS IS 5 TO 8 TIMES GREATER THAN IN THE GENERAL POPULATION. HOWEVER, THE OVERALL RISK OF THESE REACTIONS IN THE UNTREATED GENERAL POPULATION IS LOW, APPROXIMATELY SIX PATIENTS PER ONE MILLION POPULATION PER YEAR FOR AGRANULOCYTOSIS AND TWO PATIENTS PER ONE MILLION POPULATION PER YEAR FOR APLASTIC ANEMIA. ALTHOUGH REPORTS OF TRANSIENT OR PERSISTENT DECREASED PLATELET OR WHITE BLOOD CELL COUNTS ARE NOT UNCOMMON IN ASSOCIATION WITH THE USE OF TEGRETOL, DATA ARE NOT AVAILABLE TO ESTIMATE ACCURATELY THEIR INCIDENCE OR OUTCOME. HOWEVER, THE VAST MAJORITY OF THE CASES OF LEUKOPENIA HAVE NOT PROGRESSED TO THE MORE SERIOUS CONDITIONS OF APLASTIC ANEMIA OR AGRANULOCYTOSIS. BECAUSE OF THE VERY LOW INCIDENCE OF AGRANULOCYTOSIS AND APLASTIC ANEMIA, THE VAST MAJORITY OF MINOR HEMATOLOGIC CHANGES OBSERVED IN MONITORING OF PATIENTS ON TEGRETOL ARE UNLIKELY TO SIGNAL THE OCCURRENCE OF EITHER ABNORMALITY. NONETHELESS, COMPLETE PRETREATMENT HEMATOLOGICAL TESTING SHOULD BE OBTAINED AS A BASELINE. IF A PATIENT IN THE COURSE OF TREATMENT EXHIBITS LOW OR DECREASED WHITE BLOOD CELL OR PLATELET COUNTS, THE PATIENT SHOULD BE MONITORED CLOSELY. DISCONTINUATION OF THE DRUG SHOULD BE CONSIDERED IF ANY EVIDENCE OF SIGNIFICANT BONE MARROW DEPRESSION DEVELOPS.

INFORMATION FOR PATIENTS

Information for Patients Patients should be informed of the availability of a Medication Guide and they should be instructed to read the Medication Guide before taking Tegretol. Patients should be made aware of the early toxic signs and symptoms of a potential hematologic problem, as well as dermatologic, hypersensitivity or hepatic reactions. These symptoms may include, but are not limited to, fever, sore throat, rash, ulcers in the mouth, easy bruising, lymphadenopathy and petechial or purpuric hemorrhage, and in the case of liver reactions, anorexia, nausea/vomiting, or jaundice. The patient should be advised that, because these signs and symptoms may signal a serious reaction, that they must report any occurrence immediately to a physician. In addition, the patient should be advised that these signs and symptoms should be reported even if mild or when occurring after extended use. Patients should be advised that serious skin reactions have been reported in association with Tegretol. In the event a skin reaction should occur while taking Tegretol, patients should consult with their physician immediately (see WARNINGS). Patients, their caregivers, and families should be counseled that AEDs, including Tegretol, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. Tegretol may interact with some drugs. Therefore, patients should be advised to report to their doctors the use of any other prescription or nonprescription medications or herbal products. Caution should be exercised if alcohol is taken in combination with Tegretol therapy, due to a possible additive sedative effect. Since dizziness and drowsiness may occur, patients should be cautioned about the hazards of operating machinery or automobiles or engaging in other potentially dangerous tasks. Patients should be encouraged to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 (see WARNINGS, Usage in Pregnancy subsection).

