EEMT DS Oral Tablet

Generic Name: ESTERIFIED ESTROGENS AND METHYLTESTOSTERONE
Brand Name: Esterified Estrogens and Methyltestosterone
  • Substance Name(s):
  • ESTROGENS, CONJUGATED
  • METHYLTESTOSTERONE

WARNINGS

See BOXED . Warnings Associated with Estrogens Cardiovascular Disorders Estrogen and estrogen/progestin therapy has been associated with an increased risk of cardiovascular events such as myocardial infarction and stroke, as well as venous thrombosis and pulmonary embolism (venous thromboembolism or VTE). Should any of these occur or be suspected, estrogens should be discontinued immediately. Risk factors for arterial vascular disease (e.g., hypertension, diabetes mellitus, tobacco use, hypercholesterolemia, and obesity) and/or venous thromboembolism (e.g., personal history or family history of VTE, obesity, and systemic lupus erythematosus) should be managed appropriately. Coronary Heart Disease and Stroke: In the Women’s Health Initiative (WHI) study, an increase in the number of myocardial infarctions and strokes was observed in women receiving CE compared to placebo. The CE-only substudy has concluded. The impact of those results are under review. (See CLINICAL PHARMACOLOGY, Clinical Studies .) In the CE/MPA substudy of WHI, an increased risk of coronary heart disease (CHD) events (defined as nonfatal myocardial infarction and CHD death) was observed in women receiving CE/MPA compared to women receiving placebo (37 versus 30 per 10,000 women-years). The increase in risk was observed in year 1 and persisted. In the same substudy of WHI, an increased risk of stroke was observed in women receiving CE/MPA compared to women receiving placebo (29 versus 21 per 10,000 women-years). The increase in risk was observed after the first year and persisted. In postmenopausal women with documented heart disease (n = 2,763, average age 66.7 years) a controlled clinical trial of secondary prevention of cardiovascular disease (Heart and Estrogen/Progestin Replacement Study; HERS) treatment with CE/MPA (0.625 mg/2.5 mg per day) demonstrated no cardiovascular benefit. During an average follow-up of 4.1 years, treatment with CE/MPA did not reduce the overall rate of CHD events in postmenopausal women with established coronary heart disease. There were more CHD events in the CE/MPA-treated group than in the placebo group in year 1, but not during the subsequent years. Two thousand three hundred and twenty one women from the original HERS trial agreed to participate in an open-label extension of HERS, HERS II. Average follow-up in HERS II was an additional 2.7 years, for a total of 6.8 years overall. Rates of CHD events were comparable among women in the CE/MPA group and the placebo group in HERS, HERS II, and overall. Large doses of estrogen (5 mg conjugated estrogens per day), comparable to those used to treat cancer of the prostate and breast, have been shown in a large prospective clinical trial in men to increase the risks of nonfatal myocardial infarction, pulmonary embolism, and thrombophlebitis. Venous Thromboembolism (VTE.): In the Women’s Health Initiative (WHI) study, an increase in VTE was observed in women receiving CE compared to placebo. The CE-only substudy has concluded. The impact of those results are under review. (See CLINICAL PHARMACOLOGY, Clinical Studies.) In the CE/MPA substudy of WHI, a 2-fold greater rate of VTE, including deep venous thrombosis and pulmonary embolism, was observed in women receiving CE/MPA compared to women receiving placebo. The rate of VTE was 34 per 10,000 women-years in the CE/MPA group compared to 16 per 10,000 women-years in the placebo group. The increase in VTE risk was observed during the first year and persisted. If feasible, estrogens should be discontinued at least 4 to 6 weeks before surgery of the type associated with an increased risk of thromboembolism, or during periods of prolonged immobilization. Malignant Neoplasms Endometrial Cancer: The use of unopposed estrogens in women with intact uteri has been associated with an increased risk of endometrial cancer. The reported endometrial cancer risk among unopposed estrogen users is about 2- to 12-fold greater than in non-users, and appears dependent on duration of treatment and on estrogen dose. Most studies show no significant increased risk associated with use of estrogens for less than one year. The greatest risk appears associated with prolonged use, with increased risks of 15- to 24-fold for 5 to 10 years or more and this risk has been shown to persist for at least 8 to 15 years after estrogen therapy is discontinued. Clinical surveillance of all women taking estrogen/progestin combinations is important. Adequate diagnostic measures, including endometrial sampling when indicated, should be undertaken to rule out malignancy in all cases of undiagnosed persistent or recurring abnormal vaginal bleeding. There is no evidence that the use of natural estrogens results in a different endometrial risk profile than synthetic estrogens of equivalent estrogen dose. Adding a progestin to estrogen therapy has been shown to reduce the risk of endometrial hyperplasia, which may be a precursor to endometrial cancer. Breast Cancer: The use of estrogens and progestins by postmenopausal women has been reported to increase the risk of breast cancer. The most important randomized clinical trial providing information about this issue is the Women’s Health Initiative (WHI) substudy of CE/MPA. (See CLINICAL PHARMACOLOGY, Clinical Studies .) The results from observational studies are generally consistent with those of the WHI clinical trial and report no significant variation in the risk of breast cancer among different estrogens or progestins, doses, or routes of administration. The CE/MPA substudy of WHI reported an increased risk of breast cancer in women who took CE/MPA for a mean follow-up of 5.6 years. Observational studies have also reported an increased risk for estrogen/progestin combination therapy, and a smaller increased risk for estrogen alone therapy, after several years of use. In the WHI trial and from observational studies, the excess risk increased with duration of use. From observational studies, the risk appeared to return to baseline in about five years after stopping treatment. In addition, observational studies suggest that the risk of breast cancer was greater, and became apparent earlier, with estrogen/progestin combination therapy as compared to estrogen alone therapy. In the CE/MPA substudy, 26% of the women reported prior use of estrogen alone and/or estrogen/progestin combination hormone therapy. After a mean follow-up of 5.6 years during the clinical trial, the overall relative risk of invasive breast cancer was 1.24 (95% confidence interval 1.01-1.54), and the overall absolute risk was 41 versus 33 cases per 10,000 women-years, for CE/MPA compared with placebo. Among women who reported prior use of hormone therapy, the relative risk of invasive breast cancer was 1.86, and the absolute risk was 46 versus 25 cases per 10,000 women-years, for CE/MPA compared with placebo. Among women who reported no prior use of hormone therapy, the relative risk of invasive breast cancer was 1.09, and the absolute risk was 40 versus 36 cases per 10,000 women-years for CE/MPA compared with placebo. In the same substudy, invasive breast cancers were larger and diagnosed at a more advanced stage in the CE/MPA group compared with the placebo group. Metastatic disease was rare with no apparent difference between the two groups. Other prognostic factors such as histologic subtype, grade and hormone receptor status did not differ between the groups. The use of estrogen plus progestin has been reported to result in an increase in abnormal mammograms requiring further evaluation. All women should receive yearly breast examinations by a healthcare provider and perform monthly breast self-examinations. In addition, mammography examinations should be scheduled based on patient age, risk factors, and prior mammogram results. Dementia In the Women’s Health Initiative Memory Study (WHIMS), 4,532 generally healthy postmenopausal women 65 years of age and older were studied, of whom 35% were 70 to 74 years of age and 18% were 75 or older. After an average follow-up of 4 years, 40 women being treated with CE/MPA (1.8%, n = 2,229) and 21 women in the placebo group (0.9%, n = 2,303) received diagnoses of probable dementia. The relative risk for CE/MPA versus placebo was 2.05 (95% confidence interval 1.21 – 3.48), and was similar for women with and without histories of menopausal hormone use before WHIMS. The absolute risk of probable dementia for CE/MPA versus placebo was 45 versus 22 cases per 10,000 women-years, and the absolute excess risk for CE/MPA was 23 cases per 10,000 women-years. It is unknown whether these findings apply to younger postmenopausal women. (See CLINICAL PHARMACOLOGY, Clinical Studies and PRECAUTIONS, Geriatric Use .) The estrogen alone substudy of the Women’s Health Initiative Memory Study has concluded. It is unknown whether these findings apply to estrogen alone. Gallbladder Disease A 2- to 4-fold increase in the risk of gallbladder disease requiring surgery in postmenopausal women receiving estrogens has been reported. Glucose Tolerance A worsening of glucose tolerance has been observed in a significant percentage of patients on estrogen-containing oral contraceptives. For this reason, diabetic patients should be carefully observed while receiving estrogens. Hypercalcemia Estrogen administration may lead to severe hypercalcemia in patients with breast cancer and bone metastases. If hypercalcemia occurs, use of the drug should be stopped and appropriate measures taken to reduce the serum calcium level. Visual Abnormalities Retinal vascular thrombosis has been reported in patients receiving estrogens. Discontinue medication pending examination if there is sudden partial or complete loss of vision, or a sudden onset of proptosis, diplopia, or migraine. If examination reveals papilledema or retinal vascular lesions, estrogens should be permanently discontinued. Warnings Associated with Methyltestosterone In patients with breast cancer, androgen therapy may cause hypercalcemia by stimulating osteolysis. In this case the drug should be discontinued. Prolonged use of high doses of androgens has been associated with the development of peliosis hepatis and hepatic neoplasms including hepatocellular carcinoma. [See PRECAUTIONS, Carcinogenesis (Androgens) .] Peliosis hepatis can be a life-threatening or fatal complication. Cholestatic hepatitis and jaundice occur with 17-alpha-alkylandrogens at a relatively low dose. If cholestatic hepatitis with jaundice appears or if liver function tests become abnormal, the androgen should be discontinued and the etiology should be determined. Drug-induced jaundice is reversible when the medication is discontinued. Edema with or without heart failure may be a serious complication in patients with preexisting cardiac, renal, or hepatic disease. In addition to discontinuation of the drug, diuretic therapy may be required.

OVERDOSAGE

Serious ill effects have not been reported following acute ingestion of large doses of estrogen-containing drug products by young children. Overdosage of estrogen may cause nausea and vomiting, and withdrawal bleeding may occur in females. There have been no reports of acute overdosage with the androgens.

DESCRIPTION

Esterified Estrogens and Methyltestosterone Tablets: Each green, oval, aqueous film coated tablet debossed “IP 78” on obverse and plain on the reverse contains: 1.25 mg of Esterified Estrogens, USP and 2.5 mg of Methyltestosterone, USP. Esterified Estrogens and Methyltestosterone Tablets H.S. (Half Strength): Each light blue, capsule-shaped, aqueous film coated tablet debossed “IP 77” on obverse and plain on the reverse contains: 0.625 mg of Esterified Estrogens, USP and 1.25 mg of Methyltestosterone, USP. Esterified Estrogens Esterified Estrogens, USP is a mixture of the sodium salts of the sulfate esters of the estrogenic substances, principally estrone, that are of the type excreted by pregnant mares. Esterified Estrogens contain not less than 75.0 percent and not more than 85.0 percent of sodium estrone sulfate, and not less than 6.0 percent and not more than 15.0 percent of sodium equilin sulfate, in such proportion that the total of these two components is not less than 90.0 percent. Methyltestosterone Methyltestosterone, USP is an androgen. Androgens are derivatives of cyclopentano-perhydrophenanthrene. Endogenous androgens are C-19 steroids with a side chain at C-17, and with two angular methyl groups. Testosterone is the primary endogenous androgen. Fluoxymesterone and methyltestosterone are synthetic derivatives of testosterone. Methyltestosterone is a white to light yellow crystalline substance that is virtually insoluble in water but soluble in organic solvents. It is stable in air but decomposes in light. Methyltestosterone structural formula: Esterified Estrogens and Methyltestosterone Tablets and Esterified Estrogens and Methyltestosterone Tablets H.S. contain the following inactive ingredients: Anhydrous Lactose, Colloidal Silicon Dioxide, D&C Yellow #10 Aluminum Lake, FD&C Blue #1 Aluminum Lake, Magnesium Stearate, Microcrystalline Cellulose, Polyethylene Glycol, Polyvinyl Alcohol, Sodium Bicarbonate, Talc and Titanium Dioxide. chemical structure

HOW SUPPLIED

Esterified Estrogens and Methyltestosterone Tablets, a combination of Esterified Estrogens and Methyltestosterone. Each green, oval, aqueous film coated tablet debossed “IP 78” on obverse and plain on the reverse contains: 1.25 mg of Esterified Estrogens, USP and 2.5 mg of Methyltestosterone, USP. Available in bottles of 100: NDC 13925-172-01 Esterified Estrogens and Methyltestosterone Tablets H.S. “Half Strength,” a combination of Esterifed Estrogens and Methyltestosterone. Each light blue, capsule- shaped, aqueous film coated tablet debossed “IP 77” on obverse and plain on the reverse contains: 0.625 mg of Esterified Estrogens, USP and 1.25 mg of Methyltestosterone, USP. Available in bottles of 100: NDC 13925-171-01 Keep Esterified Estrogens and Methyltestosterone Tablets and Esterified Estrogens and Methyltestosterone Tablets H.S. out of reach of children. Store at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F). [See USP Controlled Room Temperature.] ‡ This product has not obtained FDA pre-market approval applicable for new drugs. Manufactured by: Amneal Pharmaceuticals of NY Hauppauge, NY 11788 Distributed by: Seton Pharmaceuticals Manasquan, NJ 08736 Rev. 04-2014

INDICATIONS AND USAGE

Esterified Estrogens and Methyltestosterone Tablets and Esterified Estrogens and Methyltestosterone Tablets H.S. are indicated in the: Treatment of moderate to severe vasomotor symptoms associated with the menopause in those patients not improved by estrogens alone. (There is no evidence that estrogens are effective for nervous symptoms or depression without associated vasomotor symptoms, and they should not be used to treat such conditions.) Esterified Estrogens and Methyltestosterone Tablets and Esterified Estrogens and Methyltestosterone Tablets H.S. have not been shown to be effective for any purpose during pregnancy and its use may cause severe harm to the fetus.

BOXED WARNING

ESTROGENS INCREASE THE RISK OF ENDOMETRIAL CANCER Close clinical surveillance of all women taking estrogens is important. Adequate diagnostic measures, including endometrial sampling when indicated, should be undertaken to rule out malignancy in all cases of undiagnosed persistent or recurring abnormal vaginal bleeding. There is no evidence that the use of “natural” estrogens results in a different endometrial risk profile than synthetic estrogens at equivalent estrogen doses. (See WARNINGS, Malignant Neoplasms, Endometrial Cancer.) CARDIOVASCULAR AND OTHER RISKS Estrogens with or without progestins should not be used for the prevention of cardiovascular disease. (See WARNINGS, Cardiovascular Disorders.) The Women’s Health Initiative (WHI) study reported increased risks of myocardial infarction, stroke, invasive breast cancer, pulmonary emboli, and deep vein thrombosis in postmenopausal women (50 to 79 years of age) during 5 years of treatment with oral conjugated estrogens (CE 0.625 mg) combined with medroxyprogesterone acetate (MPA 2.5 mg) relative to placebo. (See CLINICAL PHARMACOLOGY, Clinical Studies.) The Women’s Health Initiative Memory Study (WHIMS), a substudy of WHI, reported increased risk of developing probable dementia in postmenopausal women 65 years of age or older during 4 years of treatment with oral conjugated estrogens plus medroxyprogesterone acetate relative to placebo. It is unknown whether this finding applies to younger postmenopausal women or to women taking estrogen alone therapy. (See CLINICAL PHARMACOLOGY, Clinical Studies.) Other doses of oral conjugated estrogens with medroxyprogesterone acetate, and other combinations and dosage forms of estrogens and progestins were not studied in the WHI clinical trials and, in the absence of comparable data, these risks should be assumed to be similar. Because of these risks, estrogens with or without progestins should be prescribed at the lowest effective doses and for the shortest duration consistent with treatment goals and risks for the individual woman.

DOSAGE AND ADMINISTRATION

When estrogen is prescribed for a postmenopausal woman with a uterus, a progestin should also be initiated to reduce the risk of endometrial cancer. A woman without a uterus does not need progestin. Use of estrogen, alone or in combination with a progestin, should be with the lowest effective dose and for the shortest duration consistent with treatment goals and risks for the individual woman. Patients should be reevaluated periodically as clinically appropriate (e.g., 3-month to 6-month intervals) to determine if treatment is still necessary. (See BOXED WARNINGS and WARNINGS .) For women who have a uterus, adequate diagnostic measures, such as endometrial sampling, when indicated, should be undertaken to rule out malignancy in cases of undiagnosed persistent or recurring abnormal vaginal bleeding. Given cyclically for short-term use only: For treatment of moderate to severe vasomotor symptoms associated with the menopause in patients not improved by estrogen alone. The lowest dose that will control symptoms should be chosen and medication should be discontinued as promptly as possible. Administration should be cyclic (e.g., three weeks on and one week off). Attempts to discontinue or taper medication should be made at three- to six-month intervals. Usual Dosage Range: 1 tablet of Esterified Estrogens and Methyltestosterone Tablets or 1 to 2 tablets of Esterified Estrogens and Methyltestosterone Tablets H.S. daily as recommended by the physician. Treated patients with an intact uterus should be monitored closely for signs of endometrial cancer and appropriate diagnostic measures should be taken to rule out malignancy in the event of persistent or recurring abnormal vaginal bleeding.

Armour Thyroid 30 MG Oral Tablet

Generic Name: THYROID, PORCINE
Brand Name: Armour Thyroid
  • Substance Name(s):
  • THYROID, PORCINE

WARNINGS

Drugs with thyroid hormone activity, alone or together with other therapeutic agents, have been used for the treatment of obesity. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life-threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects. The use of thyroid hormones in the therapy of obesity, alone or combined with other drugs, is unjustified and has been shown to be ineffective. Neither is their use justified for the treatment of male or female infertility unless this condition is accompanied by hypothyroidism. The active ingredient (desiccated natural thyroid) in Armour® Thyroid (thyroid tablets, USP) is derived from porcine (pig) thyroid glands of pigs processed for human food consumption and is produced at a facility that also handles bovine (cow) tissues from animals processed for human food consumption. As a result, a potential risk of product contamination with porcine and bovine viral or other adventitious agents cannot be ruled out. Forest is not aware of any cases of disease transmission associated with the use of Armour Thyroid.

DRUG INTERACTIONS

Drug Interactions—Oral Anticoagulants—Thyroid hormones appear to increase catabolism of vitamin K-dependent clotting factors. If oral anticoagulants are also being given, compensatory increases in clotting factor synthesis are impaired. Patients stabilized on oral anticoagulants who are found to require thyroid replacement therapy should be watched very closely when thyroid is started. If a patient is truly hypothyroid, it is likely that a reduction in anticoagulant dosage will be required. No special precautions appear to be necessary when oral anticoagulant therapy is begun in a patient already stabilized on maintenance thyroid replacement therapy. Insulin or Oral Hypoglycemics—Initiating thyroid replacement therapy may cause increases in insulin or oral hypoglycemic requirements. The effects seen are poorly understood and depend upon a variety of factors such as dose and type of thyroid preparations and endocrine status of the patient. Patients receiving insulin or oral hypoglycemics should be closely watched during initiation of thyroid replacement therapy. Cholestyramine or Colestipol—Cholestyramine or colestipol binds both levothyroxine (T4) and liothyronine (T3) in the intestine, thus impairing absorption of these thyroid hormones. In vitro studies indicate that the binding is not easily removed. Therefore four to five hours should elapse between administration of cholestyramine or colestipol and thyroid hormones. Estrogen, Oral Contraceptives—Estrogens tend to increase serum thyroxine-binding globulin (TBg). In a patient with a nonfunctioning thyroid gland who is receiving thyroid replacement therapy, free levothyroxine (T4) may be decreased when estrogens are started thus increasing thyroid requirements. However, if the patient’s thyroid gland has sufficient function, the decreased free levothyroxine (T4) will result in a compensatory increase in levothyroxine (T4) output by the thyroid. Therefore, patients without a functioning thyroid gland who are on thyroid replacement therapy may need to increase their thyroid dose if estrogens or estrogen-containing oral contraceptives are given.

OVERDOSAGE

Signs and Symptoms—Excessive doses of thyroid result in a hypermetabolic state resembling in every respect the condition of endogenous origin. The condition may be self-induced. Treatment of Overdosage—Dosage should be reduced or therapy temporarily discontinued if signs and symptoms of overdosage appear. Treatment may be reinstituted at a lower dosage. In normal individuals, normal hypothalamic-pituitary-thyroid axis function is restored in 6 to 8 weeks after thyroid suppression. Treatment of acute massive thyroid hormone overdosage is aimed at reducing gastrointestinal absorption of the drugs and counteracting central and peripheral effects, mainly those of increased sympathetic activity. Vomiting may be induced initially if further gastrointestinal absorption can reasonably be prevented and barring contraindications such as coma, convulsions, or loss of the gagging reflex. Treatment is symptomatic and supportive. Oxygen may be administered and ventilation maintained. Cardiac glycosides may be indicated if congestive heart failure develops. Measures to control fever, hypoglycemia, or fluid loss should be instituted if needed. Antiadrenergic agents, particularly propranolol, have been used advantageously in the treatment of increased sympathetic activity. Propranolol may be administered intravenously at a dosage of 1 to 3 mg, over a 10-minute period or orally, 80 to 160 mg/day, initially, especially when no contraindications exist for its use. Other adjunctive measures may include administration of cholestyramine to interfere with thyroxine absorption, and glucocorticoids to inhibit conversion of T4 to T3.

DESCRIPTION

Armour® Thyroid (thyroid tablets, USP)* for oral use is a natural preparation derived from porcine thyroid glands and has a strong, characteristic odor. (T3 liothyronine is approximately four times as potent as T4 levothyroxine on a microgram for microgram basis.) They provide 38 mcg levothyroxine (T4) and 9 mcg liothyronine (T3) per grain of thyroid. The inactive ingredients are calcium stearate, dextrose, microcrystalline cellulose, sodium starch glycolate and opadry white. Chemical Formulas

HOW SUPPLIED

Armour Thyroid tablets (thyroid tablets, USP) are supplied as follows: 15 mg (1/4 gr) are available in bottles of 100 (NDC 0456-0457-01). 30 mg (1/2 gr) are available in bottles of 100 (NDC 0456-0458-01) and unit dose cartons of 100 (NDC 0456-0458-63). 60 mg (1 gr) are available in bottles of 100 (NDC 0456-0459-01) and unit dose cartons of 100 (NDC 0456-0459-63). 90 mg (1 1/2 gr) are available in bottles of 100 (NDC 0456-0460-01). 120 mg (2 gr) are available in bottles of 100 (NDC 0456-0461-01) and unit dose cartons of 100 (NDC 0456-0461-63). 180 mg (3 gr) are available in bottles of 100 (NDC 0456-0462-01). 240 mg (4 gr) are available in bottles of 100 (NDC 0456-0463-01). 300 mg (5 gr) are available in bottles of 100 (NDC 0456-0464-01). The bottles of 100 are special dispensing bottles with child-resistant closures. Armour Thyroid tablets are evenly colored, light tan, round tablets, with convex surfaces. One side is debossed with a mortar and pestle beneath the letter “A” on the top and strength code letters on the bottom as defined below Strength Code 1/4 grain TC 1/2 grain TD 1 grain TE 1 1/2 grain TJ 2 grain TF 3 grain TG (bisected) 4 grain TH 5 grain TI (bisected) Note: (T3 liothyronine is approximately four times as potent as T4 levothyroxine on a microgram for microgram basis.) Store in a tight container protected from light and moisture. Store between 15 C and 30 C (59 F and 86 F). *Armour Thyroid (thyroid tablets, USP) has not been approved by FDA as a new drug. Forest Pharmaceuticals, Inc. A Subsidiary of Forest Laboratories, Inc. St. Louis, MO 63045 ® 2006-2012 Forest Laboratories, Inc.

INDICATIONS AND USAGE

Armour Thyroid tablets are indicated: As replacement or supplemental therapy in patients with hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. This category includes cretinism, myxedema, and ordinary hypothyroidism in patients of any age (children, adults, the elderly), or state (including pregnancy); primary hypothyroidism resulting from functional deficiency, primary atrophy, partial or total absence of thyroid gland, or the effects of surgery, radiation, or drugs, with or without the presence of goiter; and secondary (pituitary), or tertiary (hypothalamic) hypothyroidism (SeeWARNINGS). As pituitary TSH suppressants, in the treatment or prevention of various types of euthyroid goiters, including thyroid nodules, subacute or chronic Iymphocytic thyroiditis (Hashimoto’s), multinodular goiter, and in the management of thyroid cancer.

PEDIATRIC USE

Pediatric Use—Pregnant mothers provide little or no thyroid hormone to the fetus. The incidence of congenital hypothyroidism is relatively high (1:4,000) and the hypothyroid fetus would not derive any benefit from the small amounts of hormone crossing the placental barrier. Routine determinations of serum T4 and/or TSH is strongly advised in neonates in view of the deleterious effects of thyroid deficiency on growth and development. Treatment should be initiated immediately upon diagnosis, and maintained for life, unless transient hypothyroidism is suspected; in which case, therapy may be interrupted for 2 to 8 weeks after the age of 3 years to reassess the condition. Cessation of therapy is justified in patients who have maintained a normal TSH during those 2 to 8 weeks.

PREGNANCY

Pregnancy-Category A—Thyroid hormones do not readily cross the placental barrier. The clinical experience to date does not indicate any adverse effect on fetuses when thyroid hormones are administered to pregnant women. On the basis of current knowledge, thyroid replacement therapy to hypothyroid women should not be discontinued during pregnancy.

NUSRING MOTHERS

Nursing Mothers—Minimal amounts of thyroid hormones are excreted in human milk. Thyroid is not associated with serious adverse reactions and does not have a known tumorigenic potential. However, caution should be exercised when thyroid is administered to a nursing woman.

INFORMATION FOR PATIENTS

Information for the Patient—Patients on thyroid hormone preparations and parents of children on thyroid therapy should be informed that: Replacement therapy is to be taken essentially for life, with the exception of cases of transient hypothyroidism, usually associated with thyroiditis, and in those patients receiving a therapeutic trial of the drug. They should immediately report during the course of therapy any signs or symptoms of thyroid hormone toxicity, e.g., chest pain, increased pulse rate, palpitations, excessive sweating, heat intolerance, nervousness, or any other unusual event. In case of concomitant diabetes mellitus, the daily dosage of antidiabetic medication may need readjustment as thyroid hormone replacement is achieved. If thyroid medication is stopped, a downward readjustment of the dosage of insulin or oral hypoglycemic agent may be necessary to avoid hypoglycemia. At all times, close monitoring of urinary glucose levels is mandatory in such patients. In case of concomitant oral anticoagulant therapy, the prothrombin time should be measured frequently to determine if the dosage of oral anticoagulants is to be readjusted. Partial loss of hair may be experienced by children in the first few months of thyroid therapy, but this is usually a transient phenomenon and later recovery is usually the rule.

