Acetaminophen 500 MG Oral Tablet

Generic Name: ACETAMINOPHEN
Brand Name: Pain Relief Extra Strength
  • Substance Name(s):
  • ACETAMINOPHEN

WARNINGS

Warnings Liver warning: This product contains acetaminophen. The maximum daily dose of this product is 6 gelcaps (3,000 mg) in 24 hours. Severe liver damage may occur if you take: more than 4,000 mg of acetaminophen in 24 hours with other drugs containing acetaminophen 3 or more alcoholic drinks every day while using this product Allergy alert: Acetaminophen may cause severe skin reactions. Symptoms may include: skin reddening blisters rash If a skin reaction occurs, stop use and seek medical help right away. Do not use with any other drug containing acetaminophen (prescription or nonprescription). If you are not sure whether a drug contains acetaminophen, ask a doctor or pharmacist. if you are allergic to acetaminophen or any of the inactive ingredients in this product Ask a doctor before use if you have liver disease. Ask a doctor or pharmacist before use if you are taking the blood thinning drug warfarin. Stop use and ask a doctor if pain gets worse or lasts more than 10 days fever gets worse or lasts more than 3 days new symptoms occur redness or swelling is present These could be signs of a serious condition. If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. In case of accidental overdose, get medical help or contact a Poison Control Center (1-800-222-1222) right away. Prompt medical attention is critical for adults as well as for children even if you do not notice any signs or symptoms.

INDICATIONS AND USAGE

Uses temporarily relieves minor aches and pains due to: minor pain of arthritis headache muscular aches toothache backache the common cold premenstrual and menstrual cramps temporarily reduces fever

INACTIVE INGREDIENTS

Inactive ingredients croscarmellose sodium, D&C red #33, FD&C blue #1, FD&C red #40, gelatin, hydroxypropyl cellulose, hypromellose, iron oxide black, iron oxide red, iron oxide yellow, polyethylene glycol, povidone, pregelatinized starch, propylene glycol, shellac glaze, stearic acid, titanium dioxide

PURPOSE

Purpose Pain reliever/ fever reducer

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of accidental overdose, get medical help or contact a Poison Control Center (1-800-222-1222) right away. Prompt medical attention is critical for adults as well as for children even if you do not notice any signs or symptoms.

ASK DOCTOR

Ask a doctor before use if you have liver disease.

DOSAGE AND ADMINISTRATION

Directions do not take more than directed adults and children 12 years and over take 2 gelcaps every 6 hours while symptoms last do not take more than 6 gelcaps in 24 hours, unless directed by a doctor do not take for more than 10 days unless directed by a doctor children under 12 years: ask a doctor

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use.

DO NOT USE

Do not use with any other drug containing acetaminophen (prescription or nonprescription). If you are not sure whether a drug contains acetaminophen, ask a doctor or pharmacist. if you are allergic to acetaminophen or any of the inactive ingredients in this product

STOP USE

Stop use and ask a doctor if pain gets worse or lasts more than 10 days fever gets worse or lasts more than 3 days new symptoms occur redness or swelling is present These could be signs of a serious condition.

ACTIVE INGREDIENTS

Active ingredient (in each gelcap) Acetaminophen 500 mg

ASK DOCTOR OR PHARMACIST

Ask a doctor or pharmacist before use if you are taking the blood thinning drug warfarin.

CRESTOR 5 MG Oral Tablet

Generic Name: ROSUVASTATIN CALCIUM
Brand Name: CRESTOR
  • Substance Name(s):
  • ROSUVASTATIN CALCIUM

DRUG INTERACTIONS

7 • Cyclosporine: Combination increases rosuvastatin exposure. Limit CRESTOR dose to 5 mg once daily. (2.5, 5.1,7.1, 12.3) • Gemfibrozil: Combination should be avoided. If used together, limit CRESTOR dose to 10 mg once daily. (5.1, 7.2) • Lopinavir/Ritonavir or atazanavir/ritonavir: Combination increases rosuvastatin exposure. Limit CRESTOR dose to 10 mg once daily. (2.5, 5.1, 7.3, 12.3) • Coumarin anticoagulants: Combination prolongs INR. Achieve stable INR prior to starting CRESTOR. Monitor INR frequently until stable upon initiation or alteration of CRESTOR therapy. (5.3, 7.4) • Concomitant lipid-lowering therapies: Use with fibrates or lipid-modifying doses (≥1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with CRESTOR. (5.1, 7.5, 7.6) 7.1 Cyclosporine Cyclosporine increased rosuvastatin exposure (AUC) 7‑fold. Therefore, in patients taking cyclosporine, the dose of CRESTOR should not exceed 5 mg once daily [see Dosage and Administration (2.5) , Warnings and Precautions (5.1) , and Clinical Pharmacology (12.3) ]. 7.2 Gemfibrozil Gemfibrozil significantly increased rosuvastatin exposure. Due to an observed increased risk of myopathy/rhabdomyolysis, combination therapy with CRESTOR and gemfibrozil should be avoided. If used together, the dose of CRESTOR should not exceed 10 mg once daily [see Clinical Pharmacology (12.3) ]. 7.3 Protease Inhibitors Coadministration of rosuvastatin with certain protease inhibitors given in combination with ritonavir has differing effects on rosuvastatin exposure. The protease inhibitor combinations lopinavir/ritonavir and atazanavir/ritonavir increase rosuvastatin exposure (AUC) up to threefold [see Table 4 – Clinical Pharmacology (12.3) ]. For these combinations the dose of CRESTOR should not exceed 10 mg once daily. The combinations of tipranavir/ritonavir or fosamprenavir/ritonavir produce little or no change in rosuvastatin exposure. Caution should be exercised when rosuvastatin is coadministered with protease inhibitors given in combination with ritonavir [see Dosage and Administration (2.5), Warnings and Precautions (5.1) and Clinical Pharmacology (12.3) ]. 7.4 Coumarin Anticoagulants CRESTOR significantly increased INR in patients receiving coumarin anticoagulants. Therefore, caution should be exercised when coumarin anticoagulants are given in conjunction with CRESTOR. In patients taking coumarin anticoagulants and CRESTOR concomitantly, INR should be determined before starting CRESTOR and frequently enough during early therapy to ensure that no significant alteration of INR occurs [see Warnings and Precautions (5.3) and Clinical Pharmacology (12.3) ]. 7.5 Niacin The risk of skeletal muscle effects may be enhanced when CRESTOR is used in combination with lipid-modifying doses (≥1 g/day) of niacin; caution should be used when prescribing with CRESTOR [see Warnings and Precautions (5.1) ]. 7.6 Fenofibrate When CRESTOR was coadministered with fenofibrate, no clinically significant increase in the AUC of rosuvastatin or fenofibrate was observed. Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concomitant use of fenofibrates, caution should be used when prescribing fenofibrates with CRESTOR [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3) ]. 7.7 Colchicine Cases of myopathy, including rhabdomyolysis, have been reported with HMG‑CoA reductase inhibitors, including rosuvastatin, coadministered with colchicine, and caution should be exercised when prescribing CRESTOR with colchicine [see Warnings and Precautions (5.1) ].

OVERDOSAGE

10 There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Hemodialysis does not significantly enhance clearance of rosuvastatin.

DESCRIPTION

11 CRESTOR (rosuvastatin calcium) is a synthetic lipid-lowering agent for oral administration. The chemical name for rosuvastatin calcium is bis[(E)-7-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino] pyrimidin-5-yl](3R,5S)-3,5-dihydroxyhept-6-enoic acid] calcium salt with the following structural formula: The empirical formula for rosuvastatin calcium is (C22H27FN3O6S)2Ca and the molecular weight is 1001.14. Rosuvastatin calcium is a white amorphous powder that is sparingly soluble in water and methanol, and slightly soluble in ethanol. Rosuvastatin calcium is a hydrophilic compound with a partition coefficient (octanol/water) of 0.13 at pH of 7.0. CRESTOR Tablets for oral administration contain 5, 10, 20, or 40 mg of rosuvastatin and the following inactive ingredients: Each tablet contains: microcrystalline cellulose NF, lactose monohydrate NF, tribasic calcium phosphate NF, crospovidone NF, magnesium stearate NF, hypromellose NF, triacetin NF, titanium dioxide USP, yellow ferric oxide, and red ferric oxide NF.