DOSAGE AND ADMINISTRATION

(SEE TABLE BELOW) Tegretol suspension in combination with liquid chlorpromazine or thioridazine results in precipitate formation, and, in the case of chlorpromazine, there has been a report of a patient passing an orange rubbery precipitate in the stool following coadministration of the two drugs (see PRECAUTIONS, Drug Interactions). Because the extent to which this occurs with other liquid medications is not known, Tegretol suspension should not be administered simultaneously with other liquid medications or diluents. Monitoring of blood levels has increased the efficacy and safety of anticonvulsants (see PRECAUTIONS, Laboratory Tests). Dosage should be adjusted to the needs of the individual patient. A low initial daily dosage with a gradual increase is advised. As soon as adequate control is achieved, the dosage may be reduced very gradually to the minimum effective level. Medication should be taken with meals. Since a given dose of Tegretol suspension will produce higher peak levels than the same dose given as the tablet, it is recommended to start with low doses (children 6 to 12 years: ½ teaspoon q.i.d.) and to increase slowly to avoid unwanted side effects. Conversion of patients from oral Tegretol tablets to Tegretol suspension: Patients should be converted by administering the same number of mg per day in smaller, more frequent doses (i.e., b.i.d. tablets to t.i.d. suspension). Tegretol-XR is an extended-release formulation for twice-a-day administration. When converting patients from Tegretol conventional tablets to Tegretol-XR, the same total daily mg dose of Tegretol-XR should be administered. Tegretol -XR tablets must be swallowed whole and never crushed or chewed. Tegretol-XR tablets should be inspected for chips or cracks. Damaged tablets, or tablets without a release portal, should not be consumed. Tegretol-XR tablet coating is not absorbed and is excreted in the feces; these coatings may be noticeable in the stool. Epilepsy (SEE INDICATIONS AND USAGE) Adults and children over 12 years of age-Initial: Either 200 mg b.i.d. for tablets and XR tablets, or 1 teaspoon q.i.d. for suspension (400 mg/day). Increase at weekly intervals by adding up to 200 mg/day using a b.i.d. regimen of Tegretol-XR or a t.i.d. or q.i.d. regimen of the other formulations until the optimal response is obtained. Dosage generally should not exceed 1000 mg daily in children 12 to 15 years of age, and 1200 mg daily in patients above 15 years of age. Doses up to 1600 mg daily have been used in adults in rare instances. Maintenance: Adjust dosage to the minimum effective level, usually 800 to 1200 mg daily. Children 6 to 12 years of age-Initial: Either 100 mg b.i.d. for tablets or XR tablets, or ½ teaspoon q.i.d. for suspension (200 mg/day). Increase at weekly intervals by adding up to 100 mg/day using a b.i.d. regimen of Tegretol-XR or a t.i.d. or q.i.d. regimen of the other formulations until the optimal response is obtained. Dosage generally should not exceed 1000 mg daily. Maintenance: Adjust dosage to the minimum effective level, usually 400 to 800 mg daily. Children under 6 years of age-Initial: 10 to 20 mg/kg/day b.i.d. or t.i.d. as tablets, or q.i.d. as suspension. Increase weekly to achieve optimal clinical response administered t.i.d. or q.i.d. Maintenance: Ordinarily, optimal clinical response is achieved at daily doses below 35 mg/kg. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the therapeutic range. No recommendation regarding the safety of carbamazepine for use at doses above 35 mg/kg/24 hours can be made. Combination Therapy: Tegretol may be used alone or with other anticonvulsants. When added to existing anticonvulsant therapy, the drug should be added gradually while the other anticonvulsants are maintained or gradually decreased, except phenytoin, which may have to be increased (see PRECAUTIONS, Drug Interactions, and Pregnancy Category D). Trigeminal Neuralgia (SEE INDICATIONS AND USAGE) Initial: On the first day, either 100 mg b.i.d. for tablets or XR tablets, or ½ teaspoon q.i.d. for suspension, for a total daily dose of 200 mg. This daily dose may be increased by up to 200 mg/day using increments of 100 mg every 12 hours for tablets or XR tablets, or 50 mg (½ teaspoon) q.i.d. for suspension, only as needed to achieve freedom from pain. Do not exceed 1200 mg daily. Maintenance: Control of pain can be maintained in most patients with 400 to 800 mg daily. However, some patients may be maintained on as little as 200 mg daily, while others may require as much as 1200 mg daily. At least once every 3 months throughout the treatment period, attempts should be made to reduce the dose to the minimum effective level or even to discontinue the drug. Dosage Information Initial Dose Subsequent Dose Maximum Daily Dose Indication Tablet* XR † Suspension Tablet* XR † Suspension Tablet* XR † Suspension Epilepsy Under 6 yr 10-20 mg/kg/day b.i.d. or t.i.d. 10-20 mg/kg/day q.i.d. Increase weekly to achieve optimal clinical response, t.i.d. or q.i.d. Increase weekly to achieve optimal clinical response, t.i.d. or q.i.d. 35 mg/kg/24 hr (see Dosage and Administration section above) 35 mg/kg/24 hr (see Dosage and Administration section above) 6-12 yr 100 mg b.i.d. (200 mg/day) 100 mg b.i.d. (200 mg/day) ½ tsp q.i.d. (200 mg/day) Add up to 100 mg/day at weekly intervals, t.i.d. or q.i.d. Add 100 mg/day at weekly intervals, b.i.d. Add up to 1 tsp (100 mg)/day at weekly intervals, t.i.d. or q.i.d. 1000 mg/24 hr Over 12 yr 200 mg b.i.d. (400 mg/day) 200 mg b.i.d. (400 mg/day) 1 tsp q.i.d. (400 mg/day) Add up to 200 mg/day at weekly intervals, t.i.d. or q.i.d. Add up to 200 mg/day at weekly intervals, b.i.d. Add up to 2 tsp (200 mg)/day at weekly intervals, t.i.d. or q.i.d. 1000 mg/24 hr (12-15 yr) 1200 mg/24 hr (>15 yr) 1600 mg/24 hr (adults, in rare instances) Trigeminal Neuralgia 100 mg b.i.d. (200 mg/day) 100 mg b.i.d. (200 mg/day) ½ tsp q.i.d. (200 mg/day) Add up to 200 mg/day in increments of 100 mg every 12 hr Add up to 200 mg/day in increments of 100 mg every 12 hr Add up to 2 tsp (200 mg)/day in increments of 50 mg (½ tsp) q.i.d. 1200 mg/24 hr *Tablet = Chewable or conventional tablets †XR = Tegretol-XR extended-release tablets