DOSAGE AND ADMINISTRATION

The dosage of thyroid hormones is determined by the indication and must in every case be individualized according to patient response and laboratory findings. Thyroid hormones are given orally. In acute, emergency conditions, injectable levothyroxine sodium (T4) may be given intravenously when oral administration is not feasible or desirable, as in the treatment of myxedema coma, or during total parenteral nutrition. Intramuscular administration is not advisable because of reported poor absorption. Hypothyroidism—Therapy is usually instituted using low doses, with increments which depend on the cardiovascular status of the patient. The usual starting dose is 30 mg Armour Thyroid, with increments of 15 mg every 2 to 3 weeks. A lower starting dosage, 15 mg/day, is recommended in patients with long-standing myxedema, particularly if cardiovascular impairment is suspected, in which case extreme caution is recommended. The appearance of angina is an indication for a reduction in dosage. Most patients require 60 to 120 mg/day. Failure to respond to doses of 180 mg suggests lack of compliance or malabsorption. Maintenance dosages 60 to 120 mg/day usually result in normal serum T4 and T3 levels. Adequate therapy usually results in normal TSH and T4 levels after 2 to 3 weeks of therapy. Readjustment of thyroid hormone dosage should be made within the first four weeks of therapy, after proper clinical and laboratory evaluations, including serum levels of T4, bound and free, and TSH. Liothyronine (T3) may be used in preference to levothyroxine (T4) during radio-isotope scanning procedures, since induction of hypothyroidism in those cases is more abrupt and can be of shorter duration. It may also be preferred when impairment of peripheral conversion of levothyroxine (T4) and liothyronine (T3) is suspected. Myxedema Coma—Myxedema coma is usually precipitated in the hypothyroid patient of long-standing by intercurrent illness or drugs such as sedatives and anesthetics and should be considered a medical emergency. Therapy should be directed at the correction of electrolyte disturbances and possible infection besides the administration of thyroid hormones. Corticosteroids should be administered routinely. Levothyroxine (T4) and liothyronine (T3) may be administered via a nasogastric tube but the preferred route of administration of both hormones is intravenous. Levothyroxine sodium (T4) is given at a starting dose of 400 mcg (100 mcg/mL) given rapidly, and is usually well tolerated, even in the elderly. This initial dose is followed by daily supplements of 100 to 200 mcg given IV. Normal T4 levels are achieved in 24 hours followed in 3 days by threefold elevation of T3. Oral therapy with thyroid hormone would be resumed as soon as the clinical situation has been stabilized and the patient is able to take oral medication. Thyroid Cancer—Exogenous thyroid hormone may produce regression of metastases from follicular and papillary carcinoma of the thyroid and is used as ancillary therapy of these conditions with radioactive iodine. TSH should be suppressed to low or undetectable levels. Therefore, larger amounts of thyroid hormone than those used for replacement therapy are required. Medullary carcinoma of the thyroid is usually unresponsive to this therapy. Thyroid Suppression Therapy—Administration of thyroid hormone in doses higher than those produced physiologically by the gland results in suppression of the production of endogenous hormone. This is the basis for the thyroid suppression test and is used as an aid in the diagnosis of patients with signs of mild hyperthyroidism in whom base line laboratory tests appear normal, or to demonstrate thyroid gland autonomy in patients with Grave’s ophthalmopathy. 131I uptake is determined before and after the administration of the exogenous hormone. A 50 percent or greater suppression of uptake indicates a normal thyroid-pituitary axis and thus rules out thyroid gland autonomy. For adults, the usual suppressive dose of levothyroxine (T4) is 1.56 mcg/kg of body weight per day given for 7 to 10 days. These doses usually yield normal serum T4 and T3 levels and lack of response to TSH. Thyroid hormones should be administered cautiously to patients in whom there is strong suspicion of thyroid gland autonomy, in view of the fact that the exogenous hormone effects will be additive to the endogenous source. Pediatric Dosage—Pediatric dosage should follow the recommendations summarized inTable 1. In infants with congenital hypothyroidism, therapy with full doses should be instituted as soon as the diagnosis has been made. Table 1: Recommended Pediatric Dosage for Congenital Hypothyroidism Age Armour Thyroid Tablets Dose per day Daily dose per kg of body weight 0-6 mos 15-30 mg 4.8-6 mg 6-12 mos 30-45 mg 3.6-4.8 mg 1-5 yrs 45-60 mg 3-3.6 mg 6-12 yrs 60-90 mg 2.4-3 mg Over 12 yrs Over 90 mg 1.2-1.8 mg

Zantac 300 MG Oral Tablet

Generic Name: RANITIDINE HYDROCHLORIDE
Brand Name: ZANTAC
  • Substance Name(s):
  • RANITIDINE HYDROCHLORIDE

DRUG INTERACTIONS

Drug Interactions: Ranitidine has been reported to affect the bioavailability of other drugs through several different mechanisms such as competition for renal tubular secretion, alteration of gastric pH, and inhibition of cytochrome P450 enzymes. Procainamide: Ranitidine, a substrate of the renal organic cation transport system, may affect the clearance of other drugs eliminated by this route. High doses of ranitidine (e.g., such as those used in the treatment of Zollinger-Ellison syndrome) have been shown to reduce the renal excretion of procainamide and N-acetylprocainamide resulting in increased plasma levels of these drugs. Although this interaction is unlikely to be clinically relevant at usual ranitidine doses, it may be prudent to monitor for procainamide toxicity when administered with oral ranitidine at a dose exceeding 300 mg per day. Warfarin: There have been reports of altered prothrombin time among patients on concomitant warfarin and ranitidine therapy. Due to the narrow therapeutic index, close monitoring of increased or decreased prothrombin time is recommended during concurrent treatment with ranitidine. Ranitidine may alter the absorption of drugs in which gastric pH is an important determinant of bioavailability. This can result in either an increase in absorption (e.g., triazolam, midazolam, glipizide) or a decrease in absorption (e.g., ketoconazole, atazanavir, delavirdine, gefitinib). Appropriate clinical monitoring is recommended. Atazanavir: Atazanavir absorption may be impaired based on known interactions with other agents that increase gastric pH. Use with caution. See atazanavir label for specific recommendations. Delavirdine: Delavirdine absorption may be impaired based on known interactions with other agents that increase gastric pH. Chronic use of H2-receptor antagonists with delavirdine is not recommended. Gefitinib: Gefitinib exposure was reduced by 44% with the coadministration of ranitidine and sodium bicarbonate (dosed to maintain gastric pH above 5.0). Use with caution. Glipizide: In diabetic patients, glipizide exposure was increased by 34% following a single 150-mg dose of oral ranitidine. Use appropriate clinical monitoring when initiating or discontinuing ranitidine. Ketoconazole: Oral ketoconazole exposure was reduced by up to 95% when oral ranitidine was coadministered in a regimen to maintain a gastric pH of 6 or above. The degree of interaction with usual dose of ranitidine (150 mg twice daily) is unknown. Midazolam: Oral midazolam exposure in 5 healthy volunteers was increased by up to 65% when administered with oral ranitidine at a dose of 150 mg twice daily. However, in another interaction trial in 8 volunteers receiving IV midazolam, a 300-mg oral dose of ranitidine increased midazolam exposure by about 9%. Monitor patients for excessive or prolonged sedation when ranitidine is coadministered with oral midazolam. Triazolam: Triazolam exposure in healthy volunteers was increased by approximately 30% when administered with oral ranitidine at a dose of 150 mg twice daily. Monitor patients for excessive or prolonged sedation.

OVERDOSAGE

There has been limited experience with overdosage. Reported acute ingestions of up to 18 g orally have been associated with transient adverse effects similar to those encountered in normal clinical experience (see ADVERSE REACTIONS). In addition, abnormalities of gait and hypotension have been reported. When overdosage occurs, the usual measures to remove unabsorbed material from the gastrointestinal tract, clinical monitoring, and supportive therapy should be employed. Studies in dogs receiving dosages of ZANTAC in excess of 225 mg/kg/day have shown muscular tremors, vomiting, and rapid respiration. Single oral doses of 1,000 mg/kg in mice and rats were not lethal. Intravenous LD50 values in mice and rats were 77 and 83 mg/kg, respectively.

DESCRIPTION

The active ingredient in ZANTAC 150 Tablets and ZANTAC 300 Tablets is ranitidine hydrochloride (HCl), USP, a histamine H2-receptor antagonist. Chemically it is N[2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine, HCl. It has the following structure: The empirical formula is C13H22N4O3S•HCl, representing a molecular weight of 350.87. Ranitidine HCl is a white to pale yellow granular substance that is soluble in water. It has a slightly bitter taste and sulfur-like odor. Each ZANTAC 150 Tablet for oral administration contains 168 mg of ranitidine HCl equivalent to 150 mg of ranitidine. Each tablet also contains the inactive ingredients FD&C Yellow No. 6 Aluminum Lake, hypromellose, magnesium stearate, microcrystalline cellulose, titanium dioxide, triacetin, and yellow iron oxide. Each ZANTAC 300 Tablet for oral administration contains 336 mg of ranitidine HCl equivalent to 300 mg of ranitidine. Each tablet also contains the inactive ingredients croscarmellose sodium, D&C Yellow No. 10 Aluminum Lake, hypromellose, magnesium stearate, microcrystalline cellulose, titanium dioxide, and triacetin. ranitidine HCl molecular structure

CLINICAL STUDIES

Clinical Trials: Active Duodenal Ulcer: In a multicenter, double-blind, controlled, US trial of endoscopically diagnosed duodenal ulcers, earlier healing was seen in the patients treated with ZANTAC as shown in Table 3. Table 3. Duodenal Ulcer Patient Healing Rates ZANTACa Placeboa Number Entered Healed/ Evaluable Number Entered Healed/ Evaluable Outpatients Week 2 69/182 (38%)b 31/164 (19%) 195 188 Week 4 137/187 (73%)b 76/168 (45%) a All patients were permitted antacids as needed for relief of pain. b P<0.0001. In these trials, patients treated with ZANTAC reported a reduction in both daytime and nocturnal pain, and they also consumed less antacid than the placebo-treated patients. Table 4. Mean Daily Doses of Antacid Ulcer Healed Ulcer Not Healed ZANTAC 0.06 0.71 Placebo 0.71 1.43 Foreign trials have shown that patients heal equally well with 150 mg twice daily and 300 mg at bedtime (85% versus 84%, respectively) during a usual 4-week course of therapy. If patients require extended therapy of 8 weeks, the healing rate may be higher for 150 mg twice daily as compared with 300 mg at bedtime (92% versus 87%, respectively). Trials have been limited to short-term treatment of acute duodenal ulcer. Patients whose ulcers healed during therapy had recurrences of ulcers at the usual rates. Maintenance Therapy in Duodenal Ulcer: Ranitidine has been found to be effective as maintenance therapy for patients following healing of acute duodenal ulcers. In 2 independent, double-blind, multicenter, controlled trials, the number of duodenal ulcers observed was significantly less in patients treated with ZANTAC (150 mg at bedtime) than in patients treated with placebo over a 12-month period. Table 5. Duodenal Ulcer Prevalence Double-Blind, Multicenter, Placebo-Controlled Trials MulticenterTrial Drug Duodenal Ulcer Prevalence No. of Patients 0-4 Months 0-8 Months 0-12 Months USA RAN 20%a 24% 35%a 138 PLC 44% 54% 59% 139 Foreign RAN 12%a 21%a 28%a 174 PLC 56% 64% 68% 165 % = Life table estimate. a = P<0.05 (ZANTAC versus comparator). RAN = ranitidine (ZANTAC). PLC = placebo. As with other H2-antagonists, the factors responsible for the significant reduction in the prevalence of duodenal ulcers include prevention of recurrence of ulcers, more rapid healing of ulcers that may occur during maintenance therapy, or both. Gastric Ulcer: In a multicenter, double-blind, controlled, US trial of endoscopically diagnosed gastric ulcers, earlier healing was seen in the patients treated with ZANTAC as shown in Table 6. Table 6. Gastric Ulcer Patient Healing Rates ZANTACa Placeboa Number Entered Healed/ Evaluable Number Entered Healed/ Evaluable Outpatients Week 2 16/83 (19%) 10/83 (12%) 92 94 Week 6 50/73 (68%)b 35/69 (51%) a All patients were permitted antacids as needed for relief of pain. b P = 0.009. In this multicenter trial, significantly more patients treated with ZANTAC became pain free during therapy. Maintenance of Healing of Gastric Ulcers: In 2 multicenter, double-blind, randomized, placebo-controlled, 12-month trials conducted in patients whose gastric ulcers had been previously healed, ZANTAC 150 mg at bedtime was significantly more effective than placebo in maintaining healing of gastric ulcers. Pathological Hypersecretory Conditions (such as Zollinger-Ellison syndrome): ZANTAC inhibits gastric acid secretion and reduces occurrence of diarrhea, anorexia, and pain in patients with pathological hypersecretion associated with Zollinger-Ellison syndrome, systemic mastocytosis, and other pathological hypersecretory conditions (e.g., postoperative, “short-gut” syndrome, idiopathic). Use of ZANTAC was followed by healing of ulcers in 8 of 19 (42%) patients who were intractable to previous therapy. Gastroesophageal Reflux Disease (GERD): In 2 multicenter, double-blind, placebo-controlled, 6-week trials performed in the United States and Europe, ZANTAC 150 mg twice daily was more effective than placebo for the relief of heartburn and other symptoms associated with GERD. Ranitidine-treated patients consumed significantly less antacid than did placebo-treated patients. The US trial indicated that ZANTAC 150 mg twice daily significantly reduced the frequency of heartburn attacks and severity of heartburn pain within 1 to 2 weeks after starting therapy. The improvement was maintained throughout the 6-week trial period. Moreover, patient response rates demonstrated that the effect on heartburn extends through both the day and night time periods. In 2 additional US multicenter, double-blind, placebo-controlled, 2-week trials, ZANTAC 150 mg twice daily was shown to provide relief of heartburn pain within 24 hours of initiating therapy and a reduction in the frequency of severity of heartburn. Erosive Esophagitis: In 2 multicenter, double-blind, randomized, placebo-controlled, 12-week trials performed in the United States, ZANTAC 150 mg 4 times daily was significantly more effective than placebo in healing endoscopically diagnosed erosive esophagitis and in relieving associated heartburn. The erosive esophagitis healing rates were as follows: Table 7. Erosive Esophagitis Patient Healing Rates Healed/Evaluable Placeboa n = 229 ZANTAC 150 mg 4 times dailya n = 215 Week 4 43/198 (22%) 96/206 (47%)b Week 8 63/176 (36%) 142/200 (71%)b Week 12 92/159 (58%) 162/192 (84%)b a All patients were permitted antacids as needed for relief of pain. b P<0.001 versus placebo. No additional benefit in healing of esophagitis or in relief of heartburn was seen with a ranitidine dose of 300 mg 4 times daily. Maintenance of Healing of Erosive Esophagitis: In 2 multicenter, double-blind, randomized, placebo-controlled, 48-week trials conducted in patients whose erosive esophagitis had been previously healed, ZANTAC 150 mg twice daily was significantly more effective than placebo in maintaining healing of erosive esophagitis.

HOW SUPPLIED

ZANTAC 150 Tablets (ranitidine HCl equivalent to 150 mg of ranitidine) are peach, film-coated, 5-sided tablets embossed with “ZANTAC 150” on one side and “Glaxo” on the other. They are available in bottles of 60 (NDC 0173-0344-42) tablets. ZANTAC 300 Tablets (ranitidine HCl equivalent to 300 mg of ranitidine) are yellow, film-coated, capsule-shaped tablets embossed with “ZANTAC 300” on one side and “Glaxo” on the other. They are available in bottles of 30 (NDC 0173-0393-40) tablets. Store between 15° and 30°C (59° and 86°F) in a dry place. Protect from light. Replace cap securely after each opening. GlaxoSmithKline Research Triangle Park, NC 27709 ZANTAC is a registered trademark of Boehringer Ingelheim Pharmaceuticals, Inc., used under license. MULTISTIX is a trademark of its respective owner and is not a trademark of the GSK group of companies. The maker of this brand is not affiliated with and does not endorse the GSK group of companies or its products. ©2016 the GSK group of companies. All rights reserved. August 2016 ZNT:9PI

GERIATRIC USE

Geriatric Use: Of the total number of subjects enrolled in US and foreign controlled clinical trials of oral formulations of ZANTAC, for which there were subgroup analyses, 4,197 were aged 65 and older, while 899 were aged 75 and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. This drug is known to be substantially excreted by the kidney and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, caution should be exercised in dose selection, and it may be useful to monitor renal function (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Geriatrics and DOSAGE AND ADMINISTRATION: Dosage Adjustment for Patients with Impaired Renal Function).

INDICATIONS AND USAGE

ZANTAC is indicated in: 1.Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks. Trials available to date have not assessed the safety of ranitidine in uncomplicated duodenal ulcer for periods of more than 8 weeks. 2.Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of acute ulcers. No placebo-controlled comparative trials have been carried out for periods of longer than 1 year. 3.The treatment of pathological hypersecretory conditions (e.g., Zollinger-Ellison syndrome and systemic mastocytosis). 4.Short-term treatment of active, benign gastric ulcer. Most patients heal within 6 weeks and the usefulness of further treatment has not been demonstrated. Trials available to date have not assessed the safety of ranitidine in uncomplicated, benign gastric ulcer for periods of more than 6 weeks. 5.Maintenance therapy for gastric ulcer patients at reduced dosage after healing of acute ulcers. Placebo-controlled trials have been carried out for 1 year. 6.Treatment of GERD. Symptomatic relief commonly occurs within 24 hours after starting therapy with ZANTAC 150 mg twice daily. 7.Treatment of endoscopically diagnosed erosive esophagitis. Symptomatic relief of heartburn commonly occurs within 24 hours of therapy initiation with ZANTAC 150 mg 4 times daily. 8.Maintenance of healing of erosive esophagitis. Placebo-controlled trials have been carried out for 48 weeks. Concomitant antacids should be given as needed for pain relief to patients with active duodenal ulcer; active, benign gastric ulcer; hypersecretory states; GERD; and erosive esophagitis.

PEDIATRIC USE

Pediatric Use: The safety and effectiveness of ZANTAC have been established in the age-group of 1 month to 16 years for the treatment of duodenal and gastric ulcers, gastroesophageal reflux disease and erosive esophagitis, and the maintenance of healed duodenal and gastric ulcer. Use of ZANTAC in this age-group is supported by adequate and well-controlled trials in adults, as well as additional pharmacokinetic data in pediatric patients and an analysis of the published literature (see CLINICAL PHARMACOLOGY: Pediatrics and DOSAGE AND ADMINISTRATION: Pediatric Use). Safety and effectiveness in pediatric patients for the treatment of pathological hypersecretory conditions or the maintenance of healing of erosive esophagitis have not been established. Safety and effectiveness in neonates (aged younger than 1 month) have not been established (see CLINICAL PHARMACOLOGY: Pediatrics).

PREGNANCY

Pregnancy: Teratogenic Effects: Pregnancy Category B. Reproduction studies have been performed in rats and rabbits at doses up to 160 times the human dose and have revealed no evidence of impaired fertility or harm to the fetus due to ZANTAC. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

Nursing Mothers: Ranitidine is secreted in human milk. Caution should be exercised when ZANTAC is administered to a nursing mother.

DOSAGE AND ADMINISTRATION

Active Duodenal Ulcer: The current recommended adult oral dosage of ZANTAC for duodenal ulcer is 150 mg twice daily. An alternative dosage of 300 mg once daily after the evening meal or at bedtime can be used for patients in whom dosing convenience is important. The advantages of one treatment regimen compared with the other in a particular patient population have yet to be demonstrated (see Clinical Trials: Active Duodenal Ulcer). Smaller doses have been shown to be equally effective in inhibiting gastric acid secretion in US trials, and several foreign trials have shown that 100 mg twice daily is as effective as the 150-mg dose. Antacid should be given as needed for relief of pain (see CLINICAL PHARMACOLOGY: Pharmacokinetics). Maintenance of Healing of Duodenal Ulcers: The current recommended adult oral dosage is 150 mg at bedtime. Pathological Hypersecretory Conditions (such as Zollinger-Ellison syndrome): The current recommended adult oral dosage is 150 mg twice daily. In some patients it may be necessary to administer ZANTAC 150-mg doses more frequently. Dosages should be adjusted to individual patient needs, and should continue as long as clinically indicated. Dosages up to 6 g/day have been employed in patients with severe disease. Benign Gastric Ulcer: The current recommended adult oral dosage is 150 mg twice daily. Maintenance of Healing of Gastric Ulcers: The current recommended adult oral dosage is 150 mg at bedtime. GERD: The current recommended adult oral dosage is 150 mg twice daily. Erosive Esophagitis: The current recommended adult oral dosage is 150 mg 4 times daily. Maintenance of Healing of Erosive Esophagitis: The current recommended adult oral dosage is 150 mg twice daily. Pediatric Use: The safety and effectiveness of ZANTAC have been established in the age-group of 1 month to 16 years. There is insufficient information about the pharmacokinetics of ZANTAC in neonatal patients (aged younger than 1 month) to make dosing recommendations. The following 3 subsections provide dosing information for each of the pediatric indications. Treatment of Duodenal and Gastric Ulcers: The recommended oral dose for the treatment of active duodenal and gastric ulcers is 2 to 4 mg/kg twice daily to a maximum of 300 mg/day. This recommendation is derived from adult clinical trials and pharmacokinetic data in pediatric patients. Maintenance of Healing of Duodenal and Gastric Ulcers: The recommended oral dose for the maintenance of healing of duodenal and gastric ulcers is 2 to 4 mg/kg once daily to a maximum of 150 mg/day. This recommendation is derived from adult clinical trials and pharmacokinetic data in pediatric patients. Treatment of GERD and Erosive Esophagitis: Although limited data exist for these conditions in pediatric patients, published literature supports a dosage of 5 to 10 mg/kg/day, usually given as 2 divided doses. Dosage Adjustment for Patients with Impaired Renal Function: On the basis of experience with a group of subjects with severely impaired renal function treated with ZANTAC, the recommended dosage in patients with a creatinine clearance <50 mL/min is 150 mg every 24 hours. Should the patient's condition require, the frequency of dosing may be increased to every 12 hours or even further with caution. Hemodialysis reduces the level of circulating ranitidine. Ideally, the dosing schedule should be adjusted so that the timing of a scheduled dose coincides with the end of hemodialysis. Elderly patients are more likely to have decreased renal function, therefore caution should be exercised in dose selection, and it may be useful to monitor renal function (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Geriatrics and PRECAUTIONS: Geriatric Use).

Hydrochlorothiazide 25 MG / valsartan 320 MG Oral Tablet

Generic Name: VALSARTAN AND HYDROCHLOROTHIAZIDE
Brand Name: Valsartan and Hydrochlorothiazide
  • Substance Name(s):
  • HYDROCHLOROTHIAZIDE
  • VALSARTAN

DRUG INTERACTIONS

7. Antidiabetic drugs: Dosage adjustment of antidiabetic may be required (7) Cholestyramine and colestipol: Reduced absorption of thiazides (7) Lithium: Diuretics increase risk of lithium toxicity. Monitor serum lithium concentrations during concurrent use. (7) Non-Steroidal Anti-Inflammatory Drugs (NSAIDs): May increase risk of renal impairment. Can reduce diuretic, natriuretic and antihypertensive effects of diuretics. (7) Dual inhibition of the rennin-angiotensin system: Increased risk of renal impairment, hypotension and hyperkalemia (7) Valsartan No clinically significant pharmacokinetic interactions were observed when valsartan was coadministered with amlodipine, atenolol, cimetidine, digoxin, furosemide, glyburide, hydrochlorothiazide, or indomethacin. The valsartan-atenolol combination was more antihypertensive than either component, but it did not lower the heart rate more than atenolol alone. Coadministration of valsartan and warfarin did not change the pharmacokinetics of valsartan or the time-course of the anticoagulant properties of warfarin. CYP 450 Interactions In vitro metabolism studies indicate that CYP 450 mediated drug interactions between valsartan and co-administered drugs are unlikely because of the low extent of metabolism [see CLINICAL PHARMACOLOGY (12.3)]. Transporters The results from an in vitro study with human liver tissue indicate that valsartan is a substrate of the hepatic uptake transporter OATP1B1 and the hepatic efflux transporter MRP2. Co-administration of inhibitors of the uptake transporter (rifampin, cyclosporine) or efflux transporter (ritonavir) may increase the systemic exposure to valsartan. Non-Steroidal Anti-Inflammatory Agents Including Selective Cyclooxygenase-2 Inhibitors (COX-2 Inhibitors) In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coa-dministration of NSAIDs, including selective COX-2 inhibitors, with angiotensin II receptor antagonists, including valsartan, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving valsartan and NSAID therapy. The antihypertensive effect of angiotensin II receptor antagonists, including valsartan may be attenuated by NSAIDs including selective COX-2 inhibitors. Potassium Concomitant use of valsartan with other agents that block the renin-angiotensin system, potassium sparing diuretics (e.g. spironolactone, triamterene, amiloride), potassium supplements, or salt substitutes containing potassium may lead to increases in serum potassium and in heart failure patients to increases in serum creatinine. If co-medication is considered necessary, monitoring of serum potassium is advisable. Dual Blockade of the Renin-Angiotensin System (RAS) Dual blockade of the RAS with angiotensin-receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Closely monitor blood pressure, renal function and electrolytes in patients on valsartan and hydrochlorothiazide and other agents that affect the RAS. Do not co-administer aliskiren with valsartan and hydrochlorothiazide tablets in patients with diabetes. Avoid use of aliskiren with valsartan and hydrochlorothiazide tablets in patients with renal impairment (GFR <60 mL/min). Hydrochlorothiazide When administered concurrently, the following drugs may interact with thiazide diuretics: Antidiabetic Drugs (Oral Agents and Insulin) Dosage adjustment of the antidiabetic drug may be required. Lithium Diuretic agents increase the risk of lithium toxicity. Refer to the package insert for lithium preparations before use of such preparations with valsartan and hydrochlorothiazide. Monitoring of serum lithium concentrations is recommended during concurrent use. Nonsteroidal Anti-inflammatory Drugs (NSAIDS and COX-2 Selective Inhibitors) When valsartan and hydrochlorothiazide and nonsteroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained. Carbamazepine May lead to symptomatic hyponatremia. Ion Exchange Resins Staggering the dosage of hydrochlorothiazide and ion exchange resins (e.g., cholestyramine, colestipol) such that hydrochlorothiazide is administered at least 4 hours before or 4 to 6 hours after the administration of resins would potentially minimize the interaction. [see CLINICAL PHARMACOLOGY (12.3)]. Cyclosporine Concomitant treatment with cyclosporine may increase the risk of hyperuricemia and gout-type complications.