CLINICAL STUDIES

14 14.1 Hyperlipidemia and Mixed Dyslipidemia CRESTOR reduces Total‑C, LDL‑C, ApoB, nonHDL‑C, and TG, and increases HDL‑C, in adult patients with hyperlipidemia and mixed dyslipidemia. Dose-Ranging Study: In a multicenter, double-blind, placebo-controlled, dose-ranging study in patients with hyperlipidemia CRESTOR given as a single daily dose for 6 weeks significantly reduced Total‑C, LDL‑C, nonHDL‑C, and ApoB, across the dose range (Table 6). Table 6. Dose-Response in Patients With Hyperlipidemia (Adjusted Mean % Change From Baseline at Week 6) Dose N Total‑C LDL‑C Non-HDL‑C ApoB TG HDL‑C Placebo 13 -5 -7 -7 -3 -3 3 CRESTOR 5 mg 17 -33 -45 -44 -38 -35 13 CRESTOR 10 mg 17 -36 -52 -48 -42 -10 14 CRESTOR 20 mg 17 -40 -55 -51 -46 -23 8 CRESTOR 40 mg 18 -46 -63 -60 -54 -28 10 Active-Controlled Study: CRESTOR was compared with the HMG‑CoA reductase inhibitors atorvastatin, simvastatin, and pravastatin in a multicenter, open-label, dose-ranging study of 2240 patients with hyperlipidemia or mixed dyslipidemia. After randomization, patients were treated for 6 weeks with a single daily dose of either CRESTOR, atorvastatin, simvastatin, or pravastatin (Figure 1 and Table 7). Figure 1. Percent LDL‑ C Change by Dose of CRESTOR, Atorvastatin, Simvastatin, and Pravastatin at Week 6 in Patients with Hyperlipidemia or Mixed Dyslipidemia Box plots are a representation of the 25th, 50th, and 75th percentile values, with whiskers representing the 10th and 90th percentile values. Mean baseline LDL‑C: 189 mg/dL Table 7. Percent Change in LDL‑C From Baseline to Week 6 (LS MeanCorresponding standard errors are approximately 1.00) by Treatment Group (sample sizes ranging from 156–167 patients per group) Treatment Daily Dose Treatment 10 mg 20 mg 40 mg 80 mg CRESTOR -46CRESTOR 10 mg reduced LDL-C significantly more than atorvastatin 10 mg; pravastatin 10 mg, 20 mg, and 40 mg; simvastatin 10 mg, 20 mg, and 40 mg. (p<0.002) -52CRESTOR 20 mg reduced LDL-C significantly more than atorvastatin 20 mg and 40 mg; pravastatin 20 mg and 40 mg; simvastatin 20 mg, 40 mg, and 80 mg. (p<0.002) -55CRESTOR 40 mg reduced LDL‑C significantly more than atorvastatin 40 mg; pravastatin 40 mg; simvastatin 40 mg, and 80 mg. (p<0.002) --- Atorvastatin -37 -43 -48 -51 Simvastatin -28 -35 -39 -46 Pravastatin -20 -24 -30 --- 14.2 Heterozygous Familial Hypercholesterolemia Active-Controlled Study: In a study of patients with heterozygous FH (baseline mean LDL of 291), patients were randomized to CRESTOR 20 mg or atorvastatin 20 mg. The dose was increased by 6-week intervals. Significant LDL-C reductions from baseline were seen at each dose in both treatment groups (Table 8). Table 8. Mean LDL-C Percentage Change from Baseline CRESTOR (n=435) LS Mean LS Means are least square means adjusted for baseline LDL-C (95% CI) Atorvastatin (n=187) LS Mean (95% CI) Week 6 20 mg -47% (-49%, -46%) -38% (-40%, -36%) Week 12 40 mg -55% (-57%, -54%) -47% (-49%, -45%) Week 18 80 mg NA -52% (-54%, -50%) 14.3 Hypertriglyceridemia Dose-Response Study: In a double-blind, placebo-controlled dose-response study in patients with baseline TG levels from 273 to 817 mg/dL, CRESTOR given as a single daily dose (5 to 40 mg) over 6 weeks significantly reduced serum TG levels (Table 9). Table 9. Dose-Response in Patients With Primary Hypertriglyceridemia Over 6 Weeks Dosing Median (Min, Max) Percent Change From Baseline Dose Placebo (n=26) CRESTOR 5 mg (n=25) CRESTOR 10 mg (n=23) CRESTOR 20 mg (n=27) CRESTOR 40 mg (n=25) Triglycerides 1 (-40, 72) -21 (-58, 38) -37 (-65, 5) -37 (-72, 11) -43 (-80, -7) nonHDL-C 2 (-13, 19) -29 (-43, -8) -49 (-59, -20) -43 (-74, 12) -51 (-62, -6) VLDL-C 2 (-36, 53) -25 (-62, 49) -48 (-72, 14) -49 (-83, 20) -56 (-83, 10) Total-C 1 (-13, 17) -24 (-40, -4) -40 (-51, -14) -34 (-61, -11) -40 (-51, -4) LDL-C 5 (-30, 52) -28 (-71, 2) -45 (-59, 7) -31 (-66, 34) -43 (-61, -3) HDL-C -3 (-25, 18) 3 (-38, 33) 8 (-8, 24) 22 (-5, 50) 17 (-14, 63) 14.4 Primary Dysbetalipoproteinemia (Type III Hyperlipoproteinemia) In a randomized, multicenter, double-blind crossover study, 32 patients (27 with є2/є2 and 4 with apo E mutation [Arg145Cys] with primary dysbetalipoproteinemia (Type III Hyperlipoproteinemia) entered a 6-week dietary lead-in period on the NCEP Therapeutic Lifestyle Change (TLC) diet. Following dietary lead-in, patients were randomized to a sequence of treatments in conjunction with the TLC diet for 6 weeks each: rosuvastatin 10 mg followed by rosuvastatin 20 mg or rosuvastatin 20 mg followed by rosuvastatin 10 mg. CRESTOR reduced nonHDL‑C (primary end point) and circulating remnant lipoprotein levels. Results are shown in the table below. Table 10. Lipid-modifying Effects of Rosuvastatin 10 mg and 20 mg in Primary Dysbetalipoproteinemia (Type III hyperlipoproteinemia) after Six weeks by Median Percent Change (95% CI) from Baseline (N=32) Median at Baseline (mg/dL) Median percent change from baseline (95% CI) CRESTOR 10 mg Median percent change from baseline (95% CI) CRESTOR 20 mg Total-C 342.5 – 43.3 (-46.9, – 37.5) -47.6 (-51.6,-42.8) Triglycerides 503.5 -40.1 (-44.9, -33.6) -43.0 (-52.5, -33.1) NonHDL-C 294.5 -48.2 (-56.7, -45.6) -56.4 (-61.4, -48.5) VLDL-C + IDL-C 209.5 -46.8 (-53.7, -39.4) -56.2 (-67.7, -43.7) LDL-C 112.5 -54.4 (-59.1, -47.3) -57.3 (-59.4, -52.1) HDL-C 35.5 10.2 (1.9, 12.3) 11.2 (8.3, 20.5) RLP-C 82.0 -56.4 (-67.1, -49.0) -64.9 (-74.0, -56.6) Apo-E 16.0 -42.9 (-46.3, -33.3) -42.5 (-47.1, -35.6) 14.5 Homozygous Familial Hypercholesterolemia Dose-Titration Study: In an open-label, forced-titration study, homozygous FH patients (n=40, 8‑63 years) were evaluated for their response to CRESTOR 20 to 40 mg titrated at a 6‑week interval. In the overall population, the mean LDL‑C reduction from baseline was 22%. About one-third of the patients benefited from increasing their dose from 20 mg to 40 mg with further LDL lowering of greater than 6%. In the 27 patients with at least a 15% reduction in LDL‑C, the mean LDL-C reduction was 30% (median 28% reduction). Among 13 patients with an LDL‑C reduction of <15%, 3 had no change or an increase in LDL‑C. Reductions in LDL‑C of 15% or greater were observed in 3 of 5 patients with known receptor negative status. 