busPIRone HCl 5 MG Oral Tablet

Generic Name: BUSPIRONE HYDROCHLORIDE
Brand Name: Buspirone HCl
  • Substance Name(s):
  • BUSPIRONE HYDROCHLORIDE

WARNINGS

The administration of buspirone to a patient taking a monoamine oxidase inhibitor (MAOI) may pose a hazard. There have been reports of the occurrence of elevated blood pressure when buspirone has been added to a regimen including an MAOI. Therefore, it is recommended that buspirone not be used concomitantly with an MAOI. Because buspirone has no established antipsychotic activity, it should not be employed in lieu of appropriate antipsychotic treatment.

DRUG INTERACTIONS

Drug Interactions Psychotropic Agents MAO Inhibitors: It is recommended that buspirone hydrocloride not be used concomitantly with MAO inhibitors (see WARNINGS section). Amitriptyline: After addition of buspirone to the amitriptyline dose regimen, no statistically significant differences in the steady-state pharmacokinetic parameters (Cmax, AUC, and Cmin) of amitriptyline or its metabolite nortriptyline were observed. Diazepam: After addition of buspirone to the diazepam dose regimen, no statistically significant differences in the steady-state pharmacokinetic parameters (Cmax, AUC, and Cmin) were observed for diazepam, but increases of about 15% were seen for nordiazepam, and minor adverse clinical effects (dizziness, headache, and nausea) were observed. Haloperidol: In a study in normal volunteers, concomitant administration of buspirone and haloperidol resulted in increased serum haloperidol concentrations. The clinical significance of this finding is not clear. Nefazodone: [See Inhibitors and Inducers of Cytochrome P450 3A4 (CYP3A4). ] Trazodone: There is one report suggesting that the concomitant use of trazodone hydrochloride and buspirone may have caused 3- to 6-fold elevations on SGPT (ALT) in a few patients. In a similar study attempting to replicate this finding, no interactive effect on hepatic transaminases was identified. Triazolam/Flurazepam: Coadministration of buspirone with either triazolam or flurazepam did not appear to prolong or intensify the sedative effects of either benzodiazepine. Other Psychotropics: Because the effects of concomitant administration of buspirone with most other psychotropic drugs have not been studied, the concomitant use of buspirone with other CNS-active drugs should be approached with caution. Inhibitors and Inducers of Cytochrome P450 3A4 (CYP3A4) Buspirone has been shown in vitro to be metabolized by CYP3A4. This finding is consistent with the in vivo interactions observed between buspirone and the following: Diltiazem and Verapamil: In a study of nine healthy volunteers, coadministration of buspirone (10 mg as a single dose) with verapamil (80 mg t.i.d.) or diltiazem (60 mg t.i.d.) increased plasma buspirone concentrations (verapamil increased AUC and Cmax of buspirone 3.4-fold while diltiazem increased AUC and Cmax 5.3-fold and 4-fold, respectively.) Adverse events attributable to buspirone may be more likely during concomitant administration with either diltiazem or verapamil. Subsequent dose adjustment may be necessary and should be based on clinical assessment. Erythromycin: In a study in healthy volunteers, coadministration of buspirone (10 mg as a single dose) with erythromycin (1.5 g/day for 4 days) increased plasma buspirone concentrations (5-fold increase in Cmax and 6-fold increase in AUC). These pharmacokinetic interactions were accompanied by an increased incidence of side effects attributable to buspirone. If the two drugs are to be used in combination, a low dose of buspirone (eg, 2.5 mg b.i.d.) is recommended. Subsequent dose adjustment of either drug should be based on clinical assessment. Grapefruit Juice: In a study in healthy volunteers, coadministration of buspirone (10 mg as a single dose) with grapefruit juice (200 mL double-strength t.i.d. for 2 days) increased plasma buspirone concentrations (4.3-fold increase in Cmax; 9.2-fold increase in AUC). Patients receiving buspirone should be advised to avoid drinking such large amounts of grapefruit juice. Itraconazole: In a study in healthy volunteers, coadministration of buspirone (10 mg as a single dose) with itraconazole (200 mg/day for 4 days) increased plasma buspirone concentrations (13-fold increase in Cmax and 19-fold increase in AUC). These pharmacokinetic interactions were accompanied by an increased incidence of side effects attributable to buspirone. If the two drugs are to be used in combination, a low dose of buspirone (eg, 2.5 mg every day) is recommended. Subsequent dose adjustment of either drug should be based on clinical assessment. Nefazodone: In a study of steady-state pharmacokinetics in healthy volunteers, coadministration of buspirone (2.5 or 5 mg b.i.d.) with nefazodone (250 mg b.i.d.) resulted in marked increases in plasma buspirone concentrations (increases up to 20-fold in Cmax and up to 50-fold in AUC) and statistically significant decreases (about 50%) in plasma concentrations of the buspirone metabolite 1-PP. With 5 mg b.i.d. doses of buspirone, slight increases in AUC were observed for nefazodone (23%) and its metabolites hydroxynefazodone (HO-NEF) (17%) and meta-chlorophenylpiperazine (9%). Slight increases in Cmax were observed for nefazodone (8%) and its metabolite HO-NEF (11%). Subjects receiving buspirone 5 mg b.i.d. and nefazodone 250 mg b.i.d. experienced lightheadedness, asthenia, dizziness, and somnolence, adverse events also observed with either drug alone. If the two drugs are to be used in combination, a low dose of buspirone (eg, 2.5 mg every day) is recommended. Subsequent dose adjustment of either drug should be based on clinical assessment. Rifampin: In a study in healthy volunteers, coadministration of buspirone (30 mg as a single dose) with rifampin (600 mg/day for 5 days) decreased the plasma concentrations (83.7% decrease in Cmax; 89.6% decrease in AUC) and pharmacodynamic effects of buspirone. If the two drugs are to be used in combination, the dosage of buspirone may need adjusting to maintain anxiolytic effect Other Inhibitors and Inducers of CYP3A4: Substances that inhibit CYP3A4, such as ketoconazole or ritonavir, may inhibit buspirone metabolism and increase plasma concentrations of buspirone while substances that induce CYP3A4, such as dexamethasone, or certain anticonvulsants (phenytoin, phenobarbital, carbamazepine), may increase the rate of buspirone metabolism. If a patient has been titrated to a stable dosage on buspirone, a dose adjustment of buspirone may be necessary to avoid adverse events attributable to buspirone or diminished anxiolytic activity. Consequently, when administered with a potent inhibitor of CYP3A4, a low dose of buspirone used cautiously is recommended. When used in combination with a potent inducer of CYP3A4 the dosage of buspirone may need adjusting to maintain anxiolytic effect.