OVERDOSAGE

10. Valsartan-Hydrochlorothiazide Limited data are available related to overdosage in humans. The most likely manifestations of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. Depressed level of consciousness, circulatory collapse and shock have been reported. If symptomatic hypotension should occur, supportive treatment should be instituted. Valsartan is not removed from the plasma by dialysis. The degree to which hydrochlorothiazide is removed by hemodialysis has not been established. The most common signs and symptoms observed in patients are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. In rats and marmosets, single oral doses of valsartan up to 1524 and 762 mg/kg in combination with hydrochlorothiazide at doses up to 476 and 238 mg/kg, respectively, were very well tolerated without any treatment-related effects. These no adverse effect doses in rats and marmosets, respectively, represent 46.5 and 23 times the maximum recommended human dose (MRHD) of valsartan and 188 and 113 times the MRHD of hydrochlorothiazide on a mg/m2 basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient.) Valsartan Valsartan was without grossly observable adverse effects at single oral doses up to 2000 mg/kg in rats and up to 1000 mg/kg in marmosets, except for salivation and diarrhea in the rat and vomiting in the marmoset at the highest dose (60 and 31 times, respectively, the maximum recommended human dose on a mg/m2 basis). (Calculations assume an oral dose of 320 mg/day and a 60-kg patient.) Hydrochlorothiazide The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in both mice and rats, which represents 2027 and 4054 times, respectively, the maximum recommended human dose on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60-kg patient.)

DESCRIPTION

11. Valsartan and hydrochlorothiazide tablet USP is a combination of valsartan, an orally active, specific angiotensin II receptor blocker (ARB) acting on the AT1 receptor subtype, and hydrochlorothiazide, a diuretic. Valsartan, a nonpeptide molecule, is chemically described as N-(1-oxopentyl)-N-[[2’-(1H-tetrazol-5-yl)[1,1’-biphenyl]-4-yl]methyl]-L-Valine. Its empirical formula is C24H29N5O3, its molecular weight is 435.5, and its structural formula is Valsartan is a white to practically white fine powder. It is soluble in ethanol and methanol and slightly soluble in water. Hydrochlorothiazide USP is a white, or practically white, practically odorless, crystalline powder. It is slightly soluble in water; freely soluble in sodium hydroxide solution, in n-butylamine, and in dimethylformamide; sparingly soluble in methanol; and insoluble in ether, in chloroform, and in dilute mineral acids. Hydrochlorothiazide is chemically described as 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Hydrochlorothiazide is a thiazide diuretic. Its empirical formula is C7H8ClN3O4S2, its molecular weight is 297.73, and its structural formula is Valsartan and hydrochlorothiazide tablets USP are formulated for oral administration to contain valsartan and hydrochlorothiazide, 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg and 320 mg/25 mg. The inactive ingredients of the tablets are colloidal silicon dioxide, croscarmellose sodium, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, pregelatinized starch, polyethylene glycol, titanium dioxide and additional colorants as below. 80 mg/12.5 mg: iron oxide red and iron oxide yellow 160 mg/12.5 mg: iron oxide red 160 mg/25 mg: iron oxide black, iron oxide red and iron oxide yellow 320 mg/12.5 mg: iron oxide black and iron oxide red 320 mg/25 mg: iron oxide yellow image 2 Image-3

CLINICAL STUDIES

14. 14.1 Hypertension Valsartan-Hydrochlorothiazide In controlled clinical trials including over 7600 patients, 4372 patients were exposed to valsartan (80, 160 and 320 mg) and concomitant hydrochlorothiazide (12.5 and 25 mg). Two factorial trials compared various combinations of 80/12.5 mg, 80/25 mg, 160/12.5 mg, 160/25 mg, 320/12.5 mg and 320/25 mg with their respective components and placebo. The combination of valsartan and hydrochlorothiazide resulted in additive placebo-adjusted decreases in systolic and diastolic blood pressure at trough of 14-21/8-11 mmHg at 80/12.5 mg to 320/25 mg, compared to 7-10/4-5 mmHg for valsartan 80 mg to 320 mg and 5-11/2-5 mmHg for hydrochlorothiazide 12.5 mg to 25 mg, alone. Three other controlled trials investigated the addition of hydrochlorothiazide to patients who did not respond adequately to valsartan 80 mg to valsartan 320 mg, resulted in the additional lowering of systolic and diastolic blood pressure by approximately 4-12/2-5 mmHg. The maximal antihypertensive effect was attained 4 weeks after the initiation of therapy, the first time point at which blood pressure was measured in these trials. In long-term follow-up studies (without placebo control) the effect of the combination of valsartan and hydrochlorothiazide appeared to be maintained for up to two years. The antihypertensive effect is independent of age or gender. The overall response to the combination was similar for Black and non-Black patients. There was essentially no change in heart rate in patients treated with the combination of valsartan and hydrochlorothiazide in controlled trials. There are no trials of the valsartan and hydrochlorothiazide combination tablet demonstrating reductions in cardiovascular risk in patients with hypertension, but the hydrochlorothiazide component and several ARBs, which are the same pharmacological class as the valsartan component, have demonstrated such benefits. Valsartan The antihypertensive effects of valsartan were demonstrated principally in 7 placebo-controlled, 4- to 12-week trials (one in patients over 65) of dosages from 10 to 320 mg/day in patients with baseline diastolic blood pressures of 95-115. The studies allowed comparison of once-daily and twice-daily regimens of 160 mg/day; comparison of peak and trough effects; comparison (in pooled data) of response by gender, age, and race; and evaluation of incremental effects of hydrochlorothiazide. Administration of valsartan to patients with essential hypertension results in a significant reduction of sitting, supine, and standing systolic and diastolic blood pressure, usually with little or no orthostatic change. In most patients, after administration of a single oral dose, onset of antihypertensive activity occurs at approximately 2 hours, and maximum reduction of blood pressure is achieved within 6 hours. The antihypertensive effect persists for 24 hours after dosing, but there is a decrease from peak effect at lower doses (40 mg) presumably reflecting loss of inhibition of angiotensin II. At higher doses, however (160 mg), there is little difference in peak and trough effect. During repeated dosing, the reduction in blood pressure with any dose is substantially present within 2 weeks, and maximal reduction is generally attained after 4 weeks. In long-term follow-up studies (without placebo control) the effect of valsartan appeared to be maintained for up to two years. The antihypertensive effect is independent of age, gender or race. The latter finding regarding race is based on pooled data and should be viewed with caution, because antihypertensive drugs that affect the renin-angiotensin system (that is, ACE inhibitors and angiotensin II blockers) have generally been found to be less effective in low-renin hypertensives (frequently Blacks) than in high-renin hypertensives (frequently Whites). In pooled, randomized, controlled trials of valsartan that included a total of 140 Blacks and 830 Whites, valsartan and an ACE-inhibitor control were generally at least as effective in Blacks as Whites. The explanation for this difference from previous findings is unclear. Abrupt withdrawal of valsartan has not been associated with a rapid increase in blood pressure. The 7 studies of valsartan monotherapy included over 2000 patients randomized to various doses of valsartan and about 800 patients randomized to placebo. Doses below 80 mg were not consistently distinguished from those of placebo at trough, but doses of 80, 160 and 320 mg produced dose-related decreases in systolic and diastolic blood pressure, with the difference from placebo of approximately 6-9/3-5 mmHg at 80-160 mg and 9/6 mmHg at 320 mg. Patients with an inadequate response to 80 mg once daily were titrated to either 160 mg once daily or 80 mg twice daily, which resulted in a comparable response in both groups. In another 4-week study, 1876 patients randomized to valsartan 320 mg once daily had an incremental blood pressure reduction 3/1 mmHg lower than did 1900 patients randomized to valsartan 160 mg once daily. In controlled trials, the antihypertensive effect of once daily valsartan 80 mg was similar to that of once daily enalapril 20 mg or once daily lisinopril 10 mg. There was essentially no change in heart rate in valsartan-treated patients in controlled trials. 14.2 Initial Therapy – Hypertension The safety and efficacy of valsartan and hydrochlorothiazide as initial therapy for patients with severe hypertension (defined as a sitting diastolic blood pressure =110 mmHg and systolic blood pressure =140 mmHg off all antihypertensive therapy) was studied in a 6-week multicenter, randomized, double-blind study. Patients were randomized to either valsartan and hydrochlorothiazide (valsartan and hydrochlorothiazide 160/12.5 mg once daily) or to valsartan (160 mg once daily) and followed for blood pressure response. Patients were force-titrated at 2-week intervals. Patients on combination therapy were subsequently titrated to 160/25 mg followed by 320/25 mg valsartan/hydrochlorothiazide. Patients on monotherapy were subsequently titrated to 320 mg valsartan followed by a titration to 320 mg valsartan to maintain the blind. The study randomized 608 patients, including 261 (43%) females, 147 (24%) Blacks, and 75 (12%) = 65 years of age. The mean blood pressure at baseline for the total population was 168/112 mmHg. The mean age was 52 years. After 4 weeks of therapy, reductions in systolic and diastolic blood pressure were 9/5 mmHg greater in the group treated with valsartan and hydrochlorothiazide compared to valsartan. Similar trends were seen when the patients were grouped according to gender, race or age.

HOW SUPPLIED

16. /STORAGE AND HANDLING Valsartan and hydrochlorothiazide tablets USP are available as non-scored tablets containing valsartan/hydrochlorothiazide 80 mg/12.5 mg, 160 mg/12.5 mg, 160 mg/25 mg, 320 mg/12.5 mg and 320 mg/25 mg. Strengths are available as follows. 80 mg/12.5 mg Tablet – Light pink colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P11” on the other side. Bottles of 90 NDC 68180-103-09 Bottles of 500 NDC 68180-103-02 Bottles of 1000 NDC 68180-103-03 10 X 10’ Blister Pack NDC 68180-103-13 160 mg/12.5 mg Tablet – Reddish brown colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P12” on the other side. Bottles of 90 NDC 68180-104-09 Bottles of 500 NDC 68180-104-02 Bottles of 1000 NDC 68180-104-03 10 X 10’ Blister Pack NDC 68180-104-13 160 mg/25 mg Tablet – Light orange colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P13” on other side. Bottles of 90 NDC 68180-105-09 Bottles of 500 NDC 68180-105-02 Bottles of 1000 NDC 68180-105-03 10 X 10’ Blister Pack NDC 68180-105-13 320 mg/12.5 mg Tablet – Pink, capsule shaped, film-coated biconvex tablets debossed with “LU” on one side and “P14” on the other side. Bottles of 90 NDC 68180-101-09 Bottles of 500 NDC 68180-101-02 10 X 10’ Blister Pack NDC 68180-101-13 320 mg/25 mg Tablet – Yellow, capsule shaped, film-coated biconvex tablets debossed with ‘LU’ on one side and ‘P15’ on the other side. Bottles of 90 NDC 68180-102-09 Bottles of 500 NDC 68180-102-02 10 X 10’ Blister Pack NDC 68180-102-13 Store at 25°C (77°F); excursions permitted to 15 to 30°C (59 to 86°F) [see USP Controlled Room Temperature]. Protect from moisture. Dispense in tight container (USP).

RECENT MAJOR CHANGES

Boxed Warning: Fetal Toxicity 1/2012 Indications and Usage: Benefits of lowering blood pressure (1) 12/2011 Contraindications: Dual RAS Blockade (4) 10/2012 Warnings and Precautions: Fetal Toxicity (5.1) 1/2012 Warnings and Precautions: Potassium Abnormalities (5.7) 7/2012 Drug Interactions: Dual Blockade of the Renin-Angiotensin System (7) 10/2012

GERIATRIC USE

8.5 Geriatric Use In the controlled clinical trials of valsartan and hydrochlorothiazide, 764 (17.5%) patients treated with valsartan-hydrochlorothiazide were =65 years and 118 (2.7%) were =75 years. No overall difference in the efficacy or safety of valsartan-hydrochlorothiazide was observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3. Tablets (valsartan/HCTZ mg): 80/12.5, 160/12.5, 160/25, 320/12.5, 320/25 80 mg/12.5 mg tablets, light pink colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P11” on the other side. 160 mg/12.5 mg tablets, reddish brown colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P12” on the other side. 160 mg/25 mg tablets, light orange colored, capsule shaped, film-coated biconvex tablets, debossed with “LU” on one side and “P13” on other side. 320 mg/12.5 mg tablets, pink, capsule shaped, film-coated biconvex tablets debossed with ‘LU’ on one side and ‘P14’ on the other side. 320 mg/25 mg tablets, yellow, capsule shaped, film-coated biconvex tablets debossed with ‘LU’ on one side and ‘P15’ on the other side.

MECHANISM OF ACTION

12.1 Mechanism of Action Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis. There is also an AT2 receptor found in many tissues, but AT2 is not known to be associated with cardiovascular homeostasis. Valsartan has much greater affinity (about 20,000-fold) for the AT1 receptor than for the AT2 receptor. The primary metabolite of valsartan is essentially inactive with an affinity for the AT1 receptor about one 200th that of valsartan itself.

INDICATIONS AND USAGE

1. Valsartan and hydrochlorothiazide tablet USP is the combination tablet of valsartan, an angiotensin II receptor blocker (ARB) and hydrochlorothiazide (HCTZ), a diuretic. Valsartan and hydrochlorothiazide tablet USP is indicated for the treatment of hypertension, to lower blood pressure: In patients not adequately controlled with monotherapy (1) As initial therapy in patients likely to need multiple drugs to achieve their blood pressure goals (1) Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. Valsartan and hydrochlorothiazide tablet USP is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including hydrochlorothiazide and the ARB class to which valsartan principally belongs. There are no controlled trials demonstrating risk reduction with valsartan and hydrochlorothiazide tablets USP. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy. Add-On Therapy Valsartan and hydrochlorothiazide tablets USP may be used in patients whose blood pressure is not adequately controlled on monotherapy. Replacement Therapy Valsartan and hydrochlorothiazide tablets USP may be substituted for the titrated components. Initial Therapy Valsartan and hydrochlorothiazide tablets USP may be used as initial therapy in patients who are likely to need multiple drugs to achieve blood pressure goals. The choice of valsartan and hydrochlorothiazide tablets USP as initial therapy for hypertension should be based on an assessment of potential benefits and risks. Patients with stage 2 hypertension are at a relatively high risk for cardiovascular events (such as strokes, heart attacks, and heart failure), kidney failure, and vision problems, so prompt treatment is clinically relevant. The decision to use a combination as initial therapy should be individualized and should be shaped by considerations such as baseline blood pressure, the target goal and the incremental likelihood of achieving goal with a combination compared to monotherapy. Individual blood pressure goals may vary based upon the patient’s risk. Data from the high dose multifactorial trial [see CLINICAL STUDIES (14.1)] provides estimates of the probability of reaching a target blood pressure with valsartan and hydrochlorothiazide tablets compared to valsartan or hydrochlorothiazide monotherapy. The figures below provide estimates of the likelihood of achieving systolic or diastolic blood pressure control with valsartan and hydrochlorothiazide tablets USP, 320 mg/25 mg, based upon baseline systolic or diastolic blood pressure. The curve of each treatment group was estimated by logistic regression modeling. The estimated likelihood at the right tail of each curve is less reliable due to small numbers of subjects with high baseline blood pressures. For example, a patient with a baseline blood pressure of 160/100 mmHg has about a 41% likelihood of achieving a goal of <140 mmHg (systolic) and 60% likelihood of achieving <90 mmHg (diastolic) on valsartan alone and the likelihood of achieving these goals on HCTZ alone is about 50% (systolic) or 57% (diastolic). The likelihood of achieving these goals on valsartan and hydrochlorothiazide tablets rises to about 84% (systolic) or 80% (diastolic). The likelihood of achieving these goals on placebo is about 23% (systolic) or 36% (diastolic). image 1

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of valsartan and hydrochlorothiazide in pediatric patients have not been established. Neonates with a history of in utero exposure to valsartan and hydrochlorothiazide If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.

PREGNANCY

8.1 Pregnancy Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue valsartan and hydrochlorothiazide as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue valsartan and hydrochlorothiazide, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to valsartan and hydrochlorothiazide for hypotension, oliguria, and hyperkalemia [see USE IN SPECIFIC POPULATIONS (8.4)] Hydrochlorothiazide: Thiazides can cross the placenta, and concentrations reached in the umbilical vein approach those in the maternal plasma. Hydrochlorothiazide, like other diuretics, can cause placental hypoperfusion. It accumulates in the amniotic fluid, with reported concentrations up to 19 times higher than in umbilical vein plasma. Use of thiazides during pregnancy is associated with a risk of fetal or neonatal jaundice or thrombocytopenia. Since they do not prevent or alter the course of EPH (Edema, Proteinuria, Hypertension) gestosis (pre-eclampsia), these drugs should not be used to treat hypertension in pregnant women. The use of hydrochlorothiazide for other indications (e.g. heart disease) in pregnancy should be avoided.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether valsartan is excreted in human milk. Valsartan was excreted into the milk of lactating rats; however, animal breast milk drug levels may not accurately reflect human breast milk levels. Hydrochlorothiazide is excreted in human breast milk. Because many drugs are excreted into human milk and because of the potential for adverse reactions in nursing infants from valsartan and hydrochlorothiazide, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: FETAL TOXICITY See full prescribing information for complete boxed warning. When pregnancy is detected, discontinue valsartan and hydrochlorothiazide tablets as soon as possible. (5.1) Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1) WARNING: FETAL TOXICITY When pregnancy is detected, discontinue Valsartan and hydrochlorothiazide tablets as soon as possible. (5.1) Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)

WARNING AND CAUTIONS

5. WARNINGS AND PRECAUTIONS Hypotension: Correct volume depletion prior to initiation, (5.2) Observe for signs of fluid or electrolyte imbalance (5.7) Monitor renal function and potassium in susceptible patients (5.3) Exacerbation or activation of systemic lupus erythematosus (5.5) Acute angle-closure glaucoma (5.8) 5.1 Fetal Toxicity Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue valsartan and hydrochlorothiazide as soon as possible. [see USE IN SPECIFIC POPULATIONS (8.1)]. Intrauterine exposure to thiazide diuretics is associated with fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults. 5.2 Hypotension in Volume- and/or Salt-Depleted Patients Excessive reduction of blood pressure was rarely seen (0.7%) in patients with uncomplicated hypertension treated with valsartan and hydrochlorothiazide in controlled trials. In patients with an activated renin-angiotensin system, such as volume- and/or salt-depleted patients receiving high doses of diuretics, symptomatic hypotension may occur. This condition should be corrected prior to administration of valsartan and hydrochlorothiazide, or the treatment should start under close medical supervision. If hypotension occurs, the patient should be placed in the supine position and, if necessary, given an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further treatment, which usually can be continued without difficulty once the blood pressure has stabilized. 5.3 Impaired Renal Function Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g. patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure, or volume depletion) may be at particular risk of developing acute renal failure on valsartan and hydrochlorothiazide. Monitor renal function periodically in these patients. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on valsartan and hydrochlorothiazide [see DRUG INTERACTIONS (7)]. 5.4 Hypersensitivity Reaction Hydrochlorothiazide Hypersensitivity reactions to hydrochlorothiazide may occur in patients with or without a history of allergy or bronchial asthma, but are more likely in patients with such a history. 5.5 Systemic Lupus Erythematosus Hydrochlorothiazide Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus. 5.6 Lithium Interaction Hydrochlorothiazide Lithium generally should not be given with thiazides [see DRUG INTERACTIONS (7)]. 5.7 Potassium Abnormalities Valsartan-Hydrochlorothiazide In the controlled trials of various doses of valsartan and hydrochlorothiazide the incidence of hypertensive patients who developed hypokalemia (serum potassium 5.7 mEq/L) was 0.4%. Hydrochlorothiazide can cause hypokalemia and hyponatremia. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. Monitor serum electrolytes periodically. If hypokalemia is accompanied by clinical signs (e.g. muscular weakness, paresis, or ECG alterations), valsartan and hydrochlorothiazide should be discontinued. Correction of hypokalemia and any coexisting hypomagnesemia is recommended prior to the initiation of thiazides. Some patients with heart failure have developed increases in potassium with valsartan therapy. These effects are usually minor and transient, and they are more likely to occur in patients with pre-existing renal impairment. Dosage reduction and/or discontinuation of the diuretic and/or valsartan may be required [see ADVERSE REACTIONS (6.1)]. 5.8 Acute Myopia and Secondary Angle-Closure Glaucoma Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy. 5.9 Metabolic Disturbances Hydrochlorothiazide Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides. Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients. Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving valsartan and hydrochlorothiazide.

INFORMATION FOR PATIENTS

17. PATIENT COUNSELING INFORMATION Information for Patients Pregnancy Female patients of childbearing age should be told about the consequences of exposure to valsartan and hydrochlorothiazide tablets during pregnancy. Discuss treatment options with women planning to become pregnant. Patients should be asked to report pregnancies to their physicians as soon as possible. Symptomatic Hypotension A patient receiving valsartan and hydrochlorothiazide tablets should be cautioned that lightheadedness can occur, especially during the first days of therapy, and that it should be reported to the prescribing physician. The patients should be told that if syncope occurs, valsartan and hydrochlorothiazide tablets should be discontinued until the physician has been consulted. All patients should be cautioned that inadequate fluid intake, excessive perspiration, diarrhea, or vomiting can lead to an excessive fall in blood pressure, with the same consequences of lightheadedness and possible syncope. Potassium Supplements A patient receiving valsartan and hydrochlorothiazide tablets should be told not to use potassium supplements or salt substitutes containing potassium without consulting the prescribing physician. Manufactured for: Lupin Pharmaceuticals, Inc. Baltimore, Maryland 21202 United States Manufactured by: Lupin Limited Goa – 403 722 INDIA January 2013 ID#: 229952

DOSAGE AND ADMINISTRATION

2. Dose once daily. Titrate as needed to a maximum dose of 320/25mg (2) May be used as add-on/switch therapy for patients not adequately controlled on any of the components (valsartan or HCTZ) (2) May be substituted for titrated components (2.3) 2.1 General Considerations The usual starting dose is valsartan and hydrochlorothiazide tablets USP, 160/12.5 mg once daily. The dosage can be increased after 1 to 2 weeks of therapy to a maximum of one 320/25 tablet once daily as needed to control blood pressure [see CLINICAL STUDIES (14.2)]. Maximum antihypertensive effects are attained within 2 to 4 weeks after a change in dose. 2.2 Add-On Therapy A patient whose blood pressure is not adequately controlled with valsartan (or another ARB) alone or hydrochlorothiazide alone may be switched to combination therapy with valsartan and hydrochlorothiazide tablets USP. A patient who experiences dose-limiting adverse reactions on either component alone may be switched to valsartan and hydrochlorothiazide tablets USP containing a lower dose of that component in combination with the other to achieve similar blood pressure reductions. The clinical response to valsartan and hydrochlorothiazide tablets USP should be subsequently evaluated and if blood pressure remains uncontrolled after 3 to 4 weeks of therapy, the dose may be titrated up to a maximum of 320/25 mg. 2.3 Replacement Therapy Valsartan and hydrochlorothiazide tablets USP may be substituted for the titrated components. 2.4 Initial Therapy Valsartan and hydrochlorothiazide tablets USP are not recommended as initial therapy in patients with intravascular volume depletion [see WARNINGS AND PRECAUTIONS (5.2)]. 2.5 Use with Other Antihypertensive Drugs Valsartan and hydrochlorothiazide tablets USP may be administered with other antihypertensive agents.