14.6 Pediatric Patients with Heterozygous Familial Hypercholesterolemia In a double blind, randomized, multicenter, placebo-controlled, 12 week study, 176 (97 male and 79 female) children and adolescents with heterozygous familial hypercholesterolemia were randomized to rosuvastatin 5, 10 or 20 mg or placebo daily. Patients ranged in age from 10 to 17 years (median age of 14 years) with approximately 30% of the patients 10 to 13 years and approximately 17%, 18%, 40%, and 25% at Tanner stages II, III, IV, and V, respectively. Females were at least 1 year postmenarche. Mean LDL C at baseline was 233 mg/dL (range of 129 to 399). The 12 week double blind phase was followed by a 40 week open label dose-titration phase, where all patients (n=173) received 5 mg, 10 mg or 20 mg rosuvastatin daily. Rosuvastatin significantly reduced LDL-C (primary end point), total cholesterol and ApoB levels at each dose compared to placebo. Results are shown in Table 11 below. Table 11. Lipid-modifying effects of rosuvastatin in pediatric patients 10 to 17 years of age with heterozygous familial hypercholesterolemia (least-squares mean percent change from baseline to week 12) Dose (mg) N LDL-C HDL-C Total-C TGMedian percent change ApoB Placebo 46 -1% +7% 0% -7% -2% 5 42 -38% +4%Difference from placebo not statistically significant -30% -13% -32% 10 44 -45% +11% -34% -15% -38% 20 44 -50% +9% -39% 16% -41% At the end of the 12 week, double blind treatment period, the percentage of patients achieving the LDL C goal of less than 110 mg/dL (2.8 mmol/L) was 0% for placebo, 12% for rosuvastatin 5 mg, 41% for rosuvastatin 10 mg and 41% for rosuvastatin 20 mg. For the 40 week, open label phase, 71% of the patients were titrated to the maximum dose of 20 mg and 41% of the patients achieved the LDL C goal of 110 mg/dL. The long-term efficacy of rosuvastatin therapy initiated in childhood to reduce morbidity and mortality in adulthood has not been established. 14.7 Slowing of the Progression of Atherosclerosis In the Measuring Effects on Intima Media Thickness: an Evaluation Of Rosuvastatin 40 mg (METEOR) study, the effect of therapy with CRESTOR on carotid atherosclerosis was assessed by B-mode ultrasonography in patients with elevated LDL‑C, at low risk (Framingham risk <10% over ten years) for symptomatic coronary artery disease and with subclinical atherosclerosis as evidenced by carotid intimal-medial thickness (cIMT). In this double-blind, placebo-controlled clinical study 984 patients were randomized (of whom 876 were analyzed) in a 5:2 ratio to CRESTOR 40 mg or placebo once daily. Ultrasonograms of the carotid walls were used to determine the annualized rate of change per patient from baseline to two years in mean maximum cIMT of 12 measured segments. The estimated difference in the rate of change in the maximum cIMT analyzed over all 12 carotid artery sites between patients treated with CRESTOR and placebo-treated patients was -0.0145 mm/year (95% CI –0.0196, –0.0093; p<0.0001). The annualized rate of change from baseline for the placebo group was +0.0131 mm/year (p<0.0001). The annualized rate of change from baseline for the group treated with CRESTOR was -0.0014 mm/year (p=0.32). At an individual patient level in the group treated with CRESTOR, 52.1% of patients demonstrated an absence of disease progression (defined as a negative annualized rate of change), compared to 37.7% of patients in the placebo group. 14.8 Primary Prevention of Cardiovascular Disease In the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) study, the effect of CRESTOR (rosuvastatin calcium) on the occurrence of major cardiovascular (CV) disease events was assessed in 17,802 men (≥50 years) and women (≥60 years) who had no clinically evident cardiovascular disease, LDL‑C levels <130 mg/dL (3.3 mmol/l) and hs‑CRP levels ≥2 mg/L. The study population had an estimated baseline coronary heart disease risk of 11.6% over 10 years based on the Framingham risk criteria and included a high percentage of patients with additional risk factors such as hypertension (58%), low HDL‑C levels (23%), cigarette smoking (16%), or a family history of premature CHD (12%). Study participants had a median baseline LDL‑C of 108 mg/dL and hsCRP of 4.3 mg/L. Study participants were randomly assigned to placebo (n=8901) or rosuvastatin 20 mg once daily (n=8901) and were followed for a mean duration of 2 years. The JUPITER study was stopped early by the Data Safety Monitoring Board due to meeting predefined stopping rules for efficacy in rosuvastatin-treated subjects. The primary end point was a composite end point consisting of the time-to-first occurrence of any of the following major CV events: CV death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina or an arterial revascularization procedure. Rosuvastatin significantly reduced the risk of major CV events (252 events in the placebo group vs. 142 events in the rosuvastatin group) with a statistically significant (p<0.001) relative risk reduction of 44% and absolute risk reduction of 1.2% (see Figure 2). The risk reduction for the primary end point was consistent across the following predefined subgroups: age, sex, race, smoking status, family history of premature CHD, body mass index, LDL‑C, HDL‑C, and hsCRP levels. Figure 2. Time to first occurrence of major cardiovascular events in JUPITER The individual components of the primary end point are presented in Figure 3. Rosuvastatin significantly reduced the risk of nonfatal myocardial infarction, nonfatal stroke, and arterial revascularization procedures. There were no significant treatment differences between the rosuvastatin and placebo groups for death due to cardiovascular causes or hospitalizations for unstable angina. Rosuvastatin significantly reduced the risk of myocardial infarction (6 fatal events and 62 nonfatal events in placebo-treated subjects vs. 9 fatal events and 22 nonfatal events in rosuvastatin-treated subjects) and the risk of stroke (6 fatal events and 58 nonfatal events in placebo-treated subjects vs. 3 fatal events and 30 nonfatal events in rosuvastatin-treated subjects). In a post-hoc subgroup analysis of JUPITER subjects (n=1405; rosuvastatin=725, placebo=680) with a hsCRP ≥2 mg/L and no other traditional risk factors (smoking, BP ≥140/90 or taking antihypertensives, low HDL‑C) other than age, after adjustment for high HDL‑C, there was no significant treatment benefit with rosuvastatin treatment. Figure 3. Major CV events by treatment group in JUPITER At one year, rosuvastatin increased HDL‑C and reduced LDL‑C, hsCRP, total cholesterol and serum triglyceride levels (p<0.001 for all versus placebo).