OVERDOSAGE

Signs and Symptoms In clinical pharmacology trials, doses as high as 375 mg/day were administered to healthy male volunteers. As this dose was approached, the following symptoms were observed: nausea, vomiting, dizziness, drowsiness, miosis, and gastric distress. A few cases of overdosage have been reported, with complete recovery as the usual outcome. No deaths have been reported following overdosage with buspirone alone. Rare cases of intentional overdosage with a fatal outcome were invariably associated with ingestion of multiple drugs and/or alcohol, and a casual relationship of buspirone could not be determined. Toxicology studies of buspirone yielded the following LD50 values: mice, 655 mg/kg; rats, 196 mg/kg; dogs, 586 mg/kg; and monkeys, 356 mg/kg. These dosages are 160 to 550 times the recommended human daily dose. Recommended Overdose Treatment General symptomatic and supportive measures should be used along with immediate gastric lavage. Respiration, pulse, and blood pressure should be monitored as in all cases of drug overdosage. No specific antidote is known to buspirone, and dialyzability of buspirone has not been determined.

DESCRIPTION

Buspirone hydrochloride is an antianxiety agent that is not chemically or pharmacologically related to the benzodiazepines, barbiturates, or other sedative/anxiolytic drugs. Buspirone hydrochloride is a white, crystalline, water soluble compound with a molecular weight of 422.0. Chemically buspirone hydrochloride is 8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]-butyl]-8-azaspiro[4,5]decane-7,9- dione monohydrochloride. The molecular formula C21H31N5O2 • HCl is represented by the following structural formula: Each tablet for oral administration contains 5 mg, 10 mg, or 15 mg of buspirone hydrochloride USP (equivalent to 4.6 mg, 9.1 mg, and 13.7 mg of buspirone free base respectively). The 5 mg and 10 mg tablets are scored so they can be bisected. Thus, the 5 mg tablet can also provide a 2.5 mg dose, and the 10 mg tablet can provide a 5 mg dose. The 15 mg tablet is provided in a special tablet design. This tablet is scored so it can be either bisected or trisected. Thus, a single 15 mg tablet can provide the following doses: 15 mg (entire tablet), 10 mg (two-thirds of a tablet), 7.5 mg (one-half of a tablet), or 5 mg (one-third of a tablet). In addition, each tablet contains the following inactive ingredients: colloidal silicon dioxide, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and sodium starch glycolate.

