topiramate 200 MG Oral Tablet

WARNINGS

Acute Myopia and Secondary Angle Closure Glaucoma A syndrome consisting of acute myopia associated with secondary angle closure glaucoma has been reported in patients receiving topiramate.

Symptoms include acute onset of decreased visual acuity and/or ocular pain.

Ophthalmologic findings can include myopia, anterior chamber shallowing, ocular hyperemia (redness) and increased intraocular pressure.

Mydriasis may or may not be present.

This syndrome may be associated with supraciliary effusion resulting in anterior displacement of the lens and iris, with secondary angle closure glaucoma.

Symptoms typically occur within 1 month of initiating topiramate therapy.

In contrast to primary narrow angle glaucoma, which is rare under 40 years of age, secondary angle closure glaucoma associated with topiramate has been reported in pediatric patients as well as adults.

The primary treatment to reverse symptoms is discontinuation of topiramate as rapidly as possible, according to the judgment of the treating physician.

Other measures, in conjunction with discontinuation of topiramate, may be helpful.

Elevated intraocular pressure of any etiology, if left untreated, can lead to serious sequelae including permanent vision loss.

Oligohidrosis and Hyperthermia Oligohidrosis (decreased sweating), infrequently resulting in hospitalization, has been reported in association with topiramate use.

Decreased sweating and an elevation in body temperature above normal characterized these cases.

Some of the cases were reported after exposure to elevated environmental temperatures.

The majority of the reports have been in children.

Patients, especially pediatric patients, treated with topiramate should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather.

Caution should be used when topiramate is prescribed with other drugs that predispose patients to heat-related disorders; these drugs include, but are not limited to, other carbonic anhydrase inhibitors and drugs with anticholinergic activity.

Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including topiramate, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication.

Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.

Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo.

In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated.

There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed.

Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.

The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed.

The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication.

The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed.

Table 3 shows absolute and relative risk by indication for all evaluated AEDs.

Table 3 Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1000 Patients Drug Patients with Events Per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1000 Patients Epilepsy 1.0 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1.0 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

Anyone considering prescribing topiramate or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness.

Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior.

Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior or the emergence of suicidal thoughts, behavior or thoughts about self-harm.

Behaviors of concern should be reported immediately to healthcare providers.

Metabolic Acidosis Hyperchloremic, non-anion gap, metabolic acidosis (i.e., decreased serum bicarbonate below the normal reference range in the absence of chronic respiratory alkalosis) is associated with topiramate treatment.

This metabolic acidosis is caused by renal bicarbonate loss due to the inhibitory effect of topiramate on carbonic anhydrase.

Such electrolyte imbalance has been observed with the use of topiramate in placebo-controlled clinical trials and in the post-marketing period.

Generally, topiramate-induced metabolic acidosis occurs early in treatment although cases can occur at any time during treatment.

Bicarbonate decrements are usually mild-moderate (average decrease of 4 mEq/L at daily doses of 400 mg in adults and at approximately 6 mg/kg/day in pediatric patients); rarely, patients can experience severe decrements to values below 10 mEq/L.

Conditions or therapies that predispose to acidosis (such as renal disease, severe respiratory disorders, status epilepticus, diarrhea, surgery, ketogenic diet, or drugs) may be additive to the bicarbonate lowering effects of topiramate.

In adults, the incidence of persistent treatment-emergent decreases in serum bicarbonate (levels of less than 20 mEq/L at two consecutive visits or at the final visit) in controlled clinical trials for adjunctive treatment of epilepsy was 32% for 400 mg/day, and 1% for placebo.

Metabolic acidosis has been observed at doses as low as 50 mg/day.

The incidence of persistent treatment-emergent decreases in serum bicarbonate in adults in the epilepsy controlled clinical trial for monotherapy was 15% for 50 mg/day and 25% for 400 mg/day.

The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in the adjunctive therapy trials was 3% for 400 mg/day, and 0% for placebo and in the monotherapy trial was 1% for 50 mg/day and 7% for 400 mg/day.

Serum bicarbonate levels have not been systematically evaluated at daily doses greater than 400 mg/day.

In pediatric patients (less than 16 years of age), the incidence of persistent treatment-emergent decreases in serum bicarbonate in placebo-controlled trials for adjunctive treatment of Lennox-Gastaut syndrome or refractory partial onset seizures was 67% for topiramate (at approximately 6 mg/kg/day), and 10% for placebo.

The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in these trials was 11% for topiramate and 0% for placebo.

Cases of moderately severe metabolic acidosis have been reported in patients as young as 5 months old, especially at daily doses above 5 mg/kg/day.

In pediatric patients (10 years up to 16 years of age), the incidence of persistent treatment-emergent decreases in serum bicarbonate in the epilepsy controlled clinical trial for monotherapy was 7% for 50 mg/day and 20% for 400 mg/day.

The incidence of a markedly abnormally low serum bicarbonate (i.e., absolute value less than 17 mEq/L and greater than 5 mEq/L decrease from pretreatment) in this trial was 4% for 50 mg/day and 4% for 400 mg/day.

Some manifestations of acute or chronic metabolic acidosis may include hyperventilation, nonspecific symptoms such as fatigue and anorexia, or more severe sequelae including cardiac arrhythmias or stupor.

Chronic, untreated metabolic acidosis may increase the risk for nephrolithiasis or nephrocalcinosis, and may also result in osteomalacia (referred to as rickets in pediatric patients) and/or osteoporosis with an increased risk for fractures.

Chronic metabolic acidosis in pediatric patients may also reduce growth rates.

A reduction in growth rate may eventually decrease the maximal height achieved.

The effect of topiramate on growth and bone-related sequelae has not been systematically investigated.

Measurement of baseline and periodic serum bicarbonate during topiramate treatment is recommended.

If metabolic acidosis develops and persists, consideration should be given to reducing the dose or discontinuing topiramate (using dose tapering).

If the decision is made to continue patients on topiramate in the face of persistent acidosis, alkali treatment should be considered.

Cognitive/Neuropsychiatric Adverse Events Adults Adverse events most often associated with the use of topiramate were related to the central nervous system and were observed in the epilepsy population.

In adults, the most frequent of these can be classified into three general categories: 1) Cognitive-related dysfunction (e.g.

confusion, psychomotor slowing, difficulty with concentration/attention, difficulty with memory, speech or language problems, particularly word-finding difficulties); 2) Psychiatric/behavioral disturbances (e.g.

depression or mood problems); and 3) Somnolence or fatigue.

Cognitive-Related Dysfunction The majority of cognitive-related adverse events were mild to moderate in severity, and they frequently occurred in isolation.

Rapid titration rate and higher initial dose were associated with higher incidences of these events.

Many of these events contributed to withdrawal from treatment [see ADVERSE REACTIONS , Table 5 and Table 7 ].

In the original add-on epilepsy controlled trials (using rapid titration such as 100 to 200 mg/day weekly increments), the proportion of patients who experienced one or more cognitive-related adverse events was 42% for 200 mg/day, 41% for 400 mg/day, 52% for 600 mg/day, 56% for 800 and 1000 mg/day, and 14% for placebo.

These dose-related adverse reactions began with a similar frequency in the titration or in the maintenance phase, although in some patients the events began during titration and persisted into the maintenance phase.

Some patients who experienced one or more cognitive-related adverse events in the titration phase had a dose-related recurrence of these events in the maintenance phase.

In the monotherapy epilepsy controlled trial, the proportion of patients who experienced one or more cognitive-related adverse events was 19% for topiramate 50 mg/day and 26% for 400 mg/day.

Psychiatric/Behavioral Disturbances Psychiatric/behavioral disturbances (depression or mood problems) were dose-related for the epilepsy population.

Somnolence/Fatigue Somnolence and fatigue were the adverse events most frequently reported during clinical trials of topiramate for adjunctive epilepsy.

For the adjunctive epilepsy population, the incidence of somnolence did not differ substantially between 200 mg/day and 1000 mg/day, but the incidence of fatigue was dose-related and increased at dosages above 400 mg/day.

For the monotherapy epilepsy population in the 50 mg/day and 400 mg/day groups, the incidence of somnolence was dose-related (9% for the 50 mg/day group and 15% for the 400 mg/day group) and the incidence of fatigue was comparable in both treatment groups (14% each).

Additional nonspecific CNS events commonly observed with topiramate in the add-on epilepsy population include dizziness or ataxia.

Pediatric Patients In double-blind adjunctive therapy and monotherapy epilepsy clinical studies, the incidences of cognitive/neuropsychiatric adverse events in pediatric patients were generally lower than observed in adults.

These events included psychomotor slowing, difficulty with concentration/attention, speech disorders/related speech problems and language problems.

The most frequently reported neuropsychiatric events in pediatric patients during adjunctive therapy double-blind studies were somnolence and fatigue.

The most frequently reported neuropsychiatric events in pediatric patients in the 50 mg/day and 400 mg/day groups during the monotherapy double-blind study were headache, dizziness, anorexia, and somnolence.

No patients discontinued treatment due to any adverse events in the adjunctive epilepsy double-blind trials.

In the monotherapy epilepsy double-blind trial, 1 pediatric patient (2%) in the 50 mg/day group and 7 pediatric patients (12%) in the 400 mg/day group discontinued treatment due to any adverse events.

The most common adverse event associated with discontinuation of therapy was difficulty with concentration/attention; all occurred in the 400 mg/day group.

Withdrawal of AEDs Antiepileptic drugs, including topiramate, should be withdrawn gradually to minimize the potential of increased seizure frequency.

Sudden Unexplained Death in Epilepsy (SUDEP) During the course of premarketing development of topiramate tablets, 10 sudden and unexplained deaths were recorded among a cohort of treated patients (2,796 subject years of exposure).

This represents an incidence of 0.0035 deaths per patient year.

Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving topiramate (ranging from 0.0005 for the general population of patients with epilepsy, to 0.003 for a clinical trial population similar to that in the topiramate program, to 0.005 for patients with refractory epilepsy).

OVERDOSAGE

Overdoses of topiramate have been reported.

Signs and symptoms included convulsions, drowsiness, speech disturbance, blurred vision, diplopia, mentation impaired, lethargy, abnormal coordination, stupor, hypotension, abdominal pain, agitation, dizziness and depression.

The clinical consequences were not severe in most cases, but deaths have been reported after poly-drug overdoses involving topiramate.

Topiramate overdose has resulted in severe metabolic acidosis (see WARNINGS ).

A patient who ingested a dose between 96 and 110 g topiramate was admitted to hospital with coma lasting 20 to 24 hours followed by full recovery after 3 to 4 days.

In acute topiramate overdose, if the ingestion is recent, the stomach should be emptied immediately by lavage or by induction of emesis.

Activated charcoal has been shown to adsorb topiramate in vitro .

Treatment should be appropriately supportive.

Hemodialysis is an effective means of removing topiramate from the body.

DESCRIPTION

Topiramate is a sulfamate-substituted monosaccharide.

Topiramate tablets are available as 25 mg, 50 mg, 100 mg, and 200 mg circular tablets for oral administration.

Topiramate is a white crystalline powder with a bitter taste.

Topiramate USP is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and having a pH of 9 to 10.

It is freely soluble in acetone, chloroform, dimethylsulfoxide, and ethanol.

The solubility in water is 9.8 mg/mL.

Its saturated solution has a pH of 6.3.

Topiramate has the molecular formula C 12 H 21 NO 8 S and a molecular weight of 339.37.

Topiramate is designated chemically as 2,3:4,5-Di- O -isopropylidene-β-D-fructopyranose sulfamate and has the following structural formula: Topiramate tablets contain the following inactive ingredients: anhydrous lactose, microcrystalline cellulose, pregelatinized starch, sodium starch glycolate, magnesium stearate, purified water, polyvinyl alcohol, titanium dioxide, polyethylene glycol and talc.

In addition, individual tablets contain: 50 mg tablets: iron oxide yellow 100 mg tablets: iron oxide yellow, and D&C Yellow # 10 Aluminum Lake 200 mg tablets: iron oxide red, lecithin (soya), and iron oxide black image of chemical structure

CLINICAL STUDIES

The studies described in the following sections were conducted using topiramate tablets.

Epilepsy Monotherapy Controlled Trial The effectiveness of topiramate as initial monotherapy in adults and children 10 years of age and older with partial onset or primary generalized seizures was established in a multicenter, randomized, double-blind, parallel-group trial.

The trial was conducted in 487 patients diagnosed with epilepsy (6 to 83 years of age) who had 1 or 2 well-documented seizures during the 3-month retrospective baseline phase who then entered the study and received topiramate 25 mg/day for 7 days in an open-label fashion.

Forty-nine percent of subjects had no prior AED treatment and 17% had a diagnosis of epilepsy for greater than 24 months.

Any AED therapy used for temporary or emergency purposes was discontinued prior to randomization.

In the double-blind phase, 470 patients were randomized to titrate up to 50 mg/day or 400 mg/day.

If the target dose could not be achieved, patients were maintained on the maximum tolerated dose.

Fifty eight percent of patients achieved the maximal dose of 400 mg/day for ≥ 2 weeks, and patients who did not tolerate 150 mg/day were discontinued.

The primary efficacy assessment was a between group comparison of time to first seizure during the double-blind phase.

Comparison of the Kaplan-Meier survival curves of time to first seizure favored the topiramate 400 mg/day group over the topiramate 50 mg/day group (p=0.0002, log rank test; Figure 1 ).

The treatment effects with respect to time to first seizure were consistent across various patient subgroups defined by age, sex, geographic region, baseline body weight, baseline seizure type, time since diagnosis, and baseline AED use.

Figure 1: Kaplan-Meier Estimates of Cumulative Rates for Time to First Seizure Adjunctive Therapy Controlled Trials in Patients With Partial Onset Seizures The effectiveness of topiramate as an adjunctive treatment for adults with partial onset seizures was established in six multicenter, randomized, double-blind, placebo-controlled trials, two comparing several dosages of topiramate and placebo and four comparing a single dosage with placebo, in patients with a history of partial onset seizures, with or without secondarily generalized seizures.

Patients in these studies were permitted a maximum of two antiepileptic drugs (AEDs) in addition to topiramate tablets or placebo.

In each study, patients were stabilized on optimum dosages of their concomitant AEDs during baseline phase lasting between 4 and 12 weeks.

Patients who experienced a prespecified minimum number of partial onset seizures, with or without secondary generalization, during the baseline phase (12 seizures for 12-week baseline, 8 for 8-week baseline, or 3 for 4-week baseline) were randomly assigned to placebo or a specified dose of topiramate tablets in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment.

In five of the six studies, patients received active drug beginning at 100 mg per day; the dose was then increased by 100 mg or 200 mg/day increments weekly or every other week until the assigned dose was reached, unless intolerance prevented increases.

In the sixth study (119), the 25 or 50 mg/day initial doses of topiramate were followed by respective weekly increments of 25 or 50 mg/day until the target dose of 200 mg/day was reached.

After titration, patients entered a 4, 8, or 12-week stabilization period.

The numbers of patients randomized to each dose, and the actual mean and median doses in the stabilization period are shown in Table 1 .

Adjunctive Therapy Controlled Trial in Pediatric Patients Ages 2 to 16 Years With Partial Onset Seizures The effectiveness of topiramate as an adjunctive treatment for pediatric patients ages 2 to 16 years with partial onset seizures was established in a multicenter, randomized, double-blind, placebo-controlled trial, comparing topiramate and placebo in patients with a history of partial onset seizures, with or without secondarily generalized seizures.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to topiramate tablets or placebo.

In this study, patients were stabilized on optimum dosages of their concomitant AEDs during an 8-week baseline phase.

Patients who experienced at least six partial onset seizures, with or without secondarily generalized seizures, during the baseline phase were randomly assigned to placebo or topiramate tablets in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment.

Patients received active drug beginning at 25 or 50 mg per day; the dose was then increased by 25 mg to 150 mg/day increments every other week until the assigned dosage of 125, 175, 225, or 400 mg/day based on patients’ weight to approximate a dosage of 6 mg/kg per day was reached, unless intolerance prevented increases.

After titration, patients entered an 8-week stabilization period.

Adjunctive Therapy Controlled Trial in Patients With Primary Generalized Tonic-Clonic Seizures The effectiveness of topiramate as an adjunctive treatment for primary generalized tonic-clonic seizures in patients 2 years old and older was established in a multicenter, randomized, double-blind, placebo-controlled trial, comparing a single dosage of topiramate and placebo.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to topiramate or placebo.

Patients were stabilized on optimum dosages of their concomitant AEDs during an 8-week baseline phase.

Patients who experienced at least three primary generalized tonic-clonic seizures during the baseline phase were randomly assigned to placebo or topiramate in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment.

Patients received active drug beginning at 50 mg per day for four weeks; the dose was then increased by 50 mg to 150 mg/day increments every other week until the assigned dose of 175, 225, or 400 mg/day based on patients’ body weight to approximate a dosage of 6 mg/kg per day was reached, unless intolerance prevented increases.

After titration, patients entered a 12-week stabilization period.

Adjunctive Therapy Controlled Trial in Patients With Lennox-Gastaut Syndrome The effectiveness of topiramate as an adjunctive treatment for seizures associated with Lennox-Gastaut syndrome was established in a multicenter, randomized, double-blind, placebo-controlled trial comparing a single dosage of topiramate with placebo in patients 2 years of age and older.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to topiramate or placebo.

Patients who were experiencing at least 60 seizures per month before study entry were stabilized on optimum dosages of their concomitant AEDs during a 4-week baseline phase.

Following baseline, patients were randomly assigned to placebo or topiramate in addition to their other AEDs.

Active drug was titrated beginning at 1 mg/kg per day for a week; the dose was then increased to 3 mg/kg per day for one week then to 6 mg/kg per day.

After titration, patients entered an 8-week stabilization period.

The primary measures of effectiveness were the percent reduction in drop attacks and a parental global rating of seizure severity.

Table 1: Topiramate Dose Summary During the Stabilization Periods of Each of Six Double-Blind, Placebo-Controlled, Add-On Trials in Adults with Partial Onset Seizuresb Target Topiramate Dosage (mg/day) Protocol Stabilization Dose Placebo a 200 400 600 800 1,000 YD N Mean Dose Median Dose 42 5.9 6.0 42 200 200 40 390 400 41 556 600 – – – – – – YE N Mean Dose Median Dose 44 9.7 10.0 – – – – – – 40 544 600 45 739 800 40 796 1,000 Y1 N Mean Dose Median Dose 23 3.8 4.0 – – – 19 395 400 – – – – – – – – – Y2 N Mean Dose Median Dose 30 5.7 6.0 – – – – – – 28 522 600 – – – – – – Y3 N Mean Dose Median Dose 28 7.9 8.0 – – – – – – – – – 25 568 600 – – – 119 N Mean Dose Median Dose 90 8 8 157 200 200 – – – – – – – – – – – – a Placebo dosages are given as the number of tablets.

Placebo target dosages were as follows: Protocol Y1, 4 tablets/day; Protocols YD and Y2, 6 tablets/day; Protocol Y3 and 119, 8 tablets/day; Protocol YE, 10 tablets/day.

b Dose-response studies were not conducted for other indications or pediatric partial onset seizure.

In all add-on trials, the reduction in seizure rate from baseline during the entire double-blind phase was measured.

The median percent reductions in seizure rates and the responder rates (fraction of patients with at least a 50% reduction) by treatment group for each study are shown below in Table 2 .

As described above, a global improvement in seizure severity was also assessed in the Lennox-Gastaut trial.

Table 2: Efficacy Results in Double-Blind, Placebo-Controlled, Add-On Epilepsy Trials Target Protocol Efficacy Results Placebo 200 400 600 800 1,000 ≈6 mg/kg/day* Partial Onset Seizures Studies in Adults YD Median % Reduction % Responders N 45 11.6 18 45 27.2 a 24 45 47.5 b 44 d 46 44.7 c 46 d – – – – – – – – – YE Median % Reduction % Responders N 1.7 9 24 – – – – – – 48 40.8 c 40 c 48 41.0 c 41 c 47 36.0 c 36 d – – – Y1 Median % Reduction % Responders N 24 1.1 8 – – – 23 40.7 e 35 d – – – – – – – – – – – – Y2 Median % Reduction % Responders N 30 -12.2 10 – – – – – – 30 46.4 f 47 c – – – – – – – – – Y3 Median % Reduction % Responders N 28 -20.6 0 – – – – – – – – – 28 24.3 c 43 c – – – – – – 119N Median % Reduction % Responders 91 168 20.0 24 – 44.2 c 45 c – – – – – – – – – – – – – – Studies in Pediatric Patients YP Median T Reduction % Responders N 45 10.5 20 – – – – – – – – – – – – – – – 41 33.1 d 39 Primary Generalized Tonic-Clonic h YTC Median % Reduction % Responders N 40 9.0 20 – – – – – – – – – – – – – – – 39 56.7 d 56 c Lennox-Gastuat Syndrome i YL Median % Reduction % Responders N 49 -5.1 14 – – – – – – – – – – – – – – – 46 14.8 d 28 g Improvement in Seizure Severity j 28 – – – – – – 52 d Comparisons with placebo: a p=0.080; b p less than 0.010; c p less than 0.001; d p less than 0.050; e p=0.065; f p less than 0.005; g p=0.071; h Median % reduction and % responders are reported for PGTC Seizures; i Median % reduction and % responders for drop attacks, i.e., tonic or atonic seizures; j Percent of subjects who were minimally, much, or very much improved from baseline * For Protocols YP and YTC, protocol-specified target dosages (less than 9.3 mg/kg/day) were assigned based on subject’s weight to approximate a dosage of 6 mg/kg per day; these dosages corresponded to mg/day dosages of 125, 175, 225, and 400 mg/day.

Subset analyses of the antiepileptic efficacy of topiramate tablets in these studies showed no differences as a function of gender, race, age, baseline seizure rate, or concomitant AED.

image of figure 1

HOW SUPPLIED

Topiramate tablets are available as debossed, film-coated, circular tablets in the following strengths and colors: 25 mg white (coded “S” on one side; “707” on the other) 50 mg yellow (coded “S” on one side; “710” on the other) 100 mg yellow (coded “S” on one side; “711” on the other) 200 mg brown (coded “S” on one side; “712” on the other) They are supplied as follows: 25 mg tablets Bottles of 30 NDC 54868-6016-1 Bottles of 60 NDC 54868-6016-0 Bottles of 90 NDC 54868-6016-2 Bottles of 120 NDC 54868-6016-3 50 mg tablets Bottles of 30 NDC 54868-6017-1 Bottles of 60 NDC 54868-6017-0 Bottles of 90 NDC 54868-6017-2 100 mg tablets Bottles of 30 NDC 54868-6014-1 Bottles of 60 NDC 54868-6014-0 Bottles of 90 NDC 54868-6014-2 200 mg tablets Bottles of 30 NDC 54868-6015-1 Bottles of 60 NDC 54868-6015-0 Store at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature].

Protect from moisture.

Dispense in a tight container.

INDICATIONS AND USAGE

Monotherapy Epilepsy Topiramate tablets are indicated as initial monotherapy in patients 10 years of age and older with partial onset or primary generalized tonic-clonic seizures.

Effectiveness was demonstrated in a controlled trial in patients with epilepsy who had no more than 2 seizures in the 3 months prior to enrollment.

Safety and effectiveness in patients who were converted to monotherapy from a previous regimen of other anticonvulsant drugs have not been established in controlled trials.

Adjunctive Therapy Epilepsy Topiramate tablets are indicated as adjunctive therapy for adults and pediatric patients ages 2 to 16 years with partial onset seizures, or primary generalized tonic-clonic seizures, and in patients 2 years of age and older with seizures associated with Lennox-Gastaut syndrome.

DOSAGE AND ADMINISTRATION

Epilepsy In the controlled add-on trials, no correlation has been demonstrated between trough plasma concentrations of topiramate and clinical efficacy.

No evidence of tolerance has been demonstrated in humans.

Doses above 400 mg/day (600, 800, or 1000 mg/day) have not been shown to improve responses in dose-response studies in adults with partial onset seizures.

It is not necessary to monitor topiramate plasma concentrations to optimize topiramate therapy.

On occasion, the addition of topiramate to phenytoin may require an adjustment of the dose of phenytoin to achieve optimal clinical outcome.

Addition or withdrawal of phenytoin and/or carbamazepine during adjunctive therapy with topiramate may require adjustment of the dose of topiramate.

Because of the bitter taste, tablets should not be broken.

Topiramate tablets can be taken without regard to meals.

Monotherapy Use The recommended dose for topiramate monotherapy in adults and children 10 years of age and older is 400 mg/day in two divided doses.

Approximately 58% of patients randomized to 400 mg/day achieved this maximal dose in the monotherapy controlled trial; the mean dose achieved in the trial was 275 mg/day.

The dose should be achieved by titrating according to the following schedule: Morning Dose Evening Dose Week 1 25 mg 25 mg Week 2 50 mg 50 mg Week 3 75 mg 75 mg Week 4 100 mg 100 mg Week 5 150 mg 150 mg Week 6 200 mg 200 mg Adjunctive Therapy Use Adults (17 Years of Age and Over) – Partial Seizures, Primary Generalized Tonic-Clonic Seizures, or Lennox-Gastaut Syndrome The recommended total daily dose of topiramate as adjunctive therapy in adults with partial seizures is 200 to 400 mg/day in two divided doses, and 400 mg/day in two divided doses as adjunctive treatment in adults with primary generalized tonic-clonic seizures.

It is recommended that therapy be initiated at 25 to 50 mg/day followed by titration to an effective dose in increments of 25 to 50 mg/week.

Titrating in increments of 25 mg/week may delay the time to reach an effective dose.

Daily doses above 1,600 mg have not been studied.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose was reached at the end of 8 weeks (see CLINICAL STUDIES, Adjunctive Therapy Controlled Trials in Patients With Primary Generalized Tonic-Clonic Seizures ).

Pediatric Patients (Ages 2 to 16 Years)– Partial Seizures, Primary Generalized Tonic-Clonic Seizures, or Lennox-Gastaut Syndrome The recommended total daily dose of topiramate as adjunctive therapy for patients with partial seizures, primary generalized tonic-clonic seizures, or seizures associated with Lennox-Gastaut syndrome is approximately 5 to 9 mg/kg/day in two divided doses.

Titration should begin at 25 mg (or less, based on a range of 1 to 3 mg/kg/day) nightly for the first week.

The dosage should then be increased at 1- or 2-week intervals by increments of 1 to 3 mg/kg/day (administered in two divided doses), to achieve optimal clinical response.

Dose titration should be guided by clinical outcome.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose of 6 mg/kg/day was reached at the end of 8 weeks (see CLINICAL STUDIES, Adjunctive Therapy Controlled Trials in Patients With Primary Generalized Tonic-Clonic Seizures ).

Patients with Renal Impairment: In renally impaired subjects (creatinine clearance less than 70 mL/min/1.73 m 2 ), one half of the usual adult dose is recommended.

Such patients will require a longer time to reach steady-state at each dose.

Geriatric Patients (Ages 65 Years and Over): Dosage adjustment may be indicated in the elderly patient when impaired renal function (creatinine clearance rate ≤70 mL/min/1.73 m 2 ) is evident (see : Patients with Renal Impairment and CLINICAL PHARMACOLOGY: Special Populations: Age, Gender, and Race ).

Patients Undergoing Hemodialysis: Topiramate is cleared by hemodialysis at a rate that is 4 to 6 times greater than a normal individual.

Accordingly, a prolonged period of dialysis may cause topiramate concentration to fall below that required to maintain an anti-seizure effect.

To avoid rapid drops in topiramate plasma concentration during hemodialysis, a supplemental dose of topiramate may be required.

The actual adjustment should take into account 1) the duration of dialysis period, 2) the clearance rate of the dialysis system being used, and 3) the effective renal clearance of topiramate in the patient being dialyzed.

Patients with Hepatic Disease: In hepatically impaired patients topiramate plasma concentrations may be increased.

The mechanism is not well understood.

Pyridostigmine Bromide 180 MG Extended Release Oral Tablet

Generic Name: PYRIDOSTIGMINE BROMIDE
Brand Name: Pyridostigmine Bromide
  • Substance Name(s):
  • PYRIDOSTIGMINE BROMIDE

WARNINGS

Although failure of patients to show clinical improvement may reflect underdosage, it can also be indicative of overdosage.

As is true of all cholinergic drugs, overdosage of pyridostigmine bromide may result in cholinergic crisis, a state characterized by increasing muscle weakness which, through involvement of the muscles of respiration, may lead to death.

Myasthenic crisis due to an increase in the severity of the disease is also accompanied by extreme muscle weakness, and thus may be difficult to distinguish from cholinergic crisis on a symptomatic basis.

Such differentiation is extremely important, since increases in doses of pyridostigmine bromide or other drugs of this class in the presence of cholinergic crisis or of a refractory or “insensitive” state could have grave consequences.

Osserman and Genkins 1 indicate that the differential diagnosis of the two types of crisis may require the use of edrophonium chloride as well as clinical judgment.

The treatment of the two conditions obviously differs radically.

Whereas the presence of myasthenic crisis suggests the need for more intensive anticholinesterase therapy, the diagnosis of cholinergic crisis, according to Osserman and Genkins 1 , calls for the prompt withdrawal of all drugs of this type.

The immediate use of atropine in cholinergic crisis is also recommended.

Atropine may also be used to abolish or obtund gastrointestinal side effects or other muscarinic reactions; but such use, by masking signs of overdosage, can lead to inadvertent induction of cholinergic crisis.

For detailed information on the management of patients with myasthenia gravis, the physician is referred to one of the excellent reviews such as those by Osserman and Genkins 2 , Grob 3 or Schwab 4,5 .

Usage in Pregnancy: The safety of pyridostigmine bromide during pregnancy or lactation in humans has not been established.

Therefore, use of pyridostigmine bromide in women who may become pregnant requires weighing the drug’s potential benefits against its possible hazards to mother and child.

DESCRIPTION

Pyridostigmine bromide is an orally active cholinesterase inhibitor.

Chemically, pyridostigmine bromide is 3-hydroxy-1-methylpyridinium bromide dimethylcarbamate.

Its structural formula is: Pyridostigmine bromide extended-release tablets are available as extended-release tablets containing 180 mg pyridostigmine bromide; each tablet also contains carnauba wax, copovidone, lactose, magnesium stearate, and silicon dioxide.

1

HOW SUPPLIED

Pyridostigmine Bromide Extended-Release Tablets, 180 mg are available as light brown to pale yellow, capsule-shaped tablets, debossed with “W1” on one side and single-scored on the other side.

They are supplied as follows: Bottles of 30: NDC 0115-1404-08 Note: Because of the hygroscopic nature of the extended-release tablets, mottling may occur.

This does not affect their efficacy.

Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature].

Dispense in a tight, light-resistant container.

Keep pyridostigmine bromide extended-release tablets in a dry place with the silica gel enclosed.

INDICATIONS AND USAGE

Pyridostigmine bromide is useful in the treatment of myasthenia gravis.

DOSAGE AND ADMINISTRATION

Pyridostigmine bromide is available in extended-release dosage form: Extended-Release Tablets — each containing 180 mg pyridostigmine bromide.

This form provides uniformly slow release, hence prolonged duration of drug action; it facilitates control of myasthenic symptoms with fewer individual doses daily.

The immediate effect of a 180 mg extended-release tablet is about equal to that of a 60 mg immediate-release tablet; however, its duration of effectiveness, although varying in individual patients, averages 2 1/2 times that of a 60 mg dose.

Dosage: The size and frequency of the dosage must be adjusted to the needs of the individual patient.

Extended-Release Tablets — One to three 180 mg tablets, once or twice daily, will usually be sufficient to control symptoms; however, the needs of certain individuals may vary markedly from this average.

The interval between doses should be at least 6 hours.

For optimum control, it may be necessary to use the more rapidly acting regular tablets or syrup in conjunction with extended-release therapy.

Note: For information on a diagnostic test for myasthenia gravis, and for the evaluation and stabilization of therapy, please see product literature on edrophonium chloride.

lamoTRIgine 50 MG Disintegrating Oral Tablet

Generic Name: LAMOTRIGINE
Brand Name: Lamotrigine
  • Substance Name(s):
  • LAMOTRIGINE

DRUG INTERACTIONS

7 Significant drug interactions with lamotrigine are summarized in this section.

Uridine 5´-diphospho-glucuronyl transferases (UGT) have been identified as the enzymes responsible for metabolism of lamotrigine.

Drugs that induce or inhibit glucuronidation may, therefore, affect the apparent clearance of lamotrigine.

Strong or moderate inducers of the cytochrome P450 3A4 (CYP3A4) enzyme, which are also known to induce UGT, may also enhance the metabolism of lamotrigine.

Those drugs that have been demonstrated to have a clinically significant impact on lamotrigine metabolism are outlined in Table 13.

Specific dosing guidance for these drugs is provided in the Dosage and Administration section [see Dosage and Administration (2.1)] .

Additional details of these drug interaction studies are provided in the Clinical Pharmacology section [see Clinical Pharmacology (12.3)] .

Table 13.

Established and Other Potentially Significant Drug Interactions Concomitant Drug Effect on Concentration of Lamotrigine or Concomitant Drug Clinical Comment Estrogen-containing oral contraceptive preparations containing 30 mcg ethinylestradiol and 150 mcg levonorgestrel ↓ lamotrigine ↓ levonorgestrel Decreased lamotrigine concentrations approximately 50%.

Decrease in levonorgestrel component by 19%.

Carbamazepine and carbamazepine epoxide ↓ lamotrigine ? carbamazepine epoxide Addition of carbamazepine decreases lamotrigine concentration approximately 40%.

May increase carbamazepine epoxide levels.

Lopinavir/ritonavir ↓ lamotrigine Decreased lamotrigine concentration approximately 50%.

Atazanavir/ritonavir ↓ lamotrigine Decreased lamotrigine AUC approximately 32%.

Phenobarbital/Primidone ↓ lamotrigine Decreased lamotrigine concentration approximately 40%.

Phenytoin ↓ lamotrigine Decreased lamotrigine concentration approximately 40%.

Rifampin ↓ lamotrigine Decreased lamotrigine AUC approximately 40%.

Valproate ↑ lamotrigine ? valproate Increased lamotrigine concentrations slightly more than 2-fold.

There are conflicting study results regarding effect of lamotrigine on valproate concentrations: 1) a mean 25% decrease in valproate concentrations in healthy volunteers, 2) no change in valproate concentrations in controlled clinical trials in patients with epilepsy.

↓= Decreased (induces lamotrigine glucuronidation).

↑= Increased (inhibits lamotrigine glucuronidation).

? = Conflicting data.

Effect of lamotrigine on Organic Cationic Transporter 2 Substrates Lamotrigine is an inhibitor of renal tubular secretion via organic cationic transporter 2 (OCT2) proteins [see Clinical Pharmacology (12.3)].

This may result in increased plasma levels of certain drugs that are substantially excreted via this route.

Coadministration of lamotrigine with OCT2 substrates with a narrow therapeutic index (e.g., dofetilide) is not recommended.

Valproate increases lamotrigine concentrations more than 2-fold.

(7, 12.3) Carbamazepine, phenytoin, phenobarbital, primidone, and rifampin decrease lamotrigine concentrations by approximately 40%.

(7, 12.3) Estrogen-containing oral contraceptives decrease lamotrigine concentrations by approximately 50%.

(7, 12.3) Protease inhibitors lopinavir/ritonavir and atazanavir/lopinavir decrease lamotrigine exposure by approximately 50% and 32%, respectively.

(7, 12.3) Coadministration with organic cationic transporter 2 substrates with narrow therapeutic index is not recommended (7, 12.3)

OVERDOSAGE

10 10.1 Human Overdose Experience Overdoses involving quantities up to 15 g have been reported for lamotrigine, some of which have been fatal.

Overdose has resulted in ataxia, nystagmus, seizures (including tonic-clonic seizures), decreased level of consciousness, coma, and intraventricular conduction delay.

10.2 Management of Overdose There are no specific antidotes for lamotrigine.

Following a suspected overdose, hospitalization of the patient is advised.

General supportive care is indicated, including frequent monitoring of vital signs and close observation of the patient.

If indicated, emesis should be induced; usual precautions should be taken to protect the airway.

It should be kept in mind that immediate-release lamotrigine is rapidly absorbed [see Clinical Pharmacology (12.3)].

It is uncertain whether hemodialysis is an effective means of removing lamotrigine from the blood.

In 6 renal failure patients, about 20% of the amount of lamotrigine in the body was removed by hemodialysis during a 4-hour session.

A Poison Control Center should be contacted for information on the management of overdosage of lamotrigine.

DESCRIPTION

11 Lamotrigine, USP an AED of the phenyltriazine class, is chemically unrelated to existing AEDs.

Lamotrigine’s chemical name is 3,5-diamino-6-(2,3-dichlorophenyl)- as -triazine, its molecular formula is C 9 H 7 N 5 Cl 2 , and its molecular weight is 256.09.

Lamotrigine, USP is a white to pale cream-colored powder and has a pK a of 5.7.

Lamotrigine, USP is slightly soluble in 0.1 N hydrochloric acid, in acetone, in methanol and in water.

The structural formula is: Lamotrigine orally disintegrating tablets are supplied for oral administration.

The tablets contain 25 mg (white), 50 mg (white), 100 mg (Peach), 200 mg (White) of lamotrigine, USP and the following inactive ingredients: For lamotrigine orally disintegrating tablets 25 mg, 50 mg and 200 mg: Colloidal silicon dioxide, croscarmellose sodium, magnesium stearate, mannitol, starch (maize), microcrystalline cellulose, pregelatinized starch, peppermint flavor, sodium stearyl fumarate and sucralose.

For lamotrigine orally disintegrating tablets 100 mg: Colloidal silicon dioxide, croscarmellose sodium, magnesium stearate, mannitol, starch (maize), microcrystalline cellulose, pregelatinized starch, peppermint flavor, sodium stearyl fumarate, sucralose and idacol red oxide of iron.

Lamotrigine orally disintegrating tablets are formulated using in-house technologies designed to mask the bitter taste of lamotrigine and achieve a rapid dissolution profile.

lamotrigine

CLINICAL STUDIES

14 14.1 Epilepsy Monotherapy with Lamotrigine in Adults with Partial-Onset Seizures Already Receiving Treatment with Carbamazepine, Phenytoin, Phenobarbital, or Primidone as the Single Antiepileptic Drug The effectiveness of monotherapy with lamotrigine was established in a multicenter, double-blind clinical trial enrolling 156 adult outpatients with partial-onset seizures.

The patients experienced at least 4 simple partial-onset, complex partial-onset, and/or secondarily generalized seizures during each of 2 consecutive 4-week periods while receiving carbamazepine or phenytoin monotherapy during baseline.

Lamotrigine (target dose of 500 mg/day) or valproate (1,000 mg/day) was added to either carbamazepine or phenytoin monotherapy over a 4-week period.

Patients were then converted to monotherapy with lamotrigine or valproate during the next 4 weeks, then continued on monotherapy for an additional 12-week period.

Trial endpoints were completion of all weeks of trial treatment or meeting an escape criterion.