HOW SUPPLIED

16 /STORAGE AND HANDLING CRESTOR® (rosuvastatin calcium) Tablets are supplied as: •NDC 0310-0755-90: 5 mg. Yellow, round, biconvex, coated tablets. Debossed “CRESTOR” and “5” on one side; bottle of 90 tablets •NDC 0310-0751-90: 10 mg. Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “10” on one side; bottle of 90 tablets •NDC 0310-0751-39: 10 mg. Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “10” on one side; unit dose packages of 100 •NDC 0310-0752-90: 20 mg. Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “20” on one side; bottles of 90 •NDC 0310-0752-39: 20 mg. Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “20”on one side; unit dose packages of 100 •NDC 0310-0754-30: 40 mg. Pink, oval, biconvex, coated tablets. Debossed “CRESTOR” on one side and “40” on the other side; bottles of 30 Storage Store at controlled room temperature, 20‑25ºC (68-77ºF) [see USP Controlled Room Temperature]. Protect from moisture.

GERIATRIC USE

8.5 Geriatric Use Of the 10,275 patients in clinical studies with CRESTOR, 3159 (31%) were 65 years and older, and 698 (6.8%) were 75 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Elderly patients are at higher risk of myopathy and CRESTOR should be prescribed with caution in the elderly [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3) ].

DOSAGE FORMS AND STRENGTHS

3 5 mg: Yellow, round, biconvex, coated tablets. Debossed “CRESTOR” and “5” on one side of the tablet. 10 mg: Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “10” on one side of the tablet. 20 mg: Pink, round, biconvex, coated tablets. Debossed “CRESTOR” and “20” on one side of the tablet. 40 mg: Pink, oval, biconvex, coated tablets. Debossed “CRESTOR” on one side and “40” on the other side of the tablet. Tablets: 5 mg, 10 mg, 20 mg, and 40 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action CRESTOR is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3‑hydroxy‑3‑methylglutaryl coenzyme A to mevalonate, a precursor of cholesterol. In vivo studies in animals, and in vitro studies in cultured animal and human cells have shown rosuvastatin to have a high uptake into, and selectivity for, action in the liver, the target organ for cholesterol lowering. In in vivo and in vitro studies, rosuvastatin produces its lipid-modifying effects in two ways. First, it increases the number of hepatic LDL receptors on the cell-surface to enhance uptake and catabolism of LDL. Second, rosuvastatin inhibits hepatic synthesis of VLDL, which reduces the total number of VLDL and LDL particles.

INDICATIONS AND USAGE

1 CRESTOR is an HMG Co‑A reductase inhibitor indicated for: •patients with primary hyperlipidemia and mixed dyslipidemia as an adjunct to diet to reduce elevated total‑C, LDL‑C, ApoB, nonHDL‑C, and TG levels and to increase HDL‑C (1.1) •patients with hypertriglyceridemia as an adjunct to diet (1.2) •patients with primary dysbetalipoproteinemia (Type III hyperlipoproteinemia) as an adjunct to diet (1.3) •patients with homozygous familial hypercholesterolemia (HoFH) to reduce LDL‑C, total-C, and ApoB (1.4) •slowing the progression of atherosclerosis as part of a treatment strategy to lower total‑C and LDL‑C as an adjunct to diet (1.5) •pediatric patients 10 to 17 years of age with heterozygous familial hypercholesterolemia (HeFH) to reduce elevated total‑C, LDL‑C and ApoB after failing an adequate trial of diet therapy (1.1) •risk reduction of MI, stroke, and arterial revascularization procedures in patients without clinically evident CHD, but with multiple risk factors (1.6) Limitations of use (1.7): •CRESTOR has not been studied in Fredrickson Type I and V dyslipidemias. 1.1 Hyperlipidemia and Mixed Dyslipidemia CRESTOR is indicated as adjunctive therapy to diet to reduce elevated Total-C, LDL-C, ApoB, nonHDL‑C, and triglycerides and to increase HDL‑C in adult patients with primary hyperlipidemia or mixed dyslipidemia. Lipid-altering agents should be used in addition to a diet restricted in saturated fat and cholesterol when response to diet and nonpharmacological interventions alone has been inadequate. Pediatric Patients 10 to 17 years of age with Heterozygous Familial Hypercholesterolemia (HeFH) Adjunct to diet to reduce Total‑C, LDL‑C and ApoB levels in adolescent boys and girls, who are at least one year post-menarche, 10‑17 years of age with heterozygous familial hypercholesterolemia if after an adequate trial of diet therapy the following findings are present: LDL‑C > 190 mg/dL or > 160 mg/dL and there is a positive family history of premature cardiovascular disease (CVD) or two or more other CVD risk factors. 1.2 Hypertriglyceridemia CRESTOR is indicated as adjunctive therapy to diet for the treatment of adult patients with hypertriglyceridemia. 1.3 Primary Dysbetalipoproteinemia (Type III Hyperlipoproteinemia) CRESTOR is indicated as an adjunct to diet for the treatment of patients with primary dysbetalipoproteinemia (Type III Hyperlipoproteinemia). 1.4 Homozygous Familial Hypercholesterolemia CRESTOR is indicated as adjunctive therapy to other lipid-lowering treatments (e.g., LDL apheresis) or alone if such treatments are unavailable to reduce LDL‑C, Total‑C, and ApoB in adult patients with homozygous familial hypercholesterolemia. 1.5 Slowing of the Progression of Atherosclerosis CRESTOR is indicated as adjunctive therapy to diet to slow the progression of atherosclerosis in adult patients as part of a treatment strategy to lower Total‑C and LDL‑C to target levels. 1.6 Primary Prevention of Cardiovascular Disease In individuals without clinically evident coronary heart disease but with an increased risk of cardiovascular disease based on age ≥ 50 years old in men and ≥ 60 years old in women, hsCRP ≥ 2 mg/L, and the presence of at least one additional cardiovascular disease risk factor such as hypertension, low HDL‑C, smoking, or a family history of premature coronary heart disease, CRESTOR is indicated to: •reduce the risk of stroke •reduce the risk of myocardial infarction •reduce the risk of arterial revascularization procedures 1.7 Limitations of Use CRESTOR has not been studied in Fredrickson Type I and V dyslipidemias.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of CRESTOR in patients 10 to 17 years of age with heterozygous familial hypercholesterolemia were evaluated in a controlled clinical trial of 12 weeks duration followed by 40 weeks of open-label exposure. Patients treated with 5 mg, 10 mg, and 20 mg daily CRESTOR had an adverse experience profile generally similar to that of patients treated with placebo [see Adverse Reactions (6.2) ]. Although not all adverse reactions identified in the adult population have been observed in clinical trials of children and adolescent patients, the same warnings and precautions for adults should be considered for children and adolescents. There was no detectable effect of CRESTOR on growth, weight, BMI (body mass index), or sexual maturation [see Clinical Studies (14.5) ] in pediatric patients (10 to 17 years of age). Adolescent females should be counseled on appropriate contraceptive methods while on CRESTOR therapy [see Use in Specific Populations (8.1) ]. CRESTOR has not been studied in controlled clinical trials involving prepubertal patients or patients younger than 10 years of age. Doses of CRESTOR greater than 20 mg have not been studied in the pediatric population. In children and adolescents with homozygous familial hypercholesterolemia experience is limited to eight patients (aged 8 years and above). In a pharmacokinetic study, 18 patients (9 boys and 9 girls) 10 to 17 years of age with heterozygous FH received single and multiple oral doses of CRESTOR. Both Cmax and AUC of rosuvastatin were similar to values observed in adult subjects administered the same doses.