HOW SUPPLIED

Buspirone HCl Tablets USP are supplied as follows: 5 mg tablets: White, oval, biconvex, scored tablets, debossed WATSON and 657, in bottles of 100, 500, and 1000. 10 mg tablets: White, oval, biconvex, scored tablets, debossed WATSON and 658, in bottles of 100, 500, and 1000. 15 mg tablets: White, oval shaped, scored tablets, debossed with the Watson logo and 718, and scoring on both sides so it can be either bisected or trisected, in bottles of 60, 180, 500, and 1000. Store at 20° – 25°C (68°- 77°F). [See USP controlled room temperature]. Protect from temperatures greater than 30°C (86°F). Dispense in a tight, light-resistant container as defined in USP/NF.

GERIATRIC USE

Geriatric Use In one study of 6632 patients who received buspirone for the treatment of anxiety, 605 patients were ≥ 65 years old and 41 were ≥ 75 years old; the safety and efficacy profiles for these 605 elderly patients (mean age =70.8 years) were similar to those in the younger population (mean age = 43.3 years). Review of spontaneously reported adverse clinical events has not identified differences between elderly and younger patients, but greater sensitivity of some older patients cannot be ruled out. There were no effects of age on the pharmacokinetics of buspirone (see CLINICAL PHARMACOLOGY, Special Populations section).

INDICATIONS AND USAGE

Buspirone hydrochloride tablets are indicated for the management of anxiety disorders or the short-term relief of the symptoms of anxiety. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. The efficacy of buspirone has been demonstrated in controlled clinical trials of outpatients whose diagnosis roughly corresponds to Generalized Anxiety Disorder (GAD). Many of the patients enrolled in these studies also had coexisting depressive symptoms and buspirone relieved anxiety in the presence of these coexisting depressive symptoms. The patients evaluated in these studies had experienced symptoms for periods of 1 month to over 1 year prior to the study, with an average symptom duration of 6 months. Generalized Anxiety Disorder (300.02) is described in the American Psychiatric Association’s Diagnostic and Statistical Manual, lll1 as follows: Generalized, persistent anxiety (of at least 1 month continual duration), manifested by symptoms from three of the four following categories: Motor tension: shakiness, jitteriness, jumpiness, trembling, tension, muscle aches, fatigability, inability to relax, eyelid twitch, furrowed brow, strained face, fidgeting, restlessness, easy startle. Autonomic hyperactivity: sweating, heart pounding or racing, cold, clammy hands, dry mouth, dizziness, lightheadedness, paresthesias (tingling in hands or feet), upset stomach, hot or cold spells, frequent urination, diarrhea, discomfort in the pit of the stomach, lump in the throat, flushing, pallor, high resting pulse, and respiration rate. Apprehensive expectation: anxiety, worry, fear, rumination, and anticipation of misfortune to self or others. Vigilance and scanning: hyperattentiveness resulting in distractibility, difficulty in concentrating, insomnia, feeling “on edge”, irritability, impatience. The above symptoms would not be due to another mental disorder, such as a depressive disorder or schizophrenia. However, mild depressive symptoms are common in GAD. The effectiveness of buspirone in long-term use, that is, for more than 3 to 4 weeks, has not been demonstrated in controlled trials. There is no body of evidence available that systematically addresses the appropriate duration of treatment for GAD. However, in a study of long-term use, 264 patients were treated with buspirone for 1 year without ill effect. Therefore, the physician who elects to use buspirone for extended periods should periodically reassess the usefulness of the drug for the individual patient.

PEDIATRIC USE

Pediatric Use The safety and effectiveness of buspirone were evaluated in two placebo-controlled 6-week trials involving a total of 559 pediatric patients (ranging from 6 to 17 years of age) with GAD. Doses studied were 7.5-30 mg b.i.d. (15-60 mg/day). There were no significant differences between buspirone and placebo with regard to the symptoms of GAD following doses recommended for the treatment of GAD in adults. Pharmacokinetic studies have shown that, for identical doses, plasma exposure to buspirone and its active metabolite, 1-PP, are equal to or higher in pediatric patients than adults. No unexpected safety findings were associated with buspirone in these trials. There are no long-term safety or efficacy data in this population.

PREGNANCY

Pregnancy: Teratogenic Effects Pregnancy Category B: No fertility impairment or fetal damage was observed in reproduction studies performed in rats and rabbits at buspirone doses of approximately 30 times the maximum recommended human dose. In humans, however, adequate and well-controlled studies during pregnancy have not been performed. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

Nursing Mothers The extent of the excretion in human milk of buspirone or its metabolites is not known. In rats, however, buspirone and its metabolites are excreted in milk. Buspirone administration to nursing women should be avoided if clinically possible.