Criteria for escape relative to baseline were: (1) doubling of average monthly seizure count, (2) doubling of highest consecutive 2-day seizure frequency, (3) emergence of a new seizure type (defined as a seizure that did not occur during the 8-week baseline) that is more severe than seizure types that occur during study treatment, or (4) clinically significant prolongation of generalized tonic-clonic seizures.

The primary efficacy variable was the proportion of patients in each treatment group who met escape criteria.

The percentages of patients who met escape criteria were 42% (32/76) in the group receiving lamotrigine and 69% (55/80) in the valproate group.

The difference in the percentage of patients meeting escape criteria was statistically significant ( P = 0.0012) in favor of lamotrigine.

No differences in efficacy based on age, sex, or race were detected.

Patients in the control group were intentionally treated with a relatively low dose of valproate; as such, the sole objective of this trial was to demonstrate the effectiveness and safety of monotherapy with lamotrigine, and cannot be interpreted to imply the superiority of lamotrigine to an adequate dose of valproate.

Adjunctive Therapy with Lamotrigine in Adults with Partial-Onset Seizures The effectiveness of lamotrigine as adjunctive therapy (added to other AEDs) was initially established in 3 pivotal, multicenter, placebo-controlled, double-blind clinical trials in 355 adults with refractory partial-onset seizures.

The patients had a history of at least 4 partial-onset seizures per month in spite of receiving 1 or more AEDs at therapeutic concentrations and in 2 of the trials were observed on their established AED regimen during baselines that varied between 8 to 12 weeks.

In the third trial, patients were not observed in a prospective baseline.

In patients continuing to have at least 4 seizures per month during the baseline, lamotrigine or placebo was then added to the existing therapy.

In all 3 trials, change from baseline in seizure frequency was the primary measure of effectiveness.

The results given below are for all partial-onset seizures in the intent-to-treat population (all patients who received at least 1 dose of treatment) in each trial, unless otherwise indicated.

The median seizure frequency at baseline was 3 per week while the mean at baseline was 6.6 per week for all patients enrolled in efficacy trials.

One trial (n = 216) was a double-blind, placebo-controlled, parallel trial consisting of a 24-week treatment period.

Patients could not be on more than 2 other anticonvulsants and valproate was not allowed.

Patients were randomized to receive placebo, a target dose of 300 mg/day of lamotrigine, or a target dose of 500 mg/day of lamotrigine.

The median reductions in the frequency of all partial-onset seizures relative to baseline were 8% in patients receiving placebo, 20% in patients receiving 300 mg/day of lamotrigine, and 36% in patients receiving 500 mg/day of lamotrigine.

The seizure frequency reduction was statistically significant in the 500-mg/day group compared with the placebo group, but not in the 300-mg/day group.

A second trial (n = 98) was a double-blind, placebo-controlled, randomized, crossover trial consisting of two 14-week treatment periods (the last 2 weeks of which consisted of dose tapering) separated by a 4-week washout period.

Patients could not be on more than 2 other anticonvulsants and valproate was not allowed.

The target dose of lamotrigine was 400 mg/day.

When the first 12 weeks of the treatment periods were analyzed, the median change in seizure frequency was a 25% reduction on lamotrigine compared with placebo ( P <0.001).

The third trial (n = 41) was a double-blind, placebo-controlled, crossover trial consisting of two 12-week treatment periods separated by a 4-week washout period.

Patients could not be on more than 2 other anticonvulsants.

Thirteen patients were on concomitant valproate; these patients received 150 mg/day of lamotrigine.

The 28 other patients had a target dose of 300 mg/day of lamotrigine.

The median change in seizure frequency was a 26% reduction on lamotrigine compared with placebo ( P <0.01).

No differences in efficacy based on age, sex, or race, as measured by change in seizure frequency, were detected.

Adjunctive Therapy with Lamotrigine in Pediatric Patients with Partial-Onset Seizures The effectiveness of lamotrigine as adjunctive therapy in pediatric patients with partial-onset seizures was established in a multicenter, double-blind, placebo-controlled trial in 199 patients aged 2 to 16 years (n = 98 on lamotrigine, n = 101 on placebo).

Following an 8-week baseline phase, patients were randomized to 18 weeks of treatment with lamotrigine or placebo added to their current AED regimen of up to 2 drugs.

Patients were dosed based on body weight and valproate use.

Target doses were designed to approximate 5 mg/kg/day for patients taking valproate (maximum dose: 250 mg/day) and 15 mg/kg/day for the patients not taking valproate (maximum dose: 750 mg/day).

The primary efficacy endpoint was percentage change from baseline in all partial-onset seizures.

For the intent-to-treat population, the median reduction of all partial-onset seizures was 36% in patients treated with lamotrigine and 7% on placebo, a difference that was statistically significant ( P <0.01).

Adjunctive Therapy with Lamotrigine in Pediatric and Adult Patients with Lennox-Gastaut Syndrome The effectiveness of lamotrigine as adjunctive therapy in patients with Lennox-Gastaut syndrome was established in a multicenter, double-blind, placebo-controlled trial in 169 patients aged 3 to 25 years (n = 79 on lamotrigine, n = 90 on placebo).

Following a 4-week, single-blind, placebo phase, patients were randomized to 16 weeks of treatment with lamotrigine or placebo added to their current AED regimen of up to 3 drugs.

Patients were dosed on a fixed-dose regimen based on body weight and valproate use.

Target doses were designed to approximate 5 mg/kg/day for patients taking valproate (maximum dose: 200 mg/day) and 15 mg/kg/day for patients not taking valproate (maximum dose: 400 mg/day).

The primary efficacy endpoint was percentage change from baseline in major motor seizures (atonic, tonic, major myoclonic, and tonic-clonic seizures).

For the intent-to-treat population, the median reduction of major motor seizures was 32% in patients treated with lamotrigine and 9% on placebo, a difference that was statistically significant ( P <0.05).

Drop attacks were significantly reduced by lamotrigine (34%) compared with placebo (9%), as were tonic-clonic seizures (36% reduction versus 10% increase for lamotrigine and placebo, respectively).

Adjunctive Therapy with Lamotrigine in Pediatric and Adult Patients with Primary Generalized Tonic-Clonic Seizures The effectiveness of lamotrigine as adjunctive therapy in patients with PGTC seizures was established in a multicenter, double-blind, placebo-controlled trial in 117 pediatric and adult patients aged 2 years and older (n = 58 on lamotrigine, n = 59 on placebo).

Patients with at least 3 PGTC seizures during an 8-week baseline phase were randomized to 19 to 24 weeks of treatment with lamotrigine or placebo added to their current AED regimen of up to 2 drugs.

Patients were dosed on a fixed-dose regimen, with target doses ranging from 3 to 12 mg/kg/day for pediatric patients and from 200 to 400 mg/day for adult patients based on concomitant AEDs.

The primary efficacy endpoint was percentage change from baseline in PGTC seizures.

For the intent-to-treat population, the median percent reduction in PGTC seizures was 66% in patients treated with lamotrigine and 34% on placebo, a difference that was statistically significant ( P = 0.006).

14.2 Bipolar Disorder Adults The effectiveness of lamotrigine in the maintenance treatment of bipolar I disorder was established in 2 multicenter, double-blind, placebo-controlled trials in adult patients (aged 18 to 82 years) who met DSM-IV criteria for bipolar I disorder.

Trial 1 enrolled patients with a current or recent (within 60 days) depressive episode as defined by DSM-IV and Trial 2 included patients with a current or recent (within 60 days) episode of mania or hypomania as defined by DSM-IV.

Both trials included a cohort of patients (30% of 404 subjects in Trial 1 and 28% of 171 patients in Trial 2) with rapid cycling bipolar disorder (4 to 6 episodes per year).

In both trials, patients were titrated to a target dose of 200 mg of lamotrigine as add-on therapy or as monotherapy with gradual withdrawal of any psychotropic medications during an 8- to 16-week open-label period.

Overall 81% of 1,305 patients participating in the open-label period were receiving 1 or more other psychotropic medications, including benzodiazepines, selective serotonin reuptake inhibitors (SSRIs), atypical antipsychotics (including olanzapine), valproate, or lithium, during titration of lamotrigine.

Patients with a CGI-severity score of 3 or less maintained for at least 4 continuous weeks, including at least the final week on monotherapy with lamotrigine, were randomized to a placebo-controlled, double-blind treatment period for up to 18 months.

The primary endpoint was TIME (time to intervention for a mood episode or one that was emerging, time to discontinuation for either an adverse event that was judged to be related to bipolar disorder, or for lack of efficacy).

The mood episode could be depression, mania, hypomania, or a mixed episode.

In Trial 1, patients received double-blind monotherapy with lamotrigine 50 mg/day (n = 50), lamotrigine 200 mg/day (n = 124), lamotrigine 400 mg/day (n = 47), or placebo (n = 121).

Lamotrigine (200- and 400-mg/day treatment groups combined) was superior to placebo in delaying the time to occurrence of a mood episode (Figure 1).

Separate analyses of the 200- and 400-mg/day dose groups revealed no added benefit from the higher dose.

In Trial 2, patients received double-blind monotherapy with lamotrigine (100 to 400 mg/day, n = 59), or placebo (n = 70).

Lamotrigine was superior to placebo in delaying time to occurrence of a mood episode (Figure 2).

The mean dose of lamotrigine was about 211 mg/day.

Although these trials were not designed to separately evaluate time to the occurrence of depression or mania, a combined analysis for the 2 trials revealed a statistically significant benefit for lamotrigine over placebo in delaying the time to occurrence of both depression and mania, although the finding was more robust for depression.

Figure 1: Kaplan-Meier Estimation of Cumulative Proportion of Patients with Mood Episode (Trial 1) Figure 2: Kaplan-Meier Estimation of Cumulative Proportion of Patients with Mood Episode (Trial 2) Lamotrigine Lamotrigine

HOW SUPPLIED

16 /STORAGE AND HANDLING Lamotrigine Orally Disintegrating Tablets 25-mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “NT” on one side and “123” on the other side.

Maintenance Packs of 30 (NDC 49884-484-11).

50-mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “191” on the other side.

Maintenance Packs of 30 (NDC 49884-485-11).

100-mg, Peach colored, round shaped, flat-faced, bevel-edged tablets debossed with “E” on one side and “432” on the other side.

Maintenance Packs of 30 (NDC 49884-486-11).

200-mg, White colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “433” on the other side.

Maintenance Packs of 30 (NDC 49884-487-11).

Store at 20° to 25°C (68° to 77°F); with excursions permitted to 15° to 30°C (59° to 86°F).

[See USP Controlled Room Temperature].

Lamotrigine Orally Disintegrating Tablets Patient Titration Kit for Patients Taking Valproate (Blue ODT Kit) 25-mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “NT” on one side and “123” on the other side and 50 mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “191” on the other side, blister pack of 28 tablets (21/25-mg tablets and 7/50-mg tablets) (NDC 49884-880-99).

Lamotrigine Orally Disintegrating Tablets Patient Titration Kit for Patients Taking Carbamazepine, Phenytoin, Phenobarbital, or Primidone and Not Taking Valproate (Green ODT Kit) 50-mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “191” on the other side.

and 100 mg, Peach colored, round shaped, flat-faced, bevel-edged tablets debossed with “E” on one side and “432” on the other side, blister pack of 56 tablets (42/50-mg tablets and 14/100-mg tablets) (NDC 49884-881-99).

Lamotrigine Oally Disintegrating Tablets Patient Titration Kit for Patients Not Taking Carbamazepine, Phenytoin, Phenobarbital, Primidone, or Valproate (Orange ODT Kit) 25-mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “NT” on one side and “123” on the other side., 50 mg, white colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “191” on the other side, and 100 mg, Peach colored, round shaped, flat-faced, bevel-edged tablets debossed with “E” on one side and “432” on the other side, blister pack of 35 tablets (14/25-mg tablets, 14/50-mg tablets, and 7/100-mg tablets) (NDC 49884-882-99).

Store at 20°C to 25°C (68°F to 77°F); with excursions permitted to 15°C to 30°C (59°F to 86°F).

[See USP Controlled Room Temperature].

Blister packs If the product is dispensed in a blister pack, the patient should be advised to examine the blister pack before use and not use if blisters are torn, broken, or missing.

RECENT MAJOR CHANGES

Warnings and Precautions, Hemophagocytic Lymphohistiocytosis (5.2) 8/2019

GERIATRIC USE

8.5 Geriatric Use Clinical trials of lamotrigine for epilepsy and bipolar disorder did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from younger patients or exhibit a different safety profile than that of younger patients.

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 Orally disintegrating tablets: 25 mg, 50 mg, 100 mg, and 200 mg.

(3.3, 16) 3.3 Orally Disintegrating Tablets 25-mg, White colored, round shaped, flat-faced, bevel-edged tablets debossed with “NT” on one side and “123” on the other side.

50-mg, White colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “191”on the other side.

100-mg, Peach colored, round shaped, flat-faced, bevel-edged tablets debossed with “E” on one side and “432” on the other side.

200-mg, White colored, round shaped, flat-faced, bevel-edged tablets debossed with “EP” on one side and “433” on the other side.

MECHANISM OF ACTION

12.1 Mechanism of Action The precise mechanism(s) by which lamotrigine exerts its anticonvulsant action are unknown.

In animal models designed to detect anticonvulsant activity, lamotrigine was effective in preventing seizure spread in the maximum electroshock (MES) and pentylenetetrazol (scMet) tests, and prevented seizures in the visually and electrically evoked after-discharge (EEAD) tests for antiepileptic activity.

Lamotrigine also displayed inhibitory properties in the kindling model in rats both during kindling development and in the fully kindled state.

The relevance of these models to human epilepsy, however, is not known.

One proposed mechanism of action of lamotrigine, the relevance of which remains to be established in humans, involves an effect on sodium channels.

In vitro pharmacological studies suggest that lamotrigine inhibits voltage-sensitive sodium channels, thereby stabilizing neuronal membranes and consequently modulating presynaptic transmitter release of excitatory amino acids (e.g., glutamate and aspartate).

Effect of Lamotrigine on N-Methyl d-Aspartate-Receptor Mediated Activity Lamotrigine did not inhibit N-methyl d-aspartate (NMDA)-induced depolarizations in rat cortical slices or NMDA-induced cyclic GMP formation in immature rat cerebellum, nor did lamotrigine displace compounds that are either competitive or noncompetitive ligands at this glutamate receptor complex (CNQX, CGS, TCHP).

The IC 50 for lamotrigine effects on NMDA-induced currents (in the presence of 3 µM of glycine) in cultured hippocampal neurons exceeded 100 µM.

The mechanisms by which lamotrigine exerts its therapeutic action in bipolar disorder have not been established.

INDICATIONS AND USAGE

1 Lamotrigine orally disintegrating tablets are indicated for: Epilepsy—adjunctive therapy in patients aged 2 years and older: partial-onset seizures.

primary generalized tonic-clonic seizures.

generalized seizures of Lennox-Gastaut syndrome.

(1.1) Epilepsy—monotherapy in patients aged 16 years and older: Conversion to monotherapy in patients with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug.

(1.1) Bipolar disorder : Maintenance treatment of bipolar I disorder to delay the time to occurrence of mood episodes in patients treated for acute mood episodes with standard therapy.

(1.2) Limitations of Use: Treatment of acute manic or mixed episodes is not recommended.

Effectiveness of lamotrigine in the acute treatment of mood episodes has not been established.

1.1 Epilepsy Adjunctive Therapy Lamotrigine orally disintegrating tablets are indicated as adjunctive therapy for the following seizure types in patients aged 2 years and older: partial-onset seizures.

primary generalized tonic-clonic (PGTC) seizures.

generalized seizures of Lennox-Gastaut syndrome.

Monotherapy Lamotrigine orally disintegrating tablets are indicated for conversion to monotherapy in adults (aged 16 years and older) with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug (AED).

Safety and effectiveness of lamotrigine orally disintegrating tablets have not been established (1) as initial monotherapy; (2) for conversion to monotherapy from AEDs other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate; or (3) for simultaneous conversion to monotherapy from 2 or more concomitant AEDs.

1.2 Bipolar Disorder Lamotrigine orally disintegrating tablets are indicated for the maintenance treatment of bipolar I disorder to delay the time to occurrence of mood episodes (depression, mania, hypomania, mixed episodes) in patients treated for acute mood episodes with standard therapy [see Clinical Studies (14.1)].

Limitations of Use Treatment of acute manic or mixed episodes is not recommended.

Effectiveness of lamotrigine orally disintegrating tablets in the acute treatment of mood episodes has not been established.

PEDIATRIC USE

8.4 Pediatric Use Epilepsy Lamotrigine is indicated as adjunctive therapy in patients aged 2 years and older for partial-onset seizures, the generalized seizures of Lennox-Gastaut syndrome, and PGTC seizures.

Safety and efficacy of lamotrigine used as adjunctive treatment for partial-onset seizures were not demonstrated in a small, randomized, double-blind, placebo-controlled withdrawal trial in very young pediatric patients (aged 1 to 24 months).

Lamotrigine was associated with an increased risk for infectious adverse reactions (lamotrigine 37%, placebo 5%), and respiratory adverse reactions (lamotrigine 26%, placebo 5%).

Infectious adverse reactions included bronchiolitis, bronchitis, ear infection, eye infection, otitis externa, pharyngitis, urinary tract infection, and viral infection.

Respiratory adverse reactions included nasal congestion, cough, and apnea.

Bipolar Disorder Safety and efficacy of lamotrigine for the maintenance treatment of bipolar disorder were not established in a double-blind, randomized withdrawal, placebo-controlled trial that evaluated 301 pediatric patients aged 10 to 17 years with a current manic/hypomanic, depressed, or mixed mood episode as defined by DSM-IV-TR.

In the randomized phase of the trial, adverse reactions that occurred in at least 5% of patients taking lamotrigine (n = 87) and were twice as common compared with patients taking placebo (n = 86) were influenza (lamotrigine 8%, placebo 2%), oropharyngeal pain (lamotrigine 8%, placebo 2%), vomiting (lamotrigine 6%, placebo 2%), contact dermatitis (lamotrigine 5%, placebo 2%), upper abdominal pain (lamotrigine 5%, placebo 1%), and suicidal ideation (lamotrigine 5%, placebo 0%).

Juvenile Animal Data In a juvenile animal study in which lamotrigine (oral doses of 0, 5, 15, or 30 mg/kg) was administered to young rats from postnatal day 7 to 62, decreased viability and growth were seen at the highest dose tested and long-term Neurobehavioral abnormalities (decreased locomotor activity, increased reactivity, and learning deficits in animals tested as adults) were observed at the 2 highest doses.

The no-effect dose for adverse developmental effects in juvenile animals is less than the human dose of 400 mg/day on a mg/m 2 basis.

PREGNANCY

8.1 Pregnancy Pregnancy Exposure Registry There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to AEDs, including lamotrigine, during pregnancy.

Encourage women who are taking lamotrigine during pregnancy to enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry by calling 1-888-233-2334 or visiting http://www.aedpregnancyregistry.org/.

Risk Summary Data from several prospective pregnancy exposure registries and epidemiological studies of pregnant women have not detected an increased frequency of major congenital malformations or a consistent pattern of malformations among women exposed to lamotrigine compared with the general population (see Data) .

The majority of lamotrigine pregnancy exposure data are from women with epilepsy.

In animal studies, administration of lamotrigine during pregnancy resulted in developmental toxicity (increased mortality, decreased body weight, increased structural variation, neurobehavioral abnormalities) at doses lower than those administered clinically.

Lamotrigine decreased fetal folate concentrations in rats, an effect known to be associated with adverse pregnancy outcomes in animals and humans (see Data) .

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown.

In the U.S.

general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Clinical Considerations As with other AEDs, physiological changes during pregnancy may affect lamotrigine concentrations and/or therapeutic effect.

There have been reports of decreased lamotrigine concentrations during pregnancy and restoration of pre-pregnancy concentrations after delivery.

Dose adjustments may be necessary to maintain clinical response.

Data Human Data: Data from several international pregnancy registries have not shown an increased risk for malformations overall.

The International Lamotrigine Pregnancy Registry reported major congenital malformations in 2.2% (95% CI: 1.6%, 3.1%) of 1,558 infants exposed to lamotrigine monotherapy in the first trimester of pregnancy.

The NAAED Pregnancy Registry reported major congenital malformations among 2.0% of 1,562 infants exposed to lamotrigine monotherapy in the first trimester.

EURAP, a large international pregnancy registry focused outside of North America, reported major birth defects in 2.9% (95% CI: 2.3%, 3.7%) of 2,514 exposures to lamotrigine monotherapy in the first trimester.

The frequency of major congenital malformations was similar to estimates from the general population.

The NAAED Pregnancy Registry observed an increased risk of isolated oral clefts: among 2,200 infants exposed to lamotrigine early in pregnancy, the risk of oral clefts was 3.2 per 1,000 (95% CI: 1.4, 6.3), a 3-fold increased risk versus unexposed healthy controls.

This finding has not been observed in other large international pregnancy registries.

Furthermore, a case-control study based on 21 congenital anomaly registries covering over 10 million births in Europe reported an adjusted odds ratio for isolated oral clefts with lamotrigine exposure of 1.45 (95% CI: 0.8, 2.63).

Several meta-analyses have not reported an increased risk of major congenital malformations following lamotrigine exposure in pregnancy compared with healthy and disease-matched controls.

No patterns of specific malformation types were observed.

The same meta-analyses evaluated the risk of additional maternal and infant outcomes including fetal death, stillbirth, preterm birth, small for gestational age, and neurodevelopmental delay.

Although there are no data suggesting an increased risk of these outcomes with lamotrigine monotherapy exposure, differences in outcome definition, ascertainment methods, and comparator groups limit the conclusions that can be drawn.

Animal Data: When lamotrigine was administered to pregnant mice, rats, or rabbits during the period of organogenesis (oral doses of up to 125, 25, and 30 mg/kg, respectively), reduced fetal body weight and increased incidences of fetal skeletal variations were seen in mice and rats at doses that were also maternally toxic.

The no-effect doses for embryofetal developmental toxicity in mice, rats, and rabbits (75, 6.25, and 30 mg/kg, respectively) are similar to (mice and rabbits) or less than (rats) the human dose of 400 mg/day on a body surface area (mg/m 2 ) basis.

In a study in which pregnant rats were administered lamotrigine (oral doses of 0, 5 or 25 mg/kg) during the period of organogenesis and offspring were evaluated postnatally, neurobehavioral abnormalities were observed in exposed offspring at both doses.

The lowest effect dose for developmental neurotoxicity in rats is less than the human dose of 400 mg/day on a mg/m 2 basis.

Maternal toxicity was observed at the higher dose tested.

When pregnant rats were administered lamotrigine (oral doses of 0, 5, 10, or 20 mg/kg) during the latter part of gestation and throughout lactation, increased offspring mortality (including stillbirths) was seen at all doses.

The lowest effect dose for pre- and post-natal developmental toxicity in rats is less than the human dose of 400 mg/day on a mg/m 2 basis.

Maternal toxicity was observed at the 2 highest doses tested.

When administered to pregnant rats, lamotrigine decreased fetal folate concentrations at doses greater than or equal to 5 mg/kg/day, which is less than the human dose of 400 mg/day on a mg/m 2 basis.

BOXED WARNING

WARNING: SERIOUS SKIN RASHES Lamotrigine ODT can cause serious rashes requiring hospitalization and discontinuation of treatment.

The incidence of these rashes, which have included Stevens-Johnson syndrome, is approximately 0.3% to 0.8% in pediatric patients (aged 2 to 17 years) and 0.08% to 0.3% in adults receiving lamotrigine.

One rash-related death was reported in a prospectively followed cohort of 1,983 pediatric patients (aged 2 to 16 years) with epilepsy taking lamotrigine as adjunctive therapy.

In worldwide postmarketing experience, rare cases of toxic epidermal necrolysis and/or rash-related death have been reported in adult and pediatric patients, but their numbers are too few to permit a precise estimate of the rate.

Other than age, there are as yet no factors identified that are known to predict the risk of occurrence or the severity of rash caused by lamotrigine.

There are suggestions, yet to be proven, that the risk of rash may also be increased by (1) coadministration of lamotrigine with valproate (includes valproic acid and divalproex sodium), (2) exceeding the recommended initial dose of lamotrigine, or (3) exceeding the recommended dose escalation for lamotrigine.

However, cases have occurred in the absence of these factors.

Nearly all cases of life-threatening rashes caused by lamotrigine have occurred within 2 to 8 weeks of treatment initiation.

However, isolated cases have occurred after prolonged treatment (e.g., 6 months).

Accordingly, duration of therapy cannot be relied upon as means to predict the potential risk heralded by the first appearance of a rash.

Although benign rashes are also caused by lamotrigine, it is not possible to predict reliably which rashes will prove to be serious or life threatening.

Accordingly, lamotrigine should ordinarily be discontinued at the first sign of rash, unless the rash is clearly not drug related.

Discontinuation of treatment may not prevent a rash from becoming life threatening or permanently disabling or disfiguring [see Warnings and Precautions (5.1)] .

WARNING: SERIOUS SKIN RASHES See full prescribing information for complete boxed warning.

Cases of life-threatening serious rashes, including Stevens-Johnson syndrome and toxic epidermal necrolysis, and/or rash-related death have been caused by lamotrigine.

The rate of serious rash is greater in pediatric patients than in adults.

Additional factors that may increase the risk of rash include: coadministration with valproate.

exceeding recommended initial dose of lamotrigine.

exceeding recommended dose escalation for lamotrigine.

(5.1) Benign rashes are also caused by lamotrigine; however, it is not possible to predict which rashes will prove to be serious or life threatening.

Lamotrigine should be discontinued at the first sign of rash, unless the rash is clearly not drug related.

(5.1)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Life-threatening serious rash and/or rash-related death: Discontinue at the first sign of rash, unless the rash is clearly not drug related.

(Boxed Warning, 5.1) Hemophagocytic lymphohistiocytosis: Consider this diagnosis and evaluate patients immediately if they develop signs or symptoms of systemic inflammation.

Discontinue lamotrigine if an alternative etiology is not established.

(5.2) Fatal or life-threatening hypersensitivity reaction: Multiorgan hypersensitivity reactions, also known as drug reaction with eosinophilia and systemic symptoms, may be fatal or life threatening.

Early signs may include rash, fever, and lymphadenopathy.

These reactions may be associated with other organ involvement, such as hepatitis, hepatic failure, blood dyscrasias, or acute multiorgan failure.

Lamotrigine should be discontinued if alternate etiology for this reaction is not found.

(5.3) Blood dyscrasias (e.g., neutropenia, thrombocytopenia, pancytopenia): May occur, either with or without an associated hypersensitivity syndrome.

Monitor for signs of anemia, unexpected infection, or bleeding.

(5.4) Suicidal behavior and ideation: Monitor for suicidal thoughts or behaviors.

(5.5) Aseptic meningitis: Monitor for signs of meningitis.

(5.6) Medication errors due to product name confusion: Strongly advise patients to visually inspect tablets to verify the received drug is correct.

(5.7, 16, 17) 5.1 Serious Skin Rashes [see Boxed Warning] Pediatric Population The incidence of serious rash associated with hospitalization and discontinuation of lamotrigine in a prospectively followed cohort of pediatric patients (aged 2 to 17 years) is approximately 0.3% to 0.8%.

One rash-related death was reported in a prospectively followed cohort of 1,983 pediatric patients (aged 2 to 16 years) with epilepsy taking lamotrigine as adjunctive therapy.

Additionally, there have been rare cases of toxic epidermal necrolysis with and without permanent sequelae and/or death in U.S.

and foreign postmarketing experience.

There is evidence that the inclusion of valproate in a multidrug regimen increases the risk of serious, potentially life-threatening rash in pediatric patients.

In pediatric patients who used valproate concomitantly for epilepsy, 1.2% (6 of 482) experienced a serious rash compared with 0.6% (6 of 952) patients not taking valproate.

Adult Population Serious rash associated with hospitalization and discontinuation of lamotrigine occurred in 0.3% (11 of 3,348) of adult patients who received lamotrigine in premarketing clinical trials of epilepsy.

In the bipolar and other mood disorders clinical trials, the rate of serious rash was 0.08% (1 of 1,233) of adult patients who received lamotrigine as initial monotherapy and 0.13% (2 of 1,538) of adult patients who received lamotrigine as adjunctive therapy.

No fatalities occurred among these individuals.

However, in worldwide postmarketing experience, rare cases of rash-related death have been reported, but their numbers are too few to permit a precise estimate of the rate.

Among the rashes leading to hospitalization were Stevens-Johnson syndrome, toxic epidermal necrolysis, angioedema, and those associated with multi-organ hypersensitivity [see Warnings and Precautions (5.3)].

There is evidence that the inclusion of valproate in a multidrug regimen increases the risk of serious, potentially life-threatening rash in adults.

Specifically, of 584 patients administered lamotrigine with valproate in epilepsy clinical trials, 6 (1%) were hospitalized in association with rash; in contrast, 4 (0.16%) of 2,398 clinical trial patients and volunteers administered lamotrigine in the absence of valproate were hospitalized.

Patients with History of Allergy or Rash to Other Antiepileptic Drugs The risk of nonserious rash may be increased when the recommended initial dose and/or the rate of dose escalation for lamotrigine is exceeded and in patients with a history of allergy or rash to other AEDs.

5.2 Hemophagocytic Lymphohistiocytosis Hemophagocytic lymphohistiocytosis (HLH) has occurred in pediatric and adult patients taking lamotrigine for various indications.

HLH is a life-threatening syndrome of pathologic immune activation characterized by clinical signs and symptoms of extreme systemic inflammation.

It is associated with high mortality rates if not recognized early and treated.

Common findings include fever, hepatosplenomegaly, rash, lymphadenopathy, neurologic symptoms, cytopenias, high serum ferritin, hypertriglyceridemia, and liver function and coagulation abnormalities.

In cases of HLH reported with lamotrigine, patients have presented with signs of systemic inflammation (fever, rash, hepatosplenomegaly, and organ system dysfunction) and blood dyscrasias.

Symptoms have been reported to occur within 8 to 24 days following the initiation of treatment.

Patients who develop early manifestations of pathologic immune activation should be evaluated immediately, and a diagnosis of HLH should be considered.

Lamotrigine should be discontinued if an alternative etiology for the signs or symptoms cannot be established.

5.3 Multiorgan Hypersensitivity Reactions and Organ Failure Multiorgan hypersensitivity reactions, also known as drug reaction with eosinophilia and systemic symptoms (DRESS), have occurred with lamotrigine.

Some have been fatal or life threatening.

DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy in association with other organ system involvement, such as hepatitis, nephritis, hematologic abnormalities, myocarditis, or myositis, sometimes resembling an acute viral infection.

Eosinophilia is often present.

This disorder is variable in its expression, and other organ systems not noted here may be involved.

Fatalities associated with acute multiorgan failure and various degrees of hepatic failure have been reported in 2 of 3,796 adult patients and 4 of 2,435 pediatric patients who received lamotrigine in epilepsy clinical trials.

Rare fatalities from multiorgan failure have also been reported in postmarketing use.

Isolated liver failure without rash or involvement of other organs has also been reported with lamotrigine.

It is important to note that early manifestations of hypersensitivity (e.g., fever, lymphadenopathy) may be present even though a rash is not evident.

If such signs or symptoms are present, the patient should be evaluated immediately.

Lamotrigine should be discontinued if an alternative etiology for the signs or symptoms cannot be established.

Prior to initiation of treatment with lamotrigine, the patient should be instructed that a rash or other signs or symptoms of hypersensitivity (e.g., fever, lymphadenopathy) may herald a serious medical event and that the patient should report any such occurrence to a healthcare provider immediately.

5.4 Blood Dyscrasias There have been reports of blood dyscrasias that may or may not be associated with multiorgan hypersensitivity (also known as DRESS) [see Warnings and Precautions (5.3)] .

These have included neutropenia, leukopenia, anemia, thrombocytopenia, pancytopenia, and, rarely, aplastic anemia and pure red cell aplasia.

5.5 Suicidal Behavior and Ideation AEDs, including lamotrigine, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication.

Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.

Pooled analyses of 199 placebo-controlled clinical trials (monotherapy and adjunctive therapy) of 11 different AEDs showed that patients randomized to 1 of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI: 1.2, 2.7) of suicidal thinking or behavior compared with patients randomized to placebo.

In these trials, which had a median treatment duration of 12 weeks, the estimated incidence of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared with 0.24% among 16,029 placebo-treated patients, representing an increase of approximately 1 case of suicidal thinking or behavior for every 530 patients treated.

There were 4 suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number of events is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behavior with AEDs was observed as early as 1 week after starting treatment with AEDs and persisted for the duration of treatment assessed.

Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.

The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed.

The finding of increased risk with AEDs of varying mechanism of action and across a range of indications suggests that the risk applies to all AEDs used for any indication.

The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed.

Table 7 shows absolute and relative risk by indication for all evaluated AEDs.

Table 7.

Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients With Events per 1,000 Patients Drug Patients With Events per 1,000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients With Events per 1,000 Patients Epilepsy 1.0 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1.0 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

Anyone considering prescribing lamotrigine or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness.

Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior.

Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, the emergence of suicidal thoughts or suicidal behavior, or thoughts about self-harm.

Behaviors of concern should be reported immediately to healthcare providers.

5.6 Aseptic Meningitis Therapy with lamotrigine increases the risk of developing aseptic meningitis.

Because of the potential for serious outcomes of untreated meningitis due to other causes, patients should also be evaluated for other causes of meningitis and treated as appropriate.

Postmarketing cases of aseptic meningitis have been reported in pediatric and adult patients taking lamotrigine for various indications.

Symptoms upon presentation have included headache, fever, nausea, vomiting, and nuchal rigidity.

Rash, photophobia, myalgia, chills, altered consciousness, and somnolence were also noted in some cases.

Symptoms have been reported to occur within 1 day to one and a half months following the initiation of treatment.

In most cases, symptoms were reported to resolve after discontinuation of lamotrigine.

Re-exposure resulted in a rapid return of symptoms (from within 30 minutes to 1 day following re-initiation of treatment) that were frequently more severe.

Some of the patients treated with lamotrigine who developed aseptic meningitis had underlying diagnoses of systemic lupus erythematosus or other autoimmune diseases.

Cerebrospinal fluid (CSF) analyzed at the time of clinical presentation in reported cases was characterized by a mild to moderate pleocytosis, normal glucose levels, and mild to moderate increase in protein.

CSF white blood cell count differentials showed a predominance of neutrophils in a majority of the cases, although a predominance of lymphocytes was reported in approximately one third of the cases.

Some patients also had new onset of signs and symptoms of involvement of other organs (predominantly hepatic and renal involvement), which may suggest that in these cases the aseptic meningitis observed was part of a hypersensitivity reaction [see Warnings and Precautions (5.3)] .

5.7 Potential Medication Errors Medication errors involving lamotrigine have occurred.

In particular, the name lamotrigine can be confused with the names of other commonly used medications.

Medication errors may also occur between the different formulations of lamotrigine.

To reduce the potential of medication errors, write and say lamotrigine clearly.

Depictions of Lamotrigine orally disintegrating tablets can be found in the Medication Guide that accompanies the product to highlight the distinctive markings, colors, and shapes that serve to identify the different presentations of the drug and thus may help reduce the risk of medication errors.

To avoid the medication error of using the wrong drug or formulation, patients should be strongly advised to visually inspect their tablets to verify that they are lamotrigine, as well as the correct formulation of lamotrigine, each time they fill their prescription.

5.8 Concomitant Use with Oral Contraceptives Some estrogen-containing oral contraceptives have been shown to decrease serum concentrations of lamotrigine [see Clinical Pharmacology (12.3)] .

Dosage adjustments will be necessary in most patients who start or stop estrogen-containing oral contraceptives while taking lamotrigine [see Dosage and Administration (2.1)] .

During the week of inactive hormone preparation (pill-free week) of oral contraceptive therapy, plasma lamotrigine levels are expected to rise, as much as doubling at the end of the week.

Adverse reactions consistent with elevated levels of lamotrigine, such as dizziness, ataxia, and diplopia, could occur.

5.9 Withdrawal Seizures As with other AEDs, lamotrigine should not be abruptly discontinued.

In patients with epilepsy there is a possibility of increasing seizure frequency.

In clinical trials in adults with bipolar disorder, 2 patients experienced seizures shortly after abrupt withdrawal of lamotrigine.

Unless safety concerns require a more rapid withdrawal, the dose of lamotrigine should be tapered over a period of at least 2 weeks (approximately 50% reduction per week) [see Dosage and Administration (2.1)] .

5.10 Status Epilepticus Valid estimates of the incidence of treatment-emergent status epilepticus among patients treated with lamotrigine are difficult to obtain because reporters participating in clinical trials did not all employ identical rules for identifying cases.

At a minimum, 7 of 2,343 adult patients had episodes that could unequivocally be described as status epilepticus.

In addition, a number of reports of variably defined episodes of seizure exacerbation (e.g., seizure clusters, seizure flurries) were made.

5.11 Sudden Unexplained Death in Epilepsy (SUDEP) During the premarketing development of lamotrigine, 20 sudden and unexplained deaths were recorded among a cohort of 4,700 patients with epilepsy (5,747 patient-years of exposure).

Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night.

This represents an incidence of 0.0035 deaths per patient-year.

Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained death in epilepsy (SUDEP) in patients not receiving lamotrigine (ranging from 0.0005 for the general population of patients with epilepsy, to 0.004 for a recently studied clinical trial population similar to that in the clinical development program for lamotrigine, to 0.005 for patients with refractory epilepsy).

Consequently, whether these figures are reassuring or suggest concern depends on the comparability of the populations reported upon with the cohort receiving lamotrigine and the accuracy of the estimates provided.

Probably most reassuring is the similarity of estimated SUDEP rates in patients receiving lamotrigine and those receiving other AEDs, chemically unrelated to each other, that underwent clinical testing in similar populations.

This evidence suggests, although it certainly does not prove, that the high SUDEP rates reflect population rates, not a drug effect.

5.12 Addition of Lamotrigine to a Multidrug Regimen that Includes Valproate Because valproate reduces the clearance of lamotrigine, the dosage of lamotrigine in the presence of valproate is less than half of that required in its absence [see Dosage and Administration (2.2, 2.3, 2.4), Drug Interactions (7)].

5.13 Binding in the Eye and Other Melanin-Containing Tissues Because lamotrigine binds to melanin, it could accumulate in melanin-rich tissues over time.

This raises the possibility that lamotrigine may cause toxicity in these tissues after extended use.

Although ophthalmological testing was performed in 1 controlled clinical trial, the testing was inadequate to exclude subtle effects or injury occurring after long-term exposure.

Moreover, the capacity of available tests to detect potentially adverse consequences, if any, of lamotrigine’s binding to melanin is unknown [see Clinical Pharmacology (12.2)] .

Accordingly, although there are no specific recommendations for periodic ophthalmological monitoring, prescribers should be aware of the possibility of long-term ophthalmologic effects.

5.14 Laboratory Tests False-Positive Drug Test Results Lamotrigine has been reported to interfere with the assay used in some rapid urine drug screens, which can result in false-positive readings, particularly for phencyclidine (PCP).

A more specific analytical method should be used to confirm a positive result.

Plasma Concentrations of Lamotrigine The value of monitoring plasma concentrations of lamotrigine in patients treated with lamotrigine has not been established.