PREGNANCY

8.1 Pregnancy Teratogenic effects: Pregnancy Category X. CRESTOR is contraindicated in women who are or may become pregnant. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol products are essential for fetal development. Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hyperlipidemia therapy [see Contraindications (4) ]. There are no adequate and well-controlled studies of CRESTOR in pregnant women. There have been rare reports of congenital anomalies following intrauterine exposure to HMG‑CoA reductase inhibitors. In a review of about 100 prospectively followed pregnancies in women exposed to other HMG‑CoA reductase inhibitors, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed the rate expected in the general population. However, this study was only able to exclude a three-to-fourfold increased risk of congenital anomalies over background incidence. In 89% of these cases, drug treatment started before pregnancy and stopped during the first trimester when pregnancy was identified. Rosuvastatin crosses the placenta in rats and rabbits. In rats, CRESTOR was not teratogenic at systemic exposures equivalent to a human therapeutic dose of 40 mg/day. At 10‑12 times the human dose of 40 mg/day, there was decreased pup survival, decreased fetal body weight among female pups, and delayed ossification. In rabbits, pup viability decreased and maternal mortality increased at doses equivalent to the human dose of 40 mg/day [see Nonclinical Toxicology (13.2) ]. CRESTOR may cause fetal harm when administered to a pregnant woman. If the patient becomes pregnant while taking CRESTOR, the patient should be apprised of the potential risks to the fetus and the lack of known clinical benefit with continued use during pregnancy.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known whether rosuvastatin is excreted in human milk, but a small amount of another drug in this class does pass into breast milk. In rats, breast milk concentrations of rosuvastatin are three times higher than plasma levels; however, animal breast milk drug levels may not accurately reflect human breast milk levels. Because another drug in this class passes into human milk and because HMG‑CoA reductase inhibitors have a potential to cause serious adverse reactions in nursing infants, women who require CRESTOR treatment should be advised not to nurse their infants [see Contraindications (4) ].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): Risks increase with use of 40 mg dose, advanced age (≥65), hypothyroidism, renal impairment, and combination use with cyclosporine, lopinavir/ritonavir, or atazanavir/ritonavir. Advise patients to promptly report to their physician unexplained and/or persistent muscle pain, tenderness, or weakness and discontinue CRESTOR if signs or symptoms appear. (5.1, 7.5, 7.6) • Liver enzyme abnormalities: Persistent elevations in hepatic transaminases can occur. Perform liver enzyme tests before initiating therapy and as clinically indicated thereafter. (5.2) 5.1 Skeletal Muscle Effects Cases of myopathy and rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with HMG-CoA reductase inhibitors, including CRESTOR. These risks can occur at any dose level, but are increased at the highest dose (40 mg). CRESTOR should be prescribed with caution in patients with predisposing factors for myopathy (e.g., age ≥ 65 years, inadequately treated hypothyroidism, renal impairment). The risk of myopathy during treatment with CRESTOR may be increased with concurrent administration of some other lipid-lowering therapies (fibrates or niacin), gemfibrozil, cyclosporine, lopinavir/ritonavir, or atazanavir/ritonavir [see Dosage and Administration (2) and Drug Interactions (7 )]. Cases of myopathy, including rhabdomyolysis, have been reported with HMG-CoA reductase inhibitors, including rosuvastatin, coadministered with colchicine, and caution should be exercised when prescribing CRESTOR with colchicine [see Drug Interactions (7.7) ]. CRESTOR therapy should be discontinued if markedly elevated creatine kinase levels occur or myopathy is diagnosed or suspected. CRESTOR therapy should also be temporarily withheld in any patient with an acute, serious condition suggestive of myopathy or predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., sepsis, hypotension, dehydration, major surgery, trauma, severe metabolic, endocrine, and electrolyte disorders, or uncontrolled seizures). There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents. All patients should be advised to promptly report to their physician unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing CRESTOR. 5.2 Liver Enzyme Abnormalities It is recommended that liver enzyme tests be performed before the initiation of CRESTOR, and if signs or symptoms of liver injury occur. Increases in serum transaminases [AST (SGOT) or ALT (SGPT)] have been reported with HMG‑CoA reductase inhibitors, including CRESTOR. In most cases, the elevations were transient and resolved or improved on continued therapy or after a brief interruption in therapy. There were two cases of jaundice, for which a relationship to CRESTOR therapy could not be determined, which resolved after discontinuation of therapy. There were no cases of liver failure or irreversible liver disease in these trials. In a pooled analysis of placebo-controlled trials, increases in serum transaminases to >3 times the upper limit of normal occurred in 1.1% of patients taking CRESTOR versus 0.5% of patients treated with placebo. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including rosuvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with CRESTOR, promptly interrupt therapy. If an alternate etiology is not found, do not restart CRESTOR. CRESTOR should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of chronic liver disease [see Clinical Pharmacology (12.3)]. Active liver disease, which may include unexplained persistent transaminase elevations, is a contraindication to the use of CRESTOR [ see Contraindications (4) ]. 5.3 Concomitant Coumarin Anticoagulants Caution should be exercised when anticoagulants are given in conjunction with CRESTOR because of its potentiation of the effect of coumarin-type anticoagulants in prolonging the prothrombin time/INR. In patients taking coumarin anticoagulants and CRESTOR concomitantly, INR should be determined before starting CRESTOR and frequently enough during early therapy to ensure that no significant alteration of INR occurs [see Drug Interactions (7.4) ]. 5.4 Proteinuria and Hematuria In the CRESTOR clinical trial program, dipstick-positive proteinuria and microscopic hematuria were observed among CRESTOR treated patients. These findings were more frequent in patients taking CRESTOR 40 mg, when compared to lower doses of CRESTOR or comparator HMG‑CoA reductase inhibitors, though it was generally transient and was not associated with worsening renal function. Although the clinical significance of this finding is unknown, a dose reduction should be considered for patients on CRESTOR therapy with unexplained persistent proteinuria and/or hematuria during routine urinalysis testing. 5.5 Endocrine Effects Increases in HbA1c and fasting serum glucose levels have been reported with HMG‑CoA reductase inhibitors, including CRESTOR. Based on clinical trial data with CRESTOR, in some instances these increases may exceed the threshold for the diagnosis of diabetes mellitus [see Adverse Reactions (6.1) ]. Although clinical studies have shown that CRESTOR alone does not reduce basal plasma cortisol concentration or impair adrenal reserve, caution should be exercised if CRESTOR is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones such as ketoconazole, spironolactone, and cimetidine.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.1 Skeletal Muscle Effects Patients should be advised to report promptly unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing CRESTOR. 17.2 Concomitant Use of Antacids When taking CRESTOR with an aluminum and magnesium hydroxide combination antacid, the antacid should be taken at least 2 hours after CRESTOR administration. 17.3 Pregnancy If the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus and the lack of known clinical benefit with continued use during pregnancy. 17.4 Liver Enzymes It is recommended that liver enzyme tests be performed before the initiation of CRESTOR and if signs or symptoms of liver injury occur. All patients treated with CRESTOR should be advised to promptly report any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice. CRESTOR is a trademark of the AstraZeneca group of companies. © AstraZeneca 2013 Licensed from SHIONOGI & CO., LTD., Osaka, Japan Distributed by: AstraZeneca Pharmaceuticals LP Wilmington, DE 19850 ASTRAZENECA Rev. August, 2013

DOSAGE AND ADMINISTRATION

2 •CRESTOR can be taken with or without food, at any time of day. (2.1) •Dose range: 5‑40 mg once daily. Use 40 mg dose only for patients not reaching LDL‑C goal with 20 mg. (2.1) • HoFH: Starting dose 20 mg. (2.3) •In pediatric patients 10 to 17 years of age with HeFH, the usual dose range is 5‑20 mg/day; doses greater than 20 mg have not been studied in this patient population. (2.2) 2.1 General Dosing Information The dose range for CRESTOR is 5 to 40 mg orally once daily. The usual starting dose is 10‑20 mg. CRESTOR can be administered as a single dose at any time of day, with or without food. When initiating CRESTOR therapy or switching from another HMG‑CoA reductase inhibitor therapy, the appropriate CRESTOR starting dose should first be utilized, and only then titrated according to the patient’s response and individualized goal of therapy. After initiation or upon titration of CRESTOR, lipid levels should be analyzed within 2 to 4 weeks and the dosage adjusted accordingly. The 40 mg dose of CRESTOR should be used only for those patients who have not achieved their LDL‑C goal utilizing the 20 mg dose [see Warnings and Precautions (5.1) ]. 2.2 Heterozygous Familial Hypercholesterolemia in Pediatric Patients (10 to 17 years of age) The usual dose range of CRESTOR is 5‑20 mg/day; the maximum recommended dose is 20 mg/day (doses greater than 20 mg have not been studied in this patient population). Doses should be individualized according to the recommended goal of therapy [see Clinical Pharmacology (12) and Indications and Usage (1.2) ]. Adjustments should be made at intervals of 4 weeks or more. 2.3 Homozygous Familial Hypercholesterolemia The recommended starting dose of CRESTOR is 20 mg once daily. Response to therapy should be estimated from preapheresis LDL‑C levels. 2.4 Dosing in Asian Patients In Asian patients, consider initiation of CRESTOR therapy with 5 mg once daily due to increased rosuvastatin plasma concentrations. The increased systemic exposure should be taken into consideration when treating Asian patients not adequately controlled at doses up to 20 mg/day. [see Use in Specific Populations (8.8) and Clinical Pharmacology (12.3) ]. 2.5 Use with Concomitant Therapy Patients taking cyclosporine The dose of CRESTOR should not exceed 5 mg once daily [see Warnings and Precautions (5.1) , Drug Interactions (7.1) , and Clinical Pharmacology (12.3) ] Patients taking gemfibrozil Initiate CRESTOR therapy with 5 mg once daily. The dose of CRESTOR should not exceed 10 mg once daily [see Warnings and Precautions (5.1) and Drug Interactions (7.2) , and Clinical Pharmacology (12.3) ]. Patients taking lopinavir and ritonavir or atazanavir and ritonavir Initiate CRESTOR therapy with 5 mg once daily. The dose of CRESTOR should not exceed 10 mg once daily [see Warnings and Precautions (5.1) , Drug Interactions (7.3), and Clinical Pharmacology (12.3) ]. 2.6 Dosing in Patients with Severe Renal Impairment For patients with severe renal impairment (CLcr <30 mL/min/1.73 m2) not on hemodialysis, dosing of CRESTOR should be started at 5 mg once daily and not exceed 10 mg once daily [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3) ].