INFORMATION FOR PATIENTS

Information for Patients To assure safe and effective use of buspirone hydrochloride tablets, the following information and instructions should be given to patients: Inform your physician about any medications, prescription or non-prescription, alcohol, or drugs that you are now taking or plan to take during your treatment with buspirone. Inform your physician if you are pregnant, or if you are planning to become pregnant, or if you become pregnant while you are taking buspirone. Inform your physician if you are breast-feeding an infant. Until you experience how this medication affects you, do not drive a car or operate potentially dangerous machinery. You should take buspirone consistently, either always with or always without food. During your treatment with buspirone, avoid drinking large amounts of grapefruit juice.

DOSAGE AND ADMINISTRATION

The recommended initial dose is 15 mg daily (7.5 mg b.i.d.). To achieve an optimal therapeutic response, at intervals of 2 to 3 days the dosage may be increased 5 mg per day, as needed. The maximum daily dosage should not exceed 60 mg per day. In clinical trials allowing dose titration, divided doses of 20 to 30 mg per day were commonly employed. The bioavailability of buspirone is increased when given with food as compared to the fasted state (see CLINICAL PHARMACOLOGY section). Consequently, patients should take buspirone in a consistent manner with regard to the timing of dosing; either always with or always without food. When buspirone is to be given with a potent inhibitor of CYP3A4 the dosage recommendations described in the PRECAUTIONS, Drug Interactions section should be followed.

cilostazol 100 MG Oral Tablet

Generic Name: CILOSTAZOL
Brand Name: Cilostazol
  • Substance Name(s):
  • CILOSTAZOL

DRUG INTERACTIONS

7 • Strong and moderate CYP3A4 and CYP2C19 inhibitors: Increase exposure to cilostazol. Reduce cilostazol dose (2.2, 7.1) 7.1 Inhibitors of CYP3A4 or CYP2C19 Inhibitors of CYP3A4 Coadministration of strong (e.g., ketoconazole) and moderate (e.g., erythromycin, diltiazem and grapefruit juice) CYP3A4 inhibitors can increase exposure to cilostazol. Reduce cilostazol dose to 50 mg twice daily when coadministered with strong or moderate inhibitors of CYP3A4 [see DOSAGE AND ADMINISTRATION ( 2.2) and CLINICAL PHARMACOLOGY ( 12.3)]. Inhibitors of CYP2C19 Coadministration with CYP2C19 inhibitors (e.g., omeprazole) increases systemic exposure of cilostazol active metabolites. Reduce cilostazol dose to 50 mg twice daily when coadministered with strong or moderate inhibitors of CYP2C19 [see DOSAGE AND ADMINISTRATION ( 2.2) and CLINICAL PHARMACOLOGY ( 12.3)].

OVERDOSAGE

10 Information on acute overdosage with cilostazol in humans is limited. The signs and symptoms of an acute overdose can be anticipated to be those of excessive pharmacologic effect: severe headache, diarrhea, hypotension, tachycardia, and possibly cardiac arrhythmias. The patient should be carefully observed and given supportive treatment. Since cilostazol is highly protein-bound, it is unlikely that it can be efficiently removed by hemodialysis or peritoneal dialysis. The oral LD50 of cilostazol is greater than 5 g per kg in mice and rats and greater than 2 g per kg in dogs.

DESCRIPTION

11 Cilostazol is a quinolinone derivative that inhibits cellular phosphodiesterase (more specific for phosphodiesterase III). The empirical formula of cilostazol is C20H27N5O2, and its molecular weight is 369.46. Cilostazol is 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone, CAS-73963-72-1. The structural formula is: Cilostazol occurs as white to off-white crystals or as a crystalline powder that is slightly soluble in methanol and ethanol, and is practically insoluble in water, 0.1 N HCl, and 0.1 N NaOH. Cilostazol tablets for oral administration are available in 50 mg and 100 mg round, white debossed tablets. Each tablet, in addition to the active ingredient, contains the following inactive ingredients: microcrystalline cellulose, pregelatinized starch (corn), methylcellulose, carboxymethylcellulose calcium and magnesium stearate. Chemical Structure