Because of the possible pharmacokinetic interactions between lamotrigine and other drugs, including AEDs (see Table 13), monitoring of the plasma levels of lamotrigine and concomitant drugs may be indicated, particularly during dosage adjustments.

In general, clinical judgment should be exercised regarding monitoring of plasma levels of lamotrigine and other drugs and whether or not dosage adjustments are necessary.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide).

Rash Prior to initiation of treatment with lamotrigine, inform patients that a rash or other signs or symptoms of hypersensitivity (e.g., fever, lymphadenopathy) may herald a serious medical event and instruct them to report any such occurrence to their healthcare providers immediately.

Hemophagocytic Lymphohistiocytosis Prior to initiation of treatment with lamotrigine, inform patients that excessive immune activation may occur with lamotrigine and that they should report signs or symptoms such as fever, rash, or lymphadenopathy to a healthcare provider immediately.

Multiorgan Hypersensitivity Reactions, Blood Dyscrasias, and Organ Failure Inform patients that multiorgan hypersensitivity reactions and acute multiorgan failure may occur with lamotrigine.

Isolated organ failure or isolated blood dyscrasias without evidence of multiorgan hypersensitivity may also occur.

Instruct patients to contact their healthcare providers immediately if they experience any signs or symptoms of these conditions [see Warnings and Precautions (5.3, 5.4)].

Suicidal Thinking and Behavior Inform patients, their caregivers, and families that AEDs, including lamotrigine, may increase the risk of suicidal thoughts and behavior.

Instruct them to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts or behavior or thoughts about self-harm.

Instruct them to immediately report behaviors of concern to their healthcare providers.

Worsening of Seizures Instruct patients to notify their healthcare providers if worsening of seizure control occurs.

Central Nervous System Adverse Effects Inform patients that lamotrigine may cause dizziness, somnolence, and other symptoms and signs of central nervous system depression.

Accordingly, instruct them neither to drive a car nor to operate other complex machinery until they have gained sufficient experience on lamotrigine to gauge whether or not it adversely affects their mental and/or motor performance.

Pregnancy and Nursing Instruct patients to notify their healthcare providers if they become pregnant or intend to become pregnant during therapy and if they intend to breastfeed or are breastfeeding an infant.

Encourage patients to enroll in the NAAED Pregnancy Registry if they become pregnant.

This registry is collecting information about the safety of antiepileptic drugs during pregnancy.

To enroll, patients can call the toll-free number 1-888-233-2334 [see Use in Specific Populations (8.1)].

Inform patients who intend to breastfeed that lamotrigine is present in breast milk and advise them to monitor their child for potential adverse effects of this drug.

Discuss the benefits and risks of continuing breastfeeding.

Oral Contraceptive Use Instruct women to notify their healthcare providers if they plan to start or stop use of oral contraceptives or other female hormonal preparations.

Starting estrogen-containing oral contraceptives may significantly decrease lamotrigine plasma levels and stopping estrogen-containing oral contraceptives (including the pill-free week) may significantly increase lamotrigine plasma levels [ see Warnings and Precautions (5.8), Clinical Pharmacology (12.3)] .

Also instruct women to promptly notify their healthcare providers if they experience adverse reactions or changes in menstrual pattern (e.g., break-through bleeding) while receiving lamotrigine in combination with these medications.

Discontinuing Lamotrigine Instructpatients to notify their healthcare providers if they stop taking lamotrigine for any reason and not to resume lamotrigine without consulting their healthcare providers.

Aseptic Meningitis Inform patients that lamotrigine may cause aseptic meningitis.

Instruct them to notify their healthcare providers immediately if they develop signs and symptoms of meningitis such as headache, fever, nausea, vomiting, stiff neck, rash, abnormal sensitivity to light, myalgia, chills, confusion, or drowsiness while taking lamotrigine.

Potential Medication Errors To avoid a medication error of using the wrong drug or formulation, strongly advise patients to visually inspect their tablets to verify that they are lamotrigine, as well as the correct formulation of lamotrigine, each time they fill their prescription [see Dosage Forms and Strengths ( 3.3), How Supplied/Storage And Handling (16)] .

Refer the patient to the Medication Guide that provides depictions of the lamotrigine orally disintegrating tablets.

Other Brands listed are the trademarks of their respective owners.

DOSAGE AND ADMINISTRATION

2 Dosing is based on concomitant medications, indication, and patient age.

(2.1, 2.2, 2.3, 2.4) To avoid an increased risk of rash, the recommended initial dose and subsequent dose escalations should not be exceeded.

Lamotrigine Starter Kits and Lamotrigine Orally Disintegrating Tablets Patient Titration Kits are available for the first 5 weeks of treatment.

(2.1, 16) Do not restart lamotrigine orally disintegrating tablets in patients who discontinued due to rash unless the potential benefits clearly outweigh the risks.

(2.1, 5.1) Adjustments to maintenance doses will be necessary in most patients starting or stopping estrogen-containing oral contraceptives.

(2.1, 5.8) Discontinuation: Taper over a period of at least 2 weeks (approximately 50% dose reduction per week).

(2.1, 5.9) Epilepsy: Adjunctive therapy—See Table 1 for patients older than 12 years and Tables 2 and 3 for patients aged 2 to 12 years.

(2.2) Conversion to monotherapy—See Table 4.

(2.3) Bipolar disorder: See Tables 5 and 6.

(2.4) 2.1 General Dosing Considerations Rash There are suggestions, yet to be proven, that the risk of severe, potentially life-threatening rash may be increased by (1) coadministration of lamotrigine with valproate, (2) exceeding the recommended initial dose of lamotrigine, or (3) exceeding the recommended dose escalation for lamotrigine.

However, cases have occurred in the absence of these factors [see Boxed Warning].

Therefore, it is important that the dosing recommendations be followed closely.

The risk of nonserious rash may be increased when the recommended initial dose and/or the rate of dose escalation for lamotrigine orally disintegrating tablets are exceeded and in patients with a history of allergy or rash to other AEDs.

Lamotrigine ODT Patient Titration Kits provide lamotrigine at doses consistent with the recommended titration schedule for the first 5 weeks of treatment, based upon concomitant medications, for patients with epilepsy (older than 12 years) and bipolar I disorder (adults) and are intended to help reduce the potential for rash.

The use of lamotrigine ODT Patient Titration Kits is recommended for appropriate patients who are starting or restarting lamotrigine orally disintegrating tablets [see How Supplied/Storage and Handling (16)].

It is recommended that lamotrigine orally disintegrating tablets not be restarted in patients who discontinued due to rash associated with prior treatment with lamotrigine unless the potential benefits clearly outweigh the risks.

If the decision is made to restart a patient who has discontinued lamotrigine orally disintegrating tablets, the need to restart with the initial dosing recommendations should be assessed.

The greater the interval of time since the previous dose, the greater consideration should be given to restarting with the initial dosing recommendations.

If a patient has discontinued lamotrigine for a period of more than 5 half-lives, it is recommended that initial dosing recommendations and guidelines be followed.

The half-life of lamotrigine is affected by other concomitant medications [see Clinical pharmacology (12.3)].

Lamotrigine Added to Drugs Known to Induce or Inhibit Glucuronidation Because lamotrigine orally disintegrating tablets are metabolized predominantly by glucuronic acid conjugation, drugs that are known to induce or inhibit glucuronidation may affect the apparent clearance of lamotrigine.

Drugs that induce glucuronidation include carbamazepine, phenytoin, phenobarbital, primidone, rifampin, estrogen-containing oral contraceptives, and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir.

Valproate inhibits glucuronidation.

For dosing considerations for lamotrigine orally disintegrating tablets in patients on estrogen-containing contraceptives and atazanavir/ritonavir, see below and Table 13.

For dosing considerations for lamotrigine orally disintegrating tablets in patients on other drugs known to induce or inhibit glucuronidation, see Tables 1, 2, 5 to 6, and 13.

Target Plasma Levels for Patients with Epilepsy or Bipolar Disorder A therapeutic plasma concentration range has not been established for lamotrigine.

Dosing of lamotrigine orally disintegrating tablets should be based on therapeutic response [ see Clinical Pharmacology (12.3)].

Women Taking Estrogen-Containing Oral Contraceptives Starting Lamotrigine orally disintegrating tablets in Women Taking Estrogen-Containing Oral Contraceptives: Although estrogen-containing oral contraceptives have been shown to increase the clearance of lamotrigine [see Clinical Pharmacology (12.3)], no adjustments to the recommended dose-escalation guidelines for lamotrigine orally disintegrating tablets should be necessary solely based on the use of estrogen-containing oral contraceptives.

Therefore, dose escalation should follow the recommended guidelines for initiating adjunctive therapy with lamotrigine orally disintegrating tablets based on the concomitant AED or other concomitant medications (see Tables 1, 5, and 7).

See below for adjustments to maintenance doses of lamotrigine orally disintegrating tablets in women taking estrogen-containing oral contraceptives.

Adjustments to the Maintenance Dose of Lamotrigine in Women Taking Estrogen-Containing Oral Contraceptives: (1) Taking Estrogen-Containing Oral Contraceptives : In women not taking carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation [see Drug Interactions (7), Clinical Pharmacology (12.3)], the maintenance dose of lamotrigine orally disintegrating tablets will in most cases need to be increased by as much as 2-fold over the recommended target maintenance dose to maintain a consistent lamotrigine plasma level.

(2) Starting Estrogen-Containing Oral Contraceptives: In women taking a stable dose of lamotrigine orally disintegrating tablets and not taking carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation [see Drug Interactions (7), Clinical Pharmacology (12.3)], the maintenance dose will in most cases need to be increased by as much as 2-fold to maintain a consistent lamotrigine plasma level.

The dose increases should begin at the same time that the oral contraceptive is introduced and continue, based on clinical response, no more rapidly than 50 to 100 mg/day every week.

Dose increases should not exceed the recommended rate (see Tables 1 and 5) unless lamotrigine plasma levels or clinical response support larger increases.

Gradual transient increases in lamotrigine plasma levels may occur during the week of inactive hormonal preparation (pill-free week), and these increases will be greater if dose increases are made in the days before or during the week of inactive hormonal preparation.

Increased lamotrigine plasma levels could result in additional adverse reactions, such as dizziness, ataxia, and diplopia.

If adverse reactions attributable to lamotrigine orally disintegrating tablets consistently occur during the pill-free week, dose adjustments to the overall maintenance dose may be necessary.

Dose adjustments limited to the pill-free week are not recommended.

For women taking lamotrigine orally disintegrating tablets in addition to carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation [see Drug Interactions (7), Clinical Pharmacology (12.3)], no adjustment to the dose of lamotrigine orally disintegrating tablets should be necessary.

(3) Stopping Estrogen-Containing Oral Contraceptives : In women not taking carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation [see Drug Interactions (7), Clinical Pharmacology (12.3)], the maintenance dose of lamotrigine orally disintegrating tablets will in most cases need to be decreased by as much as 50% in order to maintain a consistent lamotrigine plasma level.

The decrease in dose of lamotrigine orally disintegrating tablets should not exceed 25% of the total daily dose per week over a 2-week period, unless clinical response or lamotrigine plasma levels indicate otherwise [see Clinical Pharmacology (12.3)].

In women taking lamotrigine in addition to carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation [see Drug Interactions (7), Clinical Pharmacology (12.3)], no adjustment to the dose of lamotrigine orally disintegrating tablets should be necessary.

Women and Other Hormonal Contraceptive Preparations or Hormone Replacement Therapy The effect of other hormonal contraceptive preparations or hormone replacement therapy on the pharmacokinetics of lamotrigine has not been systematically evaluated.

It has been reported that ethinylestradiol, not progestogens, increased the clearance of lamotrigine up to 2-fold, and the progestin-only pills had no effect on lamotrigine plasma levels.

Therefore, adjustments to the dosage of lamotrigine orally disintegrating tablets in the presence of progestogens alone will likely not be needed.

Patients Taking Atazanavir/Ritonavir While atazanavir/ritonavir does reduce the lamotrigine plasma concentration, no adjustments to the recommended dose-escalation guidelines for lamotrigine orally disintegrating tablets should be necessary solely based on the use of atazanavir/ritonavir.

Dose escalation should follow the recommended guidelines for initiating adjunctive therapy with lamotrigine orally disintegrating tablets based on concomitant AED or other concomitant medications (see Tables 1, 2, and 5).

In patients already taking maintenance doses of lamotrigine orally disintegrating tablets and not taking glucuronidation inducers, the dose of lamotrigine orally disintegrating tablets may need to be increased if atazanavir/ritonavir is added, or decreased if atazanavir/ritonavir is discontinued [see Clinical Pharmacology (12.3)].

Patients with Hepatic Impairment Experience in patients with hepatic impairment is limited.

Based on a clinical pharmacology study in 24 subjects with mild, moderate, and severe liver impairment [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)], the following general recommendations can be made.

No dosage adjustment is needed in patients with mild liver impairment.

Initial, escalation, and maintenance doses should generally be reduced by approximately 25% in patients with moderate and severe liver impairment without ascites and 50% in patients with severe liver impairment with ascites.

Escalation and maintenance doses may be adjusted according to clinical response.

Patients with Renal Impairment Initial doses of lamotrigine orally disintegrating tablets should be based on patients’ concomitant medications (see Tables 1 to 3 and 5); reduced maintenance doses may be effective for patients with significant renal impairment [see Use in Specific Populations (8.7), Clinical Pharmacology (12.3)].

Few patients with severe renal impairment have been evaluated during chronic treatment with lamotrigine orally disintegrating tablets.

Because there is inadequate experience in this population, lamotrigine orally disintegrating tablets should be used with caution in these patients.

Discontinuation Strategy Epilepsy : For patients receiving lamotrigine orally disintegrating tablets in combination with other AEDs, a re-evaluation of all AEDs in the regimen should be considered if a change in seizure control or an appearance or worsening of adverse reactions is observed.

If a decision is made to discontinue therapy with lamotrigine orally disintegrating tablets, a step-wise reduction of dose over at least 2 weeks (approximately 50% per week) is recommended unless safety concerns require a more rapid withdrawal [see Warnings and Precautions (5.9)].

Discontinuing carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation should prolong the half-life of lamotrigine; discontinuing valproate should shorten the half-life of lamotrigine.

Bipolar Disorder: In the controlled clinical trials, there was no increase in the incidence, type, or severity of adverse reactions following abrupt termination of lamotrigine orally disintegrating tablets.

In the clinical development program in adults with bipolar disorder, 2 patients experienced seizures shortly after abrupt withdrawal of lamotrigine orally disintegrating tablets.

Discontinuation of lamotrigine orally disintegrating tablets should involve a step-wise reduction of dose over at least 2 weeks (approximately 50% per week) unless safety concerns require a more rapid withdrawal [see Warnings and Precautions (5.9)].

2.2 Epilepsy – Adjunctive Therapy This section provides specific dosing recommendations for patients older than 12 years and patients aged 2 to 12 years.

Within each of these age-groups, specific dosing recommendations are provided depending upon the concomitant AEDs or other concomitant medications (see Table 1 for patients older than 12 years and Table 2 for patients aged 2 to 12 years).

A weight-based dosing guide for patients aged 2 to 12 years on concomitant valproate is provided in Table 3.

Patients Older than 12 Years Recommended dosing guidelines are summarized in Table 1.

Table 1.

Escalation Regimen for Lamotrigine Orally Disintegrating Tablets in Patients Older than 12 Years with Epilepsy In Patients TAKING Valproate a In Patients NOT TAKING Carbamazepine, Phenytoin, Phenobarbital, Primidone, b or Valproate a In Patients TAKING Carbamazepine, Phenytoin, Phenobarbital, or Primidone b and NOT TAKING Valproate a Weeks 1 and 2 25 mg every other day 25 mg every day 50 mg/day Weeks 3 and 4 25 mg every day 50 mg/day 100 mg/day (in 2 divided doses) Week 5 onward to maintenance Increase by 25 to 50 mg/day every 1 to 2 weeks.

Increase by 50 mg/day every 1 to 2 weeks.

Increase by 100 mg/day every 1 to 2 weeks.

Usual maintenance dose 100 to 200 mg/day with valproate alone 100 to 400 mg/day with valproate and other drugs that induce glucuronidation (in 1 or 2 divided doses) 225 to 375 mg/day (in 2 divided doses) 300 to 500 mg/day (in 2 divided doses) a Valproate has been shown to inhibit glucuronidation and decrease the apparent clearance of lamotrigine [see Drug Interactions (7), Clinical Pharmacology (12.3)].

b Drugs that induce lamotrigine glucuronidation and increase clearance, other than the specified antiepileptic drugs, include estrogen-containing oral contraceptives, rifampin, and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir.

Dosing recommendations for oral contraceptives and the protease inhibitor atazanavir/ritonavir can be found in General Dosing Considerations [see Dosage and Administration (2.1)].

Patients on rifampin and the protease inhibitor lopinavir/ritonavir should follow the same dosing titration/maintenance regimen used with antiepileptic drugs that induce glucuronidation and increase clearance [see Dosage and Administration (2.1), Drug Interactions (7), Clinical Pharmacology (12.3)].

Patients Aged 2 to 12 Years Recommended dosing guidelines are summarized in Table 2.

Lower starting doses and slower dose escalations than those used in clinical trials are recommended because of the suggestion that the risk of rash may be decreased by lower starting doses and slower dose escalations.

Therefore, maintenance doses will take longer to reach in clinical practice than in clinical trials.

It may take several weeks to months to achieve an individualized maintenance dose.

Maintenance doses in patients weighing <30 kg, regardless of age or concomitant AED, may need to be increased as much as 50%, based on clinical response.

Table 2.

Escalation Regimen for Lamotrigine Orally Disintegrating Tablets in Patients Aged 2 to 12 Years with Epilepsy In Patients TAKING Valproate a In Patients NOT TAKING Carbamazepine, Phenytoin, Phenobarbital, Primidone, b or Valproate a In Patients TAKING Carbamazepine, Phenytoin, Phenobarbital, or Primidone b and NOT TAKING Valproate a Weeks 1 and 2 0.15 mg/kg/day in 1 or 2 divided doses, rounded down to the nearest whole tablet (see Table 3 for weight-based dosing guide) 0.3 mg/kg/day in 1 or 2 divided doses, rounded down to the nearest whole tablet 0.6 mg/kg/day in 2 divided doses, rounded down to the nearest whole tablet Weeks 3 and 4 0.3 mg/kg/day in 1 or 2 divided doses, rounded down to the nearest whole tablet (see Table 3 for weight-based dosing guide) 0.6 mg/kg/day in 2 divided doses, rounded down to the nearest whole tablet 1.2 mg/kg/day in 2 divided doses, rounded down to the nearest whole tablet Week 5 onward to maintenance The dose should be increased every 1 to 2 weeks as follows: calculate 0.3 mg/kg/day, round this amount down to the nearest whole tablet, and add this amount to the previously administered daily dose.

The dose should be increased every 1 to 2 weeks as follows: calculate 0.6 mg/kg/day, round this amount down to the nearest whole tablet, and add this amount to the previously administered daily dose.

The dose should be increased every 1 to 2 weeks as follows: calculate 1.2 mg/kg/day, round this amount down to the nearest whole tablet, and add this amount to the previously administered daily dose.

Usual maintenance dose 1 to 5 mg/kg/day (maximum 200 mg/day in 1 or 2 divided doses) 1 to 3 mg/kg/day with valproate alone 4.5 to 7.5 mg/kg/day (maximum 300 mg/day in 2 divided doses) 5 to 15 mg/kg/day (maximum 400 mg/day in 2 divided doses) Maintenance dose in patients <30 kg May need to be increased by as much as 50%, based on clinical response.

May need to be increased by as much as 50%, based on clinical response.

May need to be increased by as much as 50%, based on clinical response.

Note: Only whole tablets should be used for dosing.

a Valproate has been shown to inhibit glucuronidation and decrease the apparent clearance of lamotrigine [see Drug Interactions (7), Clinical Pharmacology (12.3)].

b Drugs that induce lamotrigine glucuronidation and increase clearance, other than the specified antiepileptic drugs, include estrogen-containing oral contraceptives, rifampin, and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir.

Dosing recommendations for oral contraceptives and the protease inhibitor atazanavir/ritonavir can be found in General Dosing Considerations [see Dosage and Administration (2.1)].

Patients on rifampin and the protease inhibitor lopinavir/ritonavir should follow the same dosing titration/maintenance regimen used with antiepileptic drugs that induce glucuronidation and increase clearance [see Dosage and Administration (2.1), Drug Interactions (7), Clinical Pharmacology (12.3)].

Table 3.

The Initial Weight-Based Dosing Guide for Patients Aged 2 to 12 Years Taking Valproate (Weeks 1 to 4) with Epilepsy If the patient’s weight is Give this daily dose, using the most appropriate combination of lamotrigine 2- and 5-mg tablets Greater than And less than Weeks 1 and 2 Weeks 3 and 4 6.7 kg 14 kg 2 mg every other day 2 mg every day 14.1 kg 27 kg 2 mg every day 4 mg every day 27.1 kg 34 kg 4 mg every day 8 mg every day 34.1 kg 40 kg 5 mg every day 10 mg every day Usual Adjunctive Maintenance Dose for Epilepsy The usual maintenance doses identified in Tables 1 and 2 are derived from dosing regimens employed in the placebo-controlled adjunctive trials in which the efficacy of lamotrigine orally disintegrating tablets was established.

In patients receiving multidrug regimens employing carbamazepine, phenytoin, phenobarbital, or primidone without valproate , maintenance doses of adjunctive lamotrigine orally disintegrating tablets as high as 700 mg/day have been used.

In patients receiving valproate alone , maintenance doses of adjunctive lamotrigine orally disintegrating tablets as high as 200 mg/day have been used.

The advantage of using doses above those recommended in Tables 1 to 4 has not been established in controlled trials.

2.3 Epilepsy – Conversion from Adjunctive Therapy to Monotherapy The goal of the transition regimen is to attempt to maintain seizure control while mitigating the risk of serious rash associated with the rapid titration of lamotrigine orally disintegrating tablets.

The recommended maintenance dose of lamotrigine orally disintegrating tablets as monotherapy is 500 mg/day given in 2 divided doses.

To avoid an increased risk of rash, the recommended initial dose and subsequent dose escalations for lamotrigine should not be exceeded [see Boxed Warning].

Conversion from Adjunctive Therapy with Carbamazepine, Phenytoin, Phenobarbital, or Primidone to Monotherapy with Lamotrigine Orally Disintegrating Tablets Orally Disintegrating Tablets After achieving a dose of 500 mg/day of lamotrigine orally disintegrating tablets using the guidelines in Table 1, the concomitant enzyme-inducing AED should be withdrawn by 20% decrements each week over a 4-week period.

The regimen for the withdrawal of the concomitant AED is based on experience gained in the controlled monotherapy clinical trial.

Conversion from Adjunctive Therapy with Valproate to Monotherapy with Lamotrigine Orally Disintegrating Tablets The conversion regimen involves the 4 steps outlined in Table 4.

Table 4.

Conversion from Adjunctive Therapy with Valproate to Monotherapy with Lamotrigine Orally Disintegrating Tablets in Patients Aged 16 Years and Older with Epilepsy Lamotrigine Orally Disintegrating Tablets Valproate Step 1 Achieve a dose of 200 mg/day according to guidelines in Table 1.

Maintain established stable dose.

Step 2 Maintain at 200 mg/day.

Decrease dose by decrements no greater than 500 mg/day/week to 500 mg/day and then maintain for 1 week.

Step 3 Increase to 300 mg/day and maintain for 1 week.

Simultaneously decrease to 250 mg/day and maintain for 1 week.

Step 4 Increase by 100 mg/day every week to achieve maintenance dose of 500 mg/day.

Discontinue.

Conversion from Adjunctive Therapy with Antiepileptic Drugs other than Carbamazepine, Phenytoin, Phenobarbital, Primidone, or Valproate to Monotherapy with Lamotrigine Orally Disintegrating Tablets No specific dosing guidelines can be provided for conversion to monotherapy with lamotrigine orally disintegrating tablets with AEDs other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate.

2.4 Bipolar Disorder The goal of maintenance treatment with lamotrigine orally disintegrating tablet is to delay the time to occurrence of mood episodes (depression, mania, hypomania, mixed episodes) in patients treated for acute mood episodes with standard therapy [see Indications and Usage (1.2)] .

Patients taking lamotrigine orally disintegrating tablets for more than 16 weeks should be periodically reassessed to determine the need for maintenance treatment.

Adults The target dose of lamotrigine orally disintegrating tablet is 200 mg/day (100 mg/day in patients taking valproate, which decreases the apparent clearance of lamotrigine, and 400 mg/day in patients not taking valproate and taking either carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitor lopinavir/ritonavir that increase the apparent clearance of lamotrigine).

In the clinical trials, doses up to 400 mg/day as monotherapy were evaluated; however, no additional benefit was seen at 400 mg/day compared with 200 mg/day [see Clinical Studies (14.2)] .

Accordingly, doses above 200 mg/day are not recommended.

Treatment with lamotrigine orally disintegrating tablets are introduced, based on concurrent medications, according to the regimen outlined in Table 5.

If other psychotropic medications are withdrawn following stabilization, the dose of lamotrigine orally disintegrating tablets should be adjusted.

In patients discontinuing valproate, the dose of lamotrigine orally disintegrating tablets should be doubled over a 2-week period in equal weekly increments (see Table 6).

In patients discontinuing carbamazepine, phenytoin, phenobarbital, primidone, or other drugs such as rifampin and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir that induce lamotrigine glucuronidation, the dose of lamotrigine orally disintegrating tablets should remain constant for the first week and then should be decreased by half over a 2-week period in equal weekly decrements (see Table 6).

The dose of lamotrigine orally disintegrating tablets may then be further adjusted to the target dose (200 mg) as clinically indicated.

If other drugs are subsequently introduced, the dose of lamotrigine orally disintegrating tablets may need to be adjusted.

In particular, the introduction of valproate requires reduction in the dose of lamotrigine orally disintegrating tablets [see Drug Interactions (7), Clinical Pharmacology (12.3)].

To avoid an increased risk of rash, the recommended initial dose and subsequent dose escalations of lamotrigine orally disintegrating tablets should not be exceeded [see Boxed Warning].

Table 5.

Escalation Regimen for Lamotrigine Orally Disintegrating Tablets in Adults with Bipolar Disorder In Patients TAKING Valproate a In Patients NOT TAKING Carbamazepine, Phenytoin, Phenobarbital, Primidone, b or Valproate a In Patients TAKING Carbamazepine, Phenytoin, Phenobarbital, or Primidone b and NOT TAKING Valproate a Weeks 1 and 2 25 mg every other day 25 mg daily 50 mg daily Weeks 3 and 4 25 mg daily 50 mg daily 100 mg daily, in divided doses Week 5 50 mg daily 100 mg daily 200 mg daily, in divided doses Week 6 100 mg daily 200 mg daily 300 mg daily, in divided doses Week 7 100 mg daily 200 mg daily up to 400 mg daily, in divided doses a Valproate has been shown to inhibit glucuronidation and decrease the apparent clearance of lamotrigine [see Drug Interactions (7), Clinical Pharmacology (12.3)] .

b Drugs that induce lamotrigine glucuronidation and increase clearance, other than the specified antiepileptic drugs, include estrogen-containing oral contraceptives, rifampin, and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir.

Dosing recommendations for oral contraceptives and the protease inhibitor atazanavir/ritonavir can be found in General Dosing Considerations [see Dosage and Administration (2.1)] .

Patients on rifampin and the protease inhibitor lopinavir/ritonavir should follow the same dosing titration/maintenance regimen used with antiepileptic drugs that induce glucuronidation and increase clearance [see Dosage and Administration (2.1), Drug Interactions (7), Clinical Pharmacology (12.3)].

Table 6.

Dosage Adjustments to Lamotrigine Orally Disintegrating Tablets in Adults with Bipolar Disorder Following Discontinuation of Psychotropic Medications Discontinuation of Psychotropic Drugs (excluding Valproate, a Carbamazepine, Phenytoin, Phenobarbital, or Primidone b ) After Discontinuation of Valproate a After Discontinuation of Carbamazepine, Phenytoin, Phenobarbital, or Primidone b Current Dose of Lamotrigine Orally Disintegrating Tablets (mg/day) 100 Current Dose of Lamotrigine Orally Disintegrating Tablets(mg/day) 400 Week 1 Maintain current dose of lamotrigine orally disintegrating tablets 150 400 Week 2 Maintain current dose of lamotrigine orally disintegrating tablets 200 300 Week 3 onward Maintain current dose of lamotrigine orally disintegrating tablets 200 200 a Valproate has been shown to inhibit glucuronidation and decrease the apparent clearance of lamotrigine [see Drug Interactions (7), Clinical Pharmacology (12.3) ].

b Drugs that induce lamotrigine glucuronidation and increase clearance, other than the specified antiepileptic drugs, include estrogen-containing oral contraceptives, rifampin, and the protease inhibitors lopinavir/ritonavir and atazanavir/ritonavir.

Dosing recommendations for oral contraceptives and the protease inhibitor atazanavir/ritonavir can be found in General Dosing Considerations [see Dosage and Administration (2.1)] .

Patients on rifampin and the protease inhibitor lopinavir/ritonavir should follow the same dosing titration/maintenance regimen used with antiepileptic drugs that induce glucuronidation and increase clearance [see Dosage and Administration (2.1), Drug Interactions (7), Clinical Pharmacology (12.3)].

2.6 Administration of Lamotrigine Orally Disintegrating Tablets Lamotrigine orally disintegrating tablets should be placed onto the tongue and moved around in the mouth.

The tablet will disintegrate rapidly, can be swallowed with or without water, and can be taken with or without food.

Dicyclomine Hydrochloride 10 MG Oral Capsule

DRUG INTERACTIONS

7 • Antiglaucoma agents : anticholinergics antagonize antiglaucoma agents and may increase intraoccular pressure ( 7 ) • Anticholinergic agents : may affect the gastrointestinal absorption of various drugs; may also increase certain actions or side effects of other anticholinergic drugs ( 7 ) • Antacids : interfere with the absorption of anticholinergic agents ( 7 ) 7.1 Antiglaucoma Agents Anticholinergics antagonize the effects of antiglaucoma agents.

Anticholinergic drugs in the presence of increased intraocular pressure may be hazardous when taken concurrently with agents such as corticosteroids.

Use of dicyclomine in patients with glaucoma is not recommended [see Contraindications (4) ].

7.2 Other Drugs with Anticholinergic Activity The following agents may increase certain actions or side effects of anticholinergic drugs including dicyclomine: amantadine, antiarrhythmic agents of Class I (e.g., quinidine), antihistamines, antipsychotic agents (e.g., phenothiazines), benzodiazepines, MAO inhibitors, narcotic analgesics (e.g., meperidine), nitrates and nitrites, sympathomimetic agents, tricyclic antidepressants and other drugs having anticholinergic activity.

7.3 Other Gastrointestinal Motility Drugs Interaction with other gastrointestinal motility drugs may antagonize the effects of drugs that alter gastrointestinal motility, such as metoclopramide.

7.4 Effect of Antacids Because antacids may interfere with the absorption of anticholinergic agents including dicyclomine, simultaneous use of these drugs should be avoided.

7.5 Effect on Absorption of Other Drugs Anticholinergic agents may affect gastrointestinal absorption of various drugs by affecting on gastrointestinal motility, such as slowly dissolving dosage forms of digoxin; increased serum digoxin concentration may result.

7.6 Effect on Gastric Acid Secretion The inhibiting effects of anticholinergic drugs on gastric hydrochloric acid secretion are antagonized by agents used to treat achlorhydria and those used to test gastric secretion.

OVERDOSAGE

10 In case of an overdose, patients should contact a physician, poison control center (1-800-222-1222), or emergency room.

The signs and symptoms of overdosage include: headache; nausea; vomiting; blurred vision; dilated pupils; hot, dry skin; dizziness; dryness of the mouth; difficulty in swallowing; and CNS stimulation including convulsion.

A curare-like action may occur (i.e., neuromuscular blockade leading to muscular weakness and possible paralysis).

One reported event included a 37 year old who reported numbness on the left side, cold fingertips, blurred vision, abdominal and flank pain, decreased appetite, dry mouth and nervousness following ingestion of 320 mg daily (four 20 mg tablets 4 times daily).

These events resolved after discontinuing the dicyclomine.

The acute oral LD 50 of the drug is 625 mg/kg in mice.

The amount of drug in a single dose that is ordinarily associated with symptoms of overdosage or that is likely to be life threatening, has not been defined.

The maximum human oral dose recorded was 600 mg by mouth in a 10 month old child and approximately 1500 mg in an adult, each of whom survived.

In three of the infants who died following administration of dicyclomine hydrochloride [see Warnings and Precautions (5.1) ], the blood concentrations of drug were 200 ng/mL, 220 ng/mL, and 505 ng/mL.

It is not known if dicyclomine is dialyzable.

Treatment should consist of gastric lavage, emetics and activated charcoal.

Sedatives (e.g., short-acting barbiturates, benzodiazepines) may be used for management of overt signs of excitement.

If indicated, an appropriate parenteral cholinergic agent may be used as an antidote.

DESCRIPTION

11 Dicyclomine hydrochloride is an antispasmodic and anticholinergic (antimuscarinic) agent.

Chemically, dicyclomine hydrochloride is [bicyclohexyl]-1-carboxylic acid, 2-(diethylamino) ethyl ester, hydrochloride with the following structural formula, molecular weight, and molecular formula: C19H35NO2 • HCl — M.W.

345.96 C19H35NO2 • HCl — M.W.

345.96 Dicyclomine hydrochloride, USP occurs as a fine, white, crystalline, practically odorless powder with a bitter taste.

It is soluble in water, freely soluble in alcohol and chloroform, and very slightly soluble in ether.

Dicyclomine hydrochloride capsules, USP, for oral administration, contain 10 mg of dicyclomine hydrochloride, USP.

Each capsule contains the following inactive ingredients: anhydrous lactose, colloidal silicon dioxide, FD&C Blue No.

1, gelatin, magnesium stearate, microcrystalline cellulose, pregelatinized starch (corn), sodium lauryl sulfate and titanium dioxide.

In addition the imprinting ink contains the following: black iron oxide, D&C Yellow No.

10 Aluminum Lake, FD&C Blue No.

1 Aluminum Lake, FD&C Blue No.

2 Aluminum Lake, FD&C Red No.

40 Aluminum Lake, pharmaceutical glaze and propylene glycol.

Dicyclomine hydrochloride tablets, USP, for oral administration, contain 20 mg of dicyclomine hydrochloride, USP.

In addition, each tablet contains the following inactive ingredients: anhydrous lactose, colloidal silicon dioxide, FD&C Blue No.

1 Aluminum Lake, magnesium stearate, microcrystalline cellulose, pregelatinized starch (corn) and sodium lauryl sulfate.

Dicyclomine Hydrochloride Structural Formula

CLINICAL STUDIES

14 In controlled clinical trials involving over 100 patients who received drug, 82% of patients treated for functional bowel/irritable bowel syndrome with dicyclomine hydrochloride at initial doses of 160 mg daily (40 mg 4 times daily) demonstrated a favorable clinical response compared with 55% treated with placebo (p < 0.05).

HOW SUPPLIED

16 /STORAGE AND HANDLING Product: 63629-6320 NDC: 63629-6320-1 90 CAPSULE in a BOTTLE NDC: 63629-6320-2 30 CAPSULE in a BOTTLE

RECENT MAJOR CHANGES

Warnings and Precautions: Peripheral and Central Nervous System ( 5.3 ) 07/2012

GERIATRIC USE

8.5 Geriatric Use Clinical studies of dicyclomine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects.

Other reported clinical experience has not identified differences in responses between the elderly and younger patients.

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range in adults, reflecting the greater frequency of decreased hepatic, renal or cardiac function and of concomitant disease or other drug therapy .

Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 Dicyclomine Hydrochloride Capsules, USP are available containing 10 mg of dicyclomine hydrochloride, USP.

• The 10 mg capsules are a hard-shell gelatin capsule with a light turquoise blue opaque cap and light turquoise blue opaque body filled with a white to off-white powder.

The capsule is axially printed with MYLAN over 1610 in black ink on both the cap and the body.

Dicyclomine Hydrochloride Tablets, USP are available containing 20 mg of dicyclomine hydrochloride, USP.

• The 20 mg tablets are blue, round, unscored tablets debossed with M over D6 on one side of the tablet and blank on the other side.

• Dicyclomine hydrochloride capsules 10 mg ( 3 ) • Dicyclomine hydrochloride tablets 20 mg ( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action Dicyclomine relieves smooth muscle spasm of the gastrointestinal tract.

Animal studies indicate that this action is achieved via a dual mechanism: • a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites with approximately 1/8 the milligram potency of atropine ( in vitro , guinea pig ileum); and • a direct effect upon smooth muscle (musculotropic) as evidenced by dicyclomine’s antagonism of bradykinin- and histamine-induced spasms of the isolated guinea pig ileum.

Atropine did not affect responses to these two agonists.

In vivo studies in cats and dogs showed dicyclomine to be equally potent against acetylcholine (ACh)- or barium chloride (BaCl 2 )-induced intestinal spasm while atropine was at least 200 times more potent against effects of ACh than BaCl 2 .

Tests for mydriatic effects in mice showed that dicyclomine was approximately 1/500 as potent as atropine; antisialagogue tests in rabbits showed dicyclomine to be 1/300 as potent as atropine.

INDICATIONS AND USAGE

1 Dicyclomine hydrochloride is indicated for the treatment of patients with functional bowel/irritable bowel syndrome.

Dicyclomine is an antispasmodic and anticholinergic (antimuscarinic) agent indicated for the treatment of functional bowel/irritable bowel syndrome ( 1 )

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in pediatric patients have not been established.

Dicyclomine is contraindicated in infants less than 6 months of age [see Contraindications (4) ].

There are published cases reporting that the administration of dicyclomine hydrochloride to infants has been followed by serious respiratory symptoms (dyspnea, shortness of breath, breathlessness, respiratory collapse, apnea and asphyxia), seizures, syncope, pulse rate fluctuations, muscular hypotonia, and coma and death, however; no causal relationship has been established.

PREGNANCY

8.1 Pregnancy Teratogenic Effects.

Pregnancy Category B Adequate and well-controlled studies have not been conducted with dicyclomine in pregnant women at the recommended doses of 80 mg/day to 160 mg/day.

However, epidemiologic studies did not show an increased risk of structural malformations among babies born to women who took products containing dicyclomine hydrochloride at doses up to 40 mg/day during the first trimester of pregnancy.

Reproduction studies have been performed in rats and rabbits at doses up to 33 times the maximum recommended human dose based on 160 mg/day (3 mg/kg) and have revealed no evidence of harm to the fetus due to dicyclomine.

Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

8.3 Nursing Mothers Dicyclomine is contraindicated in women who are breastfeeding.

Dicyclomine hydrochloride is excreted in human milk.

Because of the potential for serious adverse reactions in breast-fed infants from dicyclomine, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother [see Use in Specific Populations (8.4) ] .