Ativan 1 MG Oral Tablet

Generic Name: LORAZEPAM
Brand Name: Ativan
  • Substance Name(s):
  • LORAZEPAM

WARNINGS

Pre-existing depression may emerge or worsen during use of benzodiazepines including lorazepam. Ativan (lorazepam) is not recommended for use in patients with a primary depressive disorder or psychosis. Use of benzodiazepines, including lorazepam, both used alone and in combination with other CNS depressants, may lead to potentially fatal respiratory depression. (See PRECAUTIONS Clinically Significant Drug Interactions) Use of benzodiazepines, including lorazepam, may lead to physical and psychological dependence. As with all patients on CNS- depressant drugs, patients receiving lorazepam should be warned not to operate dangerous machinery or motor vehicles and that their tolerance for alcohol and other CNS depressants will be diminished. Physical and Psychological Dependence The use of benzodiazepines, including lorazepam, may lead to physical and psychological dependence. The risk of dependence increases with higher doses and longer term use and is further increased in patients with a history of alcoholism or drug abuse or in patients with significant personality disorders. The dependence potential is reduced when lorazepam is used at the appropriate dose for short-term treatment. Addiction-prone individuals (such as drug addicts or alcoholics) should be under careful surveillance when receiving lorazepam or other psychotropic agents. In general, benzodiazepines should be prescribed for short periods only (e.g., 2 to 4 weeks). Extension of the treatment period should not take place without reevaluation of the need for continued therapy. Continuous long-term use of product is not recommended. Withdrawal symptoms (e.g., rebound insomnia) can appear following cessation of recommended doses after as little as one week of therapy. Abrupt discontinuation of product should be avoided and a gradual dosage-tapering schedule followed after extended therapy. Abrupt termination of treatment may be accompanied by withdrawal symptoms. Symptoms reported following discontinuation of benzodiazepines include headache, anxiety, tension, depression, insomnia, restlessness, confusion, irritability, sweating, rebound phenomena, dysphoria, dizziness, derealization, depersonalization, hyperacusis, numbness/tingling of extremities, hypersensitivity to light, noise, and physical contact/perceptual changes, involuntary movements, nausea, vomiting, diarrhea, loss of appetite, hallucinations/delirium, convulsions/seizures, tremor, abdominal cramps, myalgia, agitation, palpitations, tachycardia, panic attacks, vertigo, hyperreflexia, short-term memory loss, and hyperthermia. Convulsions/seizures may be more common in patients with pre-existing seizure disorders or who are taking other drugs that lower the convulsive threshold such as antidepressants. There is evidence that tolerance develops to the sedative effects of benzodiazepines. Lorazepam may have abuse potential, especially in patients with a history of drug and/or alcohol abuse.

DRUG INTERACTIONS

Clinically Significant Drug Interactions The benzodiazepines, including Ativan (lorazepam), produce increased CNS-depressant effects when administered with other CNS depressants such as alcohol, barbiturates, antipsychotics, sedative/hypnotics, anxiolytics, antidepressants, narcotic analgesics, sedative antihistamines, anticonvulsants, and anesthetics. Concomitant use of clozapine and lorazepam may produce marked sedation, excessive salivation, hypotension, ataxia, delirium, and respiratory arrest. Concurrent administration of lorazepam with valproate results in increased plasma concentrations and reduced clearance of lorazepam. Lorazepam dosage should be reduced to approximately 50% when coadministered with valproate. Concurrent administration of lorazepam with probenecid may results in a more rapid onset or prolonged effect of lorazepam due to increased half-life and decreased total clearance. Lorazepam dosage needs to be reduced by approximately 50% when coadministered with probenecid. The effects of probenecid and valproate on lorazepam may be due to inhibition of glucuronidation. Administration of theophylline or aminophylline may reduce the sedative effects of benzodiazepines, including lorazepam.

OVERDOSAGE

In postmarketing experience, overdose with lorazepam has occurred predominantly in combination with alcohol and/or other drugs. Therefore, in the management of overdosage, it should be borne in mind that multiple agents may have been taken. Symptoms Overdosage of benzodiazepines is usually manifested by varying degrees of central nervous system depression ranging from drowsiness to coma. In mild cases, symptoms include drowsiness, mental confusion, paradoxical reactions, dysarthria and lethargy. In more serious cases, and especially when other drugs or alcohol were ingested, symptoms may include ataxia, hypotonia, hypotension, cardiovascular depression, respiratory depression, hypnotic state, coma, and, death. Management General supportive and symptomatic measures are recommended; vital signs must be monitored and the patient closely observed. When there is a risk of aspiration, induction of emesis is not recommended. Gastric lavage may be indicated if performed soon after ingestion or in symptomatic patients. Administration of activated charcoal may also limit drug absorption. Hypotension, though unlikely, usually may be controlled with norepinephrine bitartrate injection. Lorazepam is poorly dialyzable. Lorazepam glucuronide, the inactive metabolite, may be highly dialyzable. The benzodiazepine antagonist flumazenil may be used in hospitalized patients as an adjunct to, not as a substitute for, proper management of benzodiazepine overdose. The prescriber should be aware of a risk of seizure in association with flumazenil treatment, particularly in long-term benzodiazepine users and in cyclic antidepressant overdose. The complete flumazenil package insert including CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS should be consulted prior to use.

DESCRIPTION

Ativan (lorazepam), an antianxiety agent, has the chemical formula, 7-chloro-5-(o-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1,4-benzodiazepin-2-one: C15H10Cl2N2O2 MW: 321.16 It is a nearly white powder almost insoluble in water. Each Ativan (lorazepam) tablet, to be taken orally, contains 0.5 mg, 1 mg, or 2 mg of lorazepam. The inactive ingredients present are lactose monohydrate, magnesium stearate, microcrystalline cellulose, and polacrilin potassium. Chemical Structure

HOW SUPPLIED

Repackaged by A-S Medication Solutions – Libertyville, IL See REPACKAGING INFORMATION for available configurations. Ativan® (lorazepam) Tablets are available in the following dosage strengths: 0.5 mg, white, five-sided (shield shape) tablet with a raised “A” on one side and “BPI” and “63” impressed on reverse side. NDC 0187-0063-01 – Bottles of 100 tablets 1 mg, white, five-sided (shield shape) tablet with a raised “A” on one side and “BPI” and “64” impressed on scored reverse side. NDC 0187-0064-01 – Bottles of 100 tablets NDC 0187-0064-10 – Bottles of 1000 tablets 2 mg, white, five-sided (regular pentagon) tablet with a raised “A” and impressed “2” on one side and “BPI” and “65” impressed on scored reverse side. NDC 0187-0065-01 – Bottles of 100 tablets BOTTLES: Keep tightly closed. Store at 25°C (77°F); excursions permitted to 15 – 30° (59 – 86°F) [see USP Controlled Room Temperature]. Dispense in a tight container.

GERIATRIC USE

Geriatric Use Clinical studies of Ativan generally were not adequate to determine whether subjects aged 65 and over respond differently than younger subjects; however, the incidence of sedation and unsteadiness was observed to increase with age (see ADVERSE REACTIONS ). Age does not appear to have a significant effect on lorazepam kinetics (see CLINICAL PHARMACOLOGY ). Clinical circumstances, some of which may be more common in the elderly, such as hepatic or renal impairment, should be considered. Greater sensitivity (e.g., sedation) of some older individuals cannot be ruled out. In general, dose selection for an elderly patient should be cautious, and lower doses may be sufficient in these patients (see DOSAGE AND ADMINISTRATION ).

INDICATIONS AND USAGE

Ativan (lorazepam) is indicated for the management of anxiety disorders or for the short-term relief of the symptoms of anxiety or anxiety associated with depressive symptoms. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. The effectiveness of Ativan (lorazepam) in long-term use, that is, more than 4 months, has not been assessed by systematic clinical studies. The physician should periodically reassess the usefulness of the drug for the individual patient.