IMITREX 50 MG Oral Tablet

Generic Name: SUMATRIPTAN SUCCINATE
Brand Name: IMITREX
  • Substance Name(s):
  • SUMATRIPTAN SUCCINATE

WARNINGS

IMITREX Tablets should only be used where a clear diagnosis of migraine headache has been established. Risk of Myocardial Ischemia and/or Infarction and Other Adverse Cardiac Events Sumatriptan should not be given to patients with documented ischemic or vasospastic coronary artery disease (CAD) (see CONTRAINDICATIONS). It is strongly recommended that sumatriptan not be given to patients in whom unrecognized CAD is predicted by the presence of risk factors (e.g., hypertension, hypercholesterolemia, smoker, obesity, diabetes, strong family history of CAD, female with surgical or physiological menopause, male over 40 years of age) unless a cardiovascular evaluation provides satisfactory clinical evidence that the patient is reasonably free of coronary artery and ischemic myocardial disease or other significant underlying cardiovascular disease. The sensitivity of cardiac diagnostic procedures to detect cardiovascular disease or predisposition to coronary artery vasospasm is modest, at best. If, during the cardiovascular evaluation, the patient’s medical history or electrocardiographic investigations reveal findings indicative of, or consistent with, coronary artery vasospasm or myocardial ischemia, sumatriptan should not be administered (see CONTRAINDICATIONS). For patients with risk factors predictive of CAD, who are determined to have a satisfactory cardiovascular evaluation, it is strongly recommended that administration of the first dose of sumatriptan tablets take place in the setting of a physician’s office or similar medically staffed and equipped facility unless the patient has previously received sumatriptan . Because cardiac ischemia can occur in the absence of clinical symptoms, consideration should be given to obtaining on the first occasion of use an electrocardiogram (ECG) during the interval immediately following IMITREX Tablets in these patients with risk factors. It is recommended that patients who are intermittent long-term users of sumatriptan and who have or acquire risk factors predictive of CAD, as described above, undergo periodic interval cardiovascular evaluation as they continue to use sumatriptan . The systematic approach described above is intended to reduce the likelihood that patients with unrecognized cardiovascular disease will be inadvertently exposed to sumatriptan . Drug-Associated Cardiac Events and Fatalities Serious adverse cardiac events, including acute myocardial infarction, life-threatening disturbances of cardiac rhythm, and death have been reported within a few hours following the administration of IMITREX® (sumatriptan succinate) Injection or IMITREX Tablets. Considering the extent of use of sumatriptan in patients with migraine, the incidence of these events is extremely low. The fact that sumatriptan can cause coronary vasospasm, that some of these events have occurred in patients with no prior cardiac disease history and with documented absence of CAD, and the close proximity of the events to sumatriptan use support the conclusion that some of these cases were caused by the drug. In many cases, however, where there has been known underlying coronary artery disease, the relationship is uncertain. Premarketing Experience With Sumatriptan : Of 6,348 patients with migraine who participated in premarketing controlled and uncontrolled clinical trials of oral sumatriptan, 2 experienced clinical adverse events shortly after receiving oral sumatriptan that may have reflected coronary vasospasm. Neither of these adverse events was associated with a serious clinical outcome. Among the more than 1,900 patients with migraine who participated in premarketing controlled clinical trials of subcutaneous sumatriptan, there were 8 patients who sustained clinical events during or shortly after receiving sumatriptan that may have reflected coronary artery vasospasm. Six of these 8 patients had ECG changes consistent with transient ischemia, but without accompanying clinical symptoms or signs. Of these 8 patients, 4 had either findings suggestive of CAD or risk factors predictive of CAD prior to study enrollment. Among approximately 4,000 patients with migraine who participated in premarketing controlled and uncontrolled clinical trials of sumatriptan nasal spray, 1 patient experienced an asymptomatic subendocardial infarction possibly subsequent to a coronary vasospastic event. Postmarketing Experience With Sumatriptan : Serious cardiovascular events, some resulting in death, have been reported in association with the use of IMITREX Injection or IMITREX Tablets. The uncontrolled nature of postmarketing surveillance, however, makes it impossible to determine definitively the proportion of the reported cases that were actually caused by sumatriptan or to reliably assess causation in individual cases. On clinical grounds, the longer the latency between the administration of IMITREX and the onset of the clinical event, the less likely the association is to be causative. Accordingly, interest has focused on events beginning within 1 hour of the administration of IMITREX. Cardiac events that have been observed to have onset within 1 hour of sumatriptan administration include: coronary artery vasospasm, transient ischemia, myocardial infarction, ventricular tachycardia and ventricular fibrillation, cardiac arrest, and death. Some of these events occurred in patients who had no findings of CAD and appear to represent consequences of coronary artery vasospasm. However, among domestic reports of serious cardiac events within 1 hour of sumatriptan administration, almost all of the patients had risk factors predictive of CAD and the presence of significant underlying CAD was established in most cases (see CONTRAINDICATIONS). Drug-Associated Cerebrovascular Events and Fatalities Cerebral hemorrhage, subarachnoid hemorrhage, stroke, and other cerebrovascular events have been reported in patients treated with oral or subcutaneous sumatriptan, and some have resulted in fatalities. The relationship of sumatriptan to these events is uncertain. In a number of cases, it appears possible that the cerebrovascular events were primary, sumatriptan having been administered in the incorrect belief that the symptoms experienced were a consequence of migraine when they were not. As with other acute migraine therapies, before treating headaches in patients not previously diagnosed as migraineurs, and in migraineurs who present with atypical symptoms, care should be taken to exclude other potentially serious neurological conditions. It should also be noted that patients with migraine may be at increased risk of certain cerebrovascular events (e.g., cerebrovascular accident, transient ischemic attack). Other Vasospasm-Related Events Sumatriptan may cause vasospastic reactions other than coronary artery vasospasm. Both peripheral vascular ischemia and colonic ischemia with abdominal pain and bloody diarrhea have been reported. Very rare reports of transient and permanent blindness and significant partial vision loss have been reported with the use of sumatriptan. Visual disorders may also be part of a migraine attack. Serotonin Syndrome Serotonin syndrome may occur with triptans, including IMITREX, particularly during combined use with selective serotonin reuptake inhibitors (SSRIs) or serotonin norepinephrine reuptake inhibitors (SNRIs). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). The onset of symptoms can occur within minutes to hours of receiving a new or a greater dose of a serotonergic medication. Treatment with IMITREX should be discontinued if serotonin syndrome is suspected. Increase in Blood Pressure Significant elevation in blood pressure, including hypertensive crisis, has been reported on rare occasions in patients with and without a history of hypertension. Sumatriptan is contraindicated in patients with uncontrolled hypertension (see CONTRAINDICATIONS). Sumatriptan should be administered with caution to patients with controlled hypertension as transient increases in blood pressure and peripheral vascular resistance have been observed in a small proportion of patients. Concomitant Drug Use In patients taking MAO-A inhibitors, sumatriptan plasma levels attained after treatment with recommended doses are 7-fold higher following oral administration than those obtained under other conditions. Accordingly, the coadministration of IMITREX Tablets and an MAO-A inhibitor is contraindicated (see CLINICAL PHARMACOLOGY and CONTRAINDICATIONS). Hypersensitivity Hypersensitivity (anaphylaxis/anaphylactoid) reactions have occurred on rare occasions in patients receiving sumatriptan. Such reactions can be life threatening or fatal. In general, hypersensitivity reactions to drugs are more likely to occur in individuals with a history of sensitivity to multiple allergens (see CONTRAINDICATIONS).

DRUG INTERACTIONS

Drug Interactions Monoamine Oxidase Inhibitors: Treatment with MAO-A inhibitors generally leads to an increase of sumatriptan plasma levels (see CONTRAINDICATIONS and PRECAUTIONS). Due to gut and hepatic metabolic first-pass effects, the increase of systemic exposure after coadministration of an MAO-A inhibitor with oral sumatriptan is greater than after coadministration of the monoamine oxidase inhibitors (MAOI) with subcutaneous sumatriptan. In a study of 14 healthy females, pretreatment with an MAO-A inhibitor decreased the clearance of subcutaneous sumatriptan. Under the conditions of this experiment, the result was a 2-fold increase in the area under the sumatriptan plasma concentration × time curve (AUC), corresponding to a 40% increase in elimination half-life. This interaction was not evident with an MAO-B inhibitor. A small study evaluating the effect of pretreatment with an MAO-A inhibitor on the bioavailability from a 25-mg oral sumatriptan tablet resulted in an approximately 7-fold increase in systemic exposure. Alcohol: Alcohol consumed 30 minutes prior to sumatriptan ingestion had no effect on the pharmacokinetics of sumatriptan.

OVERDOSAGE

Patients (N = 670) have received single oral doses of 140 to 300 mg without significant adverse effects. Volunteers (N = 174) have received single oral doses of 140 to 400 mg without serious adverse events. Overdose in animals has been fatal and has been heralded by convulsions, tremor, paralysis, inactivity, ptosis, erythema of the extremities, abnormal respiration, cyanosis, ataxia, mydriasis, salivation, and lacrimation. The elimination half-life of sumatriptan is approximately 2.5 hours (see CLINICAL PHARMACOLOGY), and therefore monitoring of patients after overdose with IMITREX Tablets should continue for at least 12 hours or while symptoms or signs persist. It is unknown what effect hemodialysis or peritoneal dialysis has on the serum concentrations of sumatriptan.

DESCRIPTION

IMITREX Tablets contain sumatriptan (as the succinate), a selective 5-hydroxytryptamine1 receptor subtype agonist. Sumatriptan succinate is chemically designated as 3-[2-(dimethylamino)ethyl]-N-methyl-indole-5-methanesulfonamide succinate (1:1), and it has the following structure: The empirical formula is C14H21N3O2S•C4H6O4, representing a molecular weight of 413.5. Sumatriptan succinate is a white to off-white powder that is readily soluble in water and in saline. Each IMITREX Tablet for oral administration contains 35, 70, or 140 mg of sumatriptan succinate equivalent to 25, 50, or 100 mg of sumatriptan, respectively. Each tablet also contains the inactive ingredients croscarmellose sodium, dibasic calcium phosphate, magnesium stearate, microcrystalline cellulose, and sodium bicarbonate. Each 100-mg tablet also contains hypromellose, iron oxide, titanium dioxide, and triacetin. Imitrex Tablets Chemical Structure

CLINICAL STUDIES

The efficacy of IMITREX Tablets in the acute treatment of migraine headaches was demonstrated in 3, randomized, double-blind, placebo-controlled studies. Patients enrolled in these 3 studies were predominately female (87%) and Caucasian (97%), with a mean age of 40 years (range, 18 to 65 years). Patients were instructed to treat a moderate to severe headache. Headache response, defined as a reduction in headache severity from moderate or severe pain to mild or no pain, was assessed up to 4 hours after dosing. Associated symptoms such as nausea, photophobia, and phonophobia were also assessed. Maintenance of response was assessed for up to 24 hours postdose. A second dose of IMITREX Tablets or other medication was allowed 4 to 24 hours after the initial treatment for recurrent headache. Acetaminophen was offered to patients in Studies 2 and 3 beginning at 2 hours after initial treatment if the migraine pain had not improved or worsened. Additional medications were allowed 4 to 24 hours after the initial treatment for recurrent headache or as rescue in all 3 studies. The frequency and time to use of these additional treatments were also determined. In all studies, doses of 25, 50, and 100 mg were compared to placebo in the treatment of migraine attacks. In 1 study, doses of 25, 50, and 100 mg were also compared to each other. In all 3 trials, the percentage of patients achieving headache response 2 and 4 hours after treatment was significantly greater among patients receiving IMITREX Tablets at all doses compared to those who received placebo. In 1 of the 3 studies, there was a statistically significant greater percentage of patients with headache response at 2 and 4 hours in the 50- or 100-mg group when compared to the 25-mg dose groups. There were no statistically significant differences between the 50- and 100-mg dose groups in any study. The results from the 3 controlled clinical trials are summarized in Table 1. Comparisons of drug performance based upon results obtained in different clinical trials are never reliable. Because studies are conducted at different times, with different samples of patients, by different investigators, employing different criteria and/or different interpretations of the same criteria, under different conditions (dose, dosing regimen, etc.), quantitative estimates of treatment response and the timing of response may be expected to vary considerably from study to study. Table 1. Percentage of Patients With Headache Response (No or Mild Pain) 2 and 4 Hours Following Treatment Placebo 2 hr 4 hr IMITREX Tablets 25 mg 2 hr 4 hr IMITREX Tablets 50 mg 2 hr 4 hr IMITREX Tablets 100 mg 2 hr 4 hr Study 1 27% 38% 52%a 67%a 61%ab 78%ab 62%ab 79%ab (N = 94) (N = 298) (N = 296) (N = 296) Study 2 26% 38% 52%a 70%a 50%a 68%a 56%a 71%a (N = 65) (N = 66) (N = 62) (N = 66) Study 3 17% 19% 52%a 65%a 54%a 72%a 57%a 78%a (N = 47) (N = 48) (N = 46) (N = 46) a P<0.05 in comparison with placebo. b P<0.05 in comparison with 25 mg. The estimated probability of achieving an initial headache response over the 4 hours following treatment is depicted in Figure 1. Figure 1. Estimated Probability of Achieving Initial Headache Response Within 240 Minutesa aThe figure shows the probability over time of obtaining headache response (no or mild pain) following treatment with sumatriptan. The averages displayed are based on pooled data from the 3 clinical controlled trials providing evidence of efficacy. Kaplan-Meier plot with patients not achieving response and/or taking rescue within 240 minutes censored to 240 minutes. For patients with migraine-associated nausea, photophobia, and/or phonophobia at baseline, there was a lower incidence of these symptoms at 2 hours (Study 1) and at 4 hours (Studies 1, 2, and 3) following administration of IMITREX Tablets compared to placebo. As early as 2 hours in Studies 2 and 3 or 4 hours in Study 1, through 24 hours following the initial dose of study treatment, patients were allowed to use additional treatment for pain relief in the form of a second dose of study treatment or other medication. The estimated probability of patients taking a second dose or other medication for migraine over the 24 hours following the initial dose of study treatment is summarized in Figure 2. Figure 2. The Estimated Probability of Patients Taking a Second Dose or Other Medication for Migraine Over the 24 Hours Following the Initial Dose of Study Treatmenta aKaplan-Meier plot based on data obtained in the 3 clinical controlled trials providing evidence of efficacy with patients not using additional treatments censored to 24 hours. Plot also includes patients who had no response to the initial dose. No remedication was allowed within 2 hours postdose. There is evidence that doses above 50 mg do not provide a greater effect than 50 mg. There was no evidence to suggest that treatment with sumatriptan was associated with an increase in the severity of recurrent headaches. The efficacy of IMITREX Tablets was unaffected by presence of aura; duration of headache prior to treatment; gender, age, or weight of the patient; relationship to menses; or concomitant use of common migraine prophylactic drugs (e.g., beta-blockers, calcium channel blockers, tricyclic antidepressants). There were insufficient data to assess the impact of race on efficacy. Figure 1. Estimated Probability of Achieving Initial Headache Response Within 240 Minutes* Figure 2. The Estimated Probability of Patients Taking a Second Dose or Other Medication for Migraine Over the 24 Hours Following the Initial Dose of Study Treatment*

HOW SUPPLIED

IMITREX Tablets, 100 mg of sumatriptan (base) as the succinate. IMITREX Tablets, 100 mg, are pink, triangular-shaped, film-coated tablets debossed with “IMITREX 100” on one side and a chevron shape (^) on the other in blister packs of 9 tablets (NDC 54868-5118-0). Store between 36° and 86°F (2° and 30°C).

GERIATRIC USE

Geriatric Use The use of sumatriptan in elderly patients is not recommended because elderly patients are more likely to have decreased hepatic function, they are at higher risk for CAD, and blood pressure increases may be more pronounced in the elderly (see WARNINGS).

MECHANISM OF ACTION

Mechanism of Action Sumatriptan is an agonist for a vascular 5‑hydroxytryptamine1 receptor subtype (probably a member of the 5‑HT1D family) having only a weak affinity for 5‑HT1A, 5‑HT5A, and 5‑HT7 receptors and no significant affinity (as measured using standard radioligand binding assays) or pharmacological activity at 5‑HT2, 5‑HT3, or 5‑HT4 receptor subtypes or at alpha1‑, alpha2‑, or beta‑adrenergic; dopamine1; dopamine2; muscarinic; or benzodiazepine receptors. The vascular 5‑HT1 receptor subtype that sumatriptan activates is present on cranial arteries in both dog and primate, on the human basilar artery, and in the vasculature of human dura mater and mediates vasoconstriction. This action in humans correlates with the relief of migraine headache. In addition to causing vasoconstriction, experimental data from animal studies show that sumatriptan also activates 5‑HT1 receptors on peripheral terminals of the trigeminal nerve innervating cranial blood vessels. Such an action may also contribute to the antimigrainous effect of sumatriptan in humans. In the anesthetized dog, sumatriptan selectively reduces the carotid arterial blood flow with little or no effect on arterial blood pressure or total peripheral resistance. In the cat, sumatriptan selectively constricts the carotid arteriovenous anastomoses while having little effect on blood flow or resistance in cerebral or extracerebral tissues.

INDICATIONS AND USAGE

IMITREX Tablets are indicated for the acute treatment of migraine attacks with or without aura in adults. IMITREX Tablets are not intended for the prophylactic therapy of migraine or for use in the management of hemiplegic or basilar migraine (see CONTRAINDICATIONS). Safety and effectiveness of IMITREX Tablets have not been established for cluster headache, which is present in an older, predominantly male population.

PEDIATRIC USE

Pediatric Use Safety and effectiveness of IMITREX Tablets in pediatric patients under 18 years of age have not been established; therefore, IMITREX Tablets are not recommended for use in patients under 18 years of age. Two controlled clinical trials evaluating sumatriptan nasal spray (5 to 20 mg) in pediatric patients aged 12 to 17 years enrolled a total of 1,248 adolescent migraineurs who treated a single attack. The studies did not establish the efficacy of sumatriptan nasal spray compared to placebo in the treatment of migraine in adolescents. Adverse events observed in these clinical trials were similar in nature to those reported in clinical trials in adults. Five controlled clinical trials (2 single attack studies, 3 multiple attack studies) evaluating oral sumatriptan (25 to 100 mg) in pediatric patients aged 12 to 17 years enrolled a total of 701 adolescent migraineurs. These studies did not establish the efficacy of oral sumatriptan compared to placebo in the treatment of migraine in adolescents. Adverse events observed in these clinical trials were similar in nature to those reported in clinical trials in adults. The frequency of all adverse events in these patients appeared to be both dose- and age-dependent, with younger patients reporting events more commonly than older adolescents. Postmarketing experience documents that serious adverse events have occurred in the pediatric population after use of subcutaneous, oral, and/or intranasal sumatriptan. These reports include events similar in nature to those reported rarely in adults, including stroke, visual loss, and death. A myocardial infarction has been reported in a 14-year-old male following the use of oral sumatriptan; clinical signs occurred within 1 day of drug administration. Since clinical data to determine the frequency of serious adverse events in pediatric patients who might receive injectable, oral, or intranasal sumatriptan are not presently available, the use of sumatriptan in patients aged younger than 18 years is not recommended.

PREGNANCY

Pregnancy Pregnancy Category C. In reproductive toxicity studies in rats and rabbits, oral treatment with sumatriptan was associated with embryolethality, fetal abnormalities, and pup mortality. When administered by the intravenous route to rabbits, sumatriptan has been shown to be embryolethal. There are no adequate and well-controlled studies in pregnant women. Therefore, IMITREX should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. In assessing this information, the following findings should be considered. Embryolethality : When given orally or intravenously to pregnant rabbits daily throughout the period of organogenesis, sumatriptan caused embryolethality at doses at or close to those producing maternal toxicity. In the oral studies this dose was 100 mg/kg/day, and in the intravenous studies this dose was 2.0 mg/kg/day. The mechanism of the embryolethality is not known. The highest no-effect dose for embryolethality by the oral route was 50 mg/kg/day, which is approximately 9 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. By the intravenous route, the highest no-effect dose was 0.75 mg/kg/day, or approximately one tenth of the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. The intravenous administration of sumatriptan to pregnant rats throughout organogenesis at 12.5 mg/kg/day, the maximum dose tested, did not cause embryolethality. This dose is equivalent to the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. Additionally, in a study in rats given subcutaneous sumatriptan daily prior to and throughout pregnancy at 60 mg/kg/day, the maximum dose tested, there was no evidence of increased embryo/fetal lethality. This dose is equivalent to approximately 6 times the maximum recommended single human oral dose of 100 mg on a mg/m2 basis. Teratogenicity : Oral treatment of pregnant rats with sumatriptan during the period of organogenesis resulted in an increased incidence of blood vessel abnormalities (cervicothoracic and umbilical) at doses of approximately 250 mg/kg/day or higher. The highest no-effect dose was approximately 60 mg/kg/day, which is approximately 6 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. Oral treatment of pregnant rabbits with sumatriptan during the period of organogenesis resulted in an increased incidence of cervicothoracic vascular and skeletal abnormalities. The highest no-effect dose for these effects was 15 mg/kg/day, or approximately 3 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. A study in which rats were dosed daily with oral sumatriptan prior to and throughout gestation demonstrated embryo/fetal toxicity (decreased body weight, decreased ossification, increased incidence of rib variations) and an increased incidence of a syndrome of malformations (short tail/short body and vertebral disorganization) at 500 mg/kg/day. The highest no-effect dose was 50 mg/kg/day, or approximately 5 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. In a study in rats dosed daily with subcutaneous sumatriptan prior to and throughout pregnancy, at a dose of 60 mg/kg/day, the maximum dose tested, there was no evidence of teratogenicity. This dose is equivalent to approximately 6 times the maximum recommended single human oral dose of 100 mg on a mg/m2 basis. Pup Deaths: Oral treatment of pregnant rats with sumatriptan during the period of organogenesis resulted in a decrease in pup survival between birth and postnatal day 4 at doses of approximately 250 mg/kg/day or higher. The highest no-effect dose for this effect was approximately 60 mg/kg/day, or 6 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. Oral treatment of pregnant rats with sumatriptan from gestational day 17 through postnatal day 21 demonstrated a decrease in pup survival measured at postnatal days 2, 4, and 20 at the dose of 1,000 mg/kg/day. The highest no-effect dose for this finding was 100 mg/kg/day, approximately 10 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis. In a similar study in rats by the subcutaneous route there was no increase in pup death at 81 mg/kg/day, the highest dose tested, which is equivalent to 8 times the maximum single recommended human oral dose of 100 mg on a mg/m2 basis.

NUSRING MOTHERS

Nursing Mothers Sumatriptan is excreted in human breast milk following subcutaneous administration. Infant exposure to sumatriptan can be minimized by avoiding breastfeeding for 12 hours after treatment with IMITREX Tablets.

INFORMATION FOR PATIENTS

Information for Patients See PATIENT INFORMATION at the end of this labeling for the text of the separate leaflet provided for patients. Patients should be cautioned about the risk of serotonin syndrome with the use of sumatriptan or other triptans, especially during combined use with SSRIs or SNRIs.

DOSAGE AND ADMINISTRATION

In controlled clinical trials, single doses of 25, 50, or 100 mg of IMITREX Tablets were effective for the acute treatment of migraine in adults. There is evidence that doses of 50 and 100 mg may provide a greater effect than 25 mg (see CLINICAL TRIALS). There is also evidence that doses of 100 mg do not provide a greater effect than 50 mg. Individuals may vary in response to doses of IMITREX Tablets. The choice of dose should therefore be made on an individual basis, weighing the possible benefit of a higher dose with the potential for a greater risk of adverse events. If the headache returns or the patient has a partial response to the initial dose, the dose may be repeated after 2 hours, not to exceed a total daily dose of 200 mg. If a headache returns following an initial treatment with IMITREX Injection, additional single IMITREX Tablets (up to 100 mg/day) may be given with an interval of at least 2 hours between tablet doses. The safety of treating an average of more than 4 headaches in a 30-day period has not been established. Because of the potential of MAO-A inhibitors to cause unpredictable elevations in the bioavailability of oral sumatriptan, their combined use is contraindicated (see CONTRAINDICATIONS). Hepatic disease/functional impairment may also cause unpredictable elevations in the bioavailability of orally administered sumatriptan. Consequently, if treatment is deemed advisable in the presence of liver disease, the maximum single dose should in general not exceed 50 mg (see CLINICAL PHARMACOLOGY for the basis of this recommendation).

Allegra D 24 HR Allergy & Congestion (fexofenadine hydrochloride 180 MG / pseudoepehedrine hydrochloride 240 MG) Extended Release Oral Tablet

Generic Name: FEXOFENADINE HYDROCHLORIDE AND PSEUDOEPHEDRINE HYDROCHLORIDE
Brand Name: Allegra-D Allergy and Congestion
  • Substance Name(s):
  • PSEUDOEPHEDRINE HYDROCHLORIDE
  • FEXOFENADINE HYDROCHLORIDE

WARNINGS

Warnings Do not use if you have ever had an allergic reaction to this product or any of its ingredients if you are now taking a prescription monoamine oxidase inhibitor (MAOI) (certain drugs for depression, psychiatric, or emotional conditions, or Parkinson’s disease), or for 2 weeks after stopping the MAOI drug. If you do not know if your prescription drug contains an MAOI, ask a doctor or pharmacist before taking this product. If you have difficulty swallowing Ask a doctor before use if you have heart disease thyroid disease glaucoma high blood pressure diabetes trouble urinating due to an enlarged prostate gland kidney disease. Your doctor should determine if you need a different dose. When using this product do not take more than directed do not take at the same time as aluminum or magnesium antacids do not take with fruit juices (see Directions) the tablet coating may be seen in the stool (this is normal). Continue to take as directed (see Directions). Stop use and ask a doctor if an allergic reaction to this product occurs. Seek medical help right away. symptoms do not improve within 7 days or are accompanied by a fever you get nervous, dizzy, or sleepless If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

INDICATIONS AND USAGE

Uses temporarily relieves these symptoms due to hay fever or other upper respiratory allergies: ▪ runny nose ▪ sneezing ▪ itchy, watery eyes ▪ itching of the nose or throat temporarily relieves nasal congestion due to the common cold, hay fever or other upper respiratory allergies reduces swelling of nasal passages temporarily relieves sinus congestion and pressure temporarily restores freer breathing through the nose

INACTIVE INGREDIENTS

Inactive ingredients acetone, black iron oxide, cellulose acetate, colloidal silicon dioxide, copovidone, croscarmellose sodium, FD&C blue #1 aluminum lake, glycerol triacetate, hypromellose, isopropyl alcohol, magnesium stearate, methyl alcohol, methylene chloride, microcrystalline cellulose, polyethylene glycol, propylene glycol, povidone, sodium chloride, talc, titanium dioxide, water

PURPOSE

Purpose Antihistamine

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Ask a doctor before use if you have heart disease thyroid disease glaucoma high blood pressure diabetes trouble urinating due to an enlarged prostate gland kidney disease. Your doctor should determine if you need a different dose.

DOSAGE AND ADMINISTRATION

Directions do not divide, crush, chew or dissolve the tablet; swallow tablet whole adults and children 12 years of age and over take 1 tablet with a glass of water every 24 hours on an empty stomach; do not take more than 1 tablet in 24 hours children under 12 years of age do not use adults 65 years of age and older ask a doctor consumers with kidney disease ask a doctor

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use.