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Cardiovascular conditions : worsening of conditions ( 5.2 ) • Peripheral and central nervous system : heat prostration can occur with drug use (fever and heat stroke due to decreased sweating); drug should be discontinued and supportive measures instituted ( 5.3 ) • Psychosis and delirium have been reported in patients sensitive to anticholinergic drugs (such as elderly patients and/or in patients with mental illness) : signs and symptoms resolve within 12 to 24 hours after discontinuation of dicyclomine ( 5.3 ) • Myasthenia Gravis : overdose may lead to muscular weakness and paralysis.

Dicyclomine should be given to patients with myasthenia gravis only to reduce adverse muscarinic effects of an anticholinesterase ( 5.4 ) • Incomplete intestinal obstruction : diarrhea may be an early symptom especially in patients with ileostomy or colostomy.

Treatment with dicyclomine would be inappropriate and possibly fatal ( 5.5 ) • Salmonella dysenteric patients : due to risk of toxic megacolon ( 5.6 ) • Ulcerative colitis : Dicyclomine should be used with caution in these patients; large doses may suppress intestinal motility or aggravate the serious complications of toxic megacolon ( 5.7 ) • Prostatic hypertrophy : Dicyclomine should be used with caution in these patients; may lead to urinary retention ( 5.8 ) • Hepatic and renal disease : should be used with caution ( 5.9 ) • Geriatric : use with caution in elderly who may be more susceptible to dicyclomine’s adverse events ( 5.10 ) 5.2 Cardiovascular Conditions Dicyclomine hydrochloride needs to be used with caution in conditions characterized by tachyarrhythmia such as thyrotoxicosis, congestive heart failure and in cardiac surgery, where they may further accelerate the heart rate.

Investigate any tachycardia before administration of dicyclomine hydrochloride.

Care is required in patients with coronary heart disease, as ischemia and infarction may be worsened, and in patients with hypertension [see Adverse Reactions (6.3) ] .

5.3 Peripheral and Central Nervous System The peripheral effects of dicyclomine hydrochloride are a consequence of their inhibitory effect on muscarinic receptors of the autonomic nervous system.

They include dryness of the mouth with difficulty in swallowing and talking, thirst, reduced bronchial secretions, dilatation of the pupils (mydriasis) with loss of accommodation (cycloplegia) and photophobia, flushing and dryness of the skin, transient bradycardia followed by tachycardia, with palpitations and arrhythmias, and difficulty in micturition, as well as reduction in the tone and motility of the gastrointestinal tract leading to constipation [see Adverse Reactions (6) ] .

In the presence of high environmental temperature heat prostration can occur with drug use (fever and heat stroke due to decreased sweating).

It should also be used cautiously in patients with fever.

If symptoms occur, the drug should be discontinued and supportive measures instituted.

Because of the inhibitory effect on muscarinic receptors within the autonomic nervous system, caution should be taken in patients with autonomic neuropathy.

Central nervous system (CNS) signs and symptoms include confusional state, disorientation, amnesia, hallucinations, dysarthria, ataxia, coma, euphoria, fatigue, insomnia, agitation and mannerisms and inappropriate affect.

Psychosis and delirium have been reported in sensitive individuals (such as elderly patients and/or in patients with mental illness) given anticholinergic drugs.

These CNS signs and symptoms usually resolve within 12 to 24 hours after discontinuation of the drug.

Dicyclomine may produce drowsiness, dizziness or blurred vision.

The patient should be warned not to engage in activities requiring mental alertness, such as operating a motor vehicle or other machinery or performing hazardous work while taking dicyclomine.

5.4 Myasthenia Gravis With overdosage, a curare-like action may occur (i.e., neuromuscular blockade leading to muscular weakness and possible paralysis).

It should not be given to patients with myasthenia gravis except to reduce adverse muscarinic effects of an anticholinesterase [see Contraindications (4) ].

5.5 Intestinal Obstruction Diarrhea may be an early symptom of incomplete intestinal obstruction, especially in patients with ileostomy or colostomy.

In this instance, treatment with this drug would be inappropriate and possibly harmful [see Contraindications (4) ].

Rarely development of Ogilvie’s syndrome (colonic pseudo-obstruction) has been reported.

Ogilvie’s syndrome is a clinical disorder with signs, symptoms and radiographic appearance of an acute large bowel obstruction but with no evidence of distal colonic obstruction 5.6 Toxic Dilatation of Intestinemegacolon Toxic dilatation of intestine and intestinal perforation is possible when anticholinergic agents are administered in patients with Salmonella dysentery.

5.7 Ulcerative Colitis Caution should be taken in patients with ulcerative colitis.

Large doses may suppress intestinal motility to the point of producing a paralytic ileus and the use of this drug may precipitate or aggravate the serious complication of toxic megacolon [see Adverse Reactions (6.3) ] .

Dicyclomine is contraindicated in patients with severe ulcerative colitis [see Contraindications (4) ].

5.8 Prostatic Hypertrophy Dicyclomine should be used with caution in patients with known or suspected prostatic enlargement, in whom prostatic enlargement may lead to urinary retention [see Adverse Reactions (6.3) ] .

5.9 Hepatic and Renal Disease Dicyclomine should be used with caution in patients with known hepatic and renal impairment.

5.10 Geriatric Population Dicyclomine hydrochloride should be used with caution in elderly who may be more susceptible to its adverse effects.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.2 Use in Infants Inform parents and caregivers not to administer dicyclomine in infants less than 6 months of age [see Use in Specific Populations (8.4)] .

17.3 Use in Nursing Mothers Advise lactating women that dicyclomine should not be used while breastfeeding their infants [see Use in Specific Populations (8.3 , 8.4) ] .

17.4 Peripheral and Central Nervous System In the presence of a high environmental temperature, heat prostration can occur with dicyclomine use (fever and heat stroke due to decreased sweating).

If symptoms occur, the drug should be discontinued and a physician contacted.

Dicyclomine may produce drowsiness or blurred vision.

The patient should be warned not to engage in activities requiring mental alertness, such as operating a motor vehicle or other machinery or to perform hazardous work while taking dicyclomine [see Warnings and Precautions (5.3) ].

Mylan Pharmaceuticals Inc.

Morgantown, WV 26505 U.S.A.

REVISED FEBRUARY 2016 DICY:R6

DOSAGE AND ADMINISTRATION

2 Dosage must be adjusted to individual patient needs.

Dosage for dicyclomine must be adjusted to individual patient needs ( 2 ).

If a dose is missed, patients should continue the normal dosing schedule ( 2 ).

Oral in adults ( 2.1 ): • Starting dose: 20 mg 4 times a day.

After a week treatment with the starting dose, the dose may be escalated to 40 mg 4 times a day, unless side effects limit dosage escalation • Discontinue dicyclomine if efficacy not achieved or side effects require doses less than 80 mg per day after 2 weeks of treatment 2.1 Oral Dosage and Administration in Adults The recommended initial dose is 20 mg 4 times a day.

After one week treatment with the initial dose, the dose may be increased to 40 mg 4 times a day unless side effects limit dosage escalation.

If efficacy is not achieved within 2 weeks or side effects require doses below 80 mg per day, the drug should be discontinued.

Documented safety data are not available for doses above 80 mg daily for periods longer than 2 weeks.

amoxicillin (as amoxicillin trihydrate) 250 MG per 5 ML Oral Suspension

DRUG INTERACTIONS

7 Probenicid decreases renal tubular secretion of amoxicillin which may result in increased blood levels of amoxicillin.

( 7.1 ) Concomitant use of Amoxicillin and oral anticoagulants may increase the prolongation of prothrombin time.

( 7.2 ) Coadministration with allopurinol increases the risk of rash.

( 7.3 ) Amoxicillin may reduce the efficacy of oral contraceptives.

( 7.4 ) 7.1 Probenecid Probenecid decreases the renal tubular secretion of amoxicillin.

Concurrent use of amoxicillin and probenecid may result in increased and prolonged blood levels of amoxicillin.

7.2 Oral Anticoagulants Abnormal prolongation of prothrombin time (increased international normalized ratio [INR]) has been reported in patients receiving amoxicillin and oral anticoagulants.

Appropriate monitoring should be undertaken when anticoagulants are prescribed concurrently.

Adjustments in the dose of oral anticoagulants may be necessary to maintain the desired level of anticoagulation.

7.3 Allopurinol The concurrent administration of allopurinol and amoxicillin increases the incidence of rashes in patients receiving both drugs as compared to patients receiving amoxicillin alone.

It is not known whether this potentiation of amoxicillin rashes is due to allopurinol or the hyperuricemia present in these patients.

7.4 Oral Contraceptives AMOXICILLIN may affect the gut flora, leading to lower estrogen reabsorption and reduced efficacy of combined oral estrogen/progesterone contraceptives.

7.5 Other Antibacterials Chloramphenicol, macrolides, sulfonamides, and tetracyclines may interfere with the bactericidal effects of penicillin.

This has been demonstrated in vitro; however, the clinical significance of this interaction is not well documented.

7.6 Effects on Laboratory Tests High urine concentrations of ampicillin may result in false-positive reactions when testing for the presence of glucose in urine using CLINITEST ® , Benedict’s Solution, or Fehling’s Solution.

Since this effect may also occur with amoxicillin, it is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as CLINISTIX ® ) be used.

Following administration of ampicillin or amoxicillin to pregnant women, a transient decrease in plasma concentration of total conjugated estriol, estriol-glucuronide, conjugated estrone, and estradiol has been noted.

OVERDOSAGE

10 In case of overdosage, discontinue medication, treat symptomatically, and institute supportive measures as required.

A prospective study of 51 pediatric patients at a poison-control center suggested that overdosages of less than 250 mg/kg of amoxicillin are not associated with significant clinical symptoms.

Interstitial nephritis resulting in oliguric renal failure has been reported in a small number of patients after overdosage with amoxicillin1.

Crystalluria, in some cases leading to renal failure, has also been reported after amoxicillin overdosage in adult and pediatric patients.

In case of overdosage, adequate fluid intake and diuresis should be maintained to reduce the risk of amoxicillin crystalluria.

Renal impairment appears to be reversible with cessation of drug administration.

High blood levels may occur more readily in patients with impaired renal function because of decreased renal clearance of amoxicillin.

Amoxicillin may be removed from circulation by hemodialysis.

DESCRIPTION

11 Formulations of AMOXICILLIN contain amoxicillin, a semisynthetic antibiotic, an analog of ampicillin, with a broad spectrum of bactericidal activity against many gram-positive and gram-negative microorganisms.

Chemically, it is (2 S ,5 R ,6 R )-6-[( R )-(-)-2-amino-2-( p -hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate.

It may be represented structurally as: The amoxicillin molecular formula is C 16 H 19 N 3 O 5 S•3H 2 O, and the molecular weight is 419.45.

Capsules: Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate.

The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500.

Inactive ingredients: D&C Red No.

28, FD&C Blue No.

1, FD&C Red No.

40, gelatin, magnesium stearate, and titanium dioxide.

Tablets: Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate.

Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively.

The 875-mg tablet is scored on the reverse side.

Inactive ingredients: Colloidal silicon dioxide, crospovidone, FD&C Red No.

30 aluminum lake, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide.

Powder for Oral Suspension: Each 5 mL of reconstituted suspension contains 125 mg, 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate.

Each 5 mL of the 125-mg reconstituted suspension contains 0.11 mEq (2.51 mg) of sodium.

Each 5 mL of the 200-mg reconstituted suspension contains 0.15 mEq (3.39 mg) of sodium.

Each 5 mL of the 250 mg reconstituted suspension contains 0.15 mEq (3.36 mg) of sodium; each 5 mL of the 400 mg reconstituted suspension contains 0.19 mEq (4.33 mg) of sodium.

Inactive ingredients: FD&C Red No.

3, flavorings, silica gel, sodium benzoate, sodium citrate, sucrose, and xanthan gum.

amoxicillin-chemstruc

CLINICAL STUDIES

14 14.1 H.

pylori Eradication to Reduce the Risk of Duodenal Ulcer Recurrence Randomized, double-blind clinical studies performed in the United States in patients with H.

pylori and duodenal ulcer disease (defined as an active ulcer or history of an ulcer within 1 year) evaluated the efficacy of lansoprazole in combination with amoxicillin capsules and clarithromycin tablets as triple 14 day therapy, or in combination with amoxicillin capsules as dual 14 day therapy, for the eradication of H.

pylori.

Based on the results of these studies, the safety and efficacy of 2 different eradication regimens were established: Triple therapy : Amoxicillin 1 gram twice daily/clarithromycin 500 mg twice daily/lansoprazole 30 mg twice daily (see Table 6) .

Dual therapy : Amoxicillin 1 gram three times daily/lansoprazole 30 mg three times daily (see Table 7) .

All treatments were for 14 days.

H.

pylori eradication was defined as 2 negative tests (culture and histology) at 4 to 6 weeks following the end of treatment.

Triple therapy was shown to be more effective than all possible dual therapy combinations.

Dual therapy was shown to be more effective than both monotherapies.

Eradication of H.

pylori has been shown to reduce the risk of duodenal ulcer recurrence.

Table 6.

H.

pylori Eradication Rates When Amoxicillin is Administered as Part of a Triple Therapy Regimen Study Triple Therapy Triple Therapy ​Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 92 [80.0 – 97.7] (n = 48) 86 [73.3 – 93.5] (n = 55) Study 2 86 [75.7 – 93.6] (n = 66) 83 [72.0 – 90.8] (n = 70) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H.

pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest®, histology, and/or culture.

Patients were included in the analysis if they completed the study.

Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.

b Patients were included in the analysis if they had documented H.

pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year).

All dropouts were included as failures of therapy.

Table 7.

H.

pylori Eradication Rates When Amoxicillin is Administered as Part of a Dual Therapy Regimen Study Dual Therapy Dual Therapy Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 77 [62.5 – 87.2] (n = 51) 70 [56.8 – 81.2] (n = 60) Study 2 66 [51.9 – 77.5] (n = 58) 61 [48.5 – 72.9] (n = 67) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H.

pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest®, histology, and/or culture.

Patients were included in the analysis if they completed the study.

Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.

b Patients were included in the analysis if they had documented H.

pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year).

All dropouts were included as failures of therapy.

HOW SUPPLIED

16 /STORAGE AND HANDLING Capsules: Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate.

The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500 250-mg Capsule NDC 43598-225-01 Bottles of 100 NDC 43598-225-05 Bottles of 500 500-mg Capsule NDC 43598-205-01 Bottles of 100 NDC 43598-205-05 Bottles of 500 Tablets: Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate.

Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively.

The 875-mg tablet is scored on the reverse side.

500-mg Tablet NDC 43598-224-14 Bottles of 20 NDC 43598-224-01 Bottles of 100 NDC 43598-224-05 Bottles of 500 875-mg Tablet NDC 43598-219-14 Bottles of 20 NDC 43598-219-01 Bottles of 100 Powder for Oral Suspension: Each 5 mL of reconstituted strawberry-flavored suspension contains 125 mg amoxicillin as the trihydrate.

Each 5 mL of reconstituted bubble-gum-flavored suspension contains 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate.

125 mg/5 mL NDC 43598-222-80 80-mL bottle NDC 43598-222-52 100-mL bottle NDC 43598-222-53 150-mL bottle 200 mg/5 mL NDC 43598-223-50 50-mL bottle NDC 43598-223-51 75-mL bottle NDC 43598-223-52 100-mL bottle 250 mg/5 mL NDC 43598-209-80 80-mL bottle NDC 43598-209-52 100-mL bottle NDC 43598-209-53 150-mL bottle 400 mg/5 mL NDC 43598-207-50 50-mL bottle NDC 43598-207-51 75-mL bottle NDC 43598-207-52 100-mL bottle Store at or below 25ºC (77ºF) 250 mg and 500 mg Capsules 500 mg and 875 mg Tablets 200 mg and 400 mg unreconstituted powder Store Dry Powder at 20ºC-25ºC (68ºF-77ºF) 125 mg and 250 mg unreconstituted powder

RECENT MAJOR CHANGES

Indications and Usage, Gonorrhea ( 1.5 )………………………………………………………………………………

Removed 9/2015 Dosage and Administration, Gonorrhea ( 2.1 ) …………………………………………………………………………Removed 9/2015

DOSAGE FORMS AND STRENGTHS

3 Capsules: 250 mg, 500 mg.

Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate.

The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500.

Tablets: 500 mg, 875 mg.

Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate.

Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively.

The 875-mg tablet is scored on the reverse side.

Powder for Oral Suspension: 125 mg/5 mL, 200 mg/5 mL, 250 mg/5 mL, 400 mg/5 mL.

Each 5 mL of reconstituted strawberry-flavored suspension contains 125 mg amoxicillin as the trihydrate.

Each 5 mL of reconstituted bubble-gum-flavored suspension contains 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate.

Capsules: 250 mg, 500 mg ( 3 ) Tablets: 500 mg, 875 mg ( 3 ) Powder for Oral Suspension: 125 mg/5 mL, 200 mg/5 mL, 250 mg/5 mL, 400 mg/5 mL ( 3 )

INDICATIONS AND USAGE

1 AMOXICILLIN is a penicillin-class antibacterial indicated for treatment of infections due to susceptible strains of designated microorganisms.

Infections of the ear, nose, throat, genitourinary tract, skin and skin structure, and lower respiratory tract.

( 1.1 – 1.4 ) In combination for treatment of H.

pylori infection and duodenal ulcer disease.

( 1.5 ) To reduce the development of drug-resistant bacteria and maintain the effectiveness of AMOXICILLIN and other antibacterial drugs, AMOXICILLIN should be used only to treat infections that are proven or strongly suspected to be caused by bacteria.

( 1.6 ) 1.1 Infections of the Ear, Nose, and Throat AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus species.

(α and β hemolytic isolates only), Streptococcus pneumoniae , Staphylococcus spp., or Haemophilus influenzae .

1.2 Infections of the Genitourinary Tract AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Escherichia coli , Proteus mirabilis , or Enterococcus faecalis .

1.3 Infections of the Skin and Skin Structure AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus spp.

(α and β hemolytic isolates only), Staphylococcus spp., or E.

coli.

1.4 Infections of the Lower Respiratory Tract AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus spp.

(α and β hemolytic isolates only), S.

pneumoniae , S taphylococcus spp ., or H.

influenzae .

1.5 Helicobacter pylori Infection Triple therapy for Helicobacter pylori with clarithromycin and lansoprazole: AMOXICILLIN, in combination with clarithromycin plus lansoprazole as triple therapy, is indicated for the treatment of patients with H.

pylori infection and duodenal ulcer disease (active or 1 year history of a duodenal ulcer) to eradicate H.

pylori .

Eradication of H.

pylori has been shown to reduce the risk of duodenal ulcer recurrence.

Dual therapy for H.

pylori with lansoprazole : AMOXICILLIN, in combination with lansoprazole delayed release capsules as dual therapy, is indicated for the treatment of patients with H.

pylori infection and duodenal ulcer disease (active or 1 year history of a duodenal ulcer) who are either allergic or intolerant to clarithromycin or in whom resistance to clarithromycin is known or suspected .

(See the clarithromycin package insert, MICROBIOLOGY.) Eradication of H.

pylori has been shown to reduce the risk of duodenal ulcer recurrence.

1.6 Usage To reduce the development of drug resistant bacteria and maintain the effectiveness of AMOXICILLIN and other antibacterial drugs, AMOXICILLIN should be used only to treat infections that are proven or strongly suspected to be caused by bacteria.

When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy.

In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Anaphylactic reactions: Serious and occasionally fatal anaphylactic reactions have been reported in patients on penicillin therapy.

Serious anaphylactic reactions require immediate emergency treatment with supportive measures.

( 5.1 ) Clostridium difficile -associated diarrhea (ranging from mild diarrhea to fatal colitis): Evaluate if diarrhea occurs.

( 5.2 ) 5.1 Anaphylactic Reactions Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients on penicillin therapy including amoxicillin.

Although anaphylaxis is more frequent following parenteral therapy, it has occurred in patients on oral penicillins.

These reactions are more likely to occur in individuals with a history of penicillin hypersensitivity and/or a history of sensitivity to multiple allergens.

There have been reports of individuals with a history of penicillin hypersensitivity who have experienced severe reactions when treated with cephalosporins.

Before initiating therapy with AMOXICILLIN, careful inquiry should be made regarding previous hypersensitivity reactions to penicillins, cephalosporins, or other allergens.

If an allergic reaction occurs, AMOXICILLIN should be discontinued and appropriate therapy instituted.

5.2 Clostridium difficile Associated Diarrhea Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including AMOXICILLIN, and may range in severity from mild diarrhea to fatal colitis.

Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C.

difficile .

C.

difficile produces toxins A and B which contribute to the development of CDAD.

Hypertoxin-producing strains of C.

difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy.

CDAD must be considered in all patients who present with diarrhea following antibacterial use.

Careful medical history is necessary since CDAD has been reported to occur over 2 months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C.

difficile may need to be discontinued.

Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C.

difficile , and surgical evaluation should be instituted as clinically indicated.

5.3 Development of Drug-Resistant Bacteria Prescribing AMOXICILLIN in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

5.4 Use in Patients With Mononucleosis A high percentage of patients with mononucleosis who receive amoxicillin develop an erythematous skin rash.

Thus amoxicillin should not be administered to patients with mononucleosis.

5.5 Phenylketonurics Amoxicillin chewable tablets contain aspartame which contains phenylalanine.

Each 200 mg chewable tablet contains 1.82 mg phenylalanine; each 400 mg chewable tablet contains 3.64 mg phenylalanine.

The oral suspensions of Amoxicillin do not contain phenylalanine and can be used by phenylketonurics.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Information for Patients Patients should be advised that AMOXICILLIN may be taken every 8 hours or every 12 hours, depending on the dose prescribed.

Patients should be counseled that antibacterial drugs, including AMOXICILLIN, should only be used to treat bacterial infections.

They do not treat viral infections (e.g., the common cold).

When AMOXICILLIN is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed.

Skipping doses or not completing the full course of therapy may: (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by AMOXICILLIN or other antibacterial drugs in the future.

Patients should be counseled that diarrhea is a common problem caused by antibiotics, and it usually ends when the antibiotic is discontinued.

Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as 2 or more months after having taken their last dose of the antibiotic.

If this occurs, patients should contact their physician as soon as possible.

Patients should be aware that AMOXICILLIN contains a penicillin class drug product that can cause allergic reactions in some individuals.

AMOXIL is registered trademark of GlaxoSmithKline and is licensed to Dr.

Reddy’s Laboratories Inc.

Manufactured.

By: Dr.

Reddy’s Laboratories Tennessee LLC.

Bristol, TN 37620 Issued: 052016

DOSAGE AND ADMINISTRATION

2 In adults, 750-1750 mg/day in divided doses every 8-12 hours.

In Pediatric Patients > 3 Months of Age, 20-45 mg/kg/day in divided doses every 8-12 hours.

Refer to full prescribing information for specific dosing regimens.

( 2.1 , 2.2 , 2.3 ) The upper dose for neonates and infants ≤ 3 months is 30 mg/kg/day divided every 12 hours.

( 2.2 ) Dosing for H.

pylori Infection: Triple therapy: 1 gram AMOXICILLIN, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days.

Dual therapy: 1 gram AMOXICILLIN and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days.

( 2.3 ) Reduce the dose in patients with severe renal impairment (GFR <30 mL/min).

( 2.4 ) 2.1 Dosing for Adult and Pediatric Patients > 3 Months of Age Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic or evidence of bacterial eradication has been obtained.

It is recommended that there be at least 10 days treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever.

In some infections, therapy may be required for several weeks.

It may be necessary to continue clinical and/or bacteriological follow-up for several months after cessation of therapy.

Table 1.

Dosing Recommendations for Adult and Pediatric Patients > 3 Months of Age Infection Severity a Usual Adult Dose Usual Dose for Children > 3 Months b Ear/Nose/Throat Skin/Skin Structure Genitourinary Tract Mild/Moderate 500 mg every 12 hours or 250 mg every 8 hours 25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours Lower Respiratory Tract Mild/Moderate or Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours a Dosing for infections caused by bacteria that are intermediate in their susceptibility to amoxicillin should follow the recommendations for severe infections.

b The children’s dosage is intended for individuals whose weight is less than 40 kg.

Children weighing 40 kg or more should be dosed according to the adult recommendations.

2.2 Dosing in Neonates and Infants Aged ≤ 12 Weeks (≤ 3 Months) Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic or evidence of bacterial eradication has been obtained.

It is recommended that there be at least 10 days’ treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever.

Due to incompletely developed renal function affecting elimination of amoxicillin in this age group, the recommended upper dose of AMOXICILLIN is 30 mg/kg/day divided every 12 hours.

There are currently no dosing recommendations for pediatric patients with impaired renal function.

2.3 Dosing for H.

pylori Infection Triple therapy: The recommended adult oral dose is 1 gram AMOXICILLIN, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days.

Dual therapy: The recommended adult oral dose is 1 gram AMOXICILLIN and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days.

Please refer to clarithromycin and lansoprazole full prescribing information.

2.4 Dosing in Renal Impairment Patients with impaired renal function do not generally require a reduction in dose unless the impairment is severe.

Severely impaired patients with a glomerular filtration rate of < 30 mL/min.

should not receive a 875 mg dose.

Patients with a glomerular filtration rate of 10 to 30 mL/min should receive 500 mg or 250 mg every 12 hours, depending on the severity of the infection.

Patients with a glomerular filtration rate less than 10 mL/min should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection.

Hemodialysis patients should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection.

They should receive an additional dose both during and at the end of dialysis.

2.5 Directions for Mixing Oral Suspension Tap bottle until all powder flows freely.

Add approximately 1/3 of the total amount of water for reconstitution (see Table 2) and shake vigorously to wet powder.

Add remainder of the water and again shake vigorously.

Table 2.

Amount of Water for Mixing Oral Suspension Strength Bottle Size Amount of Water Required for Reconstitution Oral Suspension 125 mg/5 mL 80 mL 62 mL 100 mL 78 mL 150 mL 116 mL Oral Suspension 200 mg/5 mL 50 mL 39 mL 75 mL 57 mL 100 mL 76 mL Oral Suspension 250 mg/5 mL 80 mL 59 mL 100 mL 74 mL 150 mL 111 mL Oral Suspension 400 mg/5 mL 50 mL 36 mL 75 mL 54 mL 100 mL 71 mL After reconstitution, the required amount of suspension should be placed directly on the child’s tongue for swallowing.

Alternate means of administration are to add the required amount of suspension to formula, milk, fruit juice, water, ginger ale, or cold drinks.

These preparations should then be taken immediately.

NOTE: SHAKE ORAL SUSPENSION WELL BEFORE USING.

Keep bottle tightly closed.

Any unused portion of the reconstituted suspension must be discarded after 14 days.

Refrigeration is preferable, but not required.

Diltiazem Hydrochloride 120 MG Oral Tablet

WARNINGS

1.

Cardiac Conduction Diltiazem prolongs AV node refractory periods without significantly prolonging sinus node recovery time, except in patients with sick sinus syndrome.

This effect may rarely result in abnormally slow heart rates (particularly in patients with sick sinus syndrome) or second- or-third-degree AV block (six of 1,243 patients for 0.48%).

Concomitant use of diltiazem with beta-blockers or digitalis may result in additive effects on cardiac conduction.

A patient with Prinzmetal’s angina developed periods of asystole (2 to 5 seconds) after a single dose of 60 mg of diltiazem.

(See ADVERSE REACTIONS .) 2.

Congestive Heart Failure Although diltiazem has a negative inotropic effect in isolated animal tissue preparations, hemodynamic studies in humans with normal ventricular function have not shown a reduction in cardiac index nor consistent negative effects on contractility (dp/dt).

Experience with the use of diltiazem alone or in combination with beta-blockers in patients with impaired ventricular function is very limited.

Caution should be exercised when using the drug in such patients.

3.

Hypotension Decreases in blood pressure associated with diltiazem therapy may occasionally result in symptomatic hypotension.

4.

Acute Hepatic Injury In rare instances, significant elevations in enzymes such as alkaline phosphatase, LDH, SGOT, SGPT and other phenomena consistent with acute hepatic injury have been noted.

These reactions have been reversible upon discontinuation of drug therapy.

The relationship to diltiazem is uncertain in most cases, but probable in some.

(See PRECAUTIONS .)

DRUG INTERACTIONS

Drug Interactions Due to the potential for additive effects, caution and careful titration are warranted in patients receiving diltiazem concomitantly with any agents known to affect cardiac contractility and/or conduction.

(See WARNINGS .) Pharmacologic studies indicate that there may be additive effects in prolonging AV conduction when using beta-blockers or digitalis concomitantly with diltiazem.

(See WARNINGS .) As with all drugs, care should be exercised when treating patients with multiple medications.

Diltiazem is both a substrate and an inhibitor of the cytochrome P-450 3A4 enzyme treatment.

Other drugs that are specific substrates, inhibitors, or inducers of this enzyme system may have a significant impact on the efficacy and side effect profile of diltiazem.

Patients taking other drugs that are substrates of CYP450 3A4, especially patients with renal and/or hepatic impairment, may require dosage adjustment when starting or stopping concomitantly administered diltiazem in order to maintain optimum therapeutic blood levels.

Anesthetics The depression of cardiac contractility, conductivity, and automaticity, as well as the vascular dilation associated with anesthetics, may be potentiated by calcium channel blockers.

When used concomitantly, anesthetics and calcium blockers should be titrated carefully.

Benzodiazepines Studies showed that diltiazem increased the AUC of midazolam and triazolam by 3- to 4-fold and the C max by 2-fold, compared to placebo.

The elimination half-life of midazolam and triazolam also increased (1.5- to 2.5-fold) during coadministration with diltiazem.

These pharmacokinetic effects seen during diltiazem coadministration can result in increased clinical effects ( e.g ., prolonged sedation) of both midazolam and triazolam.

Beta-Blockers Controlled and uncontrolled domestic studies suggest that concomitant use of diltiazem and beta-blockers is usually well tolerated.

Available data are not sufficient, however, to predict the effects of concomitant treatment, particularly in patients with left ventricular dysfunction or cardiac conduction abnormalities.

Administration of diltiazem concomitantly with propranolol in five normal volunteers resulted in increased propranolol levels in all subjects, and bioavailability of propranolol was increased approximately 50%.

In vitro , propranolol appears to be displaced from its binding sites by diltiazem.

If combination therapy is initiated or withdrawn in conjunction with propranolol, an adjustment in the propranolol dose may be warranted.

(See WARNINGS .) Buspirone In nine healthy subjects, diltiazem significantly increased the mean buspirone AUC 5.5-fold and C max 4.1-fold compared to placebo.

The T 1/2 and T max of buspirone were not significantly affected by diltiazem.

Enhanced effects and increased toxicity of buspirone may be possible during concomitant administration with diltiazem.

Subsequent dose adjustments may be necessary during coadministration, and should be based on clinical assessment.

Carbamazepine Concomitant administration of diltiazem with carbamazepine has been reported to result in elevated serum levels of carbamazepine (40% to 72% increase) resulting in toxicity in some cases.

Patients receiving these drugs concurrently should be monitored for a potential drug interaction.

Cimetidine A study in six healthy volunteers has shown a significant increase in peak diltiazem plasma levels (58%) and area-under-the-curve (53%) after a one-week course of cimetidine at 1,200 mg per day and a single dose of diltiazem 60 mg.

Ranitidine produced smaller, non-significant increases.

The effect may be mediated by cimetidine’s known inhibition of hepatic cytochrome P-450, the enzyme system responsible for the first-pass metabolism of diltiazem.

Patients currently receiving diltiazem therapy should be carefully monitored for a change in pharmacological effect when initiating and discontinuing therapy with cimetidine.

An adjustment in the diltiazem dose may be warranted.

Clonidine Sinus bradycardia resulting in hospitalization and pacemaker insertion has been reported in association with the use of clonidine concurrently with diltiazem.

Monitor heart rate in patients receiving concomitant diltiazem and clonidine.

Cyclosporine A pharmacokinetic interaction between diltiazem and cyclosporine has been observed during studies involving renal and cardiac transplant patients.

In renal and cardiac transplant recipients, a reduction of cyclosporine trough dose ranging from 15% to 48% was necessary to maintain cyclosporine trough concentrations similar to those seen prior to the addition of diltiazem.

If these agents are to be administered concurrently, cyclosporine concentrations should be monitored, especially when diltiazem therapy is initiated, adjusted or discontinued.

The effect of cyclosporine on diltiazem plasma concentrations has not been evaluated.

Digitalis Administration of diltiazem with digoxin in 24 healthy male subjects increased plasma digoxin concentrations approximately 20%.

Another investigator found no increase in digoxin levels in 12 patients with coronary artery disease.

Since there have been conflicting results regarding the effect of digoxin levels, it is recommended that digoxin levels be monitored when initiating, adjusting, and discontinuing diltiazem therapy to avoid possible over- or under-digitalization.

(See WARNINGS.) Quinidine Diltiazem significantly increases the AUC (0→∞) of quinidine by 51%, T 1/2 by 36%, and decreases its CL oral by 33%.

Monitoring for quinidine adverse effects may be warranted and the dose adjusted accordingly.

Rifampin Coadministration of rifampin with diltiazem lowered the diltiazem plasma concentrations to undetectable levels.

Coadministration of diltiazem with rifampin or any known CYP3A4 inducer should be avoided when possible, and alternative therapy considered.

Statins Diltiazem is an inhibitor of CYP3A4 and has been shown to increase significantly the AUC of some statins.

The risk of myopathy and rhabdomyolysis with statins metabolized by CYP3A4 may be increased with concomitant use of diltiazem.

When possible, use a non-CYP3A4-metabolized statin together with diltiazem; otherwise, dose adjustments for both diltiazem and the statin should be considered along with close monitoring for signs and symptoms of any statin related adverse events.

In a healthy volunteer cross-over study (N = 10), coadministration of a single 20 mg dose of simvastatin at the end of a 14-day regimen with 120 mg BID diltiazem SR resulted in a 5-fold increase in mean simvastatin AUC vs.

simvastatin alone.

Subjects with increased average steady-state exposures of diltiazem showed a greater fold increase in simvastatin exposure.

Computer-based simulations showed that at a daily dose of 480 mg of diltiazem, an 8- to 9-fold mean increase in simvastatin AUC can be expected.

If coadministration of simvastatin with diltiazem is required, limit the daily doses of simvastatin to 10 mg and diltiazem to 240 mg.

In a ten-subject randomized, open-label, 4-way cross-over study, coadministration of diltiazem (120 mg BID diltiazem SR for 2 weeks) with a single 20 mg dose of lovastatin resulted in 3- to 4-fold increase in mean lovastatin AUC and C max vs.

lovastatin alone.

In the same study, there was no significant change in 20 mg single dose pravastatin AUC and C max during diltiazem coadministration.

Diltiazem plasma levels were not significantly affected by lovastatin or pravastatin.

OVERDOSAGE

The oral LD 50 s in mice and rats range from 415 to 740 mg/kg and from 560 to 810 mg/kg, respectively.

The intravenous LD 50 s in these species were 60 and 38 mg/kg, respectively.

The oral LD 50 in dogs is considered to be in excess of 50 mg/kg, while lethality was seen in monkeys at 360 mg/kg.

The toxic dose in man is not known.

Due to extensive metabolism, blood levels after a standard dose of diltiazem can vary over 10-fold, limiting the usefulness of blood levels in overdose cases.

There have been reports of diltiazem overdose in amounts ranging from < 1 g to 18 g.

Of cases with known outcome, most patients recovered and in cases with a fatal outcome, the majority involved multiple drug ingestion.

Events observed following diltiazem overdose included bradycardia, hypotension, heart block, and cardiac failure.

Most reports of overdose described some supportive medical measure and/or drug treatment.

Bradycardia frequently responded favorably to atropine, as did heart block, although cardiac pacing was also frequently utilized to treat heart block.

Fluids and vasopressors were used to maintain blood pressure, and in cases of cardiac failure, inotropic agents were administered.

In addition, some patients received treatment with ventilatory support, gastric lavage, activated charcoal, and/or intravenous calcium.

The effectiveness of intravenous calcium administration to reverse the pharmacological effects of diltiazem overdose has been inconsistent.

In a few reported cases, overdose with calcium channel blockers associated with hypotension and bradycardia that was initially refractory to atropine became more responsive to atropine after the patients received intravenous calcium.

In some cases intravenous calcium has been administered (1 g calcium chloride or 3 g calcium gluconate) over 5 minutes and repeated every 10 to 20 minutes as necessary.

Calcium gluconate has also been administered as a continuous infusion at a rate of 2 g per hour for 10 hours.

Infusions of calcium for 24 hours or more may be required.

Patients should be monitored for signs of hypercalcemia.

In the event of overdose or exaggerated response, appropriate supportive measures should be employed in addition to gastrointestinal decontamination.

Diltiazem does not appear to be removed by peritoneal or hemodialysis.

Limited data suggest that plasmapheresis or charcoal hemoperfusion may hasten diltiazem elimination following overdose.

Based on the known pharmacological effects of diltiazem and/or reported clinical experiences, the following measures may be considered: Bradycardia: Administer atropine (0.60 mg to 1 mg).

If there is no response to vagal blockade, administer isoproterenol cautiously.

High Degree AV Block : Treat as for bradycardia above.

Fixed high-degree AV block should be treated with cardiac pacing.

Cardiac Failure : Administer inotropic agents (isoproterenol, dopamine, or dobutamine) and diuretics.

Hypotension: Vasopressors (e.g., dopamine or norepinephrine).

Actual treatment and dosage should depend on the severity of the clinical situation and the judgment and experience of the treating physician.

DESCRIPTION

Diltiazem hydrochloride is a calcium ion cellular influx inhibitor (slow channel blocker or calcium antagonist).

Chemically, diltiazem hydrochloride is 1,5-Benzothiazepin-4(5H)one, 3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl), monohydrochloride, (+)-cis-.

The structural formula is: C 22 H 26 N 2 O 4 S • HCl M.W.

450.99 Diltiazem hydrochloride, USP is a white to off-white crystalline powder with a bitter taste.

It is soluble in water, methanol, and chloroform.

Each tablet, for oral administration, contains 30 mg, 60 mg, 90 mg, or 120 mg diltiazem hydrochloride.

In addition, each tablet contains the following inactive ingredients: ethylcellulose, hypromellose, lactose monohydrate, magnesium stearate, maltodextrin, polyethylene glycol, and sodium lauryl sulfate.

Diltiazem Hydrochloride Tablets, USP 30 mg, 60 mg, 90 mg and 120 mg meet USP Dissolution Test 2 .

Structural Formula – Diltiazem HCL Tablets

HOW SUPPLIED

Diltiazem Hydrochloride Tablets, USP are available containing 30 mg, 60 mg, 90 mg or 120 mg of diltiazem hydrochloride, USP.

The 30 mg tablets are white film-coated, round, unscored, tablets debossed with M over 23 on one side of the tablet and blank on the other side.

They are available as follows: NDC 0615-3548-39 blisterpacks of 30 tablets NDC 0615-3548-31 blisterpacks of 31 tablets The 60 mg tablets are white film-coated, round, tablets debossed with M over 45 on one side of the tablet and scored on the other side.