PREGNANCY

Pregnancy Reproductive studies in animals were performed in mice, rats, and two strains of rabbits. Occasional anomalies (reduction of tarsals, tibia, metatarsals, malrotated limbs, gastroschisis, malformed skull, and microphthalmia) were seen in drug-treated rabbits without relationship to dosage. Although all of these anomalies were not present in the concurrent control group, they have been reported to occur randomly in historical controls. At doses of 40 mg/kg and higher, there was evidence of fetal resorption and increased fetal loss in rabbits which was not seen at lower doses. The clinical significance of the above findings is not known. However, an increased risk of congenital malformations associated with the use of minor tranquilizers (chlordiazepoxide, diazepam, and meprobamate) during the first trimester of pregnancy has been suggested in several studies. Because the use of these drugs is rarely a matter of urgency, the use of lorazepam during this period should be avoided. The possibility that a woman of childbearing potential may be pregnant at the time of institution of therapy should be considered. Patients should be advised that if they become pregnant, they should communicate with their physician about the desirability of discontinuing the drug. In humans, blood levels obtained from umbilical cord blood indicate placental transfer of lorazepam and lorazepam glucuronide. Infants of mothers who ingested benzodiazepines for several weeks or more preceding delivery have been reported to have withdrawal symptoms during the postnatal period. Symptoms such as hypoactivity, hypotonia, hypothermia, respiratory depression, apnea, feeding problems, and impaired metabolic response to cold stress have been reported in neonates born of mothers who have received benzodiazepines during the late phase of pregnancy or at delivery.

NUSRING MOTHERS

Nursing Mothers Lorazepam has been detected in human breast milk; therefore, it should not be administered to breast-feeding women, unless the expected benefit to the woman outweighs the potential risk to the infant. Sedation and inability to suckle have occurred in neonates of lactating mothers taking benzodiazepines. Infants of lactating mothers should be observed for pharmacological effects (including sedation and irritability).

INFORMATION FOR PATIENTS

Information for Patients To assure the safe and effective use of Ativan (lorazepam), patients should be informed that, since benzodiazepines may produce psychological and physical dependence, it is advisable that they consult with their physician before either increasing the dose or abruptly discontinuing this drug.

DOSAGE AND ADMINISTRATION

Ativan (lorazepam) is administered orally. For optimal results, dose, frequency of administration, and duration of therapy should be individualized according to patient response. To facilitate this, 0.5 mg, 1 mg, and 2 mg tablets are available. The usual range is 2 to 6 mg/day given in divided doses, the largest dose being taken before bedtime, but the daily dosage may vary from 1 to 10 mg/day. For anxiety, most patients require an initial dose of 2 to 3 mg/day given b.i.d. or t.i.d. For insomnia due to anxiety or transient situational stress, a single daily dose of 2 to 4 mg may be given, usually at bedtime. For elderly or debilitated patients, an initial dosage of 1 to 2 mg/day in divided doses is recommended, to be adjusted as needed and tolerated. The dosage of Ativan (lorazepam) should be increased gradually when needed to help avoid adverse effects. When higher dosage is indicated, the evening dose should be increased before the daytime doses.

AMBIEN 10 MG Oral Tablet

Generic Name: ZOLPIDEM TARTRATE
Brand Name: AMBIEN
  • Substance Name(s):
  • ZOLPIDEM TARTRATE

DRUG INTERACTIONS

7 CNS depressants: Enhanced CNS-depressant effects with combination use. Use with alcohol causes additive psychomotor impairment. (7.1) Imipramine: Decreased alertness observed with combination use. (7.1) Chlorpromazine: Impaired alertness and psychomotor performance observed with combination use. (7.1) Rifampin: Combination use decreases exposure to and effects of zolpidem. (7.2) Ketoconazole: Combination use increases exposure to and effect of zolpidem. (7.2) 7.1 CNS-active drugs Since the systematic evaluations of zolpidem in combination with other CNS-active drugs have been limited, careful consideration should be given to the pharmacology of any CNS-active drug to be used with zolpidem. Any drug with CNS-depressant effects could potentially enhance the CNS-depressant effects of zolpidem. Ambien was evaluated in healthy subjects in single-dose interaction studies for several CNS drugs. Imipramine in combination with zolpidem produced no pharmacokinetic interaction other than a 20% decrease in peak levels of imipramine, but there was an additive effect of decreased alertness. Similarly, chlorpromazine in combination with zolpidem produced no pharmacokinetic interaction, but there was an additive effect of decreased alertness and psychomotor performance. A study involving haloperidol and zolpidem revealed no effect of haloperidol on the pharmacokinetics or pharmacodynamics of zolpidem. The lack of a drug interaction following single-dose administration does not predict a lack following chronic administration. An additive effect on psychomotor performance between alcohol and zolpidem was demonstrated [see Warnings and Precautions (5.5)]. A single-dose interaction study with zolpidem 10 mg and fluoxetine 20 mg at steady-state levels in male volunteers did not demonstrate any clinically significant pharmacokinetic or pharmacodynamic interactions. When multiple doses of zolpidem and fluoxetine at steady-state concentrations were evaluated in healthy females, the only significant change was a 17% increase in the zolpidem half-life. There was no evidence of an additive effect in psychomotor performance. Following five consecutive nightly doses of zolpidem 10 mg in the presence of sertraline 50 mg (17 consecutive daily doses, at 7:00 am, in healthy female volunteers), zolpidem Cmax was significantly higher (43%) and Tmax was significantly decreased (53%). Pharmacokinetics of sertraline and N-desmethylsertraline were unaffected by zolpidem. 7.2 Drugs that affect drug metabolism via cytochrome P450 Some compounds known to inhibit CYP3A may increase exposure to zolpidem. The effect of inhibitors of other P450 enzymes has not been carefully evaluated. A randomized, double-blind, crossover interaction study in ten healthy volunteers between itraconazole (200 mg once daily for 4 days) and a single dose of zolpidem (10 mg) given 5 hours after the last dose of itraconazole resulted in a 34% increase in AUC0–∞ of zolpidem. There were no significant pharmacodynamic effects of zolpidem on subjective drowsiness, postural sway, or psychomotor performance. A randomized, placebo-controlled, crossover interaction study in eight healthy female subjects between five consecutive daily doses of rifampin (600 mg) and a single dose of zolpidem (20 mg) given 17 hours after the last dose of rifampin showed significant reductions of the AUC (–73%), Cmax (–58%), and T1/2 (–36%) of zolpidem together with significant reductions in the pharmacodynamic effects of zolpidem. A randomized double-blind crossover interaction study in twelve healthy subjects showed that co-administration of a single 5 mg dose of zolpidem tartrate with ketoconazole, a potent CYP3A4 inhibitor, given as 200 mg twice daily for 2 days increased Cmax of zolpidem by a factor of 1.3 and increased the total AUC of zolpidem by a factor of 1.7 compared to zolpidem alone and prolonged the elimination half-life by approximately 30% along with an increase in the pharmacodynamic effects of zolpidem. Caution should be used when ketoconazole is given with zolpidem and consideration should be given to using a lower dose of zolpidem when ketoconazole and zolpidem are given together. Patients should be advised that use of Ambien with ketoconazole may enhance the sedative effects. 7.3 Other drugs with no interaction with zolpidem A study involving cimetidine/zolpidem and ranitidine/zolpidem combinations revealed no effect of either drug on the pharmacokinetics or pharmacodynamics of zolpidem. Zolpidem had no effect on digoxin pharmacokinetics and did not affect prothrombin time when given with warfarin in normal subjects. 7.4 Drug-laboratory test interactions Zolpidem is not known to interfere with commonly employed clinical laboratory tests. In addition, clinical data indicate that zolpidem does not cross-react with benzodiazepines, opiates, barbiturates, cocaine, cannabinoids, or amphetamines in two standard urine drug screens.