DO NOT USE

Do not use if you have ever had an allergic reaction to this product or any of its ingredients if you are now taking a prescription monoamine oxidase inhibitor (MAOI) (certain drugs for depression, psychiatric, or emotional conditions, or Parkinson’s disease), or for 2 weeks after stopping the MAOI drug. If you do not know if your prescription drug contains an MAOI, ask a doctor or pharmacist before taking this product. If you have difficulty swallowing

STOP USE

Stop use and ask a doctor if an allergic reaction to this product occurs. Seek medical help right away. symptoms do not improve within 7 days or are accompanied by a fever you get nervous, dizzy, or sleepless

ACTIVE INGREDIENTS

Active ingredients (in each tablet) Fexofenadine HCI 180 mg

citalopram 20 MG (as citalopram hydrobromide 24.99 MG) Oral Tablet

Generic Name: CITALOPRAM HYDROBROMIDE
Brand Name: Citalopram Hydrobromide
  • Substance Name(s):
  • CITALOPRAM HYDROBROMIDE

WARNINGS

DRUG INTERACTIONS

Drug Interactions Serotonergic Drugs Based on the mechanism of action of SNRIs and SSRIs including citalopram HBr, and the potential for serotonin syndrome, caution is advised when citalopram HBr is coadministered with other drugs that may affect the serotonergic neurotransmitter systems, such as triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, or St. John’s Wort (see WARNINGS-Serotonin Syndrome ). The concomitant use of citalopram HBr with other SSRIs, SNRIs or tryptophan is not recommended (see PRECAUTIONS – Drug Interactions ). Triptans There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of citalopram HBr with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS – Serotonin Syndrome ). CNS Drugs Given the primary CNS effects of citalopram, caution should be used when it is taken in combination with other centrally acting drugs. Alcohol Although citalopram did not potentiate the cognitive and motor effects of alcohol in a clinical trial, as with other psychotropic medications, the use of alcohol by depressed patients taking citalopram HBr is not recommended. Monoamine Oxidase Inhibitors (MAOIs) See CONTRAINDICATIONS and WARNINGS . Drugs That Interfere With Hemostasis (NSAIDs, Aspirin, Warfarin, etc.) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate the risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when citalopram HBr is initiated or discontinued. Cimetidine In subjects who had received 21 days of 40 mg/day citalopram HBr, combined administration of 400 mg/day cimetidine for 8 days resulted in an increase in citalopram AUC and Cmax of 43% and 39%, respectively. The clinical significance of these findings is unknown. Digoxin In subjects who had received 21 days of 40 mg/day citalopram HBr, combined administration of citalopram HBr and digoxin (single dose of 1 mg) did not significantly affect the pharmacokinetics of either citalopram or digoxin. Lithium Coadministration of citalopram HBr (40 mg/day for 10 days) and lithium (30 mmol/day for 5 days) had no significant effect on the pharmacokinetics of citalopram or lithium. Nevertheless, plasma lithium levels should be monitored with appropriate adjustment to the lithium dose in accordance with standard clinical practice. Because lithium may enhance the serotonergic effects of citalopram, caution should be exercised when citalopram HBr and lithium are coadministered. Pimozide In a controlled study, a single dose of pimozide 2 mg co-administered with citalopram 40 mg given once daily for 11 days was associated with a mean increase in QTc values of approximately 10 msec compared to pimozide given alone. Citalopram did not alter the mean AUC or Cmax of pimozide. The mechanism of this pharmacodynamic interaction is not known. Theophylline Combined administration of citalopram HBr (40 mg/day for 21 days) and the CYP1A2 substrate theophylline (single dose of 300 mg) did not affect the pharmacokinetics of theophylline. The effect of theophylline on the pharmacokinetics of citalopram was not evaluated. Sumatriptan There have been rare postmarketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of a SSRI and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram) is clinically warranted, appropriate observation of the patient is advised. Warfarin Administration of 40 mg/day citalopram HBr for 21 days did not affect the pharmacokinetics of warfarin, a CYP3A4 substrate. Prothrombin time was increased by 5%, the clinical significance of which is unknown. Carbamazepine Combined administration of citalopram HBr (40 mg/day for 14 days) and carbamazepine (titrated to 400 mg/day for 35 days) did not significantly affect the pharmacokinetics of carbamazepine, a CYP3A4 substrate. Although trough citalopram plasma levels were unaffected, given the enzyme-inducing properties of carbamazepine, the possibility that carbamazepine might increase the clearance of citalopram should be considered if the two drugs are coadministered. Triazolam Combined administration of citalopram HBr (titrated to 40 mg/day for 28 days) and the CYP3A4 substrate triazolam (single dose of 0.25 mg) did not significantly affect the pharmacokinetics of either citalopram or triazolam. Ketoconazole Combined administration of citalopram HBr (40 mg) and ketoconazole (200 mg) decreased the Cmax and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram. CYP3A4 and 2C19 Inhibitors In vitro studies indicated that CYP3A4 and 2C19 are the primary enzymes involved in the metabolism of citalopram. However, coadministration of citalopram (40 mg) and ketoconazole (200 mg), a potent inhibitor of CYP3A4, did not significantly affect the pharmacokinetics of citalopram. Because citalopram is metabolized by multiple enzyme systems, inhibition of a single enzyme may not appreciably decrease citalopram clearance. Metoprolol Administration of 40 mg/day citalopram HBr for 22 days resulted in a two-fold increase in the plasma levels of the beta-adrenergic blocker metoprolol. Increased metoprolol plasma levels have been associated with decreased cardioselectivity. Coadministration of citalopram HBr and metoprolol had no clinically significant effects on blood pressure or heart rate. Imipramine and Other Tricyclic Antidepressants (TCAs) In vitro studies suggest that citalopram is a relatively weak inhibitor of CYP2D6. Coadministration of citalopram HBr (40 mg/day for 10 days) with the TCA imipramine (single dose of 100 mg), a substrate for CYP2D6, did not significantly affect the plasma concentrations of imipramine or citalopram. However, the concentration of the imipramine metabolite desipramine was increased by approximately 50%. The clinical significance of the desipramine change is unknown. Nevertheless, caution is indicated in the coadministration of TCAs with citalopram HBr.. Electroconvulsive Therapy (ECT) There are no clinical studies of the combined use of electroconvulsive therapy (ECT) and citalopram HBr.

OVERDOSAGE

Human Experience In clinical trials of citalopram, there were reports of citalopram overdose, including overdoses of up to 2000 mg, with no associated fatalities. During the postmarketing evaluation of citalopram, citalopram HBr overdoses, including overdoses of up to 6000 mg, have been reported. As with other SSRI’s, a fatal outcome in a patient who has taken an overdose of citalopram has been rarely reported. Symptoms most often accompanying citalopram overdose, alone or in combination with other drugs and/or alcohol, included dizziness, sweating, nausea, vomiting, tremor, somnolence, and sinus tachycardia. In more rare cases, observed symptoms included amnesia, confusion, coma, convulsions, hyperventilation, cyanosis, rhabdomyolysis, and ECG changes (including QTc prolongation, nodal rhythm, ventricular arrhythmia, and very rare cases of torsade de pointes). Acute renal failure has been very rarely reported accompanying overdose. Management of Overdose Establish and maintain an airway to ensure adequate ventilation and oxygenation. Gastric evacuation by lavage and use of activated charcoal should be considered. Careful observation and cardiac and vital sign monitoring are recommended, along with general symptomatic and supportive care. Due to the large volume of distribution of citalopram, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. There are no specific antidotes for citalopram HBr. In managing overdosage, consider the possibility of multiple-drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose.

DESCRIPTION

Citalopram HBr is an orally administered selective serotonin reuptake inhibitor (SSRI) with a chemical structure unrelated to that of other SSRIs or of tricyclic, tetracyclic, or other available antidepressant agents. Citalopram HBr is a racemic bicyclic phthalane derivative designated (±)-1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile, HBr with the following structural formula: The molecular formula is C20H22BrFN2O and its molecular weight is 405.35. Citalopram HBr occurs as a fine, white to off-white powder. Citalopram HBr is sparingly soluble in water and soluble in ethanol. Citalopram HBr is available as tablets. Citalopram HBr 10 mg tablets are oval shaped biconvex, film-coated tablets containing citalopram HBr in strengths equivalent to 10 mg citalopram base. Citalopram HBr 20 mg and 40 mg tablets are, oval shaped, biconvex, film-coated, scored tablets containing citalopram HBr in strengths equivalent to 20 mg or 40 mg citalopram base. The tablets also contain the following inactive ingredients: croscarmellose sodium, lactose monohydrate, magnesium stearate, and microcrystalline cellulose. The film-coating contains: hydroxyethyl cellulose, polyethylene glycol, red ferric oxide (10mg and 20mg), titanium dioxide, and yellow ferric oxide (10mg). Formula

CLINICAL STUDIES

Comparison of Clinical Trial Results Highly variable results have been seen in the clinical development of all antidepressant drugs. Furthermore, in those circumstances when the drugs have not been studied in the same controlled clinical trial(s), comparisons among the results of studies evaluating the effectiveness of different antidepressant drug products are inherently unreliable. Because conditions of testing (e.g., patient samples, investigators, doses of the treatments administered and compared, outcome measures, etc.) vary among trials, it is virtually impossible to distinguish a difference in drug effect from a difference due to one of the confounding factors just enumerated.

HOW SUPPLIED

Citalopram HBr Tablets 10 mg are beige-pink, oval shaped, biconvex, film-coated tablets, engraved “APO” on one side and “CI 10” on the other side. They are supplied as follows: Bottles of 30 NDC 60505-2518-4 Bottles of 100 NDC 60505-2518-1 Bottles of 1000 NDC 60505-2518-8 100 Unit Dose NDC 60505-2518-3 Citalopram HBr Tablets, 20mg are pink, oval shaped, biconvex, film-coated tablets, engraved “APO” on one side and scored and engraved “CI 20” on the other side. They are supplied as follows: Bottles of 30 NDC 60505-2519-4 Bottles of 100 NDC 60505-2519-1 Bottles of 1000 NDC 60505-2519-8 100 Unit Dose NDC 60505-2519-3 Citalopram HBr Tablets, 40mg are white, oval shaped, biconvex, film-coated tablets, engraved “APO” on one side and scored and engraved “CI 40” on the other side. They are supplied as follows: Bottles of 30 NDC 60505-2520-4 Bottles of 100 NDC 60505-2520-1 Bottles of 1000 NDC 60505-2520-8 100 Unit Dose NDC 60505-2520-3 Store at 20º to 25°C (68º to 77°F); excursions permitted to 15 – 30°C (59-86°F). [See USP Controlled Room Temperature].

GERIATRIC USE

Geriatric Use Of 4422 patients in clinical studies of citalopram HBr, 1357 were 60 and over, 1034 were 65 and over, and 457 were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Most elderly patients treated with citalopram HBr in clinical trials received daily doses between 20 and 40 mg (see DOSAGE AND ADMINISTRATION ). SSRIs and SNRIs, including citalopram HBr, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event (see PRECAUTIONS, Hyponatremia). In two pharmacokinetic studies, citalopram AUC was increased by 23% and 30%, respectively, in elderly subjects as compared to younger subjects, and its half-life was increased by 30% and 50%, respectively (see CLINICAL PHARMACOLOGY ). 20 mg/day is the recommended dose for most elderly patients (see DOSAGE AND ADMINISTRATION ).

INDICATIONS AND USAGE

Citalopram HBr is indicated for the treatment of depression. The efficacy of citalopram HBr in the treatment of depression was established in 4 to 6 week, controlled trials of outpatients whose diagnosis corresponded most closely to the DSM-III and DSM-III-R category of major depressive disorder (see CLINICAL PHARMACOLOGY ). A major depressive episode (DSM-IV) implies a prominent and relatively persistent (nearly every day for at least 2 weeks) depressed or dysphoric mood that usually interferes with daily functioning, and includes at least five of the following nine symptoms: depressed mood, loss of interest in usual activities, significant change in weight and/or appetite, insomnia or hypersomnia, psychomotor agitation or retardation, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, a suicide attempt or suicidal ideation. The antidepressant action of citalopram HBr in hospitalized depressed patients has not been adequately studied. The efficacy of citalopram HBr in maintaining an antidepressant response for up to 24 weeks following 6 to 8 weeks of acute treatment was demonstrated in two placebo-controlled trials (see CLINICAL PHARMACOLOGY ). Nevertheless, the physician who elects to use citalopram HBr for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in the pediatric population have not been established (see BOX WARNING and WARNINGS—Clinical Worsening and Suicide Risk ). Two placebo-controlled trials in 407 pediatric patients with MDD have been conducted with citalopram HBr, and the data were not sufficient to support a claim for use in pediatric patients. Anyone considering the use of citalopram HBr in a child or adolescent must balance the potential risks with the clinical need.

PREGNANCY

Pregnancy Pregnancy Category C In animal reproduction studies, citalopram has been shown to have adverse effects on embryo/fetal and postnatal development, including teratogenic effects, when administered at doses greater than human therapeutic doses. In two rat embryo/fetal development studies, oral administration of citalopram (32, 56, or 112 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased embryo/fetal growth and survival and an increased incidence of fetal abnormalities (including cardiovascular and skeletal defects) at the high dose, which is approximately 18 times the MRHD of 60 mg/day on a body surface area (mg/m2) basis. This dose was also associated with maternal toxicity (clinical signs, decreased body weight gain). The developmental, no-effect dose of 56 mg/kg/day is approximately 9 times the MRHD on a mg/m2 basis. In a rabbit study, no adverse effects on embryo/fetal development were observed at doses of up to 16 mg/kg/day, or approximately 5 times the MRHD on a mg/m2 basis. Thus, teratogenic effects were observed at a maternally toxic dose in the rat and were not observed in the rabbit. When female rats were treated with citalopram (4.8, 12.8, or 32 mg/kg/day) from late gestation through weaning, increased offspring mortality during the first 4 days after birth and persistent offspring growth retardation were observed at the highest dose, which is approximately 5 times the MRHD on a mg/m2 basis. The no-effect dose of 12.8 mg/kg/day is approximately 2 times the MRHD on a mg/m2 basis. Similar effects on offspring mortality and growth were seen when dams were treated throughout gestation and early lactation at doses ≥ 24 mg/kg/day, approximately 4 times the MRHD on a mg/m2 basis. A no-effect dose was not determined in that study. There are no adequate and well-controlled studies in pregnant women; therefore, citalopram should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonteratogenic Effects Neonates exposed to citalopram HBr and other SSRIs or SNRIs, late in the third trimester, have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SSRIs and SNRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome (see WARNINGS ). Infants exposed to SSRIs in late pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn (PPHN). PPHN occurs in 1to 2 per 1000 live births in the general population and is associated with substantial neonatal morbidity and mortality. In a retrospective, case-control study of 377 women whose infants were born with PPHN and 836 women whose infants were born healthy, the risk for developing PPHN was approximately six-fold higher for infants exposed to SSRIs after the 20th week of gestation compared to infants who had not been exposed to antidepressants during pregnancy. There is currently no corroborative evidence regarding the risk for PPHN following exposure to SSRIs in pregnancy; this is the first study that has investigated the potential risk. The study did not include enough cases with exposure to individual SSRIs to determine if all SSRIs posed similar levels of PPHN risk. When treating a pregnant woman with citalopram HBr during the third trimester, the physician should carefully consider both the potential risks and benefits of treatment (see DOSAGE AND ADMINISTRATION ). Physicians should note that in a prospective longitudinal study of 201 women with a history of major depression who were euthymic at the beginning of pregnancy, women who discontinued antidepressant medication during pregnancy were more likely to experience a relapse of major depression than women who continued antidepressant medication.

NUSRING MOTHERS

Nursing Mothers As has been found to occur with many other drugs, citalopram is excreted in human breast milk. There have been two reports of infants experiencing excessive somnolence, decreased feeding, and weight loss in association with breastfeeding from a citalopram-treated mother; in one case, the infant was reported to recover completely upon discontinuation of citalopram by its mother and in the second case, no follow-up information was available. The decision whether to continue or discontinue either nursing or citalopram HBr therapy should take into account the risks of citalopram exposure for the infant and the benefits of citalopram HBr treatment for the mother.

BOXED WARNING

Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Citalopram HBr or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Citalopram HBr is not approved for use in pediatric patients. (See WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use.)

INFORMATION FOR PATIENTS

Information for Patients Physicians are advised to discuss the following issues with patients for whom they prescribe citalopram HBr. Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of citalopram HBr and triptans, tramadol or other serotonergic agents. Although in controlled studies citalopram HBr has not been shown to impair psychomotor performance, any psychoactive drug may impair judgment, thinking, or motor skills, so patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that citalopram HBr therapy does not affect their ability to engage in such activities. Patients should be told that, although citalopram HBr has not been shown in experiments with normal subjects to increase the mental and motor skill impairments caused by alcohol, the concomitant use of citalopram HBr and alcohol in depressed patients is not advised. Patients should be advised to inform their physician if they are taking, or plan to take, any prescription or over-the-counter drugs, as there is a potential for interactions. Patients should be cautioned about the concomitant use of citalopram HBr and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents has been associated with an increased risk of bleeding. Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. Patients should be advised to notify their physician if they are breastfeeding an infant. While patients may notice improvement with citalopram HBr therapy in 1 to 4 weeks, they should be advised to continue therapy as directed. Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with citalopram HBr and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for citalopram HBr. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking citalopram HBr. Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication.

DOSAGE AND ADMINISTRATION

Initial Treatment Citalopram HBr should be administered at an initial dose of 20 mg once daily, generally with an increase to a dose of 40 mg/day. Dose increases should usually occur in increments of 20 mg at intervals of no less than one week. Although certain patients may require a dose of 60 mg/day, the only study pertinent to dose response for effectiveness did not demonstrate an advantage for the 60 mg/day dose over the 40 mg/day dose; doses above 40 mg are therefore not ordinarily recommended. Citalopram HBr should be administered once daily, in the morning or evening, with or without food. Special Populations 20 mg/day is the recommended dose for most elderly patients and patients with hepatic impairment, with titration to 40 mg/day only for nonresponding patients. No dosage adjustment is necessary for patients with mild or moderate renal impairment. Citalopram HBr should be used with caution in patients with severe renal impairment. Treatment of Pregnant Women During the Third Trimester Neonates exposed to citalopram HBr and other SSRIs or SNRIs, late in the third trimester, have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see PRECAUTIONS ). When treating pregnant women with citalopram HBr during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. The physician may consider tapering citalopram HBr in the third trimester. Maintenance Treatment It is generally agreed that acute episodes of depression require several months or longer of sustained pharmacologic therapy. Systematic evaluation of citalopram HBr in two studies has shown that its antidepressant efficacy is maintained for periods of up to 24 weeks following 6 or 8 weeks of initial treatment (32 weeks total). In one study, patients were assigned randomly to placebo or to the same dose of citalopram HBr (20-60 mg/day) during maintenance treatment as they had received during the acute stabilization phase, while in the other study, patients were assigned randomly to continuation of citalopram HBr 20 or 40 mg/day, or placebo, for maintenance treatment. In the latter study, the rates of relapse to depression were similar for the two dose groups (see Clinical Trials under CLINICAL PHARMACOLOGY ). Based on these limited data, it is not known whether the dose of citalopram needed to maintain euthymia is identical to the dose needed to induce remission. If adverse reactions are bothersome, a decrease in dose to 20 mg/day can be considered. Discontinuation of Treatment with Citalopram HBr Symptoms associated with discontinuation of citalopram HBr and other SSRIs and SNRIs have been reported (see PRECAUTIONS ). Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. Switching Patients To or From a Monoamine Oxidase Inhibitor At least 14 days should elapse between discontinuation of an MAOI and initiation of citalopram HBr therapy. Similarly, at least 14 days should be allowed after stopping citalopram HBr before starting an MAOI (see CONTRAINDICATIONS and WARNINGS ).

venlafaxine (as venlafaxine hydrochloride) 150 MG 24 HR Extended Release Oral Capsule

Generic Name: VENLAFAXINE HYDROCHLORIDE
Brand Name: Venlafaxine Hydrochloride
  • Substance Name(s):
  • VENLAFAXINE HYDROCHLORIDE

WARNINGS

Clinical Worsening and Suicide Risk Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. Table 1 Age Range Drug – Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo < 18 14 additional cases 18 to 24 5 additional cases Decreases Compared to Placebo 25 to 64 1 fewer case ≥ 65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms (see PRECAUTIONS and DOSAGE AND ADMINISTRATION, Discontinuation of Treatment with Venlafaxine Hydrochloride Extended-release Capsules, for a description of the risks of discontinuation of venlafaxine hydrochloride extended-release capsules). Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for venlafaxine hydrochloride extended-release capsules should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that venlafaxine hydrochloride extended-release capsules are not approved for use in treating bipolar depression. Serotonin Syndrome: The development of a potentially life-threatening serotonin syndrome has been reported with SNRIs and SSRIs, including venlafaxine hydrochloride extended-release capsules, alone but particularly with concomitant use of other serotonergic drugs (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, and St. John's Wort) and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Patients should be monitored for the emergence of serotonin syndrome. The concomitant use of venlafaxine hydrochloride extended-release capsules with MAOIs intended to treat psychiatric disorders is contraindicated. Venlafaxine hydrochloride extended-release capsules should also not be started in a patient who is being treated with MAOIs such as linezolid or intravenous methylene blue. All reports with methylene blue that provided information on the route of administration involved intravenous administration in the dose range of 1 mg/kg to 8 mg/kg. No reports involved the administration of methylene blue by other routes (such as oral tablets or local tissue injection) or at lower doses. There may be circumstances when it is necessary to initiate treatment with a MAOI such as linezolid or intravenous methylene blue in a patient taking venlafaxine hydrochloride extended-release capsules. Venlafaxine hydrochloride extended-release capsules should be discontinued before initiating treatment with the MAOI (see CONTRAINDICATIONS and DOSAGE AND ADMINISTRATION). If concomitant use of venlafaxine hydrochloride extended-release capsules with other serotonergic drugs, including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, buspirone, tryptophan, and St. John's Wort is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases. Treatment with venlafaxine hydrochloride extended-release capsules and any concomitant serotonergic agents should be discontinued immediately if the above events occur and supportive symptomatic treatment should be initiated. Sustained Hypertension Venlafaxine hydrochloride extended-release capsules treatment is associated with sustained hypertension (defined as treatment-emergent supine diastolic blood pressure (SDBP) ≥ 90 mm Hg and ≥ 10 mm Hg above baseline for 3 consecutive on-therapy visits (see Table 2). An analysis for patients in venlafaxine hydrochloride tablets studies meeting criteria for sustained hypertension revealed a dose-dependent increase in the incidence of sustained hypertension for venlafaxine hydrochloride tablets (see Table 3). An insufficient number of patients received mean doses of venlafaxine hydrochloride extended-release capsules over 300 mg/day to fully evaluate the incidence of sustained increases in blood pressure at these higher doses. Table 2Number (%) of Sustained Elevations in SDBP in Venlafaxine Hydrochloride Extended-release Capsules Premarketing Studies by Indication MDD (75 to 375 mg/day) Social Anxiety Disorder (75 to 225 mg/day) MDD = major depressive disorder 19/705 (3) 5/771 (0.6) Table 3Incidence (%) of Sustained Elevations in SDBP in Venlafaxine Hydrochloride Tablets Studies Venlafaxine Hydrochloride Tablets mg/day Incidence 100 to ≤ 200 5% > 200 to ≤ 300 7% > 300 13% In premarketing major depressive disorder studies, 0.7% (5/705) of the venlafaxine hydrochloride extended-release capsules-treated patients discontinued treatment because of elevated blood pressure. Among these patients, most of the blood pressure increases were in a modest range (12 to 16 mm Hg, SDBP). In premarketing Social Anxiety Disorder studies up to 6 months, 0.6% (5/771) of the venlafaxine hydrochloride extended-release capsules-treated patients discontinued treatment because of elevated blood pressure. In these patients, the blood pressure increases were modest (1 to 24 mmHg, SDBP). Sustained increases of SDBP could have adverse consequences. Cases of elevated blood pressure requiring immediate treatment have been reported in post marketing experience. Preexisting hypertension should be controlled before treatment with venlafaxine. It is recommended that patients receiving venlafaxine hydrochloride extended-release capsules have regular monitoring of blood pressure. For patients who experience a sustained increase in blood pressure while receiving venlafaxine, either dose reduction or discontinuation should be considered. Elevations in Systolic and Diastolic Blood Pressure In placebo-controlled premarketing studies, there were changes in mean blood pressure (see Table 4 for mean changes in supine systolic and supine diastolic blood pressure). Across most indications, a dose-related increase in supine systolic and diastolic blood pressure was evident in venlafaxine hydrochloride extended-release capsules-treated patients. Table 4Final On-Therapy Mean Changes from Baseline in Supine Systolic and Diastolic Blood Pressure (mm Hg) Results by Indication, Study Duration, and Dose in Placebo-Controlled Trials Venlafaxine Hydrochloride Extended -release Capsules mg/day Placebo 1 Supine Systolic Blood Pressure 2 Supine Diastolic Blood Pressure ≤ 75 > 75 SSBP1 SDBP2 SSBP SDBP SSBP SDBP Major Depressive Disorder 8 to12 weeks -0.28 0.37 2.93 3.56 -1.08 -0.10 Social Anxiety Disorder 12 weeks -0.29 -1.26 1.18 1.34 -1.96 -1.22 6 months -0.98 -0.49 2.51 1.96 -1.84 -0.65 Across all clinical trials in MDD and Social Anxiety Disorder 1.4% of patients in the venlafaxine hydrochloride extended-release capsules-treated groups experienced a ≥ 15 mm Hg increase in supine diastolic blood pressure with blood pressure ≥ 105 mm Hg compared to 0.9% of patients in the placebo groups. Similarly, 1% of patients in the venlafaxine hydrochloride extended-release capsules-treated groups experienced a ≥ 20 mm Hg increase in supine systolic blood pressure with blood pressure ≥ 180 mm Hg compared to 0.3% of patients in the placebo groups. Mydriasis Mydriasis has been reported in association with venlafaxine; therefore patients with raised intraocular pressure or those at risk of acute narrow-angle glaucoma (angle-closure glaucoma) should be monitored (see PRECAUTIONS, Information for Patients).

DRUG INTERACTIONS

Drug Interactions As with all drugs, the potential for interaction by a variety of mechanisms is a possibility.

OVERDOSAGE

Human Experience Among the patients included in the premarketing evaluation of venlafaxine hydrochloride extended-release capsules, there were 2 reports of acute overdosage with venlafaxine hydrochloride extended-release capsules in major depressive disorder trials, either alone or in combination with other drugs. One patient took a combination of 6 g of venlafaxine hydrochloride extended-release capsules and 2.5 mg of lorazepam. This patient was hospitalized, treated symptomatically, and recovered without any untoward effects. The other patient took 2.85 g of venlafaxine hydrochloride extended-release capsules. This patient reported paresthesia of all four limbs but recovered without sequelae. There were no reports of acute overdose with venlafaxine hydrochloride extended-release capsules in Social Anxiety Disorder trials. Among the patients included in the premarketing evaluation with venlafaxine hydrochloride tablets, there were 14 reports of acute overdose with venlafaxine, either alone or in combination with other drugs and/or alcohol. The majority of the reports involved ingestion in which the total dose of venlafaxine taken was estimated to be no more than several-fold higher than the usual therapeutic dose. The 3 patients who took the highest doses were estimated to have ingested approximately 6.75 g, 2.75 g, and 2.5 g. The resultant peak plasma levels of venlafaxine for the latter 2 patients were 6.24 and 2.35 mcg/mL, respectively, and the peak plasma levels of O-desmethylvenlafaxine were 3.37 and 1.30 mcg/mL, respectively. Plasma venlafaxine levels were not obtained for the patient who ingested 6.75 g of venlafaxine. All 14 patients recovered without sequelae. Most patients reported no symptoms. Among the remaining patients, somnolence was the most commonly reported symptom. The patient who ingested 2.75 g of venlafaxine was observed to have 2 generalized convulsions and a prolongation of QTc to 500 msec, compared with 405 msec at baseline. Mild sinus tachycardia was reported in 2 of the other patients. In postmarketing experience, overdose with venlafaxine has occurred predominantly in combination with alcohol and/or other drugs. The most commonly reported events in overdosage include tachycardia, changes in level of consciousness (ranging from somnolence to coma), mydriasis, seizures, and vomiting. Electrocardiogram changes (e.g., prolongation of QT interval, bundle branch block, QRS prolongation), ventricular tachycardia, bradycardia, hypotension, rhabdomyolysis, vertigo, liver necrosis, serotonin syndrome, and death have been reported. Published retrospective studies report that venlafaxine overdosage may be associated with an increased risk of fatal outcomes compared to that observed with SSRI antidepressant products, but lower than that for tricyclic antidepressants. Epidemiological studies have shown that venlafaxine-treated patients have a higher preexisting burden of suicide risk factors than SSRI-treated patients. The extent to which the finding of an increased risk of fatal outcomes can be attributed to the toxicity of venlafaxine in overdosage as opposed to some characteristic(s) of venlafaxine-treated patients is not clear. Prescriptions for venlafaxine hydrochloride extended-release capsules should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose. Management of Overdosage Treatment should consist of those general measures employed in the management of overdosage with any antidepressant. Ensure an adequate airway, oxygenation, and ventilation. Monitor cardiac rhythm and vital signs. General supportive and symptomatic measures are also recommended. Induction of emesis is not recommended. Gastric lavage with a large bore orogastric tube with appropriate airway protection, if needed, may be indicated if performed soon after ingestion or in symptomatic patients. Activated charcoal should be administered. Due to the large volume of distribution of this drug, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. No specific antidotes for venlafaxine are known. In managing overdosage, consider the possibility of multiple drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose. Telephone numbers for certified poison control centers are listed in the Physicians’Desk Reference® (PDR).