They are available as follows: NDC 0615-3549-39 blisterpacks of 30 tablets The 90 mg tablets are white film-coated, capsule-shaped tablets debossed with M135 on one side of the tablet and scored on the other side.

They are available as follows: NDC 0615-3550-39 blisterpacks of 30 tablets The 120 mg tablets are white film-coated, capsule-shaped tablets debossed with M525 on one side of the tablet and scored on the other side.

They are available as follows: NDC 0615-3551-39 blisterpacks of 30 tablets Store at 20° to 25°C (68° to 77°F).

[See USP for Controlled Room Temperature.] Protect from light.

Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure.

GERIATRIC USE

Geriatric Use Clinical studies of diltiazem did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects.

Other reported clinical experience has not identified differences in responses between the elderly and younger patients.

In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

MECHANISM OF ACTION

Mechanisms of Action Although precise mechanisms of its antianginal actions are still being delineated, diltiazem is believed to act in the following ways: 1.

Angina Due to Coronary Artery Spasm Diltiazem has been shown to be a potent dilator of coronary arteries both epicardial and subendocardial.

Spontaneous and ergonovine-induced coronary artery spasm are inhibited by diltiazem.

2.

Exertional Angina Diltiazem has been shown to produce increases in exercise tolerance, probably due to its ability to reduce myocardial oxygen demand.

This is accomplished via reductions in heart rate and systemic blood pressure at submaximal and maximal exercise work loads.

In animal models, diltiazem interferes with the slow inward (depolarizing) current in excitable tissue.

It causes excitation-contraction uncoupling in various myocardial tissues without changes in the configuration of the action potential.

Diltiazem produces relaxation of coronary vascular smooth muscle and dilation of both large and small coronary arteries at drug levels which cause little or no negative inotropic effect.

The resultant increases in coronary blood flow (epicardial and subendocardial) occur in ischemic and nonischemic models and are accompanied by dose dependent decreases in systemic blood pressure and decreases in peripheral resistance.

INDICATIONS AND USAGE

Diltiazem hydrochloride tablets are indicated for the management of chronic stable angina and angina due to coronary artery spasm.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Reproduction studies have been conducted in mice, rats, and rabbits.

Administration of doses ranging from 5 to 10 times greater (on a mg/kg basis) than the daily recommended therapeutic dose has resulted in embryo and fetal lethality.

These doses, in some studies, have been reported to cause skeletal abnormalities.

In the perinatal/postnatal studies, there was some reduction in early individual pup weights and survival rates.

There was an increased incidence of stillbirths at doses of 20 times the human dose or greater.

There are no well controlled studies in pregnant women; therefore, use diltiazem in pregnant women only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

Nursing Mothers Diltiazem is excreted in human milk.

One report suggests that concentrations in breast milk may approximate serum levels.

If use of diltiazem is deemed essential, an alternative method of infant feeding should be instituted.

DOSAGE AND ADMINISTRATION

Exertional Angina Pectoris Due to Atherosclerotic Coronary Artery Disease or Angina Pectoris at Rest Due to Coronary Artery Spasm Dosage must be adjusted to each patient’s needs.

Starting with 30 mg 4 times daily, before meals and at bedtime, dosage should be increased gradually (given in divided doses 3 or 4 times daily) at one-to two-day intervals until optimum response is obtained.

Although individual patients may respond to any dosage level, the average optimum dosage range appears to be 180 to 360 mg/day.

There are no available data concerning dosage requirements in patients with impaired renal or hepatic function.

If the drug must be used in such patients, titration should be carried out with particular caution.

Concomitant Use with Other Cardiovascular Agents 1.

Sublingual NTG may be taken as required to abort acute anginal attacks during diltiazem therapy.

2.

Prophylactic Nitrate Therapy: Diltiazem may be safely coadministered with short- and long-acting nitrates, but there have been no controlled studies to evaluate the antianginal effectiveness of this combination.

3.

Beta-blockers (See WARNINGS and PRECAUTIONS .)

Zolpidem tartrate 12.5 MG Extended Release Oral Tablet

DRUG INTERACTIONS

7 CNS depressants, including alcohol: Possible adverse additive CNS-depressant effects ( 5.1 , 7.1 ) Imipramine: Decreased alertness observed ( 7.1 ) Chlorpromazine: Impaired alertness and psychomotor performance observed ( 7.1 ) CYP3A4 inducers (rifampin or St.

John’s wort): Combination use may decrease effect ( 7.2 ) Ketoconazole: Combination use may increase effect ( 7.2 ) 7.1 CNS-active Drugs Co-administration of zolpidem with other CNS depressants increases the risk of CNS depression.

Concomitant use of zolpidem with these drugs may increase drowsiness and psychomotor impairment, including impaired driving ability [see Warnings and Precautions (5.1) ].

Zolpidem tartrate was evaluated in healthy volunteers in single-dose interaction studies for several CNS drugs.

Imipramine, Chlorpromazine Imipramine in combination with zolpidem produced no pharmacokinetic interaction other than a 20% decrease in peak levels of imipramine, but there was an additive effect of decreased alertness.

Similarly, chlorpromazine in combination with zolpidem produced no pharmacokinetic interaction, but there was an additive effect of decreased alertness and psychomotor performance [see Clinical Pharmacology (12.3) ] .

Haloperidol A study involving haloperidol and zolpidem revealed no effect of haloperidol on the pharmacokinetics or pharmacodynamics of zolpidem.

The lack of a drug interaction following single-dose administration does not predict the absence of an effect following chronic administration [see Clinical Pharmacology (12.3) ] .

Alcohol An additive adverse effect on psychomotor performance between alcohol and oral zolpidem was demonstrated [see Warnings and Precautions (5.1) ].

Sertraline Concomitant administration of zolpidem and sertraline increases exposure to zolpidem [see Clinical Pharmacology (12.3) ] .

Fluoxetine After multiple doses of zolpidem tartrate and fluoxetine an increase in the zolpidem half-life (17%) was observed.

There was no evidence of an additive effect in psychomotor performance [see Clinical Pharmacology (12.3) ] .

7.2 Drugs that Affect Drug Metabolism via Cytochrome P450 Some compounds known to induce or inhibit CYP3A may affect exposure to zolpidem.

The effect of drugs that induce or inhibit other P450 enzymes on the exposure to zolpidem is not known.

CYP3A4 Inducers Rifampin Rifampin, a CYP3A4 inducer, significantly reduced the exposure to and the pharmacodynamic effects of zolpidem.

Use of Rifampin in combination with zolpidem may decrease the efficacy of zolpidem and is not recommended [see Clinical Pharmacology (12.3) ] .

St.

John’s wort Use of St.

John’s wort, a CYP3A4 inducer, in combination with zolpidem may decrease blood levels of zolpidem and is not recommended.

CYP3A4 Inhibitors Ketoconazole Ketoconazole, a potent CYP3A4 inhibitor, increased the exposure to and pharmacodynamic effects of zolpidem.

Consideration should be given to using a lower dose of zolpidem when a potent CYP3A4 inhibitor and zolpidem are given together [see Clinical Pharmacology (12.3) ] .

OVERDOSAGE

10 10.1 Signs and Symptoms In postmarketing experience of overdose with zolpidem tartrate alone, or in combination with CNS-depressant agents, impairment of consciousness ranging from somnolence to coma, cardiovascular and/or respiratory compromise and fatal outcomes have been reported.

10.2 Recommended Treatment General symptomatic and supportive measures should be used along with immediate gastric lavage where appropriate.

Intravenous fluids should be administered as needed.

Zolpidem’s sedative hypnotic effect was shown to be reduced by flumazenil and therefore may be useful; however, flumazenil administration may contribute to the appearance of neurological symptoms (convulsions).

As in all cases of drug overdose, respiration, pulse, blood pressure, and other appropriate signs should be monitored and general supportive measures employed.

Hypotension and CNS depression should be monitored and treated by appropriate medical intervention.

Sedating drugs should be withheld following zolpidem overdosage, even if excitation occurs.

The value of dialysis in the treatment of overdosage has not been determined, although hemodialysis studies in patients with renal failure receiving therapeutic doses have demonstrated that zolpidem is not dialyzable.

As with the management of all overdosage, the possibility of multiple drug ingestion should be considered.

The physician may wish to consider contacting a poison control center for up-to-date information on the management of hypnotic drug product overdosage.

DESCRIPTION

11 AMBIEN CR contains zolpidem tartrate, a gamma-aminobutyric acid (GABA) A agonist of the imidazopyridine class.

AMBIEN CR (zolpidem tartrate extended-release tablets) is available in 6.25 mg and 12.5 mg strength tablets for oral administration.

Chemically, zolpidem is N,N,6-trimethyl-2-p-tolylimidazo[1,2-a] pyridine-3-acetamide L-(+)-tartrate (2:1).

It has the following structure: Zolpidem tartrate is a white to off-white crystalline powder that is sparingly soluble in water, alcohol, and propylene glycol.

It has a molecular weight of 764.88.

AMBIEN CR consists of a coated two-layer tablet: one layer that releases its drug content immediately and another layer that allows a slower release of additional drug content.

The 6.25 mg AMBIEN CR tablet contains the following inactive ingredients: colloidal silicon dioxide, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, potassium bitartrate, red ferric oxide, sodium starch glycolate, and titanium dioxide.

The 12.5 mg AMBIEN CR tablet contains the following inactive ingredients: colloidal silicon dioxide, FD&C Blue #2, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, potassium bitartrate, sodium starch glycolate, titanium dioxide, and yellow ferric oxide.

Chemical Structure

CLINICAL STUDIES

14 14.1 Controlled Clinical Trials AMBIEN CR was evaluated in three placebo-controlled studies for the treatment of patients with chronic primary insomnia (as defined in the APA Diagnostic and Statistical Manual of Mental Disorders, DSM IV).

Adult outpatients (18–64 years) with primary insomnia (N=212) were evaluated in a double-blind, randomized, parallel-group, 3-week trial comparing AMBIEN CR 12.5 mg and placebo.

AMBIEN CR 12.5 mg decreased wake time after sleep onset (WASO) for the first 7 hours during the first 2 nights and for the first 5 hours after 2 weeks of treatment.

AMBIEN CR 12.5 mg was superior to placebo on objective measures (polysomnography recordings) of sleep induction (by decreasing latency to persistent sleep [LPS]) during the first 2 nights of treatment and after 2 weeks of treatment.

AMBIEN CR 12.5 mg was also superior to placebo on the patient reported global impression regarding the aid to sleep after the first 2 nights and after 3 weeks of treatment.

Elderly outpatients (≥ 65 years) with primary insomnia (N=205) were evaluated in a double-blind, randomized, parallel-group, 3-week trial comparing AMBIEN CR 6.25 mg and placebo.

AMBIEN CR 6.25 mg decreased wake time after sleep onset (WASO) for the first 6 hours during the first 2 nights and the first 4 hours after 2 weeks of treatment.

AMBIEN CR 6.25 mg was superior to placebo on objective measures (polysomnography recordings) of sleep induction (by decreasing LPS) during the first 2 nights of treatment and after 2 weeks on treatment.

AMBIEN CR 6.25 mg was superior to placebo on the patient reported global impression regarding the aid to sleep after the first 2 nights and after 3 weeks of treatment.

In both studies, in patients treated with AMBIEN CR, polysomnography showed increased wakefulness at the end of the night compared to placebo-treated patients.

In a 24-week double-blind, placebo controlled, randomized study in adult outpatients (18–64 years) with primary insomnia (N=1025), AMBIEN CR 12.5 mg administered as needed (3 to 7 nights per week) was superior to placebo over 24 weeks, on patient global impression regarding aid to sleep, and on patient-reported specific sleep parameters for sleep induction and sleep maintenance with no significant increased frequency of drug intake observed over time.

14.2 Studies Pertinent to Safety Concerns for Sedative/Hypnotic Drugs Next-day residual effects: In five clinical studies [three controlled studies in adults (18–64 years of age) administered AMBIEN CR 12.5 mg and two controlled studies in the elderly (≥ 65 years of age) administered AMBIEN CR 6.25 mg or 12.5 mg], the effect of AMBIEN CR on vigilance, memory, or motor function were assessed using neurocognitive tests.

In these studies, no significant decrease in performance was observed eight hours after a nighttime dose.

In addition, no evidence of next-day residual effects was detected with AMBIEN CR 12.5 mg and 6.25 mg using self-ratings of sedation.

During the 3-week studies, next-day somnolence was reported by 15% of the adult patients who received 12.5 mg AMBIEN CR versus 2% of the placebo group; next-day somnolence was reported by 6% of the elderly patients who received 6.25 mg AMBIEN CR versus 5% of the placebo group [see Adverse Reactions (6) ] .

In a 6-month study, the overall incidence of next-day somnolence was 5.7% in the AMBIEN CR group as compared to 2% in the placebo group.

Rebound effects: Rebound insomnia, defined as a dose-dependent worsening in sleep parameters (latency, sleep efficiency, and number of awakenings) compared with baseline following discontinuation of treatment, is observed with short- and intermediate-acting hypnotics.

In the two 3-week placebo-controlled studies in patients with primary insomnia, a rebound effect was only observed on the first night after abrupt discontinuation of AMBIEN CR.

On the second night, there was no worsening compared to baseline in the AMBIEN CR group.

In a 6-month placebo-controlled study in which AMBIEN CR was taken as needed (3 to 7 nights per week), within the first month a rebound effect was observed for Total Sleep Time (not for WASO) during the first night off medication.

After this first month period, no further rebound insomnia was observed.

After final treatment discontinuation no rebound was observed.

HOW SUPPLIED

16 /STORAGE AND HANDLING Product: 63629-3141

RECENT MAJOR CHANGES

Dosage and Administration, Dosage in Adults ( 2.1 ) 08/2016 Dosage and Administration, Special Populations ( 2.2 ) 12/2016 Warnings and Precautions, CNS Depressant Effects and Next-Day Impairment ( 5.1 ) 08/2016 Warnings and Precautions, Precipitation of Hepatic Encephalopathy ( 5.7 ) 12/2016

GERIATRIC USE

8.5 Geriatric Use A total of 99 elderly (≥ 65 years of age) received daily doses of 6.25 mg AMBIEN CR in a 3-week placebo-controlled study.

The adverse reaction profile of AMBIEN CR 6.25 mg in this population was similar to that of AMBIEN CR 12.5 mg in younger adults (≤ 64 years of age).

Dizziness was reported in 8% of AMBIEN CR-treated patients compared with 3% of those treated with placebo.

The dose of AMBIEN CR in elderly patients is 6.25 mg to minimize adverse effects related to impaired motor and/or cognitive performance and unusual sensitivity to sedative/hypnotic drugs [see Warnings and Precautions (5.1) ] .

DOSAGE FORMS AND STRENGTHS

3 AMBIEN CR is available as extended-release tablets containing 6.25 mg or 12.5 mg of zolpidem tartrate for oral administration.

Tablets are not scored.

AMBIEN CR 6.25 mg tablets are pink, round, bi-convex, and debossed with A~ on one side.

AMBIEN CR 12.5 mg tablets are blue, round, bi-convex, and debossed with A~ on one side.

Tablets: 6.25 mg and 12.5 mg extended-release tablets.

Tablets not scored.

( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action Zolpidem, the active moiety of zolpidem tartrate, is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties.

It interacts with a GABA-BZ receptor complex and shares some of the pharmacological properties of the benzodiazepines.

In contrast to the benzodiazepines, which non-selectively bind to and activate all BZ receptor subtypes, zolpidem in vitro binds the BZ 1 receptor preferentially with a high affinity ratio of the α 1 /α 5 subunits.

This selective binding of zolpidem on the BZ 1 receptor is not absolute, but it may explain the relative absence of myorelaxant and anticonvulsant effects in animal studies as well as the preservation of deep sleep (stages 3 and 4) in human studies of zolpidem tartrate at hypnotic doses.

INDICATIONS AND USAGE

1 AMBIEN CR (zolpidem tartrate extended-release tablets) is indicated for the treatment of insomnia characterized by difficulties with sleep onset and/or sleep maintenance (as measured by wake time after sleep onset).

The clinical trials performed in support of efficacy were up to 3 weeks (using polysomnography measurement up to 2 weeks in both adult and elderly patients) and 24 weeks (using patient-reported assessment in adult patients only) in duration [see Clinical Studies (14) ] .

AMBIEN CR, a gamma-aminobutyric acid (GABA) A agonist, is indicated for the treatment of insomnia characterized by difficulties with sleep onset and/or sleep maintenance.

( 1 )

PEDIATRIC USE

8.4 Pediatric Use AMBIEN CR is not recommended for use in children.

Safety and effectiveness of zolpidem in pediatric patients below the age of 18 years have not been established.

In an 8-week study in pediatric patients (aged 6–17 years) with insomnia associated with attention-deficit/hyperactivity disorder (ADHD) an oral solution of zolpidem tartrate dosed at 0.25 mg/kg at bedtime did not decrease sleep latency compared to placebo.

Psychiatric and nervous system disorders comprised the most frequent (> 5%) treatment emergent adverse reactions observed with zolpidem versus placebo and included dizziness (23.5% vs.

1.5%), headache (12.5% vs.

9.2%), and hallucinations were reported in 7% of the pediatric patients who received zolpidem; none of the pediatric patients who received placebo reported hallucinations [see Warnings and Precautions (5.4) ] .

Ten patients on zolpidem (7.4%) discontinued treatment due to an adverse reaction.

FDA has not required pediatric studies of AMBIEN CR in the pediatric population based on these efficacy and safety findings.

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are no adequate and well-controlled studies of AMBIEN CR in pregnant women.

Studies in children to assess the effects of prenatal exposure to zolpidem have not been conducted; however, cases of severe neonatal respiratory depression have been reported when zolpidem was used at the end of pregnancy, especially when taken with other CNS depressants.

Children born to mothers taking sedative-hypnotic drugs may be at risk for withdrawal symptoms during the postnatal period.

Neonatal flaccidity has also been reported in infants born to mothers who received sedative-hypnotic drugs during pregnancy.

AMBIEN CR should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus.

Administration of zolpidem to pregnant rats and rabbits resulted in adverse effects on offspring development at doses greater than the AMBIEN CR maximum recommended human dose (MRHD) of 12.5 mg/day (approximately 10 mg/day zolpidem base); however, teratogenicity was not observed.

When zolpidem was administered at oral doses of 4, 20, and 100 mg base/kg/day to pregnant rats during the period of organogenesis, dose-related decreases in fetal skull ossification occurred at all but the lowest dose, which is approximately 4 times the MRHD on a mg/m 2 basis.

In rabbits treated during organogenesis with zolpidem at oral doses of 1, 4, and 16 mg base/kg/day, increased embryo-fetal death and incomplete fetal skeletal ossification occurred at the highest dose.

The no-effect dose for embryo-fetal toxicity in rabbits is approximately 8 times the MRHD on a mg/m 2 basis.

Administration of zolpidem to rats at oral doses of 4, 20, and 100 mg base/kg/day during the latter part of pregnancy and throughout lactation produced decreased offspring growth and survival at all but the lowest dose, which is approximately 4 times the MRHD on a mg/m 2 basis.

NUSRING MOTHERS

8.3 Nursing Mothers Zolpidem is excreted in human milk.

Caution should be exercised when AMBIEN CR is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS CNS depressant effects: Impaired alertness and motor coordination, including risk of morning impairment.

Caution patients against driving and other activities requiring complete mental alertness the morning after use.

( 5.1 ) Need to evaluate for co-morbid diagnoses: Revaluate if insomnia persists after 7 to 10 days of use.

( 5.2 ) Severe anaphylactic/anaphylactoid reactions: Angioedema and anaphylaxis have been reported.

Do not rechallenge if such reactions occur.

( 5.3 ) “Sleep-driving” and other complex behaviors while not fully awake.

Risk increases with dose and use with other CNS depressants and alcohol.

Immediately evaluate any new onset behavioral changes.

( 5.4 ) Depression: Worsening of depression or, suicidal thinking may occur.

Prescribe the least amount of tablets feasible to avoid intentional overdose.

( 5.5 ) Respiratory Depression: Consider this risk before prescribing in patients with compromised respiratory function.

( 5.6 ) Hepatic Impairment: Avoid AMBIEN CR use in patients with severe hepatic impairment.

( 5.7 ) Withdrawal effects: Symptoms may occur with rapid dose reduction or discontinuation.

( 5.8 , 9.3 ) Severe Injuries: Drowsiness may lead to fall including severe injuries.

( 5.9 ) 5.1 CNS Depressant Effects and Next-Day Impairment AMBIEN CR is a central nervous system (CNS) depressant and can impair daytime function in some patients even when used as prescribed.

Prescribers should monitor for excess depressant effects, but impairment can occur in the absence of subjective symptoms, and may not be reliably detected by ordinary clinical exam (i.e.

less than formal psychomotor testing).

While pharmacodynamic tolerance or adaptation to some adverse depressant effects of AMBIEN CR may develop, patients using AMBIEN CR should be cautioned against driving or engaging in other hazardous activities or activities requiring complete mental alertness the day after use.

Additive effects occur with concomitant use of other CNS depressants (e.g.

benzodiazepines, opioids, tricyclic antidepressants, alcohol), including daytime use.

Downward dose adjustment of AMBIEN CR and concomitant CNS depressants should be considered [see Dosage and Administration (2.3) ] .

The use of AMBIEN CR with other sedative-hypnotics (including other zolpidem products) at bedtime or the middle of the night is not recommended.

The risk of next-day psychomotor impairment is increased if AMBIEN CR is taken with less than a full night of sleep remaining (7 to 8 hours); if higher than the recommended dose is taken; if co-administered with other CNS depressants or alcohol; or co-administered with other drugs that increase the blood levels of zolpidem.

Patients should be warned against driving and other activities requiring complete mental alertness if Ambien CR is taken in these circumstances [see Dosage and Administration (2) and Clinical Studies (14.2) ] .

Vehicle drivers and machine operators should be warned that, as with other hypnotics, there may be a possible risk of adverse reactions including drowsiness, prolonged reaction time, dizziness, sleepiness, blurred/double vision, reduced alertness and impaired driving the morning after therapy.

In order to minimize this risk a full night of sleep (7-8 hours) is recommended.

5.2 Need to Evaluate for Co-morbid Diagnoses Because sleep disturbances may be the presenting manifestation of a physical and/or psychiatric disorder, symptomatic treatment of insomnia should be initiated only after a careful evaluation of the patient.

The failure of insomnia to remit after 7 to 10 days of treatment may indicate the presence of a primary psychiatric and/or medical illness that should be evaluated.

Worsening of insomnia or the emergence of new thinking or behavior abnormalities may be the consequence of an unrecognized psychiatric or physical disorder.

Such findings have emerged during the course of treatment with sedative/hypnotic drugs, including zolpidem.

5.3 Severe Anaphylactic and Anaphylactoid Reactions Cases of angioedema involving the tongue, glottis or larynx have been reported in patients after taking the first or subsequent doses of sedative-hypnotics, including zolpidem.

Some patients have had additional symptoms such as dyspnea, throat closing or nausea and vomiting that suggest anaphylaxis.

Some patients have required medical therapy in the emergency department.

If angioedema involves the throat, glottis or larynx, airway obstruction may occur and be fatal.

Patients who develop angioedema after treatment with zolpidem should not be rechallenged with the drug.

5.4 Abnormal Thinking and Behavioral Changes Abnormal thinking and behavior changes have been reported in patients treated with sedative/hypnotics, including AMBIEN CR.

Some of these changes included decreased inhibition (e.g.

aggressiveness and extroversion that seemed out of character), bizarre behavior, agitation and depersonalization.

Visual and auditory hallucinations have been reported.

In controlled trials, <1% of adults with insomnia reported hallucinations.

In a clinical trial, 7% of pediatric patients treated with AMBIEN 0.25 mg/kg taken at bedtime reported hallucinations versus 0% treated with placebo [see Use in Specific Populations (8.4) ] .

Complex behaviors such as “sleep-driving” (i.e., driving while not fully awake after ingestion of a sedative-hypnotic, with amnesia for the event) have been reported in sedative-hypnotic-naive as well as in sedative-hypnotic-experienced persons.

Although behaviors such as “sleep-driving” have occurred with AMBIEN CR alone at therapeutic doses, the co-administration of alcohol and other CNS depressants increases the risk of such behaviors, as does the use of AMBIEN CR at doses exceeding the maximum recommended dose.

Due to the risk to the patient and the community, discontinuation of AMBIEN CR should be strongly considered for patients who report a “sleep-driving” episode.

Other complex behaviors (e.g., preparing and eating food, making phone calls, or having sex) have been reported in patients who are not fully awake after taking a sedative-hypnotic.

As with “sleep-driving”, patients usually do not remember these events.

Amnesia, anxiety and other neuro-psychiatric symptoms may also occur.

It can rarely be determined with certainty whether a particular instance of the abnormal behaviors listed above is drug induced, spontaneous in origin, or a result of an underlying psychiatric or physical disorder.

Nonetheless, the emergence of any new behavioral sign or symptom of concern requires careful and immediate evaluation.

5.5 Use in Patients with Depression In primarily depressed patients treated with sedative-hypnotics, worsening of depression, and suicidal thoughts and actions (including completed suicides), have been reported.

Suicidal tendencies may be present in such patients and protective measures may be required.

Intentional overdosage is more common in this group of patients; therefore, the lowest number of tablets that is feasible should be prescribed for the patient at any one time.

5.6 Respiratory Depression Although studies with 10 mg zolpidem tartrate did not reveal respiratory depressant effects at hypnotic doses in healthy subjects or in patients with mild-to-moderate chronic obstructive pulmonary disease (COPD), a reduction in the Total Arousal Index, together with a reduction in lowest oxygen saturation and increase in the times of oxygen desaturation below 80% and 90%, was observed in patients with mild-to-moderate sleep apnea when treated with zolpidem compared to placebo.

Since sedative-hypnotics have the capacity to depress respiratory drive, precautions should be taken if AMBIEN CR is prescribed to patients with compromised respiratory function.

Post-marketing reports of respiratory insufficiency in patients receiving 10 mg of zolpidem tartrate, most of whom had pre-existing respiratory impairment, have been reported.

The risk of respiratory depression should be considered prior to prescribing AMBIEN CR in patients with respiratory impairment including sleep apnea and myasthenia gravis.

5.7 Precipitation of Hepatic Encephalopathy GABA agonists such as zolpidem tartrate have been associated with precipitation of hepatic encephalopathy in patients with hepatic insufficiency.

In addition, patients with hepatic insufficiency do not clear zolpidem tartrate as rapidly as patients with normal hepatic function.

Avoid AMBIEN CR use in patients with severe hepatic impairment as it may contribute to encephalopathy [see Dosage and Administration (2.2) , Use in Specific Populations (8.7) , Clinical Pharmacology (12.3) ] .

5.8 Withdrawal Effects There have been reports of withdrawal signs and symptoms following the rapid dose decrease or abrupt discontinuation of zolpidem.

Monitor patients for tolerance, abuse, and dependence [see Drug Abuse and Dependence (9.2) and (9.3) ] .

5.9 Severe Injuries Zolpidem can cause drowsiness and a decreased level of consciousness, which may lead to falls and consequently to severe injuries.

Severe injuries such as hip fractures and intracranial hemorrhage have been reported.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise patients to read the FDA-approved patient labeling (Medication Guide).

Inform patients and their families about the benefits and risks of treatment with AMBIEN CR.

Inform patients of the availability of a Medication Guide and instruct them to read the Medication Guide prior to initiating treatment with AMBIEN CR and with each prescription refill.

Review the AMBIEN CR Medication Guide with every patient prior to initiation of treatment.

Instruct patients or caregivers that AMBIEN CR should be taken only as prescribed.

CNS Depressant Effects and Next-Day Impairment Tell patients that AMBIEN CR can cause next-day impairment even when used as prescribed, and that this risk is increased if dosing instructions are not carefully followed.

Caution patients against driving and other activities requiring complete mental alertness the day after use.

Inform patients that impairment can be present despite feeling fully awake.

Severe Anaphylactic and Anaphylactoid Reactions Inform patients that severe anaphylactic and anaphylactoid reactions have occurred with zolpidem.

Describe the signs/symptoms of these reactions and advise patients to seek medical attention immediately if any of them occur.

Sleep-driving and Other Complex Behaviors Instruct patients and their families that sedative hypnotics can cause abnormal thinking and behavior change, including “sleep driving” and other complex behaviors while not being fully awake (preparing and eating food, making phone calls, or having sex).

Tell patients to call you immediately if they develop any of these symptoms.

Suicide Tell patients to immediately report any suicidal thoughts.

Alcohol and Other Drugs Ask patients about alcohol consumption, medicines they are taking, and drugs they may be taking without a prescription.

Advise patients not to use AMBIEN CR if they drank alcohol that evening or before bed.

Tolerance, Abuse, and Dependence Tell patients not to increase the dose of AMBIEN CR on their own, and to inform you if they believe the drug “does not work”.

Administration Instructions Patients should be counseled to take AMBIEN CR right before they get into bed and only when they are able to stay in bed a full night (7–8 hours) before being active again.

AMBIEN CR tablets should not be taken with or immediately after a meal.

Advise patients NOT to take AMBIEN CR if they drank alcohol that evening.

DOSAGE AND ADMINISTRATION

2 Use the lowest dose effective for the patient and must not exceed a total of 12.5 mg daily ( 2.1 ) Recommended initial dose is a single dose of 6.25 mg for women, and a single dose of 6.25 or 12.5 mg for men, immediately before bedtime with at least 7–8 hours remaining before the planned time of awakening ( 2.1 ) Geriatric patients and patients with mild to moderate hepatic impairment: Recommended dose is 6.25 mg for men and women ( 2.2 ) Lower doses of CNS depressants may be necessary when taken concomitantly with AMBIEN CR ( 2.3 ) Tablets to be swallowed whole, not to be crushed, divided or chewed ( 2.4 ) The effect of AMBIEN CR may be slowed if taken with or immediately after a meal ( 2.4 ) 2.1 Dosage in Adults Use the lowest effective dose for the patient.

The recommended initial dose is 6.25 mg for women and either 6.25 or 12.5 mg for men, taken only once per night immediately before bedtime with at least 7–8 hours remaining before the planned time of awakening.

If the 6.25 mg dose is not effective, the dose can be increased to 12.5 mg.

In some patients, the higher morning blood levels following use of the 12.5 mg dose increase the risk of next day impairment of driving and other activities that require full alertness [see Warnings and Precautions (5.1) ] .

The total dose of AMBIEN CR should not exceed 12.5 mg once daily immediately before bedtime.

Ambien CR should be taken as a single dose and should not be readministered during the same night.

The recommended initial doses for women and men are different because zolpidem clearance is lower in women.

2.2 Special Populations Elderly or debilitated patients may be especially sensitive to the effects of zolpidem tartrate.

The recommended dose of AMBIEN CR in these patients is 6.25 mg once daily immediately before bedtime [see Warnings and Precautions (5.1) , Use in Specific Populations (8.5) ].

Patients with mild to moderate hepatic impairment do not clear the drug as rapidly as normal subjects.

The recommended dose of AMBIEN CR in these patients is 6.25 mg once daily immediately before bedtime.

Avoid AMBIEN CR use in patients with severe hepatic impairment as it may contribute to encephalopathy [see Warnings and Precautions (5.7) , Use in Specific Populations (8.7) , Clinical Pharmacology (12.3) ] .

2.3 Use with CNS Depressants Dosage adjustment may be necessary when AMBIEN CR is combined with other CNS depressant drugs because of the potentially additive effects [see Warnings and Precautions (5.1) ] .

2.4 Administration AMBIEN CR extended-release tablets should be swallowed whole, and not be divided, crushed, or chewed.

The effect of AMBIEN CR may be slowed by ingestion with or immediately after a meal.

Sodium Fluoride 0.5 MG/ML Mouthwash

Generic Name: SODIUM FLUORIDE
Brand Name: Anticavity Rinse
  • Substance Name(s):
  • SODIUM FLUORIDE

WARNINGS

Warnings for this product

INDICATIONS AND USAGE

Use aids in the prevention of dental cavities

INACTIVE INGREDIENTS

Inactive ingredients benzyl alcohol, calcium disodium EDTA, cetylpyridinium chloride, disodium EDTA, disodium phosphate, flavor, poloxamer 407, polysorbate 80, propylene glycol, red 33, sodium benzoate, sodium phosphate, sodium saccharin, sorbitol, water

PURPOSE

Purpose Anticavity rinse

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children.

If more than used for rinsing is accidentally swallowed, seep professional assistance or contact a Poison Control Center immediately.

OTHER SAFETY INFORMATION

SEALED WITH PRINTED NECKBAND FOR YOUR PROTECTION

DOSAGE AND ADMINISTRATION

Directions adults and children 6 years of age and older: use once a day after brushing your teeth with a toothpaste remove cap pour 10 milliliters (10 mL mark on inside of cap); do not fill above the 10mL mark vigorously swish 10 milliliters of rinse between your teeth for 1 minute and then spit out do not swallow the rinse do not eat or drink for 30 minutes after rinsing instruct children under 12 years of age in good rinsing habits (to minimize swallowing) supervise children as necessary until capable of using without supervision children under 6 years of age: consult a dentist or doctor

ACTIVE INGREDIENTS

Active ingredient Sodium fluoride 0.05% (0.02%w/v fluoride ion)

DRUG INTERACTIONS

7 The risks of using olanzapine in combination with other drugs have not been extensively evaluated in systematic studies.

Diazepam: May potentiate orthostatic hypotension.

( 7.1 , 7.2 ) Alcohol: May potentiate orthostatic hypotension.

( 7.1 ) Carbamazepine: Increased clearance of olanzapine.

( 7.1 ) Fluvoxamine: May increase olanzapine levels.

( 7.1 ) Olanzapine and Fluoxetine in Combination: Also refer to the Drug Interactions section of the package insert for Symbyax.

( 7.1 ) CNS Acting Drugs: Caution should be used when taken in combination with other centrally acting drugs and alcohol.

( 7.2 ) Antihypertensive Agents: Enhanced antihypertensive effect.

( 7.2 ) Levodopa and Dopamine Agonists: May antagonize levodopa/dopamine agonists.

( 7.2 ) Other Concomitant Drug Therapy: When using olanzapine in combination with lithium or valproate, refer to the Drug Interactions sections of the package insert for those products.

( 7.2 ) 7.1 Potential for Other Drugs to Affect Olanzapine Diazepam — The co-administration of diazepam with olanzapine potentiated the orthostatic hypotension observed with olanzapine [ see Drug Interactions (7.2) ] .

Cimetidine and Antacids — Single doses of cimetidine (800 mg) or aluminum- and magnesium-containing antacids did not affect the oral bioavailability of olanzapine.

Inducers of CYP1A2 — Carbamazepine therapy (200 mg bid) causes an approximately 50% increase in the clearance of olanzapine.

This increase is likely due to the fact that carbamazepine is a potent inducer of CYP1A2 activity.

Higher daily doses of carbamazepine may cause an even greater increase in olanzapine clearance.

Alcohol — Ethanol (45 mg/70 kg single dose) did not have an effect on olanzapine pharmacokinetics.

The co-administration of alcohol (i.e., ethanol) with olanzapine potentiated the orthostatic hypotension observed with olanzapine [see Drug Interactions (7.2)].

Inhibitors of CYP1A2 Fluvoxamine: Fluvoxamine, a CYP1A2 inhibitor, decreases the clearance of olanzapine.

This results in a mean increase in olanzapine C max following fluvoxamine of 54% in female nonsmokers and 77% in male smokers.

The mean increase in olanzapine AUC is 52% and 108%, respectively.

Lower doses of olanzapine should be considered in patients receiving concomitant treatment with fluvoxamine.

Inhibitors of CYP2D6 Fluoxetine: Fluoxetine (60 mg single dose or 60 mg daily dose for 8 days) causes a small (mean 16%) increase in the maximum concentration of olanzapine and a small (mean 16%) decrease in olanzapine clearance.

The magnitude of the impact of this factor is small in comparison to the overall variability between individuals, and therefore dose modification is not routinely recommended.

When using olanzapine and fluoxetine in combination, also refer to the Drug Interactions section of the package insert for Symbyax.

Warfarin — Warfarin (20 mg single dose) did not affect olanzapine pharmacokinetics [ see Drug Interactions (7.2) ] .

Inducers of CYP1A2 or Glucuronyl Transferase — Omeprazole and rifampin may cause an increase in olanzapine clearance.

Charcoal — The administration of activated charcoal (1 g) reduced the C max and AUC of oral olanzapine by about 60%.

As peak olanzapine levels are not typically obtained until about 6 hours after dosing, charcoal may be a useful treatment for olanzapine overdose.

Anticholinergic Drugs — Concomitant treatment with olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility.

Olanzapine should be used with caution in patients receiving medications having anticholinergic (antimuscarinic) effects [see Warnings and Precautions (5.14)] .

7.2 Potential for Olanzapine to Affect Other Drugs CNS Acting Drugs — Given the primary CNS effects of olanzapine, caution should be used when olanzapine is taken in combination with other centrally acting drugs and alcohol.

Antihypertensive Agents — Olanzapine, because of its potential for inducing hypotension, may enhance the effects of certain antihypertensive agents.

Levodopa and Dopamine Agonists — Olanzapine may antagonize the effects of levodopa and dopamine agonists.

Lithium — Multiple doses of olanzapine (10 mg for 8 days) did not influence the kinetics of lithium.

Therefore, concomitant olanzapine administration does not require dosage adjustment of lithium [see Warnings and Precautions (5.16)] .

Valproate — Olanzapine (10 mg daily for 2 weeks) did not affect the steady state plasma concentrations of valproate.

Therefore, concomitant olanzapine administration does not require dosage adjustment of valproate [see Warnings and Precautions (5.16)].

Effect of Olanzapine on Drug Metabolizing Enzymes — In vitro studies utilizing human liver microsomes suggest that olanzapine has little potential to inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A.

Thus, olanzapine is unlikely to cause clinically important drug interactions mediated by these enzymes.

Imipramine — Single doses of olanzapine did not affect the pharmacokinetics of imipramine or its active metabolite desipramine.

Warfarin — Single doses of olanzapine did not affect the pharmacokinetics of warfarin [see Drug Interactions (7.1)] .

Diazepam — Olanzapine did not influence the pharmacokinetics of diazepam or its active metabolite N-desmethyldiazepam.

However, diazepam co-administered with olanzapine increased the orthostatic hypotension observed with either drug given alone [see Drug Interactions (7.1)] .

Alcohol — Multiple doses of olanzapine did not influence the kinetics of ethanol [see Drug Interactions (7.1)] .

Biperiden — Multiple doses of olanzapine did not influence the kinetics of biperiden.

Theophylline — Multiple doses of olanzapine did not affect the pharmacokinetics of theophylline or its metabolites.

OVERDOSAGE

10 10.1 Human Experience In premarketing trials involving more than 3100 patients and/or normal subjects, accidental or intentional acute overdosage of olanzapine was identified in 67 patients.

In the patient taking the largest identified amount, 300 mg, the only symptoms reported were drowsiness and slurred speech.

In the limited number of patients who were evaluated in hospitals, including the patient taking 300 mg, there were no observations indicating an adverse change in laboratory analytes or ECG.

Vital signs were usually within normal limits following overdoses.