CLINICAL STUDIES

14 The ability of cilostazol to improve walking distance in patients with stable intermittent claudication was studied in eight, randomized, placebo-controlled, double-blind trials of 12 to 24 weeks’ duration involving 2,274 patients using dosages of 50 mg twice daily (n=303), 100 mg twice daily (n=998), and placebo (n=973). Efficacy was determined primarily by the change in maximal walking distance from baseline (compared to change on placebo) on one of several standardized exercise treadmill tests. Compared to patients treated with placebo, patients treated with cilostazol 50 mg or 100 mg twice daily experienced statistically significant improvements in walking distances both for the distance before the onset of claudication pain and the distance before exercise-limiting symptoms supervened (maximal walking distance). The effect of cilostazol on walking distance was seen as early as the first on-therapy observation point of two or four weeks. Figure 2 depicts the percent mean improvement in maximal walking distance, at study end for each of the eight studies. Figure 2 Percent Mean Improvement in Maximal Walking Distance at Study End for the Eight Randomized, Double-Blind, Placebo-Controlled Clinical Trials Across the eight clinical trials, the range of improvement in maximal walking distance in patients treated with cilostazol 100 mg twice daily, expressed as the change from baseline, was 28% to 100%. The corresponding changes in the placebo group were –10% to 41%. The Walking Impairment Questionnaire, which was administered in six of the eight clinical trials, assesses the impact of a therapeutic intervention on walking ability. In a pooled analysis of the six trials, patients treated with either cilostazol 100 mg twice daily or 50 mg twice daily reported improvements in their walking speed and walking distance as compared to placebo. Improvements in walking performance were seen in the various subpopulations evaluated, including those defined by gender, smoking status, diabetes mellitus, duration of peripheral artery disease, age, and concomitant use of beta blockers or calcium channel blockers. Cilostazol has not been studied in patients with rapidly progressing claudication or in patients with leg pain at rest, ischemic leg ulcers, or gangrene. Its long-term effects on limb preservation and hospitalization have not been evaluated. A randomized, double-blind, placebo-controlled Phase IV study was conducted to assess the long-term effects of cilostazol, with respect to mortality and safety, in 1,439 patients with intermittent claudication and no heart failure. The trial stopped early due to enrollment difficulties and a lower than expected overall death rate. With respect to mortality, the observed 36-month Kaplan-Meier event rate for deaths on study drug with a median time on study drug of 18 months was 5.6% (95% CI of 2.8 to 8.4 %) on cilostazol and 6.8% (95% CI of 1.9 to 11.5 %) on placebo. These data appear to be sufficient to exclude a 75% increase in the risk of mortality on cilostazol, which was the a priori study hypothesis. Figure 2

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 How supplied Cilostazol tablets for oral administration are available as: 50 mg: White to off-white, round, debossed with “E” over “123” on one side and plain on the other and supplied as: NDC 0185-0123-60 bottles of 60 NDC 0185-0123-05 bottles of 500 100 mg: White to off-white, round, debossed with “E” over “223” on one side and plain on the other and supplied as: NDC 0185-0223-60 bottles of 60 NDC 0185-0223-05 bottles of 500 16.2 Storage and handling Store cilostazol tablets at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature]. KEEP TIGHTLY CLOSED

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects (n = 2,274) in clinical studies of cilostazol, 56 percent were 65 years old and over, while 16 percent were 75 years old and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be excluded. Pharmacokinetic studies have not disclosed any age-related effects on the absorption, distribution, metabolism, and elimination of cilostazol and its metabolites.

DOSAGE FORMS AND STRENGTHS

3 Cilostazol tablets are available as 50 mg and 100 mg round, white to off-white debossed tablets. •Tablets: 50 mg and 100 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Cilostazol and several of its metabolites inhibit phosphodiesterase III activity and suppress cAMP degradation with a resultant increase in cAMP in platelets and blood vessels, leading to inhibition of platelet aggregation and vasodilation, respectively. Cilostazol reversibly inhibits platelet aggregation induced by a variety of stimuli, including thrombin, ADP, collagen, arachidonic acid, epinephrine, and shear stress. Cardiovascular effects Cilostazol affects both vascular beds and cardiovascular function. It produces heterogeneous dilation of vascular beds, with greater dilation in femoral beds than in vertebral, carotid or superior mesenteric arteries. Renal arteries were not responsive to the effects of cilostazol. In dogs or cynomolgus monkeys, cilostazol increased heart rate, myocardial contractile force, and coronary blood flow as well as ventricular automaticity, as would be expected for a PDE III inhibitor. Left ventricular contractility was increased at doses required to inhibit platelet aggregation. A-V conduction was accelerated. In humans, heart rate increased in a dose-proportional manner by a mean of 5.1 and 7.4 beats per minute in patients treated with 50 mg and 100 mg twice daily, respectively.

INDICATIONS AND USAGE

1 Cilostazol tablets are indicated for the reduction of symptoms of intermittent claudication, as demonstrated by an increased walking distance. Cilostazol tablets are a phosphodiesterase III inhibitor (PDE III inhibitor) indicated for the reduction of symptoms of intermittent claudication, as demonstrated by an increased walking distance (1)

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of cilostazol in pediatric patients have not been established.