DESCRIPTION

Venlafaxine hydrochloride extended-release capsule for oral administration contains venlafaxine hydrochloride, a structurally novel antidepressant. It is designated (R/S)-1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl] cyclohexanol hydrochloride or (±)-1-[α- [(dimethylamino)methyl]-p-methoxybenzyl] cyclohexanol hydrochloride and has the molecular formula of C17H27NO2 HCl. Its molecular weight is 313.87. The structural formula is shown below. Venlafaxine hydrochloride, USP is a white to off-white crystalline powder; soluble in methanol and in water. Its octanol:water (0.2 M sodium chloride) partition coefficient is 0.43. Venlafaxine hydrochloride extended-release capsule is for once-a-day oral administration. Drug release is controlled by diffusion through the coating membrane on the spheroids and is not pH dependent. Venlafaxine hydrochloride extended-release capsules intended for oral administration contains 37.5 mg, 75 mg and 150 mg of venlafaxine. In addition, each capsule contains the following inactive ingredients: colloidal silicon dioxide, cetostearyl alcohol, gelatin, hypromellose, microcrystalline cellulose, polyacrylate dispersion, sodium lauryl sulfate, talc and titanium dioxide. Additionally each 37.5 mg capsule shell contains black iron oxide and each 75 mg and 150 mg capsule shell contains red iron oxide. The capsule is printed with black pharmaceutical ink which contains black iron oxide as coloring agent. Chemical Structure- Venlafaxine Hydrochloride

HOW SUPPLIED

Venlafaxine Hydrochloride Extended-release Capsules, 37.5 mg are white to off-white free flowing pellets filled in size ‘3’ hard gelatin capsules with grey colored cap printed with “ZA-35” in black ink & white body printed with “37.5 mg” in black ink and are supplied as follows: NDC 60429-121-30 in bottle of 30 capsules NDC 60429-121-90 in bottle of 90 capsules Venlafaxine Hydrochloride Extended-release Capsules, 75 mg are white to off-white free flowing pellets filled in size ‘1’ hard gelatin capsules with peach colored cap printed with “ZA-36” in black ink & white body printed with “75 mg” in black ink and are supplied as follows: NDC 60429-122-30 in bottle of 30 capsules NDC 60429-122-90 in bottle of 90 capsules Venlafaxine Hydrochloride Extended-release Capsules, 150 mg are white to off-white free flowing pellets filled in size ‘0’ hard gelatin capsules with dark orange colored cap printed with “ZA-37” in black ink & white body printed with “150 mg” in black ink and are supplied as follows: NDC 60429-123-30 in bottle of 30 capsules NDC 60429-123-90 in bottle of 90 capsules Storage: Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a tight container. Manufactured by: Cadila Healthcare Ltd. Ahmedabad, India Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 Marketed/Packaged by: GSMS, Inc. Camarillo, CA 93012 Rev.: 01/13 Revision Date: 19/01/2013

GERIATRIC USE

Geriatric Use Approximately 4% (14/357), and 1% (10/819) of venlafaxine hydrochloride extended-release capsules-treated patients in placebo-controlled premarketing major depressive disorder, and Social Anxiety Disorder trials, respectively, were 65 years of age or over. Of 2,897 venlafaxine hydrochloride tablets-treated patients in premarketing phase major depressive disorder studies, 12% (357) were 65 years of age or over. No overall differences in effectiveness or safety were observed between geriatric patients and younger patients, and other reported clinical experience generally has not identified differences in response between the elderly and younger patients. However, greater sensitivity of some older individuals cannot be ruled out. SSRIs and SNRIs, including venlafaxine hydrochloride extended-release capsules have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event (see PRECAUTIONS, Hyponatremia). The pharmacokinetics of venlafaxine and ODV are not substantially altered in the elderly (see CLINICAL PHARMACOLOGY). No dose adjustment is recommended for the elderly on the basis of age alone, although other clinical circumstances, some of which may be more common in the elderly, such as renal or hepatic impairment, may warrant a dose reduction (see DOSAGE AND ADMINISTRATION).

INDICATIONS AND USAGE

Major Depressive Disorder Venlafaxine hydrochloride extended-release capsules are indicated for the treatment of major depressive disorder. The efficacy of venlafaxine hydrochloride extended-release capsules in the treatment of major depressive disorder was established in 8 and 12 week controlled trials of adult outpatients whose diagnoses corresponded most closely to the DSM-III-R or DSM-IV category of major depressive disorder (see Clinical Trials). A major depressive episode (DSM-IV) implies a prominent and relatively persistent (nearly every day for at least 2 weeks) depressed mood or the loss of interest or pleasure in nearly all activities, representing a change from previous functioning, and includes the presence of at least five of the following nine symptoms during the same two week period: depressed mood, markedly diminished interest or pleasure in usual activities, significant change in weight and/or appetite, insomnia or hypersomnia, psychomotor agitation or retardation, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, a suicide attempt or suicidal ideation. The efficacy of venlafaxine hydrochloride tablets in the treatment of major depressive disorder in adult inpatients meeting diagnostic criteria for major depressive disorder with melancholia was established in a 4 week controlled trial (see Clinical Trials). The safety and efficacy of venlafaxine hydrochloride extended-release capsules in hospitalized depressed patients have not been adequately studied. The efficacy of venlafaxine hydrochloride extended-release capsules in maintaining a response in major depressive disorder for up to 26 weeks following 8 weeks of acute treatment was demonstrated in a placebo-controlled trial. The efficacy of venlafaxine hydrochloride tablets in maintaining a response in patients with recurrent major depressive disorder who had responded and continued to be improved during an initial 26 weeks of treatment and were then followed for a period of up to 52 weeks was demonstrated in a second placebo-controlled trial (see Clinical Trials). Nevertheless, the physician who elects to use venlafaxine hydrochloride tablets/venlafaxine hydrochloride extended-release capsules for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Social Anxiety Disorder Venlafaxine hydrochloride extended-release capsules are indicated for the treatment of Social Anxiety Disorder, also known as Social Phobia, as defined in DSM-IV (300.23). Social Anxiety Disorder (DSM-IV) is characterized by a marked and persistent fear of 1 or more social or performance situations in which the person is exposed to unfamiliar people or to possible scrutiny by others. Exposure to the feared situation almost invariably provokes anxiety, which may approach the intensity of a panic attack. The feared situations are avoided or endured with intense anxiety or distress. The avoidance, anxious anticipation, or distress in the feared situation(s) interferes significantly with the person’s normal routine, occupational or academic functioning, or social activities or relationships, or there is a marked distress about having the phobias. Lesser degrees of performance anxiety or shyness generally do not require psychopharmacological treatment. The efficacy of venlafaxine hydrochloride extended-release capsules in the treatment of Social Anxiety Disorder was established in four 12 week and one 6 month placebocontrolled trials in adult outpatients with Social Anxiety Disorder (DSM-IV) (see Clinical Trials). Although the effectiveness of venlafaxine hydrochloride extended-release capsules has been demonstrated in a 6 month clinical trial in patients with Social Anxiety Disorder, the physician who elects to use venlafaxine hydrochloride extended-release capsules for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION).

PEDIATRIC USE

Pediatric Use Safety and effectiveness in the pediatric population have not been established (see BOX WARNING and WARNINGS, Clinical Worsening and Suicide Risk). Two placebo-controlled trials in 766 pediatric patients with MDD have been conducted with venlafaxine hydrochloride extended-release capsules, and the data were not sufficient to support a claim for use in pediatric patients. Anyone considering the use of venlafaxine hydrochloride extended-release capsules in a child or adolescent must balance the potential risks with the clinical need. Although no studies have been designed to primarily assess venlafaxine hydrochloride extended-release capsule’s impact on the growth, development, and maturation of children and adolescents, the studies that have been done suggest that venlafaxine hydrochloride extended-release capsules may adversely affect weight and height (see PRECAUTIONS, General, Changes in Height and Changes in Weight ). Should the decision be made to treat a pediatric patient with venlafaxine hydrochloride extended-release capsules, regular monitoring of weight and height is recommended during treatment, particularly if it is to be continued long term. The safety of venlafaxine hydrochloride extended-release capsules treatment for pediatric patients has not been systematically assessed for chronic treatment longer than six months in duration. In the studies conducted in pediatric patients (ages 6 to 17), the occurrence of blood pressure and cholesterol increases considered to be clinically relevant in pediatric patients was similar to that observed in adult patients. Consequently, the precautions for adults apply to pediatric patients (see WARNINGS, Sustained Hypertension, and PRECAUTIONS, General, Serum Cholesterol Elevation).

PREGNANCY

Pregnancy Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy.

NUSRING MOTHERS

Nursing Mothers Venlafaxine and ODV have been reported to be excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from venlafaxine hydrochloride extended-release capsules, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of Major Depressive Disorder (MDD) and other psychiatric disorders. Anyone considering the use of venlafaxine hydrochloride extended-release capsules or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Venlafaxine hydrochloride extended-release capsules are not approved for use in pediatric patients (see WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use)

INFORMATION FOR PATIENTS

Information for Patients Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with venlafaxine hydrochloride extended-release capsules and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and Other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for venlafaxine hydrochloride extended-release capsules. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking venlafaxine hydrochloride extended-release capsules.

DOSAGE AND ADMINISTRATION

Venlafaxine hydrochloride extended-release capsules should be administered in a single dose with food either in the morning or in the evening at approximately the same time each day. Each capsule should be swallowed whole with fluid and not divided, crushed, chewed, or placed in water, or it may be administered by carefully opening the capsule and sprinkling the entire contents on a spoonful of applesauce. This drug/food mixture should be swallowed immediately without chewing and followed with a glass of water to ensure complete swallowing of the pellets. Initial Treatment Major Depressive Disorder For most patients, the recommended starting dose for venlafaxine hydrochloride extended-release capsules are 75 mg/day, administered in a single dose. In the clinical trials establishing the efficacy of venlafaxine hydrochloride extended-release capsules in moderately depressed outpatients, the initial dose of venlafaxine was 75 mg/day. For some patients, it may be desirable to start at 37.5 mg/day for 4 to 7 days, to allow new patients to adjust to the medication before increasing to 75 mg/day. While the relationship between dose and antidepressant response for venlafaxine hydrochloride extended-release capsules have not been adequately explored, patients not responding to the initial 75 mg/day dose may benefit from dose increases to a maximum of approximately 225 mg/day. Dose increases should be in increments of up to 75 mg/day, as needed, and should be made at intervals of not less than 4 days, since steady state plasma levels of venlafaxine and its major metabolites are achieved in most patients by day 4. In the clinical trials establishing efficacy, upward titration was permitted at intervals of 2 weeks or more; the average doses were about 140 to 180 mg/day (see Clinical Trials under CLINICAL PHARMACOLOGY). It should be noted that, while the maximum recommended dose for moderately depressed outpatients is also 225 mg/day for venlafaxine hydrochloride tablets, more severely depressed inpatients in one study of the development program for that product responded to a mean dose of 350 mg/day (range of 150 to 375 mg/day). Whether or not higher doses of venlafaxine hydrochloride extended-release capsules are needed for more severely depressed patients is unknown; however, the experience with venlafaxine hydrochloride extended-release capsules doses higher than 225 mg/day is very limited (see PRECAUTIONS, General, Use in Patients with Concomitant Illness). Social Anxiety Disorder (Social Phobia): The recommended dose is 75 mg/day, administered in a single dose. There was no evidence that higher doses confer any additional benefit. (See the Use in Patients with Concomitant Illness section of PRECAUTIONS.) Switching Patients from Venlafaxine Hydrochloride Tablets Depressed patients who are currently being treated at a therapeutic dose with venlafaxine hydrochloride tablets may be switched to venlafaxine hydrochloride extended-release capsules at the nearest equivalent dose (mg/day), e.g., 37.5 mg venlafaxine two-times-a-day to 75 mg venlafaxine hydrochloride extended-release capsules once daily. However, individual dosage adjustments may be necessary. Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric Disorders: At least 14 days should elapse between discontinuation of an MAOI intended Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) to treat psychiatric disorders and initiation of therapy with venlafaxine hydrochloride extended-release capsules. Conversely, at least 7 days should be allowed after stopping venlafaxine hydrochloride extended-release capsules before starting an MAOI intended to treat psychiatric disorders (see CONTRAINDICATIONS). Use of Venlafaxine Hydrochloride Extended-release Capsules With Other MAOls, Such as Linezolid or Methylene Blue: Do not start venlafaxine hydrochloride extended-release capsules in a patient who is being treated with linezolid or intravenous methylene blue because there is increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered (see CONTRAINDICATIONS). In some cases, a patient already receiving therapy with venlafaxine hydrochloride extended-release capsules may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, venlafaxine hydrochloride extended-release capsules should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for 7 days or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with venlafaxine hydrochloride extended-release capsules may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue (see WARNINGS). The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with venlafaxine hydrochloride extended-release capsules is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use (see WARNINGS). Special Populations Treatment of Pregnant Women during the Third Trimester Neonates exposed to venlafaxine hydrochloride extended-release capsules, other SNRIs, or SSRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see PRECAUTIONS ). When treating pregnant women with venlafaxine hydrochloride extended-release capsules during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. Patients with Hepatic Impairment Given the decrease in clearance and increase in elimination half-life for both venlafaxine and ODV that is observed in patients with hepatic cirrhosis and mild and moderate hepatic impairment compared with normal subjects (see CLINICAL PHARMACOLOGY), it is recommended that the total daily dose be reduced by 50% in patients with mild to moderate hepatic impairment. Since there was much individual variability in clearance between subjects with cirrhosis, it may be necessary to reduce the dose even more than 50%, and individualization of dosing may be desirable in some patients. Patients with Renal Impairment Given the decrease in clearance for venlafaxine and the increase in elimination half-life for both venlafaxine and ODV that is observed in patients with renal impairment (GFR = 10 to 70 mL/min) compared with normal subjects (see CLINICAL PHARMACOLOGY), it is recommended that the total daily dose be reduced by 25% to 50%. In patients undergoing hemodialysis, it is recommended that the total daily dose be reduced by 50%. Because there was much individual variability in clearance between patients with renal impairment, individualization of dosage may be desirable in some patients. Elderly Patients No dose adjustment is recommended for elderly patients solely on the basis of age. As with any drug for the treatment of major depressive disorder, or Social Anxiety Disorder, however, caution should be exercised in treating the elderly. When individualizing the dosage, extra care should be taken when increasing the dose. Maintenance Treatment There is no body of evidence available from controlled trials to indicate how long patients with major depressive disorder, or Social Anxiety Disorder, should be treated with venlafaxine hydrochloride extended-release capsules. It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacological therapy beyond response to the acute episode. In one study, in which patients responding during 8 weeks of acute treatment with venlafaxine hydrochloride extended-release capsules were assigned randomly to placebo or to the same dose of venlafaxine hydrochloride extended-release capsules (75, 150, or 225 mg/day, qAM) during 26 weeks of maintenance treatment as they had received during the acute stabilization phase, longer-term efficacy was demonstrated. A second longer-term study has demonstrated the efficacy of venlafaxine hydrochloride tablets in maintaining a response in patients with recurrent major depressive disorder who had responded and continued to be improved during an initial 26 weeks of treatment and were then randomly assigned to placebo or venlafaxine hydrochloride tablets for periods of up to 52 weeks on the same dose (100 to 200 mg/day, on a b.i.d. schedule) (see Clinical Trials under CLINICAL PHARMACOLOGY). Based on these limited data, it is not known whether or not the dose of venlafaxine hydrochloride tablets/venlafaxine hydrochloride extended-release capsules needed for maintenance treatment is identical to the dose needed to achieve an initial response. Patients should be periodically reassessed to determine the need for maintenance treatment and the appropriate dose for such treatment. In patients with Social Anxiety Disorder, venlafaxine hydrochloride extended-release capsules have been shown to be effective in a 6 month clinical trial. The need for continuing medication in patients with Social Anxiety Disorder who improve with venlafaxine hydrochloride extended-release capsules treatment should be periodically reassessed. Discontinuing Venlafaxine Hydrochloride Extended-release Capsules Symptoms associated with discontinuation of venlafaxine hydrochloride extended-release capsules, other SNRIs, and SSRIs, have been reported (see PRECAUTIONS). Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. In clinical trials with venlafaxine hydrochloride extended-release capsules, tapering was achieved by reducing the daily dose by 75 mg at 1 week intervals. Individualization of tapering may be necessary.

Lexapro (as escitalopram oxalate) 20 MG Oral Tablet

Generic Name: ESCITALOPRAM OXALATE
Brand Name: Lexapro
  • Substance Name(s):
  • ESCITALOPRAM OXALATE

DRUG INTERACTIONS

7 Concomitant use with SSRIs, SNRIs or Tryptophan is not recommended (7.2). Use caution when concomitant use with drugs that affect Hemostasis (NSAIDs, Aspirin, Warfarin) (7.6). 7.1 Monoamine Oxidase Inhibitors (MAOIs) [See Dosage and Administration (2.5 and 2.6), Contraindications (4.1) and Warnings and Precautions (5.2)]. 7.2 Serotonergic Drugs [See Dosage and Administration (2.5 and 2.6), Contraindications (4.1) and Warnings and Precautions (5.2)]. 7.3 Triptans There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of Lexapro with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases [see Warnings and Precautions (5.2)]. 7.4 CNS Drugs Given the primary CNS effects of escitalopram, caution should be used when it is taken in combination with other centrally acting drugs. 7.5 Alcohol Although Lexapro did not potentiate the cognitive and motor effects of alcohol in a clinical trial, as with other psychotropic medications, the use of alcohol by patients taking Lexapro is not recommended. 7.6 Drugs That Interfere With Hemostasis (NSAIDs, Aspirin, Warfarin, etc.) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate the risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Lexapro is initiated or discontinued. 7.7 Cimetidine In subjects who had received 21 days of 40 mg/day racemic citalopram, combined administration of 400 mg twice a day cimetidine for 8 days resulted in an increase in citalopram AUC and Cmax of 43% and 39%, respectively. The clinical significance of these findings is unknown. 7.8 Digoxin In subjects who had received 21 days of 40 mg/day racemic citalopram, combined administration of citalopram and digoxin (single dose of 1 mg) did not significantly affect the pharmacokinetics of either citalopram or digoxin. 7.9 Lithium Coadministration of racemic citalopram (40 mg/day for 10 days) and lithium (30 mmol/day for 5 days) had no significant effect on the pharmacokinetics of citalopram or lithium. Nevertheless, plasma lithium levels should be monitored with appropriate adjustment to the lithium dose in accordance with standard clinical practice. Because lithium may enhance the serotonergic effects of escitalopram, caution should be exercised when Lexapro and lithium are coadministered. 7.10 Pimozide and Celexa In a controlled study, a single dose of pimozide 2 mg co-administered with racemic citalopram 40 mg given once daily for 11 days was associated with a mean increase in QTc values of approximately 10 msec compared to pimozide given alone. Racemic citalopram did not alter the mean AUC or Cmax of pimozide. The mechanism of this pharmacodynamic interaction is not known. 7.11 Sumatriptan There have been rare postmarketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of an SSRI and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, escitalopram) is clinically warranted, appropriate observation of the patient is advised. 7.12 Theophylline Combined administration of racemic citalopram (40 mg/day for 21 days) and the CYP1A2 substrate theophylline (single dose of 300 mg) did not affect the pharmacokinetics of theophylline. The effect of theophylline on the pharmacokinetics of citalopram was not evaluated. 7.13 Warfarin Administration of 40 mg/day racemic citalopram for 21 days did not affect the pharmacokinetics of warfarin, a CYP3A4 substrate. Prothrombin time was increased by 5%, the clinical significance of which is unknown. 7.14 Carbamazepine Combined administration of racemic citalopram (40 mg/day for 14 days) and carbamazepine (titrated to 400 mg/day for 35 days) did not significantly affect the pharmacokinetics of carbamazepine, a CYP3A4 substrate. Although trough citalopram plasma levels were unaffected, given the enzyme-inducing properties of carbamazepine, the possibility that carbamazepine might increase the clearance of escitalopram should be considered if the two drugs are coadministered. 7.15 Triazolam Combined administration of racemic citalopram (titrated to 40 mg/day for 28 days) and the CYP3A4 substrate triazolam (single dose of 0.25 mg) did not significantly affect the pharmacokinetics of either citalopram or triazolam. 7.16 Ketoconazole Combined administration of racemic citalopram (40 mg) and ketoconazole (200 mg), a potent CYP3A4 inhibitor, decreased the Cmax and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram. 7.17 Ritonavir Combined administration of a single dose of ritonavir (600 mg), both a CYP3A4 substrate and a potent inhibitor of CYP3A4, and escitalopram (20 mg) did not affect the pharmacokinetics of either ritonavir or escitalopram. 7.18 CYP3A4 and -2C19 Inhibitors In vitro studies indicated that CYP3A4 and -2C19 are the primary enzymes involved in the metabolism of escitalopram. However, coadministration of escitalopram (20 mg) and ritonavir (600 mg), a potent inhibitor of CYP3A4, did not significantly affect the pharmacokinetics of escitalopram. Because escitalopram is metabolized by multiple enzyme systems, inhibition of a single enzyme may not appreciably decrease escitalopram clearance. 7.19 Drugs Metabolized by Cytochrome P4502D6 In vitro studies did not reveal an inhibitory effect of escitalopram on CYP2D6. In addition, steady state levels of racemic citalopram were not significantly different in poor metabolizers and extensive CYP2D6 metabolizers after multiple-dose administration of citalopram, suggesting that coadministration, with escitalopram, of a drug that inhibits CYP2D6, is unlikely to have clinically significant effects on escitalopram metabolism. However, there are limited in vivo data suggesting a modest CYP2D6 inhibitory effect for escitalopram, i.e., coadministration of escitalopram (20 mg/day for 21 days) with the tricyclic antidepressant desipramine (single dose of 50 mg), a substrate for CYP2D6, resulted in a 40% increase in Cmax and a 100% increase in AUC of desipramine. The clinical significance of this finding is unknown. Nevertheless, caution is indicated in the coadministration of escitalopram and drugs metabolized by CYP2D6. 7.20 Metoprolol Administration of 20 mg/day Lexapro for 21 days in healthy volunteers resulted in a 50% increase in Cmax and 82% increase in AUC of the beta-adrenergic blocker metoprolol (given in a single dose of 100 mg). Increased metoprolol plasma levels have been associated with decreased cardioselectivity. Coadministration of Lexapro and metoprolol had no clinically significant effects on blood pressure or heart rate. 7.21 Electroconvulsive Therapy (ECT) There are no clinical studies of the combined use of ECT and escitalopram.

OVERDOSAGE

10 10.1 Human Experience In clinical trials of escitalopram, there were reports of escitalopram overdose, including overdoses of up to 600 mg, with no associated fatalities. During the postmarketing evaluation of escitalopram, Lexapro overdoses involving overdoses of over 1000 mg have been reported. As with other SSRIs, a fatal outcome in a patient who has taken an overdose of escitalopram has been rarely reported. Symptoms most often accompanying escitalopram overdose, alone or in combination with other drugs and/or alcohol, included convulsions, coma, dizziness, hypotension, insomnia, nausea, vomiting, sinus tachycardia, somnolence, and ECG changes (including QT prolongation and very rare cases of torsade de pointes). Acute renal failure has been very rarely reported accompanying overdose. 10.2 Management of Overdose Establish and maintain an airway to ensure adequate ventilation and oxygenation. Gastric evacuation by lavage and use of activated charcoal should be considered. Careful observation and cardiac and vital sign monitoring are recommended, along with general symptomatic and supportive care. Due to the large volume of distribution of escitalopram, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. There are no specific antidotes for Lexapro. In managing overdosage, consider the possibility of multiple-drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose.