In postmarketing reports of overdose with olanzapine alone, symptoms have been reported in the majority of cases.

In symptomatic patients, symptoms with ≥10% incidence included agitation/aggressiveness, dysarthria, tachycardia, various extrapyramidal symptoms, and reduced level of consciousness ranging from sedation to coma.

Among less commonly reported symptoms were the following potentially medically serious reactions: aspiration, cardiopulmonary arrest, cardiac arrhythmias (such as supraventricular tachycardia and 1 patient experiencing sinus pause with spontaneous resumption of normal rhythm), delirium, possible neuroleptic malignant syndrome, respiratory depression/arrest, convulsion, hypertension, and hypotension.

Reports of fatality in association with overdose of olanzapine alone have been received.

In 1 case of death, the amount of acutely ingested olanzapine was reported to be possibly as low as 450 mg of oral olanzapine; however, in another case, a patient was reported to survive an acute olanzapine ingestion of approximately 2 g of oral olanzapine.

10.2 Management of Overdose There is no specific antidote to an overdose of olanzapine.

The possibility of multiple drug involvement should be considered.

Establish and maintain an airway and ensure adequate oxygenation and ventilation.

Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias.

Contact a Certified Poison Control Center for the most up to date information on the management of overdosage (1-800-222-1222).

For specific information about overdosage with lithium or valproate, refer to the Overdosage section of the prescribing information for those products.

For specific information about overdosage with olanzapine and fluoxetine in combination, refer to the Overdosage section of the Symbyax prescribing information.

DESCRIPTION

11 Olanzapine, USP is an atypical antipsychotic that belongs to the thienobenzodiazepine class.

The chemical designation is 2-methyl-4-(4-methyl-1-piperazinyl)-10 H -thieno[2,3- b ] [1,5]benzodiazepine.

The molecular formula is C 17 H 20 N 4 S, which corresponds to a molecular weight of 312.44.

The chemical structure is: Olanzapine, USP is a yellow crystalline solid, which is soluble in n-propanol; sparingly soluble in acetonitrile; slightly soluble in methanol and in dehydrated alcohol; practically insoluble in water.

Olanzapine orally disintegrating tablets, USP are intended for oral administration only.

Each orally disintegrating tablet contains olanzapine, USP equivalent to 5 mg, 10 mg, 15 mg or 20 mg.

It begins disintegrating in the mouth within seconds, allowing its contents to be subsequently swallowed with or without liquid.

Olanzapine orally disintegrating tablets, USP also contain the following inactive ingredients: aspartame, colloidal silicon dioxide, low-substituted hydroxyl propyl cellulose, magnesium stearate, mannitol, microcrystalline cellulose and strawberry flavor 52311 AP 0551 which contains artificial flavors, benzyl alcohol, maltodextrin, propylene glycol and triethyl citrate.

Olanzapine orally disintegrating tablets meets USP Disintegration Test 2.

CLINICAL STUDIES

14 When using olanzapine and fluoxetine in combination, also refer to the Clinical Studies section of the package insert for Symbyax.

14.1 Schizophrenia Adults The efficacy of oral olanzapine in the treatment of schizophrenia was established in 2 short-term (6-week) controlled trials of adult inpatients who met DSM III-R criteria for schizophrenia.

A single haloperidol arm was included as a comparative treatment in 1 of the 2 trials, but this trial did not compare these 2 drugs on the full range of clinically relevant doses for both.

Several instruments were used for assessing psychiatric signs and symptoms in these studies, among them the Brief Psychiatric Rating Scale (BPRS), a multi-item inventory of general psychopathology traditionally used to evaluate the effects of drug treatment in schizophrenia.

The BPRS psychosis cluster (conceptual disorganization, hallucinatory behavior, suspiciousness, and unusual thought content) is considered a particularly useful subset for assessing actively psychotic schizophrenic patients.

A second traditional assessment, the Clinical Global Impression (CGI), reflects the impression of a skilled observer, fully familiar with the manifestations of schizophrenia, about the overall clinical state of the patient.

In addition, 2 more recently developed scales were employed; these included the 30-item Positive and Negative Symptoms Scale (PANSS), in which are embedded the 18 items of the BPRS, and the Scale for Assessing Negative Symptoms (SANS).

The trial summaries below focus on the following outcomes: PANSS total and/or BPRS total; BPRS psychosis cluster; PANSS negative subscale or SANS; and CGI Severity.

The results of the trials follow: (1) In a 6-week, placebo-controlled trial (n=149) involving 2 fixed olanzapine doses of 1 and 10 mg/day (once daily schedule), olanzapine, at 10 mg/day (but not at 1 mg/day), was superior to placebo on the PANSS total score (also on the extracted BPRS total), on the BPRS psychosis cluster, on the PANSS Negative subscale, and on CGI Severity.

(2) In a 6-week, placebo-controlled trial (n=253) involving 3 fixed dose ranges of olanzapine (5 ± 2.5 mg/day, 10 ± 2.5 mg/day, and 15 ± 2.5 mg/day) on a once daily schedule, the 2 highest olanzapine dose groups (actual mean doses of 12 and 16 mg/day, respectively) were superior to placebo on BPRS total score, BPRS psychosis cluster, and CGI severity score; the highest olanzapine dose group was superior to placebo on the SANS.

There was no clear advantage for the high-dose group over the medium-dose group.

(3) In a longer-term trial, adult outpatients (n=326) who predominantly met DSM-IV criteria for schizophrenia and who remained stable on olanzapine during open-label treatment for at least 8 weeks were randomized to continuation on their current olanzapine doses (ranging from 10 to 20 mg/day) or to placebo.

The follow-up period to observe patients for relapse, defined in terms of increases in BPRS positive symptoms or hospitalization, was planned for 12 months, however, criteria were met for stopping the trial early due to an excess of placebo relapses compared to olanzapine relapses, and olanzapine was superior to placebo on time to relapse, the primary outcome for this study.

Thus, olanzapine was more effective than placebo at maintaining efficacy in patients stabilized for approximately 8 weeks and followed for an observation period of up to 8 months.

Examination of population subsets (race and gender) did not reveal any differential responsiveness on the basis of these subgroupings.

Adolescents The efficacy of oral olanzapine in the acute treatment of schizophrenia in adolescents (ages 13 to 17 years) was established in a 6-week double-blind, placebo-controlled, randomized trial of inpatients and outpatients with schizophrenia (n=107) who met diagnostic criteria according to DSM-IV-TR and confirmed by the Kiddie Schedule for Affective Disorders and Schizophrenia for School Aged Children-Present and Lifetime Version (K-SADS-PL).

The primary rating instrument used for assessing psychiatric signs and symptoms in this trial was the Anchored Version of the Brief Psychiatric Rating Scale for Children (BPRS-C) total score.

In this flexible-dose trial, olanzapine 2.5 to 20 mg/day (mean modal dose 12.5 mg/day, mean dose of 11.1 mg/day) was more effective than placebo in the treatment of adolescents diagnosed with schizophrenia, as supported by the statistically significantly greater mean reduction in BPRS-C total score for patients in the olanzapine treatment group than in the placebo group.

While there is no body of evidence available to answer the question of how long the adolescent patient treated with olanzapine should be maintained, maintenance efficacy can be extrapolated from adult data along with comparisons of olanzapine pharmacokinetic parameters in adult and adolescent patients.

It is generally recommended that responding patients be continued beyond the acute response, but at the lowest dose needed to maintain remission.

Patients should be periodically reassessed to determine the need for maintenance treatment.

14.2 Bipolar I Disorder (Manic or Mixed Episodes) Adults Monotherapy — The efficacy of oral olanzapine in the treatment of manic or mixed episodes was established in 2 short-term (one 3-week and one 4-week) placebo-controlled trials in adult patients who met the DSM-IV criteria for bipolar I disorder with manic or mixed episodes.

These trials included patients with or without psychotic features and with or without a rapid-cycling course.

The primary rating instrument used for assessing manic symptoms in these trials was the Young Mania Rating Scale (Y-MRS), an 11-item clinician-rated scale traditionally used to assess the degree of manic symptomatology (irritability, disruptive/aggressive behavior, sleep, elevated mood, speech, increased activity, sexual interest, language/thought disorder, thought content, appearance, and insight) in a range from 0 (no manic features) to 60 (maximum score).

The primary outcome in these trials was change from baseline in the Y-MRS total score.

The results of the trials follow: (1) In one 3-week placebo-controlled trial (n=67) which involved a dose range of olanzapine (5 to 20 mg/day, once daily, starting at 10 mg/day), olanzapine was superior to placebo in the reduction of Y-MRS total score.

In an identically designed trial conducted simultaneously with the first trial, olanzapine demonstrated a similar treatment difference, but possibly due to sample size and site variability, was not shown to be superior to placebo on this outcome.

(2) In a 4-week placebo-controlled trial (n=115) which involved a dose range of olanzapine (5 to 20 mg/day, once daily, starting at 15 mg/day), olanzapine was superior to placebo in the reduction of Y-MRS total score.

(3) In another trial, 361 patients meeting DSM-IV criteria for a manic or mixed episode of bipolar I disorder who had responded during an initial open-label treatment phase for about 2 weeks, on average, to olanzapine 5 to 20 mg/day were randomized to either continuation of olanzapine at their same dose (n=225) or to placebo (n=136), for observation of relapse.

Approximately 50% of the patients had discontinued from the olanzapine group by day 59 and 50% of the placebo group had discontinued by day 23 of double-blind treatment.

Response during the open-label phase was defined by having a decrease of the Y-MRS total score to ≤12 and HAM-D 21 to ≤8.

Relapse during the double-blind phase was defined as an increase of the Y-MRS or HAM-D 21 total score to ≥15, or being hospitalized for either mania or depression.

In the randomized phase, patients receiving continued olanzapine experienced a significantly longer time to relapse.

Adjunct to Lithium or Valproate — The efficacy of oral olanzapine with concomitant lithium or valproate in the treatment of manic or mixed episodes was established in 2 controlled trials in patients who met the DSM-IV criteria for bipolar I disorder with manic or mixed episodes.

These trials included patients with or without psychotic features and with or without a rapid-cycling course.

The results of the trials follow: (1) In one 6-week placebo-controlled combination trial, 175 outpatients on lithium or valproate therapy with inadequately controlled manic or mixed symptoms (Y-MRS ≥16) were randomized to receive either olanzapine or placebo, in combination with their original therapy.

Olanzapine (in a dose range of 5 to 20 mg/day, once daily, starting at 10 mg/day) combined with lithium or valproate (in a therapeutic range of 0.6 mEq/L to 1.2 mEq/L or 50 mcg/mL to 125 mcg/mL, respectively) was superior to lithium or valproate alone in the reduction of Y-MRS total score.

(2) In a second 6-week placebo-controlled combination trial, 169 outpatients on lithium or valproate therapy with inadequately controlled manic or mixed symptoms (Y-MRS ≥16) were randomized to receive either olanzapine or placebo, in combination with their original therapy.

Olanzapine (in a dose range of 5 to 20 mg/day, once daily, starting at 10 mg/day) combined with lithium or valproate (in a therapeutic range of 0.6 mEq/L to 1.2 mEq/L or 50 mcg/mL to 125 mcg/mL, respectively) was superior to lithium or valproate alone in the reduction of Y-MRS total score.

Adolescents Acute Monotherapy — The efficacy of oral olanzapine in the treatment of acute manic or mixed episodes in adolescents (ages 13 to 17 years) was established in a 3-week, double-blind, placebo-controlled, randomized trial of adolescent inpatients and outpatients who met the diagnostic criteria for manic or mixed episodes associated with bipolar I disorder (with or without psychotic features) according to the DSM-IV-TR (n=161).

Diagnosis was confirmed by the K-SADS-PL.

The primary rating instrument used for assessing manic symptoms in this trial was the Adolescent Structured Young-Mania Rating Scale (Y-MRS) total score.

In this flexible-dose trial, olanzapine 2.5 to 20 mg/day (mean modal dose 10.7 mg/day, mean dose of 8.9 mg/day) was more effective than placebo in the treatment of adolescents with manic or mixed episodes associated with bipolar I disorder, as supported by the statistically significantly greater mean reduction in Y-MRS total score for patients in the olanzapine treatment group than in the placebo group.

While there is no body of evidence available to answer the question of how long the adolescent patient treated with olanzapine should be maintained, maintenance efficacy can be extrapolated from adult data along with comparisons of olanzapine pharmacokinetic parameters in adult and adolescent patients.

It is generally recommended that responding patients be continued beyond the acute response, but at the lowest dose needed to maintain remission.

Patients should be periodically reassessed to determine the need for maintenance treatment.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 How Supplied Olanzapine orally disintegrating tablets, USP are yellow colored, round, flat face beveled edge, debossed tablets with characteristic flavour.

The tablets are available as follows: TABLET STRENGTH Olanzapine orally disintegrating tablets, USP 5 mg 10 mg 15 mg 20 mg Debossed D5; CO D10; CO D15; CO D20; CO NDC Codes: child-resistant blisters of 10 tablets 59746-306-12 59746-307-12 59746-308-12 59746-309-12 NDC Codes: Carton of 30 tablets (3 x 10 unit-dose) 59746-306-32 59746-307-32 59746-308-32 59746-309-32 16.2 Storage and Handling Store at 20ºC to 25°C (68ºF to 77ºF); excursions permitted to 15°C to 30°C (59ºF to 86ºF) [See USP Controlled Room Temperature].

The USP defines controlled room temperature as a temperature maintained thermostatically that encompasses the usual and customary working environment of 20°C to 25°C (68°F to 77°F); that results in a mean kinetic temperature calculated to be not more than 25°C; and that allows for excursions between 15°C and 30°C (59°F and 86°F) that are experienced in pharmacies, hospitals, and warehouses.

Protect olanzapine orally disintegrating tablets from light and moisture.

RECENT MAJOR CHANGES

Warnings and Precautions, Tardive Dyskinesia ( 5.6 ) 10/2019 Warnings and Precautions, Use in Patients with Concomitant Illness ( 5.14 ) Removed 4/2020 Warnings and Precautions, Anticholinergic (antimuscarinic) Effects ( 5.14 ) 4/2020

GERIATRIC USE

8.5 Geriatric Use Of the 2500 patients in premarketing clinical studies with oral olanzapine, 11% (263) were 65 years of age or over.

In patients with schizophrenia, there was no indication of any different tolerability of olanzapine in the elderly compared to younger patients.

Studies in elderly patients with dementia-related psychosis have suggested that there may be a different tolerability profile in this population compared to younger patients with schizophrenia.

Elderly patients with dementia-related psychosis treated with olanzapine are at an increased risk of death compared to placebo.

In placebo-controlled studies of olanzapine in elderly patients with dementia-related psychosis, there was a higher incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack) in patients treated with olanzapine compared to patients treated with placebo.

In 5 placebo-controlled studies of olanzapine in elderly patients with dementia-related psychosis (n=1184), the following adverse reactions were reported in olanzapine-treated patients at an incidence of at least 2% and significantly greater than placebo-treated patients: falls, somnolence, peripheral edema, abnormal gait, urinary incontinence, lethargy, increased weight, asthenia, pyrexia, pneumonia, dry mouth and visual hallucinations.

The rate of discontinuation due to adverse reactions was greater with olanzapine than placebo (13% vs 7%).

Elderly patients with dementia-related psychosis treated with olanzapine are at an increased risk of death compared to placebo.

Olanzapine is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning, Warnings and Precautions (5.1), and Patient Counseling Information (17)].

Olanzapine is not approved for the treatment of patients with dementia-related psychosis.

Also, the presence of factors that might decrease pharmacokinetic clearance or increase the pharmacodynamic response to olanzapine should lead to consideration of a lower starting dose for any geriatric patient [see Boxed Warning, Dosage and Administration (2.1), and Warnings and Precautions (5.1)] .

Clinical studies of olanzapine and fluoxetine in combination did not include sufficient numbers of patients ≥65 years of age to determine whether they respond differently from younger patients.

DOSAGE FORMS AND STRENGTHS

3 Olanzapine orally disintegrating tablets, USP are yellow colored, round, flat face beveled edge, debossed tablets with characteristic flavour.

Tablets are not scored.

The tablets are available as follows: TABLET STRENGTH Olanzapine Orally Disintegrating Tablets 5 mg 10 mg 15 mg 20 mg Debossed D5;CO D10;CO D15;CO D20;CO Orally Disintegrating Tablets (not scored): 5 mg, 10 mg, 15 mg, 20 mg ( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action The mechanism of action of olanzapine, in the listed indications is unclear.

However, the efficacy of olanzapine in schizophrenia could be mediated through a combination of dopamine and serotonin type 2 (5HT 2 ) antagonism.

INDICATIONS AND USAGE

1 Olanzapine orally disintegrating tablets are atypical antipsychotic indicated: As oral formulation for the: Treatment of schizophrenia.

( 1.1 ) Adults: Efficacy was established in three clinical trials in patients with schizophrenia: two 6-week trials and one maintenance trial.

( 14.1 ) Adolescents (ages 13 to 17): Efficacy was established in one 6-week trial in patients with schizophrenia ( 14.1 ).

The increased potential (in adolescents compared with adults) for weight gain and dyslipidemia may lead clinicians to consider prescribing other drugs first in adolescents.

( 1.1 ) Acute treatment of manic or mixed episodes associated with bipolar I disorder and maintenance treatment of bipolar I disorder.

( 1.2 ) Adults: Efficacy was established in three clinical trials in patients with manic or mixed episodes of bipolar I disorder: two 3- to 4-week trials and one maintenance trial.

( 14.2 ) Adolescents (ages 13 to 17): Efficacy was established in one 3-week trial in patients with manic or mixed episodes associated with bipolar I disorder ( 14.2 ).

The increased potential (in adolescents compared with adults) for weight gain and dyslipidemia may lead clinicians to consider prescribing other drugs first in adolescents.

( 1.2 ) Medication therapy for pediatric patients with schizophrenia or bipolar I disorder should be undertaken only after a thorough diagnostic evaluation and with careful consideration of the potential risks.

( 1.3 ) Adjunct to valproate or lithium in the treatment of manic or mixed episodes associated with bipolar I disorder.

( 1.2 ) Efficacy was established in two 6-week clinical trials in adults ( 14.2 ).

Maintenance efficacy has not been systematically evaluated.

As O lanzapine and Fluoxetine in Combination for the: Treatment of depressive episodes associated with bipolar I disorder.

( 1.5 ) Efficacy was established with Symbyax (olanzapine and fluoxetine in combination); refer to the product label for Symbyax.

Treatment of treatment resistant depression.

( 1.6 ) Efficacy was established with Symbyax (olanzapine and fluoxetine in combination) in adults; refer to the product label for Symbyax.

1.1 Schizophrenia Olanzapine orally disintegrating tablets are indicated for the treatment of schizophrenia.

Efficacy was established in three clinical trials in adult patients with schizophrenia: two 6-week trials and one maintenance trial.

In adolescent patients with schizophrenia (ages 13 to 17), efficacy was established in one 6-week trial [ see Clinical Studies (14.1 )] .

When deciding among the alternative treatments available for adolescents, clinicians should consider the increased potential (in adolescents as compared with adults) for weight gain and dyslipidemia.

Clinicians should consider the potential long-term risks when prescribing to adolescents, and in many cases this may lead them to consider prescribing other drugs first in adolescents [see Warnings and Precautions (5.5) ] .

1.2 Bipolar I Disorder (Manic or Mixed Episodes) Monotherapy — Olanzapine orally disintegrating tablets are indicated for the acute treatment of manic or mixed episodes associated with bipolar I disorder and maintenance treatment of bipolar I disorder.

Efficacy was established in three clinical trials in adult patients with manic or mixed episodes of bipolar I disorder: two 3- to 4-week trials and one monotherapy maintenance trial.

In adolescent patients with manic or mixed episodes associated with bipolar I disorder (ages 13 to 17), efficacy was established in one 3-week trial [ see Clinical Studies (14.2)] .

When deciding among the alternative treatments available for adolescents, clinicians should consider the increased potential (in adolescents as compared with adults) for weight gain and dyslipidemia.

Clinicians should consider the potential long-term risks when prescribing to adolescents, and in many cases this may lead them to consider prescribing other drugs first in adolescents [see Warnings and Precautions (5.5) ] .

Adjunctive Therapy to Lithium or Valproate — Olanzapine orally disintegrating tablets are indicated for the treatment of manic or mixed episodes associated with bipolar I disorder as an adjunct to lithium or valproate.

Efficacy was established in two 6-week clinical trials in adults.

The effectiveness of adjunctive therapy for longer-term use has not been systematically evaluated in controlled trials [see Clinical Studies (14.2)] .

1.3 Special Considerations in Treating Pediatric Schizophrenia and Bipolar I Disorder Pediatric schizophrenia and bipolar I disorder are serious mental disorders; however, diagnosis can be challenging.

For pediatric schizophrenia, symptom profiles can be variable, and for bipolar I disorder, pediatric patients may have variable patterns of periodicity of manic or mixed symptoms.

It is recommended that medication therapy for pediatric schizophrenia and bipolar I disorder be initiated only after a thorough diagnostic evaluation has been performed and careful consideration given to the risks associated with medication treatment.

Medication treatment for both pediatric schizophrenia and bipolar I disorder should be part of a total treatment program that often includes psychological, educational and social interventions.

1.5 Olanzapine and Fluoxetine in Combination: Depressive Episodes Associated with Bipolar I Disorder Olanzapine and fluoxetine in combination are indicated for the treatment of depressive episodes associated with bipolar I disorder, based on clinical studies.

When using olanzapine and fluoxetine in combination, refer to the Clinical Studies section of the package insert for Symbyax.

Olanzapine orally disintegrating tablets monotherapy is not indicated for the treatment of depressive episodes associated with bipolar I disorder.

1.6 Olanzapine and Fluoxetine in Combination: Treatment Resistant Depression Oral Olanzapine and fluoxetine in combination is indicated for the treatment of treatment resistant depression (major depressive disorder in patients who do not respond to 2 separate trials of different antidepressants of adequate dose and duration in the current episode), based on clinical studies in adult patients.

When using olanzapine and fluoxetine in combination, refer to the Clinical Studies section of the package insert for Symbyax.

Olanzapine orally disintegrating tablets monotherapy is not indicated for the treatment of treatment resistant depression.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of oral olanzapine in the treatment of schizophrenia and manic or mixed episodes associated with bipolar I disorder were established in short-term studies in adolescents (ages 13 to 17 years).

Use of olanzapine in adolescents is supported by evidence from adequate and well-controlled studies of olanzapine in which 268 adolescents received olanzapine in a range of 2.5 to 20 mg/day [see Clinical Studies (14.1, 14.2)].

Recommended starting dose for adolescents is lower than that for adults [see Dosage and Administration (2.1, 2.2)] .

Compared to patients from adult clinical trials, adolescents were likely to gain more weight, experience increased sedation, and have greater increases in total cholesterol, triglycerides, LDL cholesterol, prolactin and hepatic aminotransferase levels [see Warnings and Precautions (5.5, 5.15, 5.17) and Adverse Reactions (6.1)] .

When deciding among the alternative treatments available for adolescents, clinicians should consider the increased potential (in adolescents as compared with adults) for weight gain and dyslipidemia.

Clinicians should consider the potential long-term risks when prescribing to adolescents, and in many cases this may lead them to consider prescribing other drugs first in adolescents [see Indications and Usage (1.1, 1.2)] .

Safety and effectiveness of olanzapine in children <13 years of age have not been established [see Patient Counseling Information (17)] .

Safety and efficacy of olanzapine and fluoxetine in combination in children and adolescents (10 to 17 years of age) have been established for the acute treatment of depressive episodes associated with bipolar I disorder.

Safety and effectiveness of olanzapine and fluoxetine in combination in children < 10 years of age have not been established.

PREGNANCY

8.1 Pregnancy Pregnancy Exposure Registry There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to atypical antipsychotics, including olanzapine, during pregnancy.

Healthcare providers are encouraged to register patients by contacting the National Pregnancy Registry for Atypical Antipsychotics at 1-866-961-2388 or visit http://womensmentalhealth.org/clinical-and-research-programs/pregnancyregistry/.

Risk Summary Neonates exposed to antipsychotic drugs, including olanzapine, during the third trimester are at risk for extrapyramidal and/or withdrawal symptoms following delivery (see Clinical Considerations).

Overall available data from published epidemiologic studies of pregnant women exposed to olanzapine have not established a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes (see Data).

There are risks to the mother associated with untreated schizophrenia or bipolar I disorder and with exposure to antipsychotics, including olanzapine, during pregnancy (see Clinical Considerations).

Olanzapine was not teratogenic when administered orally to pregnant rats and rabbits at doses that are 9- and 30-times the daily oral maximum recommended human dose (MRHD), based on mg/m 2 body surface area; some fetal toxicities were observed at these doses ( see Data ).

The estimated background risk of major birth defects and miscarriage for the indicated populations is unknown.

All pregnancies have a background risk of birth defects, loss, or other adverse outcomes.

In the U.S.

general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Clinical Considerations Disease-associated maternal and embryo/fetal risk There is a risk to the mother from untreated schizophrenia or bipolar I disorder, including increased risk of relapse, hospitalization, and suicide.

Schizophrenia and bipolar I disorder are associated with increased adverse perinatal outcomes, including preterm birth.

It is not known if this is a direct result of the illness or other comorbid factors.

Fetal/Neonatal adverse reactions Extrapyramidal and/or withdrawal symptoms, including agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, and feeding disorder have been reported in neonates who were exposed to antipsychotic drugs, including olanzapine, during the third trimester of pregnancy.

These symptoms have varied in severity.

Monitor neonates for extrapyramidal and/or withdrawal symptoms and manage symptoms appropriately.

Some neonates recovered within hours or days without specific treatment; others required prolonged hospitalization.

Data Human Data Placental passage has been reported in published study reports; however, the placental passage ratio was highly variable ranging between 7% to 167% at birth following exposure during pregnancy.

The clinical relevance of this finding is unknown.

Published data from observational studies, birth registries, and case reports that have evaluated the use of atypical antipsychotics during pregnancy do not establish an increased risk of major birth defects.

A retrospective cohort study from a Medicaid database of 9258 women exposed to antipsychotics during pregnancy did not indicate an overall increased risk for major birth defects.

Animal Data In oral reproduction studies in rats at doses up to 18 mg/kg/day and in rabbits at doses up to 30 mg/kg/day (9 and 30 times the daily oral MRHD based on mg/m 2 body surface area, respectively), no evidence of teratogenicity was observed.

In an oral rat teratology study, early resorptions and increased numbers of nonviable fetuses were observed at a dose of 18 mg/kg/day (9 times the daily oral MRHD based on mg/m 2 body surface area), and gestation was prolonged at 10 mg/kg/day (5 times the daily oral MRHD based on mg/m 2 body surface area).

In an oral rabbit teratology study, fetal toxicity manifested as increased resorptions and decreased fetal weight, occurred at a maternally toxic dose of 30 mg/kg/day (30 times the daily oral MRHD based on mg/m 2 body surface area).

BOXED WARNING

WARNING: INCREASED MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death.

Analyses of seventeen placebo-controlled trials (modal duration of 10 weeks), largely in patients taking atypical antipsychotic drugs, revealed a risk of death in drug-treated patients of between 1.6 to 1.7 times the risk of death in placebo-treated patients.

Over the course of a typical 10-week controlled trial, the rate of death in drug-treated patients was about 4.5%, compared to a rate of about 2.6% in the placebo group.

Although the causes of death were varied, most of the deaths appeared to be either cardiovascular (e.g., heart failure, sudden death) or infectious (e.g., pneumonia) in nature.

Observational studies suggest that, similar to atypical antipsychotic drugs, treatment with conventional antipsychotic drugs may increase mortality.

The extent to which the findings of increased mortality in observational studies may be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear .

Olanzapine is not approved for the treatment of patients with dementia-related psychosis [see Warnings and Precautions (5.1) , Use in Specific Populations (8.5 ), and Patient Counseling Information (17) ] .

When using olanzapine and fluoxetine in combination, also refer to the Boxed Warning section of the package insert for Symbyax.

WARNING: INCREASED MORTALITY IN ELDERLY PATIENTS WITH DEMENTIA-RELATED PSYCHOSIS See full prescribing information for complete boxed warning.

Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death.

Olanzapine is not approved for the treatment of patients with dementia-related psychosis.

( 5.1 , 8.5 , 17 ) When using olanzapine and fluoxetine in combination, also refer to the Boxed Warning section of the package insert for Symbyax.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS When using olanzapine and fluoxetine in combination, also refer to the Warnings and Precautions section of the package insert for Symbyax.

Elderly Patients with Dementia-Related Psychosis: Increased risk of death and increased incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack).

( 5.1 ) Suicide: The possibility of a suicide attempt is inherent in schizophrenia and in bipolar I disorder, and close supervision of high-risk patients should accompany drug therapy; when using in combination with fluoxetine, also refer to the Boxed Warning and Warnings and Precautions sections of the package insert for Symbyax.

( 5.2 ) Neuroleptic Malignant Syndrome: Manage with immediate discontinuation and close monitoring.

( 5.3 ) Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): Discontinue if DRESS is suspected.

( 5.4) Metabolic Changes: Atypical antipsychotic drugs have been associated with metabolic changes including hyperglycemia, dyslipidemia, and weight gain.

( 5.5 ) Hyperglycemia a nd Diabetes Mellitus : In some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients taking olanzapine.

Patients taking olanzapine should be monitored for symptoms of hyperglycemia and undergo fasting blood glucose testing at the beginning of, and periodically during, treatment.

( 5.

5) Dyslipidemia: Undesirable alterations in lipids have been observed.

Appropriate clinical monitoring is recommended, including fasting blood lipid testing at the beginning of, and periodically during, treatment.

( 5.5 ) Weight Gain: Potential consequences of weight gain should be considered.

Patients should receive regular monitoring of weight.

( 5.5 ) Tardive Dyskinesia: Discontinue if clinically appropriate.

( 5.6 ) Orthostatic Hypotension: Orthostatic hypotension associated with dizziness, tachycardia, bradycardia and, in some patients, syncope, may occur especially during initial dose titration.

Use caution in patients with cardiovascular disease, cerebrovascular disease, and those conditions that could affect hemodynamic responses.

( 5.

7) Leukopenia, Neutropenia, and Agranulocytosis: Has been reported with antipsychotics, including olanzapine.

Patients with a history of a clinically significant low white blood cell count (WBC) or drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and discontinuation of olanzapine should be considered at the first sign of a clinically significant decline in WBC in the absence of other causative factors.

( 5.9 ) Seizures: Use cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold.

( 5.

11) Potential for Cognitive and Motor Impairment: Has potential to impair judgment, thinking, and motor skills.

Use caution when operating machinery.

( 5.1 2) Anticholinergic (antimuscarinic) Effects: Use with caution with other anticholinergic drugs and in patients with urinary retention, prostatic hypertrophy, constipation, paralytic ileus or related conditions.

( 5.14 ) Hyperprolactinemia: May elevate prolactin levels.

( 5.1 5) Use in Combination with Fluoxetine, Lithium or Valproate: Also refer to the package inserts for Symbyax, lithium, or valproate.

( 5.16 ) Laboratory Tests: Monitor fasting blood glucose and lipid profiles at the beginning of, and periodically during, treatment.

( 5.1 7) 5.1 Elderly Patients with Dementia-Related Psychosis Increased Mortality — Elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death.

Olanzapine is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning, Use in Specific Populations (8.5) , and Patient Counseling Information (17)] .

In placebo-controlled clinical trials of elderly patients with dementia-related psychosis, the incidence of death in olanzapine-treated patients was significantly greater than placebo-treated patients (3.5% vs 1.5%, respectively).

Cerebrovascular Adverse Events (CVAE), Including Stroke — Cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatalities, were reported in patients in trials of olanzapine in elderly patients with dementia-related psychosis.

In placebo-controlled trials, there was a significantly higher incidence of cerebrovascular adverse events in patients treated with olanzapine compared to patients treated with placebo.

Olanzapine is not approved for the treatment of patients with dementia-related psychosis [see Boxed Warning and Patient Counseling Information (17 )] .

5.2 Suicide The possibility of a suicide attempt is inherent in schizophrenia and in bipolar I disorder, and close supervision of high-risk patients should accompany drug therapy.

Prescriptions for olanzapine should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose.

5.3 Neuroleptic Malignant Syndrome (NMS) A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with administration of antipsychotic drugs, including olanzapine.

Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis and cardiac dysrhythmia).

Additional signs may include elevated creatinine phosphokinase, myoglobinuria (rhabdomyolysis), and acute renal failure.

The diagnostic evaluation of patients with this syndrome is complicated.

In arriving at a diagnosis, it is important to exclude cases where the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS).

Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever, and primary central nervous system pathology.

The management of NMS should include: 1) immediate discontinuation of antipsychotic drugs and other drugs not essential to concurrent therapy; 2) intensive symptomatic treatment and medical monitoring; and 3) treatment of any concomitant serious medical problems for which specific treatments are available.

There is no general agreement about specific pharmacological treatment regimens for NMS.

If a patient requires antipsychotic drug treatment after recovery from NMS, the potential reintroduction of drug therapy should be carefully considered.

The patient should be carefully monitored, since recurrences of NMS have been reported [see Patient Counseling Information (17) ] .

5.4 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) has been reported with olanzapine exposure.

DRESS may present with a cutaneous reaction (such as rash or exfoliative dermatitis), eosinophilia, fever, and/or lymphadenopathy with systemic complications such as hepatitis, nephritis, pneumonitis, myocarditis, and/or pericarditis.

DRESS is sometimes fatal.

Discontinue olanzapine if DRESS is suspected [ see Patient Counseling Information (17 )] .

5.5 Metabolic Changes Atypical antipsychotic drugs have been associated with metabolic changes including hyperglycemia, dyslipidemia, and weight gain.

Metabolic changes may be associated with increased cardiovascular/cerebrovascular risk.

Olanzapine’s specific metabolic profile is presented below.

Hyperglycemia and Diabetes Mellitus Healthcare providers should consider the risks and benefits when prescribing olanzapine to patients with an established diagnosis of diabetes mellitus, or having borderline increased blood glucose level (fasting 100 to 126 mg/dL, nonfasting 140 to 200 mg/dL).

Patients taking olanzapine should be monitored regularly for worsening of glucose control.

Patients starting treatment with olanzapine should undergo fasting blood glucose testing at the beginning of treatment and periodically during treatment.

Any patient treated with atypical antipsychotics should be monitored for symptoms of hyperglycemia including polydipsia, polyuria, polyphagia, and weakness.

Patients who develop symptoms of hyperglycemia during treatment with atypical antipsychotics should undergo fasting blood glucose testing.

In some cases, hyperglycemia has resolved when the atypical antipsychotic was discontinued; however, some patients required continuation of anti-diabetic treatment despite discontinuation of the suspect drug [see Patient Counseling Information (17) ] .

Hyperglycemia, in some cases extreme and associated with ketoacidosis or hyperosmolar coma or death, has been reported in patients treated with atypical antipsychotics including olanzapine.

Assessment of the relationship between atypical antipsychotic use and glucose abnormalities is complicated by the possibility of an increased background risk of diabetes mellitus in patients with schizophrenia and the increasing incidence of diabetes mellitus in the general population.

Epidemiological studies suggest an increased risk of treatment-emergent hyperglycemia-related adverse reactions in patients treated with the atypical antipsychotics.

While relative risk estimates are inconsistent, the association between atypical antipsychotics and increases in glucose levels appears to fall on a continuum and olanzapine appears to have a greater association than some other atypical antipsychotics.

Mean increases in blood glucose have been observed in patients treated (median exposure of 9.2 months) with olanzapine in phase 1 of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE).

The mean increase of serum glucose (fasting and nonfasting samples) from baseline to the average of the 2 highest serum concentrations was 15.0 mg/dL.

In a study of healthy volunteers, subjects who received olanzapine (N=22) for 3 weeks had a mean increase compared to baseline in fasting blood glucose of 2.3 mg/dL.

Placebo-treated subjects (N=19) had a mean increase in fasting blood glucose compared to baseline of 0.34 mg/dL.

Olanzapine Monotherapy in Adults — In an analysis of 5 placebo-controlled adult olanzapine monotherapy studies with a median treatment duration of approximately 3 weeks, olanzapine was associated with a greater mean change in fasting glucose levels compared to placebo (2.76 mg/dL versus 0.17 mg/dL).

The difference in mean changes between olanzapine and placebo was greater in patients with evidence of glucose dysregulation at baseline (patients diagnosed with diabetes mellitus or related adverse reactions, patients treated with anti-diabetic agents, patients with a baseline random glucose level ≥200 mg/dL, and/or a baseline fasting glucose level ≥126 mg/dL).

Olanzapine-treated patients had a greater mean HbA 1c increase from baseline of 0.04% (median exposure 21 days), compared to a mean HbA 1c decrease of 0.06% in placebo-treated subjects (median exposure 17 days).

In an analysis of 8 placebo-controlled studies (median treatment exposure 4-5 weeks), 6.1% of olanzapine-treated subjects (N=855) had treatment-emergent glycosuria compared to 2.8% of placebo-treated subjects (N=599).

Table 2 shows short-term and long-term changes in fasting glucose levels from adult olanzapine monotherapy studies.

Table 2: Changes in Fasting Glucose Levels from Adult Olanzapine Monotherapy Studies Up to 12 weeks exposure At least 48 weeks exposure Laboratory Analyte Category Change (at least once) from Baseline Treatment Arm N Patients N Patients Fasting Glucose Normal to High (<100 mg/dL to ≥126 mg/dL) Olanzapine 543 2.2% 345 12.8% Placebo 293 3.4% NA a NA a Borderline to High (≥100 mg/dL and <126 mg/dL to ≥126 mg/dL) Olanzapine 178 17.4% 127 26% Placebo 96 11.5% NA a NA a a Not Applicable.

The mean change in fasting glucose for patients exposed at least 48 weeks was 4.2 mg/dL (N=487).

In analyses of patients who completed 9 to 12 months of olanzapine therapy, mean change in fasting and nonfasting glucose levels continued to increase over time.

Olanzapine Monotherapy in Adolescents — The safety and efficacy of olanzapine have not been established in patients under the age of 13 years.

In an analysis of 3 placebo-controlled olanzapine monotherapy studies of adolescent patients, including those with schizophrenia (6 weeks) or bipolar I disorder (manic or mixed episodes) (3 weeks), olanzapine was associated with a greater mean change from baseline in fasting glucose levels compared to placebo (2.68 mg/dL versus -2.59 mg/dL).

The mean change in fasting glucose for adolescents exposed at least 24 weeks was 3.1 mg/dL (N=121).

Table 3 shows short-term and long-term changes in fasting blood glucose from adolescent olanzapine monotherapy studies.

Table 3: Changes in Fasting Glucose Levels from Adolescent Olanzapine Monotherapy Studies Up to 12 weeks exposure At least 24 weeks exposure Laboratory Analyte Category Change (at least once) from Baseline Treatment Arm N Patients N Patients Fasting Glucose Normal to High (<100 mg/dL to ≥126 mg/dL) Olanzapine 124 0% 108 0.9% Placebo 53 1.9% NA a NA a Borderline to High (≥100 mg/dL and <126 mg/dL to ≥126 mg/dL) Olanzapine 14 14.3% 13 23.1% Placebo 13 0% NA a NA a a Not Applicable.