PREGNANCY

8.1 Pregnancy Teratogenic Effects Pregnancy Category C. Cilostazol has been shown to be teratogenic in rats at doses that are greater than 5-times the human MRHD on a body surface area basis. There are no adequate and well-controlled studies in pregnant women. In a rat developmental toxicity study, oral administration of 1000 mg cilostazol/kg/day was associated with decreased fetal weights, and increased incidences of cardiovascular, renal, and skeletal anomalies (ventricular septal, aortic arch and subclavian artery abnormalities, renal pelvic dilation, 14th rib, and retarded ossification). At this dose, systemic exposure to unbound cilostazol in nonpregnant rats was about 5 times the exposure in humans given the MRHD. Increased incidences of ventricular septal defect and retarded ossification were also noted at 150 mg/kg/day (5 times the MRHD on a systemic exposure basis). In a rabbit developmental toxicity study, an increased incidence of retardation of ossification of the sternum was seen at doses as low as 150 mg/kg/day. In nonpregnant rabbits given 150 mg/kg/day, exposure to unbound cilostazol was considerably lower than that seen in humans given the MRHD, and exposure to 3,4-dehydro-cilostazol was barely detectable. When cilostazol was administered to rats during late pregnancy and lactation, an increased incidence of stillborn and decreased birth weights of offspring was seen at doses of 150 mg/kg/day (5 times the MRHD on a systemic exposure basis).

NUSRING MOTHERS

8.3 Nursing Mothers Transfer of cilostazol into milk has been reported in rats. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from cilostazol, discontinue nursing or discontinue cilostazol.

BOXED WARNING

WARNING: CONTRAINDICATED IN HEART FAILURE PATIENTS Cilostazol is contraindicated in patients with heart failure of any severity. Cilostazol and several of its metabolites are inhibitors of phosphodiesterase III. Several drugs with this pharmacologic effect have caused decreased survival compared to placebo in patients with class III-IV heart failure. WARNING: CONTRAINDICATED IN HEART FAILUREPATIENTS See full prescribing information for complete boxed warning. Cilostazol is contraindicated in patients with heart failure of any severity. Cilostazol and several of its metabolites are inhibitors of phosphodiesterase III. Several drugs with the pharmacologic effect have caused decreased survival compared to placebo patients with class III-IV heart failure. (4)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Risks of tachycardia, palpitation, tachyarrhythmia or hypotension. Risks of exacerbations of angina pectoris or myocardial infarction in patients with a history of ischemic heart disease (5.1) •Risks of thrombocytopenia or leukopenia progressing to agranulocytosis–monitor platelets and white blood cell counts (5.2) •Avoid use in patients with hemostatic disorders or active pathologic bleeding (5.3) 5.1 Tachycardia Cilostazol may induce tachycardia, palpitation, tachyarrhythmia or hypotension. The increase in heart rate associated with cilostazol is approximately 5 bpm to 7 bpm. Patients with a history of ischemic heart disease may be at risk for exacerbations of angina pectoris or myocardial infarction. 5.2 Hematologic Adverse Reactions Cases of thrombocytopenia or leukopenia progressing to agranulocytosis when cilostazol was not immediately discontinued have been reported. Agranulocytosis is reversible on discontinuation of cilostazol. Monitor platelets and white blood cell counts periodically. 5.3 Hemostatic Disorders or Active Pathologic Bleeding Cilostazol inhibits platelet aggregation in a reversible manner. Cilostazol has not been studied in patients with hemostatic disorders or active pathologic bleeding. Avoid use of cilostazol in these patients.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Patient Information) Advise the patient: •to take cilostazol tablets at least one-half hour before or two hours after food. •to discuss with their doctor before taking any CYP3A4 or CYP2C19 inhibitors (e.g., omeprazole). •that the beneficial effects of cilostazol tablets on the symptoms of intermittent claudication may not be immediate. Although the patient may experience benefit in 2 to 4 weeks after initiation of therapy, treatment for up to 12 weeks may be required before a beneficial effect is experienced. Discontinue cilostazol tablets if symptoms do not improve after 3 months.

DOSAGE AND ADMINISTRATION

2 •The recommended dosage of cilostazol tablets is 100 mg twice daily taken at least half an hour before or two hours after breakfast and dinner (2.1) •Reduce the dose to 50 mg twice daily when coadministered with CYP3A4 inhibitors such as ketoconazole, itraconazole, erythromycin, and diltiazem, or CYP2C19 inhibitors such as ticlopidine, fluconazole, and omeprazole (2.2) 2.1 Recommended dosage The recommended dosage of cilostazol tablets is 100 mg twice daily taken at least half an hour before or two hours after breakfast and dinner. Patients may respond as early as 2 to 4 weeks after the initiation of therapy, but treatment for up to 12 weeks may be needed before a beneficial effect is experienced. If symptoms are unimproved after 3 months, discontinue cilostazol tablets. 2.2 Dosage Reduction with CYP3A4 and CYP2C19 Inhibitors Reduce dose to 50 mg twice daily when coadministered with strong or moderate inhibitors of CYP3A4 (e.g., ketoconazole, itraconazole, erythromycin, and diltiazem) or inhibitors of CYP2C19 (e.g., ticlopidine, fluconazole, and omeprazole) [see DRUG INTERACTIONS ( 7.1)].