DESCRIPTION

11 Lexapro® (escitalopram oxalate) is an orally administered selective serotonin reuptake inhibitor (SSRI). Escitalopram is the pure S-enantiomer (single isomer) of the racemic bicyclic phthalane derivative citalopram. Escitalopram oxalate is designated S-(+)-1-[3-(dimethyl-amino)propyl]-1-(p-fluorophenyl)-5-phthalancarbonitrile oxalate with the following structural formula: The molecular formula is C20H21FN2O • C2H2O4 and the molecular weight is 414.40. Escitalopram oxalate occurs as a fine, white to slightly-yellow powder and is freely soluble in methanol and dimethyl sulfoxide (DMSO), soluble in isotonic saline solution, sparingly soluble in water and ethanol, slightly soluble in ethyl acetate, and insoluble in heptane. Lexapro (escitalopram oxalate) is available as tablets or as an oral solution. Lexapro tablets are film-coated, round tablets containing escitalopram oxalate in strengths equivalent to 5 mg, 10 mg, and 20 mg escitalopram base. The 10 and 20 mg tablets are scored. The tablets also contain the following inactive ingredients: talc, croscarmellose sodium, microcrystalline cellulose/colloidal silicon dioxide, and magnesium stearate. The film coating contains hypromellose, titanium dioxide, and polyethylene glycol. Lexapro oral solution contains escitalopram oxalate equivalent to 1 mg/mL escitalopram base. It also contains the following inactive ingredients: sorbitol, purified water, citric acid, sodium citrate, malic acid, glycerin, propylene glycol, methylparaben, propylparaben, and natural peppermint flavor. Structural Formula

CLINICAL STUDIES

14 14.1 Major Depressive Disorder Adolescents The efficacy of Lexapro as an acute treatment for major depressive disorder in adolescent patients was established in an 8-week, flexible-dose, placebo-controlled study that compared Lexapro 10-20 mg/day to placebo in outpatients 12 to 17 years of age inclusive who met DSM-IV criteria for major depressive disorder. The primary outcome was change from baseline to endpoint in the Children’s Depression Rating Scale – Revised (CDRS-R). In this study, Lexapro showed statistically significant greater mean improvement compared to placebo on the CDRS-R. The efficacy of Lexapro in the acute treatment of major depressive disorder in adolescents was established, in part, on the basis of extrapolation from the 8-week, flexible-dose, placebo-controlled study with racemic citalopram 20-40 mg/day. In this outpatient study in children and adolescents 7 to 17 years of age who met DSM-IV criteria for major depressive disorder, citalopram treatment showed statistically significant greater mean improvement from baseline, compared to placebo, on the CDRS-R; the positive results for this trial largely came from the adolescent subgroup. Two additional flexible-dose, placebo-controlled MDD studies (one Lexapro study in patients ages 7 to 17 and one citalopram study in adolescents) did not demonstrate efficacy. Although maintenance efficacy in adolescent patients has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of escitalopram pharmacokinetic parameters in adults and adolescent patients. Adults The efficacy of Lexapro as a treatment for major depressive disorder was established in three, 8-week, placebo-controlled studies conducted in outpatients between 18 and 65 years of age who met DSM-IV criteria for major depressive disorder. The primary outcome in all three studies was change from baseline to endpoint in the Montgomery Asberg Depression Rating Scale (MADRS). A fixed-dose study compared 10 mg/day Lexapro and 20 mg/day Lexapro to placebo and 40 mg/day citalopram. The 10 mg/day and 20 mg/day Lexapro treatment groups showed statistically significant greater mean improvement compared to placebo on the MADRS. The 10 mg and 20 mg Lexapro groups were similar on this outcome measure. In a second fixed-dose study of 10 mg/day Lexapro and placebo, the 10 mg/day Lexapro treatment group showed statistically significant greater mean improvement compared to placebo on the MADRS. In a flexible-dose study, comparing Lexapro, titrated between 10 and 20 mg/day, to placebo and citalopram, titrated between 20 and 40 mg/day, the Lexapro treatment group showed statistically significant greater mean improvement compared to placebo on the MADRS. Analyses of the relationship between treatment outcome and age, gender, and race did not suggest any differential responsiveness on the basis of these patient characteristics. In a longer-term trial, 274 patients meeting (DSM-IV) criteria for major depressive disorder, who had responded during an initial 8-week, open-label treatment phase with Lexapro 10 or 20 mg/day, were randomized to continuation of Lexapro at their same dose, or to placebo, for up to 36 weeks of observation for relapse. Response during the open-label phase was defined by having a decrease of the MADRS total score to ≤ 12. Relapse during the double-blind phase was defined as an increase of the MADRS total score to ≥ 22, or discontinuation due to insufficient clinical response. Patients receiving continued Lexapro experienced a statistically significant longer time to relapse compared to those receiving placebo. 14.2 Generalized Anxiety Disorder The efficacy of Lexapro in the acute treatment of Generalized Anxiety Disorder (GAD) was demonstrated in three, 8-week, multicenter, flexible-dose, placebo-controlled studies that compared Lexapro 10-20 mg/day to placebo in adult outpatients between 18 and 80 years of age who met DSM-IV criteria for GAD. In all three studies, Lexapro showed statistically significant greater mean improvement compared to placebo on the Hamilton Anxiety Scale (HAM-A). There were too few patients in differing ethnic and age groups to adequately assess whether or not Lexapro has differential effects in these groups. There was no difference in response to Lexapro between men and women.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 Tablets 5 mg Tablets: Bottle of 100 NDC # 0456-2005-01 White to off-white, round, non-scored, film-coated. Imprint “FL” on one side of the tablet and “5” on the other side. 10 mg Tablets: Bottle of 100 NDC # 0456-2010-01 10 x 10 Unit Dose NDC # 0456-2010-63 White to off-white, round, scored, film-coated. Imprint on scored side with “F” on the left side and “L” on the right side. Imprint on the non-scored side with “10”. 20 mg Tablets: Bottle of 100 NDC # 0456-2020-01 10 x 10 Unit Dose NDC # 0456-2020-63 White to off-white, round, scored, film-coated. Imprint on scored side with “F” on the left side and “L” on the right side. Imprint on the non-scored side with “20”. 16.2 Oral Solution 5 mg/5 mL, peppermint flavor (240 mL) NDC # 0456-2101-08 Storage and Handling Store at 25°C (77°F); excursions permitted to 15 – 30°C (59-86°F).

RECENT MAJOR CHANGES

Warnings and Precautions (5.2) 01/2017

GERIATRIC USE

8.5 Geriatric Use Approximately 6% of the 1144 patients receiving escitalopram in controlled trials of Lexapro in major depressive disorder and GAD were 60 years of age or older; elderly patients in these trials received daily doses of Lexapro between 10 and 20 mg. The number of elderly patients in these trials was insufficient to adequately assess for possible differential efficacy and safety measures on the basis of age. Nevertheless, greater sensitivity of some elderly individuals to effects of Lexapro cannot be ruled out. SSRIs and SNRIs, including Lexapro, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event [see Hyponatremia (5.6)]. In two pharmacokinetic studies, escitalopram half-life was increased by approximately 50% in elderly subjects as compared to young subjects and Cmax was unchanged [see Clinical Pharmacology (12.3)]. 10 mg/day is the recommended dose for elderly patients [see Dosage and Administration (2.3)]. Of 4422 patients in clinical studies of racemic citalopram, 1357 were 60 and over, 1034 were 65 and over, and 457 were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but again, greater sensitivity of some elderly individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3 Tablets: 5 mg, 10 mg (scored) and 20 mg (scored) (3.1) Oral solution: 1 mg per mL (3.2) 3.1 Tablets Lexapro tablets are film-coated, round tablets containing escitalopram oxalate in strengths equivalent to 5 mg, 10 mg and 20 mg escitalopram base. The 10 and 20 mg tablets are scored. Imprinted with “FL” on one side and either “5”, “10”, or “20” on the other side according to their respective strengths. 3.2 Oral Solution Lexapro oral solution contains escitalopram oxalate equivalent to 1 mg/mL escitalopram base.

MECHANISM OF ACTION

12.1 Mechanism of Action The mechanism of antidepressant action of escitalopram, the S-enantiomer of racemic citalopram, is presumed to be linked to potentiation of serotonergic activity in the central nervous system (CNS) resulting from its inhibition of CNS neuronal reuptake of serotonin (5-HT).

INDICATIONS AND USAGE

1 Lexapro® is a selective serotonin reuptake inhibitor (SSRI) indicated for: Acute and Maintenance Treatment of Major Depressive Disorder (MDD) in adults and adolescents aged 12-17 years (1.1) Acute Treatment of Generalized Anxiety Disorder (GAD) in adults (1.2) 1.1 Major Depressive Disorder Lexapro (escitalopram) is indicated for the acute and maintenance treatment of major depressive disorder in adults and in adolescents 12 to 17 years of age [see Clinical Studies (14.1)]. A major depressive episode (DSM-IV) implies a prominent and relatively persistent (nearly every day for at least 2 weeks) depressed or dysphoric mood that usually interferes with daily functioning, and includes at least five of the following nine symptoms: depressed mood, loss of interest in usual activities, significant change in weight and/or appetite, insomnia or hypersomnia, psychomotor agitation or retardation, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, a suicide attempt or suicidal ideation. 1.2 Generalized Anxiety Disorder Lexapro is indicated for the acute treatment of Generalized Anxiety Disorder (GAD) in adults [see Clinical Studies (14.2)]. Generalized Anxiety Disorder (DSM-IV) is characterized by excessive anxiety and worry (apprehensive expectation) that is persistent for at least 6 months and which the person finds difficult to control. It must be associated with at least 3 of the following symptoms: restlessness or feeling keyed up or on edge, being easily fatigued, difficulty concentrating or mind going blank, irritability, muscle tension, and sleep disturbance.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of Lexapro have been established in adolescents (12 to 17 years of age) for the treatment of major depressive disorder [see Clinical Studies (14.1)]. Although maintenance efficacy in adolescent patients with major depressive disorder has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of escitalopram pharmacokinetic parameters in adults and adolescent patients. The safety and effectiveness of Lexapro have not been established in pediatric (younger than 12 years of age) patients with major depressive disorder. In a 24-week, open- label safety study in 118 children (aged 7 to 11 years) who had major depressive disorder, the safety findings were consistent with the known safety and tolerability profile for Lexapro. Safety and effectiveness of Lexapro has not been established in pediatric patients less than 18 years of age with Generalized Anxiety Disorder. Decreased appetite and weight loss have been observed in association with the use of SSRIs. Consequently, regular monitoring of weight and growth should be performed in children and adolescents treated with an SSRI such as Lexapro.

PREGNANCY

8.1 Pregnancy Pregnancy Category C In a rat embryo/fetal development study, oral administration of escitalopram (56, 112, or 150 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased fetal body weight and associated delays in ossification at the two higher doses (approximately ≥ 56 times the maximum recommended human dose [MRHD] of 20 mg/day on a body surface area [mg/m2] basis). Maternal toxicity (clinical signs and decreased body weight gain and food consumption), mild at 56 mg/kg/day, was present at all dose levels. The developmental no-effect dose of 56 mg/kg/day is approximately 28 times the MRHD on a mg/m2 basis. No teratogenicity was observed at any of the doses tested (as high as 75 times the MRHD on a mg/m2 basis). When female rats were treated with escitalopram (6, 12, 24, or 48 mg/kg/day) during pregnancy and through weaning, slightly increased offspring mortality and growth retardation were noted at 48 mg/kg/day which is approximately 24 times the MRHD on a mg/m2 basis. Slight maternal toxicity (clinical signs and decreased body weight gain and food consumption) was seen at this dose. Slightly increased offspring mortality was also seen at 24 mg/kg/day. The no-effect dose was 12 mg/kg/day which is approximately 6 times the MRHD on a mg/m2 basis. In animal reproduction studies, racemic citalopram has been shown to have adverse effects on embryo/fetal and postnatal development, including teratogenic effects, when administered at doses greater than human therapeutic doses. In two rat embryo/fetal development studies, oral administration of racemic citalopram (32, 56, or 112 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased embryo/fetal growth and survival and an increased incidence of fetal abnormalities (including cardiovascular and skeletal defects) at the high dose. This dose was also associated with maternal toxicity (clinical signs, decreased body weight gain). The developmental no-effect dose was 56 mg/kg/day. In a rabbit study, no adverse effects on embryo/fetal development were observed at doses of racemic citalopram of up to 16 mg/kg/day. Thus, teratogenic effects of racemic citalopram were observed at a maternally toxic dose in the rat and were not observed in the rabbit. When female rats were treated with racemic citalopram (4.8, 12.8, or 32 mg/kg/day) from late gestation through weaning, increased offspring mortality during the first 4 days after birth and persistent offspring growth retardation were observed at the highest dose. The no-effect dose was 12.8 mg/kg/day. Similar effects on offspring mortality and growth were seen when dams were treated throughout gestation and early lactation at doses ≥ 24 mg/kg/day. A no-effect dose was not determined in that study. There are no adequate and well-controlled studies in pregnant women; therefore, escitalopram should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Pregnancy-Nonteratogenic Effects Neonates exposed to Lexapro and other SSRIs or serotonin and norepinephrine reuptake inhibitors (SNRIs), late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SSRIs and SNRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome [see Warnings and Precautions (5.2)]. Infants exposed to SSRIs in pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn (PPHN). PPHN occurs in 1 – 2 per 1,000 live births in the general population and is associated with substantial neonatal morbidity and mortality. Several recent epidemiologic studies suggest a positive statistical association between SSRI use (including Lexapro) in pregnancy and PPHN. Other studies do not show a significant statistical association. Physicians should also note the results of a prospective longitudinal study of 201 pregnant women with a history of major depression, who were either on antidepressants or had received antidepressants less than 12 weeks prior to their last menstrual period, and were in remission. Women who discontinued antidepressant medication during pregnancy showed a significant increase in relapse of their major depression compared to those women who remained on antidepressant medication throughout pregnancy. When treating a pregnant woman with Lexapro, the physician should carefully consider both the potential risks of taking an SSRl, along with the established benefits of treating depression with an antidepressant. This decision can only be made on a case by case basis [see Dosage and Administration (2.1.)].

NUSRING MOTHERS

8.3 Nursing Mothers Escitalopram is excreted in human breast milk. Limited data from women taking 10-20 mg escitalopram showed that exclusively breast-fed infants receive approximately 3.9% of the maternal weight-adjusted dose of escitalopram and 1.7% of the maternal weight-adjusted dose of desmethylcitalopram. There were two reports of infants experiencing excessive somnolence, decreased feeding, and weight loss in association with breastfeeding from a racemic citalopram-treated mother; in one case, the infant was reported to recover completely upon discontinuation of racemic citalopram by its mother and, in the second case, no follow-up information was available. Caution should be exercised and breastfeeding infants should be observed for adverse reactions when Lexapro is administered to a nursing woman.

BOXED WARNING

WARNINGS: SUICIDALITY AND ANTIDEPRESSANT DRUGS Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Lexapro or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Lexapro is not approved for use in pediatric patients less than 12 years of age. [See Warnings and Precautions: Clinical Worsening and Suicide Risk (5.1), Patient Counseling Information: Information for Patients (17.1), and Use in Specific Populations: Pediatric Use (8.4)]. WARNING: Suicidality and Antidepressant Drugs See full prescribing information for complete boxed warning. Increased risk of suicidal thinking and behavior in children, adolescents and young adults taking antidepressants for major depressive disorder (MDD) and other psychiatric disorders. Lexapro is not approved for use in pediatric patients less than 12 years of age (5.1).

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Clinical Worsening/Suicide Risk: Monitor for clinical worsening, suicidality and unusual change in behavior, especially, during the initial few months of therapy or at times of dose changes (5.1). Serotonin Syndrome: Serotonin syndrome has been reported with SSRIs and SNRIs, including Lexapro, both when taken alone, but especially when co-administered with other serotonergic agents (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, and St. John’s Wort). If such symptoms occur, discontinue Lexapro and initiate supportive treatment. If concomitant use of Lexapro with other serotonergic drugs is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases (5.2). Discontinuation of Treatment with Lexapro: A gradual reduction in dose rather than abrupt cessation is recommended whenever possible (5.3). Seizures: Prescribe with care in patients with a history of seizure (5.4). Activation of Mania/Hypomania: Use cautiously in patients with a history of mania (5.5). Hyponatremia: Can occur in association with SIADH (5.6). Abnormal Bleeding: Use caution in concomitant use with NSAIDs, aspirin, warfarin or other drugs that affect coagulation (5.7). Interference with Cognitive and Motor Performance: Use caution when operating machinery (5.8). Angle Closure Glaucoma: Angle closure glaucoma has occurred in patients with untreated anatomically narrow angles treated with antidepressants. (5.9) Use in Patients with Concomitant Illness: Use caution in patients with diseases or conditions that produce altered metabolism or hemodynamic responses (5.10). 5.1 Clinical Worsening and Suicide Risk Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18-24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. TABLE 1 Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 14 additional cases 18-24 5 additional cases Decreases Compared to Placebo 25-64 1 fewer case ≥65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms [see Dosage and Administration (2.4)]. Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers [see also Patient Counseling Information (17.1)]. Prescriptions for Lexapro should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that Lexapro is not approved for use in treating bipolar depression. 5.2 Serotonin Syndrome The development of a potentially life-threatening serotonin syndrome has been reported with SNRIs and SSRIs, including Lexapro, alone but particularly with concomitant use of other serotonergic drugs (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, and St. John's Wort) and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination) seizures, and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Patients should be monitored for the emergence of serotonin syndrome. The concomitant use of Lexapro with MAOIs intended to treat psychiatric disorders is contraindicated. Lexapro should also not be started in a patient who is being treated with MAOIs such as linezolid or intravenous methylene blue. All reports with methylene blue that provided information on the route of administration involved intravenous administration in the dose range of 1 mg/kg to 8 mg/kg. No reports involved the administration of methylene blue by other routes (such as oral tablets or local tissue injection) or at lower doses. There may be circumstances when it is necessary to initiate treatment with an MAOI such as linezolid or intravenous methylene blue in a patient taking Lexapro. Lexapro should be discontinued before initiating treatment with the MAOI [see Contraindications (4.1) and Dosage and Administration (2.5 and 2.6)]. If concomitant use of Lexapro with other serotonergic drugs including, triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, buspirone, tryptophan, amphetamine and St. John's Wort is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases. Treatment with Lexapro and any concomitant serotonergic agents, should be discontinued immediately if the above events occur and supportive symptomatic treatment should be initiated. 5.3 Discontinuation of Treatment with Lexapro During marketing of Lexapro and other SSRIs and SNRIs (serotonin and norepinephrine reuptake inhibitors), there have been spontaneous reports of adverse events occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g., paresthesias such as electric shock sensations), anxiety, confusion, headache, lethargy, emotional lability, insomnia, and hypomania. While these events are generally self-limiting, there have been reports of serious discontinuation symptoms. Patients should be monitored for these symptoms when discontinuing treatment with Lexapro. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate [see Dosage and Administration (2.4)]. 5.4 Seizures Although anticonvulsant effects of racemic citalopram have been observed in animal studies, Lexapro has not been systematically evaluated in patients with a seizure disorder. These patients were excluded from clinical studies during the product's premarketing testing. In clinical trials of Lexapro, cases of convulsion have been reported in association with Lexapro treatment. Like other drugs effective in the treatment of major depressive disorder, Lexapro should be introduced with care in patients with a history of seizure disorder. 5.5 Activation of Mania/Hypomania In placebo-controlled trials of Lexapro in major depressive disorder, activation of mania/hypomania was reported in one (0.1%) of 715 patients treated with Lexapro and in none of the 592 patients treated with placebo. One additional case of hypomania has been reported in association with Lexapro treatment. Activation of mania/hypomania has also been reported in a small proportion of patients with major affective disorders treated with racemic citalopram and other marketed drugs effective in the treatment of major depressive disorder. As with all drugs effective in the treatment of major depressive disorder, Lexapro should be used cautiously in patients with a history of mania. 5.6 Hyponatremia Hyponatremia may occur as a result of treatment with SSRIs and SNRIs, including Lexapro. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and was reversible when Lexapro was discontinued. Cases with serum sodium lower than 110 mmol/L have been reported. Elderly patients may be at greater risk of developing hyponatremia with SSRIs and SNRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk [see Geriatric Use (8.5 )]. Discontinuation of Lexapro should be considered in patients with symptomatic hyponatremia and appropriate medical intervention should be instituted. Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. Signs and symptoms associated with more severe and/or acute cases have included hallucination, syncope, seizure, coma, respiratory arrest, and death. 5.7 Abnormal Bleeding SSRIs and SNRIs, including Lexapro, may increase the risk of bleeding events. Concomitant use of aspirin, nonsteroidal anti-inflammatory drugs, warfarin, and other anticoagulants may add to the risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages. Patients should be cautioned about the risk of bleeding associated with the concomitant use of Lexapro and NSAIDs, aspirin, or other drugs that affect coagulation. 5.8 Interference with Cognitive and Motor Performance In a study in normal volunteers, Lexapro 10 mg/day did not produce impairment of intellectual function or psychomotor performance. Because any psychoactive drug may impair judgment, thinking, or motor skills, however, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that Lexapro therapy does not affect their ability to engage in such activities. 5.9 Angle Closure Glaucoma Angle Closure Glaucoma: The pupillary dilation that occurs following use of many antidepressant drugs including Lexapro may trigger an angle closure attack in a patient with anatomically narrow angles who does not have a patent iridectomy. 5.10 Use in Patients with Concomitant Illness Clinical experience with Lexapro in patients with certain concomitant systemic illnesses is limited. Caution is advisable in using Lexapro in patients with diseases or conditions that produce altered metabolism or hemodynamic responses. Lexapro has not been systematically evaluated in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were generally excluded from clinical studies during the product's premarketing testing. In subjects with hepatic impairment, clearance of racemic citalopram was decreased and plasma concentrations were increased. The recommended dose of Lexapro in hepatically impaired patients is 10 mg/day [see Dosage and Administration (2.3)]. Because escitalopram is extensively metabolized, excretion of unchanged drug in urine is a minor route of elimination. Until adequate numbers of patients with severe renal impairment have been evaluated during chronic treatment with Lexapro, however, it should be used with caution in such patients [see Dosage and Administration (2.3)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved Medication Guide 17.1 Information for Patients Physicians are advised to discuss the following issues with patients for whom they prescribe Lexapro. General Information about Medication Guide Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with Lexapro and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for Lexapro. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking Lexapro. Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication [see Warnings and Precautions (5.1)]. Serotonin Syndrome Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of Lexapro with other serotonergic drugs including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines and St. John’s Wort, and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid) [see Warnings and Precautions (5.2)]. Abnormal Bleeding Patients should be cautioned about the concomitant use of Lexapro and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents has been associated with an increased risk of bleeding [see Warnings and Precautions (5.7)]. Angle Closure Glaucoma Patients should be advised that taking Lexapro can cause mild pupillary dilation, which in susceptible individuals, can lead to an episode of angle closure glaucoma. Pre-existing glaucoma is almost always open-angle glaucoma because angle closure glaucoma, when diagnosed, can be treated definitively with iridectomy. Open-angle glaucoma is not a risk factor for angle closure glaucoma. Patients may wish to be examined to determine whether they are susceptible to angle closure, and have a prophylactic procedure (e.g., iridectomy), if they are susceptible [see Warnings and Precautions (5.9)]. Concomitant Medications Since escitalopram is the active isomer of racemic citalopram (Celexa), the two agents should not be coadministered. Patients should be advised to inform their physician if they are taking, or plan to take, any prescription or over-the-counter drugs, as there is a potential for interactions. Continuing the Therapy Prescribed While patients may notice improvement with Lexapro therapy in 1 to 4 weeks, they should be advised to continue therapy as directed. Interference with Psychomotor Performance Because psychoactive drugs may impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that Lexapro therapy does not affect their ability to engage in such activities. Alcohol Patients should be told that, although Lexapro has not been shown in experiments with normal subjects to increase the mental and motor skill impairments caused by alcohol, the concomitant use of Lexapro and alcohol in depressed patients is not advised. Pregnancy and Breast Feeding Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. are breastfeeding an infant. Need for Comprehensive Treatment Program Lexapro is indicated as an integral part of a total treatment program for MDD that may include other measures (psychological, educational, social) for patients with this syndrome. Drug treatment may not be indicated for all adolescents with this syndrome. Safety and effectiveness of Lexapro in MDD has not been established in pediatric patients less than 12 years of age. Antidepressants are not intended for use in the adolescent who exhibits symptoms secondary to environmental factors and/or other primary psychiatric disorders. Appropriate educational placement is essential and psychosocial intervention is often helpful. When remedial measures alone are insufficient, the decision to prescribe antidepressant medication will depend upon the physician’s assessment of the chronicity and severity of the patient’s symptoms. 17.2 FDA-Approved Medication Guide

DOSAGE AND ADMINISTRATION

2 Lexapro should be administered once daily, in the morning or evening, with or without food. Lexapro should generally be administered once daily, morning or evening with or without food (2.1, 2.2). Indication Recommended Dose MDD (2.1) Adolescents (2.1) Initial: 10 mg once daily Recommended: 10 mg once daily Maximum: 20 mg once daily Adults (2.1) Initial: 10 mg once daily Recommended: 10 mg once daily Maximum: 20 mg once daily GAD (2.2) Adults (2.2) Initial: 10 mg once daily Recommended: 10 mg once daily No additional benefits seen at 20 mg/day dose (2.1). 10 mg/day is the recommended dose for most elderly patients and patients with hepatic impairment (2.3). No dosage adjustment for patients with mild or moderate renal impairment. Use caution in patients with severe renal impairment (2.3). Discontinuing Lexapro: A gradual dose reduction is recommended (2.4). 2.1 Major Depressive Disorder Initial Treatment Adolescents The recommended dose of Lexapro is 10 mg once daily. A flexible-dose trial of Lexapro (10 to 20 mg/day) demonstrated the effectiveness of Lexapro [see Clinical Studies (14.1)]. If the dose is increased to 20 mg, this should occur after a minimum of three weeks. Adults The recommended dose of Lexapro is 10 mg once daily. A fixed-dose trial of Lexapro demonstrated the effectiveness of both 10 mg and 20 mg of Lexapro, but failed to demonstrate a greater benefit of 20 mg over 10 mg [see Clinical Studies (14.1)]. If the dose is increased to 20 mg, this should occur after a minimum of one week. Maintenance Treatment It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacological therapy beyond response to the acute episode. Systematic evaluation of continuing Lexapro 10 or 20 mg/day in adults patients with major depressive disorder who responded while taking Lexapro during an 8-week, acute-treatment phase demonstrated a benefit of such maintenance treatment [see Clinical Studies (14.1)]. Nevertheless, the physician who elects to use Lexapro for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient. Patients should be periodically reassessed to determine the need for maintenance treatment. 2.2 Generalized Anxiety Disorder Initial Treatment Adults The recommended starting dose of Lexapro is 10 mg once daily. If the dose is increased to 20 mg, this should occur after a minimum of one week. Maintenance Treatment Generalized anxiety disorder is recognized as a chronic condition. The efficacy of Lexapro in the treatment of GAD beyond 8 weeks has not been systematically studied. The physician who elects to use Lexapro for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient. 2.3 Special Populations 10 mg/day is the recommended dose for most elderly patients and patients with hepatic impairment. No dosage adjustment is necessary for patients with mild or moderate renal impairment. Lexapro should be used with caution in patients with severe renal impairment. 2.4 Discontinuation of Treatment with Lexapro Symptoms associated with discontinuation of Lexapro and other SSRIs and SNRIs have been reported [see Warnings and Precautions (5.3)]. Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. 2.5 Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric Disorders At least 14 days should elapse between discontinuation of an MAOI intended to treat psychiatric disorders and initiation of therapy with Lexapro. Conversely, at least 14 days should be allowed after stopping Lexapro before starting an MAOI intended to treat psychiatric disorders [see Contraindications (4.1)]. 2.6 Use of Lexapro with Other MAOIs such as Linezolid or Methylene Blue Do not start Lexapro in a patient who is being treated with linezolid or intravenous methylene blue because there is an increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered [see Contraindications (4.1)]. In some cases, a patient already receiving Lexapro therapy may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, Lexapro should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for 2 weeks or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with Lexapro may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue [see Warnings and Precautions (5.2)]. The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with Lexapro is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use [see Warnings and Precautions (5.2)].