Dyslipidemia Undesirable alterations in lipids have been observed with olanzapine use.

Clinical monitoring, including baseline and periodic follow-up lipid evaluations in patients using olanzapine, is recommended [see Patient Counseling Information (17)].

Clinically significant, and sometimes very high (>500 mg/dL), elevations in triglyceride levels have been observed with olanzapine use.

Modest mean increases in total cholesterol have also been seen with olanzapine use.

Olanzapine Monotherapy in Adults — In an analysis of 5 placebo-controlled olanzapine monotherapy studies with treatment duration up to 12 weeks, olanzapine-treated patients had increases from baseline in mean fasting total cholesterol, LDL cholesterol, and triglycerides of 5.3 mg/dL, 3.0 mg/dL, and 20.8 mg/dL respectively compared to decreases from baseline in mean fasting total cholesterol, LDL cholesterol, and triglycerides of 6.1 mg/dL, 4.3 mg/dL, and 10.7 mg/dL for placebo-treated patients.

For fasting HDL cholesterol, no clinically meaningful differences were observed between olanzapine-treated patients and placebo-treated patients.

Mean increases in fasting lipid values (total cholesterol, LDL cholesterol, and triglycerides) were greater in patients without evidence of lipid dysregulation at baseline, where lipid dysregulation was defined as patients diagnosed with dyslipidemia or related adverse reactions, patients treated with lipid lowering agents, or patients with high baseline lipid levels.

In long-term studies (at least 48 weeks), patients had increases from baseline in mean fasting total cholesterol, LDL cholesterol, and triglycerides of 5.6 mg/dL, 2.5 mg/dL, and 18.7 mg/dL, respectively, and a mean decrease in fasting HDL cholesterol of 0.16 mg/dL.

In an analysis of patients who completed 12 months of therapy, the mean nonfasting total cholesterol did not increase further after approximately 4-6 months.

The proportion of patients who had changes (at least once) in total cholesterol, LDL cholesterol or triglycerides from normal or borderline to high, or changes in HDL cholesterol from normal or borderline to low, was greater in long-term studies (at least 48 weeks) as compared with short-term studies.

Table 4 shows categorical changes in fasting lipids values.

Table 4: Changes in Fasting Lipids Values from Adult Olanzapine Monotherapy Studies Up to 12 weeks exposure At least 48 weeks exposure Laboratory Analyte Category Change (at least once) from Baseline Treatment Arm N Patients N Patients Fasting Triglycerides Increase by ≥50 mg/dL Olanzapine 745 39.6% 487 61.4% Placebo 402 26.1% NA a NA a Normal to High (<150 mg/dL to ≥200 mg/dL) Olanzapine 457 9.2% 293 32.4% Placebo 251 4.4% NA a NA a Borderline to High (≥150 mg/dL and <200 mg/dL to ≥200 mg/dL) Olanzapine 135 39.3% 75 70.7% Placebo 65 20% NA a NA a Fasting Total Cholesterol Increase by ≥40 mg/dL Olanzapine 745 21.6% 489 32.9% Placebo 402 9.5% NA a NA a Normal to High (<200 mg/dL to ≥240 mg/dL) Olanzapine 392 2.8% 283 14.8% Placebo 207 2.4% NA a NA a Borderline to High (≥200 mg/dL and <240 mg/dL to ≥240 mg/dL) Olanzapine 222 23% 125 55.2% Placebo 112 12.5% NA a NA a Fasting LDL Cholesterol Increase by ≥30 mg/dL Olanzapine 536 23.7% 483 39.8% Placebo 304 14.1% NA a NA a Normal to High (<100 mg/dL to ≥160 mg/dL) Olanzapine 154 0% 123 7.3% Placebo 82 1.2% NA a NA a Borderline to High (≥100 mg/dL and <160 mg/dL to ≥160 mg/dL) Olanzapine 302 10.6% 284 31% Placebo 173 8.1% NA a NA a a Not Applicable.

In phase 1 of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE), over a median exposure of 9.2 months, the mean increase in triglycerides in patients taking olanzapine was 40.5 mg/dL.

In phase 1 of CATIE, the mean increase in total cholesterol was 9.4 mg/dL.

Olanzapine Monotherapy in Adolescents — The safety and efficacy of olanzapine have not been established in patients under the age of 13 years.

In an analysis of 3 placebo-controlled olanzapine monotherapy studies of adolescents, including those with schizophrenia (6 weeks) or bipolar I disorder (manic or mixed episodes) (3 weeks), olanzapine-treated adolescents had increases from baseline in mean fasting total cholesterol, LDL cholesterol, and triglycerides of 12.9 mg/dL, 6.5 mg/dL, and 28.4 mg/dL, respectively, compared to increases from baseline in mean fasting total cholesterol and LDL cholesterol of 1.3 mg/dL and 1.0 mg/dL, and a decrease in triglycerides of 1.1 mg/dL for placebo-treated adolescents.

For fasting HDL cholesterol, no clinically meaningful differences were observed between olanzapine-treated adolescents and placebo-treated adolescents.

In long-term studies (at least 24 weeks), adolescents had increases from baseline in mean fasting total cholesterol, LDL cholesterol, and triglycerides of 5.5 mg/dL, 5.4 mg/dL, and 20.5 mg/dL, respectively, and a mean decrease in fasting HDL cholesterol of 4.5 mg/dL.

Table 5 shows categorical changes in fasting lipids values in adolescents.

Table 5: Changes in Fasting Lipids Values from Adolescent Olanzapine Monotherapy Studies Up to 6 weeks exposure At least 24 weeks exposure Laboratory Analyte Category Change (at least once) from Baseline Treatment Arm N Patients N Patients Fasting Triglycerides Increase by ≥50 mg/dL Olanzapine 138 37% 122 45.9% Placebo 66 15.2% NA a NA a Normal to High (130 mg/dL) Olanzapine 67 26.9% 66 36.4% Placebo 28 10.7% NA a NA a Borderline to High (≥90 mg/dL and ≤130 mg/dL to >130 mg/dL) Olanzapine 37 59.5% 31 64.5% Placebo 17 35.3% NA a NA a Fasting Total Cholesterol Increase by ≥40 mg/dL Olanzapine 138 14.5% 122 14.8% Placebo 66 4.5% NA a NA a Normal to High (<170 mg/dL to ≥200 mg/dL) Olanzapine 87 6.9% 78 7.7% Placebo 43 2.3% NA a NA a Borderline to High (≥170 mg/dL and <200 mg/dL to ≥200 mg/dL) Olanzapine 36 38.9% 33 57.6% Placebo 13 7.7% NA a NA a Fasting LDL Cholesterol Increase by ≥30 mg/dL Olanzapine 137 17.5% 121 22.3% Placebo 63 11.1% NA a NA a Normal to High (<110 mg/dL to ≥130 mg/dL) Olanzapine 98 5.1% 92 10.9% Placebo 44 4.5% NA a NA a Borderline to High (≥110 mg/dL and <130 mg/dL to ≥130 mg/dL) Olanzapine 29 48.3% 21 47.6% Placebo 9 0% NA a NA a a Not Applicable.

Weight Gain Potential consequences of weight gain should be considered prior to starting olanzapine.

Patients receiving olanzapine should receive regular monitoring of weight [see Patient Counseling Information (17) ] .

Olanzapine Monotherapy in Adults — In an analysis of 13 placebo-controlled olanzapine monotherapy studies, olanzapine-treated patients gained an average of 2.6 kg (5.7 lb) compared to an average 0.3 kg (0.6 lb) weight loss in placebo-treated patients with a median exposure of 6 weeks; 22.2% of olanzapine-treated patients gained at least 7% of their baseline weight, compared to 3% of placebo-treated patients, with a median exposure to event of 8 weeks; 4.2% of olanzapine-treated patients gained at least 15% of their baseline weight, compared to 0.3% of placebo-treated patients, with a median exposure to event of 12 weeks.

Clinically significant weight gain was observed across all baseline Body Mass Index (BMI) categories.

Discontinuation due to weight gain occurred in 0.2% of olanzapine-treated patients and in 0% of placebo-treated patients.

In long-term studies (at least 48 weeks), the mean weight gain was 5.6 kg (12.3 lb) (median exposure of 573 days, N=2021).

The percentages of patients who gained at least 7%, 15%, or 25% of their baseline body weight with long-term exposure were 64%, 32%, and 12%, respectively.

Discontinuation due to weight gain occurred in 0.4% of olanzapine-treated patients following at least 48 weeks of exposure.

Table 6 includes data on adult weight gain with olanzapine pooled from 86 clinical trials.

The data in each column represent data for those patients who completed treatment periods of the durations specified.

Table 6: Weight Gain with Olanzapine Use in Adults Amount Gained kg (lb) 6 Weeks (N=7465) (%) 6 Months (N=4162) (%) 12 Months (N=1345) (%) 24 Months (N=474) (%) 36 Months (N=147) (%) ≤0 26.2 24.3 20.8 23.2 17 0 to ≤5 (0-11 lb) 57 36 26 23.4 25.2 >5 to ≤10 (11-22 lb) 14.9 24.6 24.2 24.1 18.4 >10 to ≤15 (22-33 lb) 1.8 10.9 14.9 11.4 17 >15 to ≤20 (33-44 lb) 0.1 3.1 8.6 9.3 11.6 >20 to ≤25 (44-55 lb) 0 0.9 3.3 5.1 4.1 >25 to ≤30 (55-66 lb) 0 0.2 1.4 2.3 4.8 >30 (>66 lb) 0 0.1 0.8 1.2 2 Dose group differences with respect to weight gain have been observed.

In a single 8-week randomized, double-blind, fixed-dose study comparing 10 (N=199), 20 (N=200) and 40 (N=200) mg/day of oral olanzapine in adult patients with schizophrenia or schizoaffective disorder, mean baseline to endpoint increase in weight (10 mg/day: 1.9 kg; 20 mg/day: 2.3 kg; 40 mg/day: 3 kg) was observed with significant differences between 10 vs 40 mg/day.

Olanzapine Monotherapy in Adolescents – The safety and efficacy of olanzapine have not been established in patients under the age of 13 years.

Mean increase in weight in adolescents was greater than in adults.

In 4 placebo-controlled trials, discontinuation due to weight gain occurred in 1% of olanzapine-treated patients, compared to 0% of placebo-treated patients.

Table 7: Weight Gain with Olanzapine Use in Adolescents from 4 Placebo-Controlled Trials Olanzapine-treated patients Placebo-treated patients Mean change in body weight from baseline (median exposure = 3 weeks) 4.6 kg (10.1 lb) 0.3 kg (0.7 lb) Percentage of patients who gained at least 7% of baseline body weight 40.6% (median exposure to 7% = 4 weeks) 9.8% (median exposure to 7% = 8 weeks) Percentage of patients who gained at least 15% of baseline body weight 7.1% (median exposure to 15% = 19 weeks) 2.7% (median exposure to 15% = 8 weeks) In long-term studies (at least 24 weeks), the mean weight gain was 11.2 kg (24.6 lb); (median exposure of 201 days, N=179).

The percentages of adolescents who gained at least 7%, 15%, or 25% of their baseline body weight with long-term exposure were 89%, 55%, and 29%, respectively.

Among adolescent patients, mean weight gain by baseline BMI category was 11.5 kg (25.3 lb), 12.1 kg (26.6 lb), and 12.7 kg (27.9 lb), respectively, for normal (N=106), overweight (N=26) and obese (N=17).

Discontinuation due to weight gain occurred in 2.2% of olanzapine-treated patients following at least 24 weeks of exposure.

Table 8 shows data on adolescent weight gain with olanzapine pooled from 6 clinical trials.

The data in each column represent data for those patients who completed treatment periods of the durations specified.

Little clinical trial data is available on weight gain in adolescents with olanzapine beyond 6 months of treatment.

Table 8: Weight Gain with Olanzapine Use in Adolescents Amount Gained kg (lb) 6 Weeks (N=243) (%) 6 Months (N=191) (%) ≤0 2.9 2.1 0 to ≤5 (0-11 lb) 47.3 24.6 >5 to ≤10 (11-22 lb) 42.4 26.7 >10 to ≤15 (22-33 lb) 5.8 22.0 >15 to ≤20 (33-44 lb) 0.8 12.6 >20 to ≤25 (44-55 lb) 0.8 9.4 >25 to ≤30 (55-66 lb) 0 2.1 >30 to ≤35 (66-77 lb) 0 0 >35 to ≤40 (77-88 lb) 0 0 >40 (>88 lb) 0 0.5 5.6 Tardive Dyskinesia A syndrome of potentially irreversible, involuntary, dyskinetic movements may develop in patients treated with antipsychotic drugs.

Although the prevalence of the syndrome appears to be highest among the elderly, especially elderly women, it is impossible to rely upon prevalence estimates to predict, at the inception of antipsychotic treatment, which patients are likely to develop the syndrome.

Whether antipsychotic drug products differ in their potential to cause tardive dyskinesia is unknown.

The risk of developing tardive dyskinesia and the likelihood that it will become irreversible are believed to increase as the duration of treatment and the total cumulative dose of antipsychotic drugs administered to the patient increase.

However, the syndrome can develop, although much less commonly, after relatively brief treatment periods at low doses or may even arise after discontinuation of treatment.

Tardive dyskinesia may remit, partially or completely, if antipsychotic treatment is withdrawn.

Antipsychotic treatment, itself, however, may suppress (or partially suppress) the signs and symptoms of the syndrome and thereby may possibly mask the underlying process.

The effect that symptomatic suppression has upon the long-term course of the syndrome is unknown.

Given these considerations, olanzapine should be prescribed in a manner that is most likely to minimize the occurrence of tardive dyskinesia.

Chronic antipsychotic treatment should generally be reserved for patients (1) who suffer from a chronic illness that is known to respond to antipsychotic drugs, and (2) for whom alternative, equally effective, but potentially less harmful treatments are not available or appropriate.

In patients who do require chronic treatment, the smallest dose and the shortest duration of treatment producing a satisfactory clinical response should be sought.

The need for continued treatment should be reassessed periodically.

If signs and symptoms of tardive dyskinesia appear in a patient on olanzapine, drug discontinuation should be considered.

However, some patients may require treatment with olanzapine despite the presence of the syndrome.

For specific information about the warnings of lithium or valproate, refer to the Warnings section of the package inserts for these other products.

5.7 Orthostatic Hypotension Olanzapine may induce orthostatic hypotension associated with dizziness, tachycardia, bradycardia and, in some patients, syncope, especially during the initial dose-titration period, probably reflecting its α 1 -adrenergic antagonistic properties [see Patient Counseling Information (17) ] .

From an analysis of the vital sign data in an integrated database of 41 completed clinical studies in adult patients treated with oral olanzapine, orthostatic hypotension was recorded in ≥20% (1277/6030) of patients.

For oral olanzapine therapy, the risk of orthostatic hypotension and syncope may be minimized by initiating therapy with 5 mg QD [see Dosage and Administration (2) ] .

A more gradual titration to the target dose should be considered if hypotension occurs.

Syncope was reported in 0.6% (15/2500) of olanzapine-treated patients in phase 2-3 oral olanzapine studies.

The risk for this sequence of hypotension, bradycardia, and sinus pause may be greater in nonpsychiatric patients compared to psychiatric patients who are possibly more adapted to certain effects of psychotropic drugs.

Olanzapine should be used with particular caution in patients with known cardiovascular disease (history of myocardial infarction or ischemia, heart failure, or conduction abnormalities), cerebrovascular disease, and conditions which would predispose patients to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medications) where the occurrence of syncope, or hypotension and/or bradycardia might put the patient at increased medical risk.

Caution is necessary in patients who receive treatment with other drugs having effects that can induce hypotension, bradycardia, respiratory or central nervous system depression [see Drug Interactions (7) ] .

5.8 Falls Olanzapine may cause somnolence, postural hypotension, motor and sensory instability, which may lead to falls and, consequently, fractures or other injuries.

For patients with diseases, conditions, or medications that could exacerbate these effects, complete fall risk assessments when initiating antipsychotic treatment and recurrently for patients on long-term antipsychotic therapy.

5.9 Leukopenia, Neutropenia, and Agranulocytosis Class Effect — In clinical trial and/or postmarketing experience, events of leukopenia/neutropenia have been reported temporally related to antipsychotic agents, including olanzapine.

Agranulocytosis has also been reported.

Possible risk factors for leukopenia/neutropenia include pre-existing low white blood cell count (WBC) and history of drug induced leukopenia/neutropenia.

Patients with a history of a clinically significant low WBC or drug induced leukopenia/neutropenia should have their complete blood count (CBC) monitored frequently during the first few months of therapy and discontinuation of olanzapine should be considered at the first sign of a clinically significant decline in WBC in the absence of other causative factors.

Patients with clinically significant neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur.

Patients with severe neutropenia (absolute neutrophil count <1000/mm 3 ) should discontinue olanzapine and have their WBC followed until recovery.

5.10 Dysphagia Esophageal dysmotility and aspiration have been associated with antipsychotic drug use.

Aspiration pneumonia is a common cause of morbidity and mortality in patients with advanced Alzheimer’s disease.

Olanzapine is not approved for the treatment of patients with Alzheimer’s disease.

5.11 Seizures During premarketing testing, seizures occurred in 0.9% (22/2500) of olanzapine-treated patients.

There were confounding factors that may have contributed to the occurrence of seizures in many of these cases.

Olanzapine should be used cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold, e.g., Alzheimer’s dementia.

Olanzapine is not approved for the treatment of patients with Alzheimer’s disease.

Conditions that lower the seizure threshold may be more prevalent in a population of 65 years or older.

5.12 Potential for Cognitive and Motor Impairment Somnolence was a commonly reported adverse reaction associated with olanzapine treatment, occurring at an incidence of 26% in olanzapine patients compared to 15% in placebo patients.

This adverse reaction was also dose related.

Somnolence led to discontinuation in 0.4% (9/2500) of patients in the premarketing database.

Since olanzapine has the potential to impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that olanzapine therapy does not affect them adversely [see Patient Counseling Information (17) ] .

5.13 Body Temperature Regulation Disruption of the body’s ability to reduce core body temperature has been attributed to antipsychotic agents.

Appropriate care is advised when prescribing olanzapine for patients who will be experiencing conditions which may contribute to an elevation in core body temperature, e.g., exercising strenuously, exposure to extreme heat, receiving concomitant medication with anticholinergic activity, or being subject to dehydration [see Patient Counseling Information (17) ].

5.14 Anticholinergic (antimuscarinic) Effects Olanzapine exhibits in vitro muscarinic receptor affinity [see Clinical Pharmacology 12.2 ] .

In premarketing clinical trials, olanzapine was associated with constipation, dry mouth, and tachycardia, all adverse reactions possibly related to cholinergic antagonism.

Such adverse reactions were not often the basis for discontinuations, but olanzapine should be used with caution in patients with a current diagnosis or prior history of urinary retention, clinically significant prostatic hypertrophy, constipation, or a history of paralytic ileus or related conditions.

In post marketing experience, the risk for severe adverse reactions (including fatalities) was increased with concomitant use of anticholinergic medications [see Drug Interactions (7.1 )].

5.15 Hyperprolactinemia As with other drugs that antagonize dopamine D 2 receptors, olanzapine elevates prolactin levels, and the elevation persists during chronic administration.

Hyperprolactinemia may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotropin secretion.

This, in turn, may inhibit reproductive function by impairing gonadal steroidogenesis in both female and male patients.

Galactorrhea, amenorrhea, gynecomastia, and impotence have been reported in patients receiving prolactin-elevating compounds.

Long-standing hyperprolactinemia when associated with hypogonadism may lead to decreased bone density in both female and male subjects.

Tissue culture experiments indicate that approximately one-third of human breast cancers are prolactin dependent in vitro , a factor of potential importance if the prescription of these drugs is contemplated in a patient with previously detected breast cancer.

As is common with compounds which increase prolactin release, an increase in mammary gland neoplasia was observed in the olanzapine carcinogenicity studies conducted in mice and rats [see Nonclinical Toxicology (13.1) ] .

Neither clinical studies nor epidemiologic studies conducted to date have shown an association between chronic administration of this class of drugs and tumorigenesis in humans; the available evidence is considered too limited to be conclusive at this time.

In placebo-controlled olanzapine clinical studies (up to 12 weeks), changes from normal to high in prolactin concentrations were observed in 30% of adults treated with olanzapine as compared to 10.5% of adults treated with placebo.

In a pooled analysis from clinical studies including 8136 adults treated with olanzapine, potentially associated clinical manifestations included menstrual-related events 1 (2% [49/3240] of females), sexual function-related events 2 (2% [150/8136] of females and males), and breast-related events 3 (0.7% [23/3240] of females, 0.2% [9/4896] of males).

In placebo-controlled olanzapine monotherapy studies in adolescent patients (up to 6 weeks) with schizophrenia or bipolar I disorder (manic or mixed episodes), changes from normal to high in prolactin concentrations were observed in 47% of olanzapine­-treated patients compared to 7% of placebo-treated patients.

In a pooled analysis from clinical trials including 454 adolescents treated with olanzapine, potentially associated clinical manifestations included menstrual-related events 1 (1% [2/168] of females), sexual function-related events 2 (0.7% [3/454] of females and males), and breast-related events 3 (2% [3/168] of females, 2% [7/286] of males) [see Use in Specific Populations (8.4) ] .

1 Based on a search of the following terms: amenorrhea, hypomenorrhea, menstruation delayed, and oligomenorrhea.

2 Based on a search of the following terms: anorgasmia, delayed ejaculation, erectile dysfunction, decreased libido, loss of libido, abnormal orgasm, and sexual dysfunction.

3 Based on a search of the following terms: breast discharge, enlargement or swelling, galactorrhea, gynecomastia, and lactation disorder.

Dose group differences with respect to prolactin elevation have been observed.

In a single 8-week randomized, double-blind, fixed-dose study comparing 10 (N=199), 20 (N=200) and 40 (N=200) mg/day of oral olanzapine in adult patients with schizophrenia or schizoaffective disorder, incidence of prolactin elevation >24.2 ng/mL (female) or >18.77 ng/mL (male) at any time during the trial (10 mg/day: 31.2%; 20 mg/day: 42.7%; 40 mg/day: 61.1%) indicated significant differences between 10 vs 40 mg/day and 20 vs 40 mg/day.

5.16 Use in Combination with Fluoxetine, Lithium, or Valproate When using olanzapine and fluoxetine in combination, the prescriber should also refer to the Warnings and Precautions section of the package insert for Symbyax.

When using olanzapine in combination with lithium or valproate, the prescriber should refer to the Warnings and Precautions sections of the package inserts for lithium or valproate [see Drug Interactions (7) ].

5.17 Laboratory Tests Fasting blood glucose testing and lipid profile at the beginning of, and periodically during, treatment is recommended [see Warnings and Precautions (5.5) and Patient Counseling Information (17 )].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide) for the oral formulations.

Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking olanzapine as monotherapy or in combination with fluoxetine.

If you do not think you are getting better or have any concerns about your condition while taking olanzapine, call your doctor.

When using olanzapine and fluoxetine in combination, also refer to the Patient Counseling Information section of the package insert for Symbyax.

Elderly Patients with Dementia-Related Psychosis: Increased Mortality and Cerebrovascular Adverse Events (CVAE), Including Stroke Patients and caregivers should be advised that elderly patients with dementia-related psychosis treated with antipsychotic drugs are at an increased risk of death.

Patients and caregivers should be advised that elderly patients with dementia-related psychosis treated with olanzapine had a significantly higher incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack) compared with placebo.

Olanzapine is not approved for elderly patients with dementia-related psychosis [see Boxed Warning and Warnings and Precautions (5.1)] .

Neuroleptic Malignant Syndrome (NMS) Patients and caregivers should be counseled that a potentially fatal symptom complex sometimes referred to as NMS has been reported in association with administration of antipsychotic drugs, including olanzapine.

Signs and symptoms of NMS include hyperpyrexia, muscle rigidity, altered mental status, and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis, and cardiac dysrhythmia) [see Warnings and Precautions (5.3)] .

Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Patients should be advised to report to their health care provider at the earliest onset of any signs and symptoms that may be associated with Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) [see Warnings and Precautions (5.4)] .

Hyperglycemia and Diabetes Mellitus Patients should be advised of the potential risk of hyperglycemia-related adverse reactions.

Patients should be monitored regularly for worsening of glucose control.

Patients who have diabetes should follow their doctor’s instructions about how often to check their blood sugar while taking olanzapine [see Warnings and Precautions (5.5)] .

Dyslipidemia Patients should be counseled that dyslipidemia has occurred during treatment with olanzapine.

Patients should have their lipid profile monitored regularly [see Warnings and Precautions (5.5)] .

Weight Gain Patients should be counseled that weight gain has occurred during treatment with olanzapine.

Patients should have their weight monitored regularly [see Warnings and Precautions (5.5)] .

Orthostatic Hypotension Patients should be advised of the risk of orthostatic hypotension, especially during the period of initial dose titration and in association with the use of concomitant drugs that may potentiate the orthostatic effect of olanzapine, e.g., diazepam or alcohol [see Warnings and Precautions (5.7) and Drug Interactions (7)] .

Patients should be advised to change positions carefully to help prevent orthostatic hypotension, and to lie down if they feel dizzy or faint, until they feel better.

Patients should be advised to call their doctor if they experience any of the following signs and symptoms associated with orthostatic hypotension: dizziness, fast or slow heartbeat, or fainting.

Potential for Cognitive and Motor Impairment Because olanzapine has the potential to impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that olanzapine therapy does not affect them adversely [see Warnings and Precautions (5.12)] .

Body Temperature Regulation Patients should be advised regarding appropriate care in avoiding overheating and dehydration.

Patients should be advised to call their doctor right away if they become severely ill and have some or all of these symptoms of dehydration: sweating too much or not at all, dry mouth, feeling very hot, feeling thirsty, not able to produce urine [see Warnings and Precautions (5.13)] .

Concomitant Medication Patients should be advised to inform their healthcare providers if they are taking, or plan to take, Symbyax.

Patients should also be advised to inform their healthcare providers if they are taking, plan to take, or have stopped taking any prescription or over-the-counter drugs, including herbal supplements, since there is a potential for interactions [see Drug Interactions (7)] .

Alcohol Patients should be advised to avoid alcohol while taking olanzapine [see Drug Interactions (7)] .

Phenylketonurics Olanzapine orally disintegrating tablets contain phenylalanine (1.12, 2.24, 3.36, or 4.48 mg per 5, 10, 15, or 20 mg tablet, respectively) [see Description (11)].

Use in Specific Populations Pregnancy — Advise women to notify their healthcare provider if they become pregnant or intend to become pregnant during treatment with olanzapine.

Advise patients that olanzapine may cause extrapyramidal and/or withdrawal symptoms (agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, and feeding disorder) in a neonate.

Advise patients that there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to olanzapine during pregnancy [see Use in Specific Populations (8.1)] .

Lactation — Advise breastfeeding women using olanzapine to monitor infants for excess sedation, irritability, poor feeding and extrapyramidal symptoms (tremors and abnormal muscle movements) and to seek medical care if they notice these signs.

[see Use in Specific Populations (8.3)] .

Infertility — Advise females of reproductive potential that olanzapine may impair fertility due to an increase in serum prolactin levels.

The effects on fertility are reversible [see Use in Specific Populations (8.3)].

Pediatric Use — Olanzapine is indicated for treatment of schizophrenia and manic or mixed episodes associated with bipolar I disorder in adolescents 13 to 17 years of age.

Compared to patients from adult clinical trials, adolescents were likely to gain more weight, experience increased sedation, and have greater increases in total cholesterol, triglycerides, LDL cholesterol, prolactin, and hepatic aminotransferase levels.

Patients should be counseled about the potential long-term risks associated with olanzapine and advised that these risks may lead them to consider other drugs first [see Indications and Usage (1.1, 1.2)] .

Safety and effectiveness of olanzapine in patients under 13 years of age have not been established.

Safety and efficacy of olanzapine and fluoxetine in combination in patients 10 to 17 years of age have been established for the acute treatment of depressive episodes associated with bipolar I disorder.

Safety and effectiveness of olanzapine and fluoxetine in combination in patients <10 years of age have not been established [see Warnings and Precautions (5.5) and Use in Specific Populations (8.4)] .

Need for Comprehensive Treatment Program in Pediatric Patients Olanzapine is indicated as an integral part of a total treatment program for pediatric patients with schizophrenia and bipolar disorder that may include other measures (psychological, educational, social) for patients with the disorder.

Effectiveness and safety of olanzapine have not been established in pediatric patients less than 13 years of age.

Atypical antipsychotics are not intended for use in the pediatric patient who exhibits symptoms secondary to environmental factors and/or other primary psychiatric disorders.

Appropriate educational placement is essential and psychosocial intervention is often helpful.

The decision to prescribe atypical antipsychotic medication will depend upon the healthcare provider’s assessment of the chronicity and severity of the patient’s symptoms [see Indications and Usage (1.3)] .

All trademark names are the property of their respective owners.

Rx Only Manufactured by: Jubilant Generics Limited Roorkee – 247661, India Marketed by: Jubilant Cadista Pharmaceuticals Inc.

Salisbury, MD 21801, USA Revision: 07/2020

DOSAGE AND ADMINISTRATION

2 Schizophrenia in adults (2.1) Oral: Start at 5 to 10 mg once daily; Target: 10 mg/day within several days Schizophrenia in adolescents ( 2.1 ) Oral: Start at 2.5 to 5 mg once daily; Target: 10 mg/day Bipolar I Disorder (manic or mixed episodes) in adults (2.2) Oral: Start at 10 or 15 mg once daily Bipolar I Disorder (manic or mixed episodes) in adolescents (2.2) Oral: Start at 2.5 to 5 mg once daily; Target: 10 mg/day Bipolar I Disorder (manic or mixed episodes) with lithium or valproate in adults (2.2) Oral: Start at 10 mg once daily Depressive Episodes associated with Bipolar I Disorder in adults (2.5) Oral in combination with fluoxetine: Start at 5 mg of oral olanzapine and 20 mg of fluoxetine once daily Depressive Episodes associated with Bipolar I Disorder in children and adolescents (2.5) Oral in combination with fluoxetine: Start at 2.5 mg of oral olanzapine and 20 mg of fluoxetine once daily Treatment Resistant Depression in adults ( 2.6) Oral in combination with fluoxetine: Start at 5 mg of oral olanzapine and 20 mg of fluoxetine once daily Lower starting dose recommended in debilitated or pharmacodynamically sensitive patients or patients with predisposition to hypotensive reactions, or with potential for slowed metabolism.

( 2.1 ) Olanzapine may be given without regard to meals.

( 2.1 ) Olanzapine and Fluoxetine in Combination: Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability.

( 2.5, 2.6 ) Olanzapine monotherapy is not indicated for the treatment of depressive episodes associated with bipolar I disorder or treatment resistant depression.

( 2.5, 2.6 ) Safety of co-administration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated in adults.

( 2.5, 2.6 ) Safety of co-administration of doses above 12 mg olanzapine with 50 mg fluoxetine has not been evaluated in children and adolescents ages 10 to 17.

(2.5) 2.1 Schizophrenia Adults Dose Selection — Oral olanzapine should be administered on a once-a-day schedule without regard to meals, generally beginning with 5 to 10 mg initially, with a target dose of 10 mg/day within several days.

Further dosage adjustments, if indicated, should generally occur at intervals of not less than 1 week, since steady state for olanzapine would not be achieved for approximately 1 week in the typical patient.

When dosage adjustments are necessary, dose increments/decrements of 5 mg QD are recommended.

Efficacy in schizophrenia was demonstrated in a dose range of 10 to 15 mg/day in clinical trials.

However, doses above 10 mg/day were not demonstrated to be more efficacious than the 10 mg/day dose.

An increase to a dose greater than the target dose of 10 mg/day (i.e., to a dose of 15 mg/day or greater) is recommended only after clinical assessment.

Olanzapine is not indicated for use in doses above 20 mg/day.

Dosing in Special Populations — The recommended starting dose is 5 mg in patients who are debilitated, who have a predisposition to hypotensive reactions, who otherwise exhibit a combination of factors that may result in slower metabolism of olanzapine (e.g., nonsmoking female patients ≥65 years of age), or who may be more pharmacodynamically sensitive to olanzapine [see Warnings and Precautions (5.14), Drug Interactions (7) , and Clinical Pharmacology (12.3) ] .

When indicated, dose escalation should be performed with caution in these patients.

Maintenance Treatment — The effectiveness of oral olanzapine, 10 mg/day to 20 mg/day, in maintaining treatment response in schizophrenic patients who had been stable on olanzapine orally disintegrating tablets for approximately 8 weeks and were then followed for relapse has been demonstrated in a placebo-controlled trial [see Clinical Studies (14.1) ] .

The healthcare provider who elects to use olanzapine orally disintegrating tablets for extended periods should periodically reevaluate the long-term usefulness of the drug for the individual patient.

Adolescents Dose Selection — Oral olanzapine should be administered on a once-a-day schedule without regard to meals with a recommended starting dose of 2.5 or 5 mg, with a target dose of 10 mg/day.

Efficacy in adolescents with schizophrenia was demonstrated based on a flexible dose range of 2.5 to 20 mg/day in clinical trials, with a mean modal dose of 12.5 mg/day (mean dose of 11.1 mg/day).

When dosage adjustments are necessary, dose increments/decrements of 2.5 or 5 mg are recommended.

The safety and effectiveness of doses above 20 mg/day have not been evaluated in clinical trials [ see Clinical Studies (14.1)] .

Maintenance Treatment — The efficacy of olanzapine orally disintegrating tablets for the maintenance treatment of schizophrenia in the adolescent population has not been systematically evaluated; however, maintenance efficacy can be extrapolated from adult data along with comparisons of olanzapine pharmacokinetic parameters in adult and adolescent patients.

Thus, it is generally recommended that responding patients be continued beyond the acute response, but at the lowest dose needed to maintain remission.

Patients should be periodically reassessed to determine the need for maintenance treatment.

2.2 Bipolar I Disorder (Manic or Mixed Episodes) Adults Dose Selection for Monotherapy — Oral olanzapine should be administered on a once-a-day schedule without regard to meals, generally beginning with 10 or 15 mg.

Dosage adjustments, if indicated, should generally occur at intervals of not less than 24 hours, reflecting the procedures in the placebo-controlled trials.

When dosage adjustments are necessary, dose increments/decrements of 5 mg QD are recommended.

Short-term (3-4 weeks) antimanic efficacy was demonstrated in a dose range of 5 mg to 20 mg/day in clinical trials.

The safety of doses above 20 mg/day has not been evaluated in clinical trials [see Clinical Studies (14.2)].

Maintenance Monotherapy — The benefit of maintaining bipolar I patients on monotherapy with olanzapine orally disintegrating tablets at a dose of 5 to 20 mg/day, after achieving a responder status for an average duration of 2 weeks, was demonstrated in a controlled trial [ see Clinical Studies (14.2) ] .

The healthcare provider who elects to use olanzapine orally disintegrating tablets for extended periods should periodically reevaluate the long-term usefulness of the drug for the individual patient.

Dose Selection for Adjunctive Treatment — When administered as adjunctive treatment to lithium or valproate, oral olanzapine dosing should generally begin with 10 mg once-a-day without regard to meals.

Antimanic efficacy was demonstrated in a dose range of 5 mg to 20 mg/day in clinical trials [see Clinical Studies (14.2)] .

The safety of doses above 20 mg/day has not been evaluated in clinical trials.

Adolescents Dose Selection — Oral olanzapine should be administered on a once-a-day schedule without regard to meals with a recommended starting dose of 2.5 or 5 mg, with a target dose of 10 mg/day.

Efficacy in adolescents with bipolar I disorder (manic or mixed episodes) was demonstrated based on a flexible dose range of 2.5 to 20 mg/day in clinical trials, with a mean modal dose of 10.7 mg/day (mean dose of 8.9 mg/day).

When dosage adjustments are necessary, dose increments/decrements of 2.5 or 5 mg are recommended.

The safety and effectiveness of doses above 20 mg/day have not been evaluated in clinical trials [see Clinical Studies (14.2)] .

Maintenance Treatment — The efficacy of olanzapine orally disintegrating tablets for the maintenance treatment of bipolar I disorder in the adolescent population has not been evaluated; however, maintenance efficacy can be extrapolated from adult data along with comparisons of olanzapine pharmacokinetic parameters in adult and adolescent patients.

Thus, it is generally recommended that responding patients be continued beyond the acute response, but at the lowest dose needed to maintain remission.

Patients should be periodically reassessed to determine the need for maintenance treatment.

2.3 Administration of Olanzapine Orally Disintegrating Tablets Peel back foil on blister.

Do not push tablet through foil.

Immediately upon opening the blister, using dry hands, remove tablet and place entire olanzapine orally disintegrating tablet in the mouth.

Tablet disintegration occurs rapidly in saliva so it can be easily swallowed with or without liquid.

2.5 Olanzapine and Fluoxetine in Combination: Depressive Episodes Associated with Bipolar I Disorder When using olanzapine and fluoxetine in combination, also refer to the Clinical Studies section of the package insert for Symbyax.

Adults Oral olanzapine should be administered in combination with fluoxetine once daily in the evening, without regard to meals, generally beginning with 5 mg of oral olanzapine and 20 mg of fluoxetine.

Dosage adjustments, if indicated, can be made according to efficacy and tolerability within dose ranges of oral olanzapine 5 to 12.5 mg and fluoxetine 20 to 50 mg.

Antidepressant efficacy was demonstrated with olanzapine and fluoxetine in combination in adult patients with a dose range of olanzapine 6 to 12 mg and fluoxetine 25 to 50 mg.

Safety of co-administration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated in clinical studies.

Children and Adolescents (10 to 17 years of age) Oral olanzapine should be administered in combination with fluoxetine once daily in the evening, without regard to meals, generally beginning with 2.5 mg of oral olanzapine and 20 mg of fluoxetine.

Dosage adjustments, if indicated, can be made according to efficacy and tolerability.

Safety of co-administration of doses above 12 mg olanzapine with 50 mg fluoxetine has not been evaluated in pediatric clinical studies.

Safety and efficacy of olanzapine and fluoxetine in combination was determined in clinical trials supporting approval of Symbyax (fixed dose combination of olanzapine and fluoxetine).

Symbyax is dosed between 3 mg/25 mg (olanzapine/fluoxetine) per day and 12 mg/50 mg (olanzapine/fluoxetine) per day.

The following table demonstrates the appropriate individual component doses of olanzapine and fluoxetine versus Symbyax.

Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability.

Table 1: Approximate Dose Correspondence Between Symbyax a and the Combination of Olanzapine and Fluoxetine For Symbyax (mg/day) Use in Combination Olanzapine (mg/day) Fluoxetine (mg/day) 3 mg olanzapine/25 mg fluoxetine 2.5 20 6 mg olanzapine/25 mg fluoxetine 5 20 12 mg olanzapine/25 mg fluoxetine 10+2.5 20 6 mg olanzapine/50 mg fluoxetine 5 40+10 12 mg olanzapine/50 mg fluoxetine 10+2.5 40+10 a Symbyax (olanzapine/fluoxetine HCl) is a fixed-dose combination of olanzapine and fluoxetine.