venlafaxine HCl 150 MG 24HR Extended Release Oral Capsule

Generic Name: VENLAFAXINE HYDROCHLORIDE
Brand Name: Venlafaxine Hydrochloride
  • Substance Name(s):
  • VENLAFAXINE HYDROCHLORIDE

WARNINGS

Clinical Worsening and Suicide Risk Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. Table 1 Age Range Drug – Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo < 18 14 additional cases 18 to 24 5 additional cases Decreases Compared to Placebo 25 to 64 1 fewer case ≥ 65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms (see PRECAUTIONS and DOSAGE AND ADMINISTRATION, Discontinuation of Treatment with Venlafaxine Hydrochloride Extended-release Capsules, for a description of the risks of discontinuation of venlafaxine hydrochloride extended-release capsules). Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for venlafaxine hydrochloride extended-release capsules should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that venlafaxine hydrochloride extended-release capsules are not approved for use in treating bipolar depression. Serotonin Syndrome: The development of a potentially life-threatening serotonin syndrome has been reported with SNRIs and SSRIs, including venlafaxine hydrochloride extended-release capsules, alone but particularly with concomitant use of other serotonergic drugs (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, and St. John's Wort) and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Patients should be monitored for the emergence of serotonin syndrome. The concomitant use of venlafaxine hydrochloride extended-release capsules with MAOIs intended to treat psychiatric disorders is contraindicated. Venlafaxine hydrochloride extended-release capsules should also not be started in a patient who is being treated with MAOIs such as linezolid or intravenous methylene blue. All reports with methylene blue that provided information on the route of administration involved intravenous administration in the dose range of 1 mg/kg to 8 mg/kg. No reports involved the administration of methylene blue by other routes (such as oral tablets or local tissue injection) or at lower doses. There may be circumstances when it is necessary to initiate treatment with a MAOI such as linezolid or intravenous methylene blue in a patient taking venlafaxine hydrochloride extended-release capsules. Venlafaxine hydrochloride extended-release capsules should be discontinued before initiating treatment with the MAOI (see CONTRAINDICATIONS and DOSAGE AND ADMINISTRATION). If concomitant use of venlafaxine hydrochloride extended-release capsules with other serotonergic drugs, including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, buspirone, tryptophan, and St. John's Wort is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases. Treatment with venlafaxine hydrochloride extended-release capsules and any concomitant serotonergic agents should be discontinued immediately if the above events occur and supportive symptomatic treatment should be initiated. Sustained Hypertension Venlafaxine hydrochloride extended-release capsules treatment is associated with sustained hypertension (defined as treatment-emergent supine diastolic blood pressure (SDBP) ≥ 90 mm Hg and ≥ 10 mm Hg above baseline for 3 consecutive on-therapy visits (see Table 2). An analysis for patients in venlafaxine hydrochloride tablets studies meeting criteria for sustained hypertension revealed a dose-dependent increase in the incidence of sustained hypertension for venlafaxine hydrochloride tablets (see Table 3). An insufficient number of patients received mean doses of venlafaxine hydrochloride extended-release capsules over 300 mg/day to fully evaluate the incidence of sustained increases in blood pressure at these higher doses. Table 2Number (%) of Sustained Elevations in SDBP in Venlafaxine Hydrochloride Extended-release Capsules Premarketing Studies by Indication MDD (75 to 375 mg/day) Social Anxiety Disorder (75 to 225 mg/day) MDD = major depressive disorder 19/705 (3) 5/771 (0.6) Table 3Incidence (%) of Sustained Elevations in SDBP in Venlafaxine Hydrochloride Tablets Studies Venlafaxine Hydrochloride Tablets mg/day Incidence 100 to ≤ 200 5% > 200 to ≤ 300 7% > 300 13% In premarketing major depressive disorder studies, 0.7% (5/705) of the venlafaxine hydrochloride extended-release capsules-treated patients discontinued treatment because of elevated blood pressure. Among these patients, most of the blood pressure increases were in a modest range (12 to 16 mm Hg, SDBP). In premarketing Social Anxiety Disorder studies up to 6 months, 0.6% (5/771) of the venlafaxine hydrochloride extended-release capsules-treated patients discontinued treatment because of elevated blood pressure. In these patients, the blood pressure increases were modest (1 to 24 mmHg, SDBP). Sustained increases of SDBP could have adverse consequences. Cases of elevated blood pressure requiring immediate treatment have been reported in post marketing experience. Preexisting hypertension should be controlled before treatment with venlafaxine. It is recommended that patients receiving venlafaxine hydrochloride extended-release capsules have regular monitoring of blood pressure. For patients who experience a sustained increase in blood pressure while receiving venlafaxine, either dose reduction or discontinuation should be considered. Elevations in Systolic and Diastolic Blood Pressure In placebo-controlled premarketing studies, there were changes in mean blood pressure (see Table 4 for mean changes in supine systolic and supine diastolic blood pressure). Across most indications, a dose-related increase in supine systolic and diastolic blood pressure was evident in venlafaxine hydrochloride extended-release capsules-treated patients. Table 4Final On-Therapy Mean Changes from Baseline in Supine Systolic and Diastolic Blood Pressure (mm Hg) Results by Indication, Study Duration, and Dose in Placebo-Controlled Trials Venlafaxine Hydrochloride Extended -release Capsules mg/day Placebo 1 Supine Systolic Blood Pressure 2 Supine Diastolic Blood Pressure ≤ 75 > 75 SSBP1 SDBP2 SSBP SDBP SSBP SDBP Major Depressive Disorder 8 to12 weeks -0.28 0.37 2.93 3.56 -1.08 -0.10 Social Anxiety Disorder 12 weeks -0.29 -1.26 1.18 1.34 -1.96 -1.22 6 months -0.98 -0.49 2.51 1.96 -1.84 -0.65 Across all clinical trials in MDD and Social Anxiety Disorder 1.4% of patients in the venlafaxine hydrochloride extended-release capsules-treated groups experienced a ≥ 15 mm Hg increase in supine diastolic blood pressure with blood pressure ≥ 105 mm Hg compared to 0.9% of patients in the placebo groups. Similarly, 1% of patients in the venlafaxine hydrochloride extended-release capsules-treated groups experienced a ≥ 20 mm Hg increase in supine systolic blood pressure with blood pressure ≥ 180 mm Hg compared to 0.3% of patients in the placebo groups. Mydriasis Mydriasis has been reported in association with venlafaxine; therefore patients with raised intraocular pressure or those at risk of acute narrow-angle glaucoma (angle-closure glaucoma) should be monitored (see PRECAUTIONS, Information for Patients).

DRUG INTERACTIONS

Drug Interactions As with all drugs, the potential for interaction by a variety of mechanisms is a possibility.

OVERDOSAGE

Human Experience Among the patients included in the premarketing evaluation of venlafaxine hydrochloride extended-release capsules, there were 2 reports of acute overdosage with venlafaxine hydrochloride extended-release capsules in major depressive disorder trials, either alone or in combination with other drugs. One patient took a combination of 6 g of venlafaxine hydrochloride extended-release capsules and 2.5 mg of lorazepam. This patient was hospitalized, treated symptomatically, and recovered without any untoward effects. The other patient took 2.85 g of venlafaxine hydrochloride extended-release capsules. This patient reported paresthesia of all four limbs but recovered without sequelae. There were no reports of acute overdose with venlafaxine hydrochloride extended-release capsules in Social Anxiety Disorder trials. Among the patients included in the premarketing evaluation with venlafaxine hydrochloride tablets, there were 14 reports of acute overdose with venlafaxine, either alone or in combination with other drugs and/or alcohol. The majority of the reports involved ingestion in which the total dose of venlafaxine taken was estimated to be no more than several-fold higher than the usual therapeutic dose. The 3 patients who took the highest doses were estimated to have ingested approximately 6.75 g, 2.75 g, and 2.5 g. The resultant peak plasma levels of venlafaxine for the latter 2 patients were 6.24 and 2.35 mcg/mL, respectively, and the peak plasma levels of O-desmethylvenlafaxine were 3.37 and 1.30 mcg/mL, respectively. Plasma venlafaxine levels were not obtained for the patient who ingested 6.75 g of venlafaxine. All 14 patients recovered without sequelae. Most patients reported no symptoms. Among the remaining patients, somnolence was the most commonly reported symptom. The patient who ingested 2.75 g of venlafaxine was observed to have 2 generalized convulsions and a prolongation of QTc to 500 msec, compared with 405 msec at baseline. Mild sinus tachycardia was reported in 2 of the other patients. In postmarketing experience, overdose with venlafaxine has occurred predominantly in combination with alcohol and/or other drugs. The most commonly reported events in overdosage include tachycardia, changes in level of consciousness (ranging from somnolence to coma), mydriasis, seizures, and vomiting. Electrocardiogram changes (e.g., prolongation of QT interval, bundle branch block, QRS prolongation), ventricular tachycardia, bradycardia, hypotension, rhabdomyolysis, vertigo, liver necrosis, serotonin syndrome, and death have been reported. Published retrospective studies report that venlafaxine overdosage may be associated with an increased risk of fatal outcomes compared to that observed with SSRI antidepressant products, but lower than that for tricyclic antidepressants. Epidemiological studies have shown that venlafaxine-treated patients have a higher preexisting burden of suicide risk factors than SSRI-treated patients. The extent to which the finding of an increased risk of fatal outcomes can be attributed to the toxicity of venlafaxine in overdosage as opposed to some characteristic(s) of venlafaxine-treated patients is not clear. Prescriptions for venlafaxine hydrochloride extended-release capsules should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose. Management of Overdosage Treatment should consist of those general measures employed in the management of overdosage with any antidepressant. Ensure an adequate airway, oxygenation, and ventilation. Monitor cardiac rhythm and vital signs. General supportive and symptomatic measures are also recommended. Induction of emesis is not recommended. Gastric lavage with a large bore orogastric tube with appropriate airway protection, if needed, may be indicated if performed soon after ingestion or in symptomatic patients. Activated charcoal should be administered. Due to the large volume of distribution of this drug, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. No specific antidotes for venlafaxine are known. In managing overdosage, consider the possibility of multiple drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose. Telephone numbers for certified poison control centers are listed in the Physicians’Desk Reference® (PDR).

DESCRIPTION

Venlafaxine hydrochloride extended-release capsule for oral administration contains venlafaxine hydrochloride, a structurally novel antidepressant. It is designated (R/S)-1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl] cyclohexanol hydrochloride or (±)-1-[α- [(dimethylamino)methyl]-p-methoxybenzyl] cyclohexanol hydrochloride and has the molecular formula of C17H27NO2 HCl. Its molecular weight is 313.87. The structural formula is shown below. Venlafaxine hydrochloride, USP is a white to off-white crystalline powder; soluble in methanol and in water. Its octanol:water (0.2 M sodium chloride) partition coefficient is 0.43. Venlafaxine hydrochloride extended-release capsule is for once-a-day oral administration. Drug release is controlled by diffusion through the coating membrane on the spheroids and is not pH dependent. Venlafaxine hydrochloride extended-release capsules intended for oral administration contains 37.5 mg, 75 mg and 150 mg of venlafaxine. In addition, each capsule contains the following inactive ingredients: colloidal silicon dioxide, cetostearyl alcohol, gelatin, hypromellose, microcrystalline cellulose, polyacrylate dispersion, sodium lauryl sulfate, talc and titanium dioxide. Additionally each 37.5 mg capsule shell contains black iron oxide and each 75 mg and 150 mg capsule shell contains red iron oxide. The capsule is printed with black pharmaceutical ink which contains black iron oxide as coloring agent. Chemical Structure- Venlafaxine Hydrochloride

HOW SUPPLIED

Venlafaxine Hydrochloride Extended-release Capsules, 37.5 mg are white to off-white free flowing pellets filled in size ‘3’ hard gelatin capsules with grey colored cap printed with “ZA-35” in black ink & white body printed with “37.5 mg” in black ink and are supplied as follows: NDC 60429-121-30 in bottle of 30 capsules NDC 60429-121-90 in bottle of 90 capsules Venlafaxine Hydrochloride Extended-release Capsules, 75 mg are white to off-white free flowing pellets filled in size ‘1’ hard gelatin capsules with peach colored cap printed with “ZA-36” in black ink & white body printed with “75 mg” in black ink and are supplied as follows: NDC 60429-122-30 in bottle of 30 capsules NDC 60429-122-90 in bottle of 90 capsules Venlafaxine Hydrochloride Extended-release Capsules, 150 mg are white to off-white free flowing pellets filled in size ‘0’ hard gelatin capsules with dark orange colored cap printed with “ZA-37” in black ink & white body printed with “150 mg” in black ink and are supplied as follows: NDC 60429-123-30 in bottle of 30 capsules NDC 60429-123-90 in bottle of 90 capsules Storage: Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a tight container. Manufactured by: Cadila Healthcare Ltd. Ahmedabad, India Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 Marketed/Packaged by: GSMS, Inc. Camarillo, CA 93012 Rev.: 01/13 Revision Date: 19/01/2013

GERIATRIC USE

Geriatric Use Approximately 4% (14/357), and 1% (10/819) of venlafaxine hydrochloride extended-release capsules-treated patients in placebo-controlled premarketing major depressive disorder, and Social Anxiety Disorder trials, respectively, were 65 years of age or over. Of 2,897 venlafaxine hydrochloride tablets-treated patients in premarketing phase major depressive disorder studies, 12% (357) were 65 years of age or over. No overall differences in effectiveness or safety were observed between geriatric patients and younger patients, and other reported clinical experience generally has not identified differences in response between the elderly and younger patients. However, greater sensitivity of some older individuals cannot be ruled out. SSRIs and SNRIs, including venlafaxine hydrochloride extended-release capsules have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event (see PRECAUTIONS, Hyponatremia). The pharmacokinetics of venlafaxine and ODV are not substantially altered in the elderly (see CLINICAL PHARMACOLOGY). No dose adjustment is recommended for the elderly on the basis of age alone, although other clinical circumstances, some of which may be more common in the elderly, such as renal or hepatic impairment, may warrant a dose reduction (see DOSAGE AND ADMINISTRATION).

INDICATIONS AND USAGE

Major Depressive Disorder Venlafaxine hydrochloride extended-release capsules are indicated for the treatment of major depressive disorder. The efficacy of venlafaxine hydrochloride extended-release capsules in the treatment of major depressive disorder was established in 8 and 12 week controlled trials of adult outpatients whose diagnoses corresponded most closely to the DSM-III-R or DSM-IV category of major depressive disorder (see Clinical Trials). A major depressive episode (DSM-IV) implies a prominent and relatively persistent (nearly every day for at least 2 weeks) depressed mood or the loss of interest or pleasure in nearly all activities, representing a change from previous functioning, and includes the presence of at least five of the following nine symptoms during the same two week period: depressed mood, markedly diminished interest or pleasure in usual activities, significant change in weight and/or appetite, insomnia or hypersomnia, psychomotor agitation or retardation, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, a suicide attempt or suicidal ideation. The efficacy of venlafaxine hydrochloride tablets in the treatment of major depressive disorder in adult inpatients meeting diagnostic criteria for major depressive disorder with melancholia was established in a 4 week controlled trial (see Clinical Trials). The safety and efficacy of venlafaxine hydrochloride extended-release capsules in hospitalized depressed patients have not been adequately studied. The efficacy of venlafaxine hydrochloride extended-release capsules in maintaining a response in major depressive disorder for up to 26 weeks following 8 weeks of acute treatment was demonstrated in a placebo-controlled trial. The efficacy of venlafaxine hydrochloride tablets in maintaining a response in patients with recurrent major depressive disorder who had responded and continued to be improved during an initial 26 weeks of treatment and were then followed for a period of up to 52 weeks was demonstrated in a second placebo-controlled trial (see Clinical Trials). Nevertheless, the physician who elects to use venlafaxine hydrochloride tablets/venlafaxine hydrochloride extended-release capsules for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION). Social Anxiety Disorder Venlafaxine hydrochloride extended-release capsules are indicated for the treatment of Social Anxiety Disorder, also known as Social Phobia, as defined in DSM-IV (300.23). Social Anxiety Disorder (DSM-IV) is characterized by a marked and persistent fear of 1 or more social or performance situations in which the person is exposed to unfamiliar people or to possible scrutiny by others. Exposure to the feared situation almost invariably provokes anxiety, which may approach the intensity of a panic attack. The feared situations are avoided or endured with intense anxiety or distress. The avoidance, anxious anticipation, or distress in the feared situation(s) interferes significantly with the person’s normal routine, occupational or academic functioning, or social activities or relationships, or there is a marked distress about having the phobias. Lesser degrees of performance anxiety or shyness generally do not require psychopharmacological treatment. The efficacy of venlafaxine hydrochloride extended-release capsules in the treatment of Social Anxiety Disorder was established in four 12 week and one 6 month placebocontrolled trials in adult outpatients with Social Anxiety Disorder (DSM-IV) (see Clinical Trials). Although the effectiveness of venlafaxine hydrochloride extended-release capsules has been demonstrated in a 6 month clinical trial in patients with Social Anxiety Disorder, the physician who elects to use venlafaxine hydrochloride extended-release capsules for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient (see DOSAGE AND ADMINISTRATION).

PEDIATRIC USE

Pediatric Use Safety and effectiveness in the pediatric population have not been established (see BOX WARNING and WARNINGS, Clinical Worsening and Suicide Risk). Two placebo-controlled trials in 766 pediatric patients with MDD have been conducted with venlafaxine hydrochloride extended-release capsules, and the data were not sufficient to support a claim for use in pediatric patients. Anyone considering the use of venlafaxine hydrochloride extended-release capsules in a child or adolescent must balance the potential risks with the clinical need. Although no studies have been designed to primarily assess venlafaxine hydrochloride extended-release capsule’s impact on the growth, development, and maturation of children and adolescents, the studies that have been done suggest that venlafaxine hydrochloride extended-release capsules may adversely affect weight and height (see PRECAUTIONS, General, Changes in Height and Changes in Weight ). Should the decision be made to treat a pediatric patient with venlafaxine hydrochloride extended-release capsules, regular monitoring of weight and height is recommended during treatment, particularly if it is to be continued long term. The safety of venlafaxine hydrochloride extended-release capsules treatment for pediatric patients has not been systematically assessed for chronic treatment longer than six months in duration. In the studies conducted in pediatric patients (ages 6 to 17), the occurrence of blood pressure and cholesterol increases considered to be clinically relevant in pediatric patients was similar to that observed in adult patients. Consequently, the precautions for adults apply to pediatric patients (see WARNINGS, Sustained Hypertension, and PRECAUTIONS, General, Serum Cholesterol Elevation).

PREGNANCY

Pregnancy Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy.

NUSRING MOTHERS

Nursing Mothers Venlafaxine and ODV have been reported to be excreted in human milk. Because of the potential for serious adverse reactions in nursing infants from venlafaxine hydrochloride extended-release capsules, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of Major Depressive Disorder (MDD) and other psychiatric disorders. Anyone considering the use of venlafaxine hydrochloride extended-release capsules or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Venlafaxine hydrochloride extended-release capsules are not approved for use in pediatric patients (see WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use)

INFORMATION FOR PATIENTS

Information for Patients Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with venlafaxine hydrochloride extended-release capsules and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and Other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for venlafaxine hydrochloride extended-release capsules. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking venlafaxine hydrochloride extended-release capsules.

DOSAGE AND ADMINISTRATION

Venlafaxine hydrochloride extended-release capsules should be administered in a single dose with food either in the morning or in the evening at approximately the same time each day. Each capsule should be swallowed whole with fluid and not divided, crushed, chewed, or placed in water, or it may be administered by carefully opening the capsule and sprinkling the entire contents on a spoonful of applesauce. This drug/food mixture should be swallowed immediately without chewing and followed with a glass of water to ensure complete swallowing of the pellets. Initial Treatment Major Depressive Disorder For most patients, the recommended starting dose for venlafaxine hydrochloride extended-release capsules are 75 mg/day, administered in a single dose. In the clinical trials establishing the efficacy of venlafaxine hydrochloride extended-release capsules in moderately depressed outpatients, the initial dose of venlafaxine was 75 mg/day. For some patients, it may be desirable to start at 37.5 mg/day for 4 to 7 days, to allow new patients to adjust to the medication before increasing to 75 mg/day. While the relationship between dose and antidepressant response for venlafaxine hydrochloride extended-release capsules have not been adequately explored, patients not responding to the initial 75 mg/day dose may benefit from dose increases to a maximum of approximately 225 mg/day. Dose increases should be in increments of up to 75 mg/day, as needed, and should be made at intervals of not less than 4 days, since steady state plasma levels of venlafaxine and its major metabolites are achieved in most patients by day 4. In the clinical trials establishing efficacy, upward titration was permitted at intervals of 2 weeks or more; the average doses were about 140 to 180 mg/day (see Clinical Trials under CLINICAL PHARMACOLOGY). It should be noted that, while the maximum recommended dose for moderately depressed outpatients is also 225 mg/day for venlafaxine hydrochloride tablets, more severely depressed inpatients in one study of the development program for that product responded to a mean dose of 350 mg/day (range of 150 to 375 mg/day). Whether or not higher doses of venlafaxine hydrochloride extended-release capsules are needed for more severely depressed patients is unknown; however, the experience with venlafaxine hydrochloride extended-release capsules doses higher than 225 mg/day is very limited (see PRECAUTIONS, General, Use in Patients with Concomitant Illness). Social Anxiety Disorder (Social Phobia): The recommended dose is 75 mg/day, administered in a single dose. There was no evidence that higher doses confer any additional benefit. (See the Use in Patients with Concomitant Illness section of PRECAUTIONS.) Switching Patients from Venlafaxine Hydrochloride Tablets Depressed patients who are currently being treated at a therapeutic dose with venlafaxine hydrochloride tablets may be switched to venlafaxine hydrochloride extended-release capsules at the nearest equivalent dose (mg/day), e.g., 37.5 mg venlafaxine two-times-a-day to 75 mg venlafaxine hydrochloride extended-release capsules once daily. However, individual dosage adjustments may be necessary. Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric Disorders: At least 14 days should elapse between discontinuation of an MAOI intended Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) to treat psychiatric disorders and initiation of therapy with venlafaxine hydrochloride extended-release capsules. Conversely, at least 7 days should be allowed after stopping venlafaxine hydrochloride extended-release capsules before starting an MAOI intended to treat psychiatric disorders (see CONTRAINDICATIONS). Use of Venlafaxine Hydrochloride Extended-release Capsules With Other MAOls, Such as Linezolid or Methylene Blue: Do not start venlafaxine hydrochloride extended-release capsules in a patient who is being treated with linezolid or intravenous methylene blue because there is increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered (see CONTRAINDICATIONS). In some cases, a patient already receiving therapy with venlafaxine hydrochloride extended-release capsules may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, venlafaxine hydrochloride extended-release capsules should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for 7 days or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with venlafaxine hydrochloride extended-release capsules may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue (see WARNINGS). The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with venlafaxine hydrochloride extended-release capsules is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use (see WARNINGS). Special Populations Treatment of Pregnant Women during the Third Trimester Neonates exposed to venlafaxine hydrochloride extended-release capsules, other SNRIs, or SSRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see PRECAUTIONS ). When treating pregnant women with venlafaxine hydrochloride extended-release capsules during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. Patients with Hepatic Impairment Given the decrease in clearance and increase in elimination half-life for both venlafaxine and ODV that is observed in patients with hepatic cirrhosis and mild and moderate hepatic impairment compared with normal subjects (see CLINICAL PHARMACOLOGY), it is recommended that the total daily dose be reduced by 50% in patients with mild to moderate hepatic impairment. Since there was much individual variability in clearance between subjects with cirrhosis, it may be necessary to reduce the dose even more than 50%, and individualization of dosing may be desirable in some patients. Patients with Renal Impairment Given the decrease in clearance for venlafaxine and the increase in elimination half-life for both venlafaxine and ODV that is observed in patients with renal impairment (GFR = 10 to 70 mL/min) compared with normal subjects (see CLINICAL PHARMACOLOGY), it is recommended that the total daily dose be reduced by 25% to 50%. In patients undergoing hemodialysis, it is recommended that the total daily dose be reduced by 50%. Because there was much individual variability in clearance between patients with renal impairment, individualization of dosage may be desirable in some patients. Elderly Patients No dose adjustment is recommended for elderly patients solely on the basis of age. As with any drug for the treatment of major depressive disorder, or Social Anxiety Disorder, however, caution should be exercised in treating the elderly. When individualizing the dosage, extra care should be taken when increasing the dose. Maintenance Treatment There is no body of evidence available from controlled trials to indicate how long patients with major depressive disorder, or Social Anxiety Disorder, should be treated with venlafaxine hydrochloride extended-release capsules. It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacological therapy beyond response to the acute episode. In one study, in which patients responding during 8 weeks of acute treatment with venlafaxine hydrochloride extended-release capsules were assigned randomly to placebo or to the same dose of venlafaxine hydrochloride extended-release capsules (75, 150, or 225 mg/day, qAM) during 26 weeks of maintenance treatment as they had received during the acute stabilization phase, longer-term efficacy was demonstrated. A second longer-term study has demonstrated the efficacy of venlafaxine hydrochloride tablets in maintaining a response in patients with recurrent major depressive disorder who had responded and continued to be improved during an initial 26 weeks of treatment and were then randomly assigned to placebo or venlafaxine hydrochloride tablets for periods of up to 52 weeks on the same dose (100 to 200 mg/day, on a b.i.d. schedule) (see Clinical Trials under CLINICAL PHARMACOLOGY). Based on these limited data, it is not known whether or not the dose of venlafaxine hydrochloride tablets/venlafaxine hydrochloride extended-release capsules needed for maintenance treatment is identical to the dose needed to achieve an initial response. Patients should be periodically reassessed to determine the need for maintenance treatment and the appropriate dose for such treatment. In patients with Social Anxiety Disorder, venlafaxine hydrochloride extended-release capsules have been shown to be effective in a 6 month clinical trial. The need for continuing medication in patients with Social Anxiety Disorder who improve with venlafaxine hydrochloride extended-release capsules treatment should be periodically reassessed. Discontinuing Venlafaxine Hydrochloride Extended-release Capsules Symptoms associated with discontinuation of venlafaxine hydrochloride extended-release capsules, other SNRIs, and SSRIs, have been reported (see PRECAUTIONS). Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. In clinical trials with venlafaxine hydrochloride extended-release capsules, tapering was achieved by reducing the daily dose by 75 mg at 1 week intervals. Individualization of tapering may be necessary.