While there is no body of evidence to answer the question of how long a patient treated with olanzapine and fluoxetine in combination should remain on it, it is generally accepted that bipolar I disorder, including the depressive episodes associated with bipolar I disorder, is a chronic illness requiring chronic treatment.

The healthcare provider should periodically reexamine the need for continued pharmacotherapy.

Olanzapine orally disintegrating tablets monotherapy is not indicated for the treatment of depressive episodes associated with bipolar I disorder.

2.6 Olanzapine and Fluoxetine in Combination: Treatment Resistant Depression When using olanzapine and fluoxetine in combination, also refer to the Clinical Studies section of the package insert for Symbyax.

Oral olanzapine should be administered in combination with fluoxetine once daily in the evening, without regard to meals, generally beginning with 5 mg of oral olanzapine and 20 mg of fluoxetine.

Dosage adjustments, if indicated, can be made according to efficacy and tolerability within dose ranges of oral olanzapine 5 to 20 mg and fluoxetine 20 to 50 mg.

Antidepressant efficacy was demonstrated with olanzapine and fluoxetine in combination in adult patients with a dose range of olanzapine 6 to 18 mg and fluoxetine 25 to 50 mg.

Safety and efficacy of olanzapine in combination with fluoxetine was determined in clinical trials supporting approval of Symbyax (fixed dose combination of olanzapine and fluoxetine).

Symbyax is dosed between 3 mg/25 mg (olanzapine/fluoxetine) per day and 12 mg/50 mg (olanzapine/fluoxetine) per day.

Table 1 above demonstrates the appropriate individual component doses of olanzapine and fluoxetine versus Symbyax.

Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability.

While there is no body of evidence to answer the question of how long a patient treated with olanzapine and fluoxetine in combination should remain on it, it is generally accepted that treatment resistant depression (major depressive disorder in adult patients who do not respond to 2 separate trials of different antidepressants of adequate dose and duration in the current episode) is a chronic illness requiring chronic treatment.

The healthcare provider should periodically reexamine the need for continued pharmacotherapy.

Safety of co-administration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated in clinical studies.

Olanzapine orally disintegrating tablets monotherapy is not indicated for treatment of treatment resistant depression (major depressive disorder in patients who do not respond to 2 antidepressants of adequate dose and duration in the current episode).

2.7 Olanzapine and Fluoxetine in Combination: Dosing in Special Populations The starting dose of oral olanzapine 2.5 to 5 mg with fluoxetine 20 mg should be used for patients with a predisposition to hypotensive reactions, patients with hepatic impairment, or patients who exhibit a combination of factors that may slow the metabolism of olanzapine or fluoxetine in combination (female gender, geriatric age, nonsmoking status), or those patients who may be pharmacodynamically sensitive to olanzapine.

Dosing modification may be necessary in patients who exhibit a combination of factors that may slow metabolism.

When indicated, dose escalation should be performed with caution in these patients.

Olanzapine and fluoxetine in combination have not been systematically studied in patients over 65 years of age or in patients under 10 years of age [see Warnings and Precautions (5.14) , Drug Interactions (7) , and Clinical Pharmacology (12.3) ] .

DRUG INTERACTIONS

7 Table 5 includes clinically important drug interactions with REMERON/REMERONSolTab [see Clinical Pharmacology (12.3) ].

Table 5: Clinically Important Drug Interactions with REMERON/REMERONSolTab Monoamine Oxidase Inhibitors (MAOIs) Clinical Impact The concomitant use of serotonergic drugs, including REMERON/REMERONSolTab, and MAOIs increases the risk of serotonin syndrome.

Intervention REMERON/REMERONSolTab is contraindicated in patients taking MAOIs, including MAOIs such as linezolid or intravenous methylene blue [see Dosage and Administration (2.4) , Contraindications (4) , Warnings and Precautions (5.3) ].

Examples selegiline, tranylcypromine, isocarboxazid, phenelzine, linezolid, methylene blue Other Serotonergic Drugs Clinical Impact The concomitant use of serotonergic drugs with REMERON/REMERONSolTab increases the risk of serotonin syndrome.

Intervention Monitor patients for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increases.

If serotonin syndrome occurs, consider discontinuation of REMERON/REMERONSolTab and/or concomitant serotonergic drugs [see Warnings and Precautions (5.3) ].

Examples SSRIs, SNRIs, triptans, tricyclic antidepressants, fentanyl, lithium, amphetamines, St.

John’s Wort, tramadol, tryptophan, buspirone Strong CYP3A Inducers Clinical Impact The concomitant use of strong CYP3A inducers with REMERON/REMERONSolTab decreases the plasma concentration of mirtazapine [see Clinical Pharmacology (12.3) ] .

Intervention Increase the dose of REMERON/REMERONSolTab if needed with concomitant CYP3A inducer use.

Conversely, a decrease in dosage of REMERON/REMERONSolTab may be needed if the CYP3A inducer is discontinued [see Dosage and Administration (2.5) ].

Examples phenytoin, carbamazepine, rifampin Strong CYP3A Inhibitors Clinical Impact The concomitant use of strong CYP3A inhibitors with REMERON/REMERONSolTab may increase the plasma concentration of mirtazapine [see Clinical Pharmacology (12.3) ] .

Intervention Decrease the dose of REMERON/REMERONSolTab if needed with concomitant strong CYP3A inhibitor use.

Conversely, an increase in dosage of REMERON/REMERONSolTab may be needed if the CYP3A inhibitor is discontinued [see Dosage and Administration (2.5) ].

Examples itraconazole, ritonavir, nefazodone Cimetidine Clinical Impact The concomitant use of cimetidine, a CYP1A2, CYP2D6, and CYP3A inhibitor, with REMERON/REMERONSolTab may increase the plasma concentration of mirtazapine [see Clinical Pharmacology (12.3) ].

Intervention Decrease the dose of REMERON/REMERONSolTab if needed with concomitant cimetidine use.

Conversely, an increase in dosage of REMERON/REMERONSolTab may be needed if cimetidine is discontinued [see Dosage and Administration (2.5) ] .

Benzodiazepines and Alcohol Clinical Impact The concomitant use of benzodiazepines or alcohol with REMERON/REMERONSolTab increases the impairment of cognitive and motor skills produced by REMERON/REMERONSolTab alone.

Intervention Avoid concomitant use of benzodiazepines and alcohol with REMERON/REMERONSolTab [see Warnings and Precautions (5.7) , Clinical Pharmacology (12.3) ] ] .

Examples diazepam, alprazolam, alcohol Drugs that Prolong QTc Interval Clinical Impact The concomitant use of other drugs which prolong the QTc interval with REMERON/REMERONSolTab, increase the risk of QT prolongation and/or ventricular arrhythmias (e.g., Torsades de Pointes).

Intervention Use caution when using REMERON/REMERONSolTab concomitantly with drugs that prolong the QTc interval [see Warnings and Precautions (5.5) , Clinical Pharmacology (12.3) ].

Warfarin Clinical Impact The concomitant use of warfarin with REMERON/REMERONSolTab may result in an increase in INR [see Clinical Pharmacology (12.3) ] .

Intervention Monitor INR during concomitant use of warfarin with REMERON/REMERONSolTab.

Strong CYP3A inducers: Dosage increase may be needed for REMERON/REMERONSolTab with concomitant use of strong CYP3A inducers.

( 2.5 , 7 ) Strong CYP3A inhibitors : Dosage decrease may be needed when REMERON/REMERONSolTab is coadministered with strong CYP3A inhibitors.

( 2.5 , 7 ) Cimetidine: Dosage decrease may be needed when REMERON/REMERONSolTab is coadministered with cimetidine.

( 2.5 , 7 ) Warfarin : Monitor INR during concomitant use.

( 7 )

OVERDOSAGE

10 Human Experience In premarketing clinical studies, there were reports of REMERON overdose alone or in combination with other pharmacological agents.

Signs and symptoms reported in association with overdose included disorientation, drowsiness, impaired memory, and tachycardia.

Based on postmarketing reports, serious outcomes (including fatalities) may occur at dosages higher than the recommended doses, especially with mixed overdoses.

In these cases, QT prolongation and Torsades de Pointes have also been reported [see Warnings and Precautions (5.5) , Adverse Reactions (6.2) , and Drug Interactions (7) ].

Overdose Management No specific antidotes for mirtazapine are known.

Contact Poison Control (1-800-222-1222) for the latest recommendations.

DESCRIPTION

11 REMERON and REMERONSolTab contain mirtazapine.

Mirtazapine has a tetracyclic chemical structure and belongs to the piperazino-azepine group of compounds.

It is designated 1,2,3,4,10,14b-hexahydro-2-methylpyrazino [2,1-a] pyrido [2,3-c][2] benzazepine and has the empirical formula of C 17 H 19 N 3 .

Its molecular weight is 265.35.

The structural formula is the following and it is the racemic mixture: Mirtazapine is a white to creamy white crystalline powder which is practically insoluble in water.

REMERON is available for oral administration as scored film-coated tablets containing 15 or 30 mg of mirtazapine Each tablet contains the following inactive ingredients: colloidal silicon dioxide anhydrous, corn starch, ferric oxide (yellow), hydroxypropyl cellulose, hypromellose, magnesium stearate, lactose monohydrate, polyethylene glycol 8000, and titanium dioxide.

The 30 mg tablets also contain ferric oxide (red).

REMERONSolTab is available for oral administration as an orally disintegrating tablet containing 15, 30, or 45 mg of mirtazapine.

REMERONSolTab also contains the following inactive ingredients: aspartame, citric acid anhydrous fine granular, crospovidone, hypromellose, magnesium stearate, mannitol, granular mannitol 2080, microcrystalline cellulose, natural and artificial orange flavor, polymethacrylate (Eudragit E100), povidone, sodium bicarbonate, and sugar spheres (composed of starch and sucrose).

Chemical Structure

CLINICAL STUDIES

14 The efficacy of REMERON as a treatment for major depressive disorder was established in 4 placebo-controlled, 6-week trials in adult outpatients meeting DSM-III criteria for major depressive disorder.

Patients were titrated with REMERON from a dose range of 5 mg to 35 mg/day.

The mean mirtazapine dose for patients who completed these 4 studies ranged from 21 to 32 mg/day.

Overall, these studies demonstrated REMERON to be superior to placebo on at least 3 of the following 4 measures: 21-Item Hamilton Depression Rating Scale (HDRS) total score; HDRS Depressed Mood Item; CGI Severity score; and Montgomery and Asberg Depression Rating Scale (MADRS).

Superiority of REMERON over placebo was also found for certain factors of the HDRS, including anxiety/somatization factor and sleep disturbance factor.

Examination of age and gender subsets of the population did not reveal any differential responsiveness on the basis of these subgroupings.

In a longer-term study, patients meeting (DSM-IV) criteria for major depressive disorder who had responded during an initial 8 to 12 weeks of acute treatment on REMERON were randomized to continuation of REMERON or placebo for up to 40 weeks of observation for relapse.

Response during the open phase was defined as having achieved a HAM-D 17 total score of ≤8 and a CGI-Improvement score of 1 or 2 at 2 consecutive visits beginning with week 6 of the 8 to 12 weeks in the open-label phase of the study.

Relapse during the double-blind phase was determined by the individual investigators.

Patients receiving continued REMERON treatment experienced significantly lower relapse rates over the subsequent 40 weeks compared to those receiving placebo.

This pattern was demonstrated in both male and female patients.

HOW SUPPLIED

16 /STORAGE AND HANDLING REMERON tablets are supplied as: Tablet Strength Tablet Color/Shape Tablet Markings Package Configuration NDC Code 15 mg Yellow, oval tablet Scored with “Organon” debossed on one side and ” T 3 Z ” on other side, on both sides of score line Bottle / 30 count 0052-0105-30 15 mg Yellow, oval tablet Scored with “MSD” debossed on one side and ” T 3 Z ” on other side, on both sides of score line Bottle / 30 count 0052-4364-01 30 mg Red-brown, oval tablet Scored with “Organon” debossed on one side and ” T 5 Z ” on other side, on both sides of score line Bottle / 30 count 0052-0107-30 30 mg Red-brown, oval tablet Scored with “MSD” debossed on one side and ” T 5 Z ” on other side, on both sides of score line Bottle / 30 count 0052-4365-01 Storage Store at 20°C to 25°C (68°F to 77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature].

Protect from light and moisture.

REMERONSolTab orally disintegrating tablets are supplied as: Tablet Strength Tablet Color/Shape Tablet Markings Package Configuration NDC Code 15 mg White, round tablet ” T 1 Z ” debossed on one side.

Box of 5 × 6-unit dose blister packs/ 30 count 0052-0106-30 30 mg White, round tablet ” T 2 Z ” debossed on one side.

Box of 5 × 6-unit dose blister packs/30 count 0052-0108-30 45 mg White, round tablet ” T 4 Z ” debossed on one side Box of 5 × 6-unit dose blister packs/30 count 0052-0110-30 Storage Store at 20°C to 25°C (68°F to 77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature].

Protect from light and moisture.

Use immediately upon opening individual tablet blister.

GERIATRIC USE

8.5 Geriatric Use Approximately 190 patients ≥65 years of age participated in clinical studies with REMERON.

REMERON/REMERONSolTab is known to be substantially excreted by the kidney (75%), and the risk of decreased clearance of this drug is greater in patients with impaired renal function.

Pharmacokinetic studies revealed a decreased clearance of mirtazapine in the elderly [see Clinical Pharmacology (12.3) ] .

Sedating drugs, including REMERON/REMERONSolTab, may cause confusion and over-sedation in the elderly.

Elderly patients may be at greater risk of developing hyponatremia.

Caution is indicated when administering REMERON/REMERONSolTab to elderly patients [see Warnings and Precautions (5.11) , (5.14) and Clinical Pharmacology (12.3) ] .

In general, dose selection for an elderly patient should be conservative, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 REMERON is supplied as: 15 mg tablets: Oval, scored, yellow, with “Organon” debossed on one side and ” T 3 Z ” on the other side, on both sides of the score line 15 mg tablets: Oval, scored, yellow, with “MSD” debossed on one side and ” T 3 Z ” on the other side, on both sides of the score line 30 mg tablets: Oval, scored, red-brown, with “Organon” debossed on one side and ” T 5 Z ” on the other side, on both sides of the score line 30 mg tablets: Oval, scored, red-brown, with “MSD” debossed on one side and ” T 5 Z ” on the other side, on both sides of the score line REMERONSolTab is supplied as: 15 mg orally disintegrating tablets: Round, white, with ” T 1 Z ” debossed on one side 30 mg orally disintegrating tablets: Round, white, with ” T 2 Z ” debossed on one side 45 mg orally disintegrating tablets: Round, white, with ” T 4 Z ” debossed on one side Tablets : 15 mg scored and 30 mg scored.

( 3 ) Orally disintegrating tablets : 15 mg, 30 mg, and 45 mg.

( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action The mechanism of action of mirtazapine for the treatment of major depressive disorder, is unclear.

However, its efficacy could be mediated through its activity as an antagonist at central presynaptic α 2 -adrenergic inhibitory autoreceptors and heteroreceptors and enhancing central noradrenergic and serotonergic activity.

INDICATIONS AND USAGE

1 REMERON/REMERONSolTab are indicated for the treatment of major depressive disorder (MDD) in adults [see Clinical Studies (14) ] .

REMERON/REMERONSolTab is indicated for the treatment of major depressive disorder (MDD) in adults.

( 1 )

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of REMERON/REMERONSolTab have not been established in pediatric patients with MDD.

Two placebo-controlled trials in 258 pediatric patients with MDD have been conducted with REMERON, and the data were insufficient to establish the safety and effectiveness of REMERON/REMERONSolTab in pediatric patients with MDD.

Antidepressants increased the risk of suicidal thoughts and behaviors in pediatric patients [see Boxed Warning and Warnings and Precautions (5.1) ] .

In an 8-week-long clinical trial in pediatric patients receiving doses between 15 to 45 mg per day, 49% of REMERON-treated patients had a weight gain of at least 7%, compared to 5.7% of placebo-treated patients.

The mean increase in weight was 4 kg (2 kg SD) for REMERON-treated patients versus 1 kg (2 kg SD) for placebo-treated patients [see Warnings and Precautions (5.6) ] .

PREGNANCY

8.1 Pregnancy Pregnancy Exposure Registry There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antidepressants during pregnancy.

Healthcare providers are encouraged to register patients by calling the National Pregnancy Registry for Antidepressants at 1-844-405-6185 or visiting online at https://womensmentalhealth.org/clinical-and-research-programs/pregnancyregistry/antidepressants/.

Risk Summary Prolonged experience with mirtazapine in pregnant women, based on published observational studies and postmarketing reports, has not reliably identified a drug-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes.

There are risks associated with untreated depression in pregnancy (see Clinical Considerations ).

In animal reproduction studies, oral administration of mirtazapine to pregnant rats and rabbits during the period of organogenesis revealed no evidence of teratogenic effects up to 20 and 17 times the maximum recommended human dose (MRHD) of 45 mg, respectively, based on mg/m 2 body surface area.

However, in rats, there was an increase in postimplantation loss at 20 times the MRHD based on mg/m 2 body surface area.

Oral administration of mirtazapine to pregnant rats during pregnancy and lactation resulted in an increase in pup deaths and a decrease in pup birth weights at doses 20 times the MRHD based on mg/m 2 body surface area (see Data ).

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown.

All pregnancies have a background risk of birth defect, loss, or other adverse outcomes.

In the U.S.

general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.

Clinical Considerations Disease-Associated Maternal and/or Embryo/Fetal Risk Women who discontinue antidepressants during pregnancy are more likely to experience a relapse of major depression than women who continue antidepressants.

This finding is from a prospective, longitudinal study that followed 201 pregnant women with a history of major depressive disorder who were euthymic and taking antidepressants at the beginning of pregnancy.

Consider the risk of untreated depression when discontinuing or changing treatment with antidepressant medication during pregnancy and postpartum.

Data Animal Data Mirtazapine was administered orally to pregnant rats and rabbits during the period of organogenesis at doses of 2.5, 15, and 100 mg/kg/day and 2.5, 10, and 40 mg/kg/day, respectively, which are up to 20 and 17 times the maximum recommended human dose (MRHD) of 45 mg based on mg/m 2 body surface area, respectively.

No evidence of teratogenic effects was observed.

However, in rats, there was an increase in postimplantation loss in dams treated with mirtazapine at 100 mg/kg/day which is 20 times the MRHD based on mg/m 2 body surface area.

Oral administration of mirtazapine at doses of 2.5, 15, and 100 mg/kg/day to pregnant rats during pregnancy and lactation resulted in an increase in pup deaths during the first 3 days of lactation and a decrease in pup birth weights at 20 times the MRHD based on mg/m 2 body surface area.

The cause of these deaths is not known.

The no effect dose level is 3 times the MRHD based on mg/m 2 body surface area.

BOXED WARNING

WARNING: SUICIDAL THOUGHTS AND BEHAVIORS Antidepressants increased the risk of suicidal thoughts and behaviors in pediatric and young adult patients in short-term studies.

Closely monitor all antidepressant-treated patients for clinical worsening, and for emergence of suicidal thoughts and behaviors [see Warnings and Precautions (5.1) ] .

REMERON/REMERONSolTab is not approved for use in pediatric patients [see Use in Specific Populations (8.4) ].

WARNING: SUICIDAL THOUGHTS AND BEHAVIORS See full prescribing information for complete boxed warning.

Increased risk of suicidal thoughts and behavior in pediatric and young adult patients taking antidepressants.

Closely monitor all antidepressant-treated patients for clinical worsening and emergence of suicidal thoughts and behaviors.

REMERON/REMERONSolTab is not approved for use in pediatric patients.

( 5.1 , 8.4 )

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Agranulocytosis : If sore throat, fever, stomatitis or signs of infection occur, along with a low white blood cell count, treatment with REMERON/REMERONSolTab should be discontinued and the patient should be closely monitored.

( 5.2 ) Serotonin Syndrome : Increased risk when co-administered with other serotonergic drugs (e.g., SSRI, SNRI, triptans), but also when taken alone.

If it occurs, discontinue REMERON/REMERONSolTab and initiate supportive treatment.

( 2.4 , 4 , 5.3 , 7 ) Angle-Closure Glaucoma : Angle closure glaucoma has occurred in patients with untreated anatomically narrow angles treated with antidepressants.

( 5.4 ) QT Prolongation : Use REMERON/REMERONSolTab with caution in patients with risk factors for QT prolongation.

( 5.5 , 7 ) Increased Appetite/Weight Gain : REMERON/REMERONSolTab has been associated with increased appetite and weight gain.

( 5.6 ) Somnolence : May impair judgment, thinking and/or motor skills.

Use with caution when engaging in activities requiring alertness, such as driving or operating machinery.

( 5.7 , 7 ) Activation of Mania/Hypomania : Screen patients for bipolar disorder prior to initiating treatment.

( 2.3 , 5.8 ) Seizures : Use with caution in patients with a seizure disorder.

( 5.9 ) Elevated Cholesterol/Triglycerides : Has been reported with REMERON use.

( 5.10 ) Hyponatremia : May occur as a result of treatment with serotonergic antidepressants, including REMERON/REMERONSolTab.

( 5.11 ) Transaminase Elevations : Clinically significant elevations have occurred.

Use with caution in patients with impaired hepatic function.

( 5.12 ) 5.1 Suicidal Thoughts and Behaviors in Adolescents and Young Adults In pooled analyses of placebo-controlled trials of antidepressant drugs (SSRIs and other antidepressant classes) that included approximately 77,000 adult patients and 4,500 pediatric patients, the incidence of suicidal thoughts and behaviors in antidepressant-treated patients age 24 years and younger was greater than in placebo-treated patients.

There was considerable variation in risk of suicidal thoughts and behaviors among drugs, but there was an increased risk identified in young patients for most drugs studied.

There were differences in absolute risk of suicidal thoughts and behaviors across the different indications, with the highest incidence in patients with MDD.

The drug-placebo differences in the number of cases of suicidal thoughts and behaviors per 1000 patients treated are provided in Table 1.

Table 1: Risk Differences of the Number of Patients with Suicidal Thoughts and Behavior in the Pooled Placebo-Controlled Trials of Antidepressants in Pediatric and Adult Patients Age Range Drug-Placebo Difference in Number of Patients with Suicidal Thoughts or Behaviors per 1000 Patients Treated Increases Compared to Placebo <18 years old 14 additional patients 18–24 years old 5 additional patients Decreases Compared to Placebo 25–64 years old 1 fewer patient ≥65 years old 6 fewer patients It is unknown whether the risk of suicidal thoughts and behaviors in children, adolescents, and young adults extends to longer-term use, i.e., beyond four months.

However, there is substantial evidence from placebo-controlled maintenance trials in adults with MDD that antidepressants delay the recurrence of depression and that depression itself is a risk factor for suicidal thoughts and behaviors.

Monitor all antidepressant-treated patients for any indication of clinical worsening and emergence of suicidal thoughts and behaviors, especially during the initial few months of drug therapy, and at times of dosage changes.

Counsel family members or caregivers of patients to monitor for changes in behavior and to alert the healthcare provider.

Consider changing the therapeutic regimen, including possibly discontinuing REMERON/REMERONSolTab, in patients whose depression is persistently worse, or who are experiencing emergent suicidal thoughts or behaviors.

5.2 Agranulocytosis In premarketing clinical trials, 2 (1 with Sjögren’s Syndrome) out of 2796 patients treated with REMERON developed agranulocytosis [absolute neutrophil count (ANC) <500/mm 3 with associated signs and symptoms, e.g., fever, infection, etc.] and a third patient developed severe neutropenia (ANC <500/mm 3 without any associated symptoms).

For these 3 patients, onset of severe neutropenia was detected on days 61, 9, and 14 of treatment, respectively.

All 3 patients recovered after REMERON was stopped.

If a patient develops a sore throat, fever, stomatitis, or other signs of infection, along with a low white blood cell (WBC) count, treatment with REMERON/REMERONSolTab should be discontinued and the patient should be closely monitored.

5.3 Serotonin Syndrome Serotonergic antidepressants, including REMERON/REMERONSolTab, can precipitate serotonin syndrome, a potentially life-threatening condition.

The risk is increased with concomitant use of other serotonergic drugs (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, and St.

John’s Wort) and with drugs that impair metabolism of serotonin, i.e., MAOIs [see Contraindications (4) , Drug Interactions (7) ] .

Serotonin syndrome can also occur when these drugs are used alone.

Serotonin syndrome signs and symptoms may include mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, and gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea).

The concomitant use of REMERON/REMERONSolTab with MAOIs is contraindicated.

In addition, do not initiate REMERON/REMERONSolTab in a patient being treated with MAOIs such as linezolid or intravenous methylene blue.

No reports involved the administration of methylene blue by other routes (such as oral tablets or local tissue injection).

If it is necessary to initiate treatment with an MAOI such as linezolid or intravenous methylene blue in a patient taking REMERON/REMERONSolTab, discontinue REMERON/REMERONSolTab before initiating treatment with the MAOI [see Contraindications (4) , Drug Interactions (7) ] .

Monitor all patients taking REMERON/REMERONSolTab for the emergence of serotonin syndrome.

Discontinue treatment with REMERON/REMERONSolTab and any concomitant serotonergic agents immediately if the above symptoms occur, and initiate supportive symptomatic treatment.

If concomitant use of REMERON/REMERONSolTab with other serotonergic drugs is clinically warranted, inform patients of the increased risk for serotonin syndrome and monitor for symptoms.

5.4 Angle-Closure Glaucoma The pupillary dilation that occurs following use of many antidepressant drugs, including REMERON/REMERONSolTab, may trigger an angle-closure attack in a patient with anatomically narrow angles who does not have a patent iridectomy.

5.5 QT Prolongation and Torsades de Pointes The effect of REMERON (mirtazapine) on QTc interval was assessed in a clinical randomized trial with placebo and positive (moxifloxacin) controls involving 54 healthy volunteers using exposure response analysis.

This trial showed a positive relationship between mirtazapine concentrations and prolongation of the QTc interval.

However, the degree of QT prolongation observed with both 45 mg and 75 mg (1.67 times the maximum recommended daily dose) doses of mirtazapine was not at a level generally considered to be clinically meaningful.

During postmarketing use of mirtazapine, cases of QT prolongation, Torsades de Pointes, ventricular tachycardia, and sudden death, have been reported [see Adverse Reactions (6.1 , 6.2) ] .

The majority of reports occurred in association with overdose or in patients with other risk factors for QT prolongation, including concomitant use of QTc-prolonging medicines [see Drug Interactions (7) and Overdosage (10) ] .

Exercise caution when REMERON/REMERONSolTab is prescribed in patients with known cardiovascular disease or family history of QT prolongation, and in concomitant use with other drugs thought to prolong the QTc interval.

5.6 Increased Appetite and Weight Gain In U.S.

controlled clinical studies, appetite increase was reported in 17% of patients treated with REMERON, compared to 2% for placebo.

In these same trials, weight gain of ≥7% of body weight was reported in 7.5% of patients treated with mirtazapine, compared to 0% for placebo.

In a pool of premarketing U.S.

clinical studies, including many patients for long-term, open-label treatment, 8% of patients receiving REMERON discontinued for weight gain.

In an 8-week-long pediatric clinical trial of doses between 15 to 45 mg/day, 49% of REMERON-treated pediatric patients had a weight gain of at least 7%, compared to 5.7% of placebo-treated patients.

The safety and effectiveness of REMERON/REMERONSolTab in pediatric patients with MDD have not been established [see Use in Specific Populations (8.4) ] .

5.7 Somnolence In U.S.

controlled studies, somnolence was reported in 54% of patients treated with REMERON, compared to 18% for placebo.

In these studies, somnolence resulted in discontinuation for 10.4% of REMERON-treated patients, compared to 2.2% for placebo.

It is unclear whether tolerance develops to the somnolent effects of REMERON/REMERONSolTab.

Because of the potentially significant effects of REMERON/REMERONSolTab on impairment of performance, caution patients about engaging in activities that require alertness, including operating hazardous machinery and motor vehicles, until they are reasonably certain that REMERON/REMERONSolTab does not affect them adversely.

The concomitant use of benzodiazepines and alcohol with REMERON/REMERONSolTab should be avoided [see Drug Interactions (7) ] .

5.8 Activation of Mania or Hypomania In patients with bipolar disorder, treating a depressive episode with REMERON/REMERONSolTab or another antidepressant may precipitate a mixed/manic episode.

In controlled clinical trials, patients with bipolar disorder were generally excluded; however, symptoms of mania or hypomania were reported in 0.2% of patients treated with REMERON.

Prior to initiating treatment with REMERON/REMERONSolTab, screen patients for any personal or family history of bipolar disorder, mania, or hypomania.

5.9 Seizures REMERON/REMERONSolTab has not been systematically evaluated in patients with seizure disorders.

In premarketing clinical trials, 1 seizure was reported among the 2796 U.S.

and non-U.S.

patients treated with REMERON.

REMERON/REMERONSolTab should be prescribed with caution in patients with a seizure disorder.

5.10 Elevated Cholesterol and Triglycerides In U.S.

controlled studies, nonfasting cholesterol increases to ≥20% above the upper limits of normal were observed in 15% of patients treated with REMERON, compared to 7% for placebo.

In these same studies, nonfasting triglyceride increases to ≥500 mg/dL were observed in 6% of patients treated with REMERON, compared to 3% for placebo.

5.11 Hyponatremia Hyponatremia may occur as a result of treatment with serotonergic antidepressants, including REMERON/REMERONSolTab.

Cases with serum sodium lower than 110 mmol/L have been reported.

Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls.

Signs and symptoms associated with more severe or acute cases have included hallucination, syncope, seizure, coma, respiratory arrest, and death.

In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH).

In patients with symptomatic hyponatremia, discontinue REMERON/REMERONSolTab and institute appropriate medical intervention.

Elderly patients, patients taking diuretics, and those who are volume-depleted may be at greater risk of developing hyponatremia [see Use in Specific Populations (8.5) ] .

5.12 Transaminase Elevations Clinically significant ALT (SGPT) elevations (≥3 times the upper limit of the normal range) were observed in 2.0% (8/424) of patients treated with REMERON in a pool of short-term, U.S.

controlled trials, compared to 0.3% (1/328) of placebo patients.

While some patients were discontinued for the ALT increases, in other cases, the enzyme levels returned to normal despite continued REMERON treatment.

REMERON/REMERONSolTab should be used with caution in patients with impaired hepatic function [see Use in Specific Populations (8.6) , Clinical Pharmacology (12.3) ] .

5.13 Discontinuation Syndrome There have been reports of adverse reactions upon the discontinuation of REMERON/REMERONSolTab (particularly when abrupt), including but not limited to the following: dizziness, abnormal dreams, sensory disturbances (including paresthesia and electric shock sensations), agitation, anxiety, fatigue, confusion, headache, tremor, nausea, vomiting, and sweating, or other symptoms which may be of clinical significance.

A gradual reduction in the dosage, rather than an abrupt cessation, is recommended [see Dosage and Administration (2.6) ].

5.14 Use in Patients with Concomitant Illness REMERON/REMERONSolTab has not been systematically evaluated or used to any appreciable extent in patients with a recent history of myocardial infarction or other significant heart disease.

REMERON was associated with significant orthostatic hypotension in early clinical pharmacology trials with normal volunteers.

Orthostatic hypotension was infrequently observed in clinical trials with depressed patients [see Adverse Reactions (6.1) ] .

REMERON/REMERONSolTab should be used with caution in patients with known cardiovascular or cerebrovascular disease that could be exacerbated by hypotension (history of myocardial infarction, angina, or ischemic stroke) and conditions that would predispose patients to hypotension (dehydration, hypovolemia, and treatment with antihypertensive medication).

5.15 Risks in Patients with Phenylketonuria Phenylalanine can be harmful to patients with phenylketonuria (PKU).

REMERONSolTab contains phenylalanine, a component of aspartame.

REMERONSolTab contains the following amount of phenylalanine: 2.6 mg in 15 mg orally disintegrating tablet, 5.2 mg in 30 mg orally disintegrating tablet, and 7.8 mg in 45 mg orally disintegrating tablet.

Before prescribing REMERONSolTab to a patient with PKU, consider the combined daily amount of phenylalanine from all sources, including REMERONSolTab.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide).

Suicidal Thoughts and Behaviors Advise patients and caregivers to look for the emergence of suicidality, especially early during treatment and when the dosage is adjusted up or down, and instruct them to report such symptoms to the healthcare provider [see Boxed Warning and Warnings and Precautions (5.1) ].

Agranulocytosis Advise patients to contact their physician if they experience fever, chills, sore throat, mucous membrane ulceration, flu-like complaints, or other symptoms that might suggest infection [see Warnings and Precautions (5.2) ].

Serotonin Syndrome Caution patients about the risk of serotonin syndrome, particularly with the concomitant use of REMERON/REMERONSolTab with other serotonergic drugs including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, St.

John’s Wort, and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid).

Advise patients to contact their healthcare provider or report to the emergency room if they experience signs or symptoms of serotonin syndrome [see Dosage and Administration (2.4) , Contraindications (4) , Warnings and Precautions (5.3) , Drug Interactions (7) ].

QT Prolongation and Torsades de Pointes Inform patients to consult their physician immediately if they feel faint, lose consciousness, or have heart palpitations [see Warnings and Precautions (5.5) , Drug Interactions (7) , Overdosage (10) ].

Advise patients to inform physicians that they are taking REMERON/REMERONSolTab before any new drug is taken.

Somnolence Advise patients that REMERON/REMERONSolTab may impair judgment, thinking, and particularly, motor skills, because of its prominent sedative effect.

Caution patients about performing activities requiring mental alertness, such as operating hazardous machinery or operating a motor vehicle, until they are reasonably certain that REMERON/REMERONSolTab therapy does not adversely affect their ability to engage in such activities.

[see Warnings and Precautions (5.7) ].

Alcohol Advise patients to avoid alcohol while taking REMERON/REMERONSolTab [see Warnings and Precautions (5.7) , Drug Interactions (7) ].

Activation of Mania/Hypomania Advise patients and their caregivers to observe for signs of activation of mania/hypomania and instruct them to report such symptoms to the healthcare provider [see Warnings and Precautions (5.8) ] .

Discontinuation Syndrome Advise patients not to abruptly discontinue REMERON/REMERONSolTab and to discuss any tapering regimen with their healthcare provider.

Adverse reactions can occur when REMERON/REMERONSolTab is discontinued [see Dosage and Administration (2.6) , Warnings and Precautions (5.13) ].

Allergic Reactions Advise patients to notify their healthcare provider if they develop an allergic reaction such as rash, hives, swelling, or difficulty breathing [see Contraindications (4) , Adverse Reactions (6.2) ] .

Pregnancy Advise patients to notify their physician if they become pregnant or intend to become pregnant during REMERON/REMERONSolTab therapy.

Advise patients that there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to REMERON/REMERONSolTab during pregnancy [see Use in Specific Populations (8.1) ] .

Lactation Advise patients to notify their physician if they are breastfeeding an infant [see Use in Specific Populations (8.2) ].

Angle-Closure Glaucoma Patients should be advised that taking REMERON can cause mild pupillary dilation, which in susceptible individuals, can lead to an episode of angle-closure glaucoma.

Pre-existing glaucoma is almost always open-angle glaucoma because angle-closure glaucoma, when diagnosed, can be treated definitively with iridectomy.

Open-angle glaucoma is not a risk factor for angle-closure glaucoma.

Patients may wish to be examined to determine whether they are susceptible to angle-closure, and have a prophylactic procedure (e.g., iridectomy), if they are susceptible [see Warnings and Precautions (5.4) .] Patients with Phenylketonuria Inform patients with phenylketonuria that REMERONSolTab contains phenylalanine [see Warnings and Precautions (5.15) ].

DOSAGE AND ADMINISTRATION

2 Starting dose: 15-mg once daily; may increase up to maximum recommended dose of 45 mg once daily.

( 2.1 ) Administer orally once daily, preferably in the evening prior to sleep.

( 2.1 ) Administer REMERONSolTab immediately after removal from blister pack.

( 2.2 ) Reduce dose gradually when discontinuing REMERON/REMERONSolTab.

( 2.6 , 5.13 ) 2.1 Recommended Dosage The recommended starting dose of REMERON/REMERONSolTab is 15 mg once daily, administered orally, preferably in the evening prior to sleep.

If patients do not have an adequate response to the initial 15 mg dose, increase the dose up to a maximum of 45 mg per day.

Dose changes should not be made in intervals of less than 1 to 2 weeks to allow sufficient time for evaluation of response to a given dose [see Clinical Pharmacology (12.3) ] .

2.2 Administration of REMERONSolTab The tablet should remain in the blister pack until the patient is ready to take it.

The patient or caregiver should use dry hands to open the blister.

As soon as the blister is opened, the tablet should be removed and placed on the patient’s tongue.

Use REMERONSolTab immediately after removal from its blister; once removed, it cannot be stored.

The whole tablet should be placed on the tongue and allowed to disintegrate without chewing or crushing.

Do not attempt to split the tablet.

The tablet will disintegrate in saliva so that it can be swallowed.

2.3 Screen for Bipolar Disorder Prior to Starting REMERON/REMERONSolTab Prior to initiating treatment with REMERON/REMERONSolTab or another antidepressant, screen patients for a personal or family history of bipolar disorder, mania, or hypomania [see Warnings and Precautions (5.8) ].

2.4 Switching Patients to or from a Monoamine Oxidase Inhibitor Antidepressant At least 14 days must elapse between discontinuation of a monoamine oxidase inhibitor (MAOI) antidepressant and initiation of REMERON/REMERONSolTab.

In addition, at least 14 days must elapse after stopping REMERON/REMERONSolTab before starting an MAOI antidepressant [see Contraindications (4) and Warnings and Precautions (5.3) ] .

2.5 Dosage Modifications Due to Drug Interactions Strong CYP3A Inducers An increase in dosage of REMERON/REMERONSolTab may be needed with concomitant strong CYP3A inducer (e.g., carbamazepine, phenytoin, rifampin) use.

Conversely, a decrease in dosage of REMERON/REMERONSolTab may be needed if the CYP3A inducer is discontinued [see Drug Interactions (7) ].

Strong CYP3A Inhibitors A decrease in dosage of REMERON/REMERONSolTab may be needed with concomitant use of strong CYP3A4 inhibitors (e.g., ketoconazole, clarithromycin).

Conversely, an increase in dosage of REMERON/REMERONSolTab may be needed if the CYP3A4 inhibitor is discontinued [see Drug Interactions (7) ].

Cimetidine A decrease in dosage of REMERON/REMERONSolTab may be needed with concomitant use of cimetidine.

Conversely, an increase in dosage of REMERON/REMERONSolTab may be needed if cimetidine is discontinued [see Drug Interactions (7) ].

2.6 Discontinuation of REMERON/REMERONSolTab Treatment Adverse reactions may occur upon discontinuation or dose reduction of REMERON/REMERONSolTab [see Warnings and Precautions (5.13) ] .

Gradually reduce the dosage of REMERON/REMERONSolTab rather than stopping abruptly whenever possible.