OVERDOSAGE

10 10.1 Signs and symptoms In postmarketing experience of overdose with zolpidem tartrate alone, or in combination with CNS-depressant agents, impairment of consciousness ranging from somnolence to coma, cardiovascular and/or respiratory compromise, and fatal outcomes have been reported. 10.2 Recommended treatment General symptomatic and supportive measures should be used along with immediate gastric lavage where appropriate. Intravenous fluids should be administered as needed. Zolpidem’s sedative hypnotic effect was shown to be reduced by flumazenil and therefore may be useful; however, flumazenil administration may contribute to the appearance of neurological symptoms (convulsions). As in all cases of drug overdose, respiration, pulse, blood pressure, and other appropriate signs should be monitored and general supportive measures employed. Hypotension and CNS depression should be monitored and treated by appropriate medical intervention. Sedating drugs should be withheld following zolpidem overdosage, even if excitation occurs. The value of dialysis in the treatment of overdosage has not been determined, although hemodialysis studies in patients with renal failure receiving therapeutic doses have demonstrated that zolpidem is not dialyzable. As with the management of all overdosage, the possibility of multiple drug ingestion should be considered. The physician may wish to consider contacting a poison control center for up-to-date information on the management of hypnotic drug product overdosage.

DESCRIPTION

11 Ambien (zolpidem tartrate) is a non-benzodiazepine hypnotic of the imidazopyridine class and is available in 5 mg and 10 mg strength tablets for oral administration. Chemically, zolpidem is N,N,6-trimethyl-2-p-tolylimidazo[1,2-a] pyridine-3-acetamide L-(+)-tartrate (2:1). It has the following structure: Zolpidem tartrate is a white to off-white crystalline powder that is sparingly soluble in water, alcohol, and propylene glycol. It has a molecular weight of 764.88. Each Ambien tablet includes the following inactive ingredients: hydroxypropyl methylcellulose, lactose, magnesium stearate, micro-crystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide. The 5 mg tablet also contains FD&C Red No. 40, iron oxide colorant, and polysorbate 80. Chemical Structure

CLINICAL STUDIES

14 14.1 Transient insomnia Normal adults experiencing transient insomnia (n = 462) during the first night in a sleep laboratory were evaluated in a double-blind, parallel group, single-night trial comparing two doses of zolpidem (7.5 and 10 mg) and placebo. Both zolpidem doses were superior to placebo on objective (polysomnographic) measures of sleep latency, sleep duration, and number of awakenings. Normal elderly adults (mean age 68) experiencing transient insomnia (n = 35) during the first two nights in a sleep laboratory were evaluated in a double-blind, crossover, 2-night trial comparing four doses of zolpidem (5, 10, 15 and 20 mg) and placebo. All zolpidem doses were superior to placebo on the two primary PSG parameters (sleep latency and efficiency) and all four subjective outcome measures (sleep duration, sleep latency, number of awakenings, and sleep quality). 14.2 Chronic insomnia Zolpidem was evaluated in two controlled studies for the treatment of patients with chronic insomnia (most closely resembling primary insomnia, as defined in the APA Diagnostic and Statistical Manual of Mental Disorders, DSM-IV™). Adult outpatients with chronic insomnia (n = 75) were evaluated in a double-blind, parallel group, 5-week trial comparing two doses of zolpidem tartrate and placebo. On objective (polysomnographic) measures of sleep latency and sleep efficiency, zolpidem 10 mg was superior to placebo on sleep latency for the first 4 weeks and on sleep efficiency for weeks 2 and 4. Zolpidem was comparable to placebo on number of awakenings at both doses studied. Adult outpatients (n=141) with chronic insomnia were also evaluated, in a double-blind, parallel group, 4-week trial comparing two doses of zolpidem and placebo. Zolpidem 10 mg was superior to placebo on a subjective measure of sleep latency for all 4 weeks, and on subjective measures of total sleep time, number of awakenings, and sleep quality for the first treatment week. Increased wakefulness during the last third of the night as measured by polysomnography has not been observed in clinical trials with Ambien. 14.3 Studies pertinent to safety concerns for sedative/hypnotic drugs Next-day residual effects: Next-day residual effects of Ambien were evaluated in seven studies involving normal subjects. In three studies in adults (including one study in a phase advance model of transient insomnia) and in one study in elderly subjects, a small but statistically significant decrease in performance was observed in the Digit Symbol Substitution Test (DSST) when compared to placebo. Studies of Ambien in non-elderly patients with insomnia did not detect evidence of next-day residual effects using the DSST, the Multiple Sleep Latency Test (MSLT), and patient ratings of alertness. Rebound effects: There was no objective (polysomnographic) evidence of rebound insomnia at recommended doses seen in studies evaluating sleep on the nights following discontinuation of Ambien (zolpidem tartrate). There was subjective evidence of impaired sleep in the elderly on the first post-treatment night at doses above the recommended elderly dose of 5 mg. Memory impairment: Controlled studies in adults utilizing objective measures of memory yielded no consistent evidence of next-day memory impairment following the administration of Ambien. However, in one study involving zolpidem doses of 10 and 20 mg, there was a significant decrease in next-morning recall of information presented to subjects during peak drug effect (90 minutes post-dose), i.e., these subjects experienced anterograde amnesia. There was also subjective evidence from adverse event data for anterograde amnesia occurring in association with the administration of Ambien, predominantly at doses above 10 mg. Effects on sleep stages: In studies that measured the percentage of sleep time spent in each sleep stage, Ambien has generally been shown to preserve sleep stages. Sleep time spent in stages 3 and 4 (deep sleep) was found comparable to placebo with only inconsistent, minor changes in REM (paradoxical) sleep at the recommended dose.

HOW SUPPLIED

16 /STORAGE AND HANDLING Ambien 5 mg tablets are capsule-shaped, pink, film coated, with AMB 5 debossed on one side and 5401 on the other and supplied as: Bottles of 20 – NDC # 16590-009-20 Bottles of 30 – NDC # 16590-009-30 Bottles of 60 – NDC # 16590-009-60 Bottles of 90 – NDC # 16590-009-90 Ambien 10 mg tablets are capsule-shaped, white, film coated, with AMB 10 debossed on one side and 5421 on the other and supplied as:Bottles of 20 – NDC # 16590-010-20 Bottles of 28 – NDC # 16590-010-28 Bottles of 30 – NDC # 16590-010-30 Bottles of 56 – NDC # 16590-010-56 Relabeling and Repackaging by: STAT Rx USA LLC Gainesville, GA 30501 Store at controlled room temperature 20°–25°C (68°–77°F).

GERIATRIC USE

8.5 Geriatric use A total of 154 patients in U.S. controlled clinical trials and 897 patients in non-U.S. clinical trials who received zolpidem were ≥ 60 years of age. For a pool of U.S. patients receiving zolpidem at doses of ≤10 mg or placebo, there were three adverse reactions occurring at an incidence of at least 3% for zolpidem and for which the zolpidem incidence was at least twice the placebo incidence (i.e., they could be considered drug related). Adverse Event Zolpidem Placebo Dizziness Drowsiness Diarrhea 3% 5% 3% 0% 2% 1% A total of 30/1,959 (1.5%) non-U.S. patients receiving zolpidem reported falls, including 28/30 (93%) who were ≥ 70 years of age. Of these 28 patients, 23 (82%) were receiving zolpidem doses >10 mg. A total of 24/1,959 (1.2%) non-U.S. patients receiving zolpidem reported confusion, including 18/24 (75%) who were ≥ 70 years of age. Of these 18 patients, 14 (78%) were receiving zolpidem doses >10 mg. The dose of Ambien in elderly patients is 5 mg to minimize adverse effects related to impaired motor and/or cognitive performance and unusual sensitivity to sedative/hypnotic drugs [see Warnings and Precautions (5.6)].

DOSAGE FORMS AND STRENGTHS

3 Ambien is available in 5 mg and 10 mg strength tablets for oral administration. Tablets are not scored. Ambien 5 mg tablets are capsule-shaped, pink, film coated, with AMB 5 debossed on one side and 5401 on the other. Ambien 10 mg tablets are capsule-shaped, white, film coated, with AMB 10 debossed on one side and 5421 on the other. 5 mg and 10 mg tablets. Tablets not scored (3)

MECHANISM OF ACTION

12.1 Mechanism of action Zolpidem, the active moiety of zolpidem tartrate, is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties. It interacts with a GABA-BZ receptor complex and shares some of the pharmacological properties of the benzodiazepines. In contrast to the benzodiazepines, which non-selectively bind to and activate all BZ receptor subtypes, zolpidem in vitro binds the BZ1 receptor preferentially with a high affinity ratio of the α1/α5 subunits. This selective binding of zolpidem on the BZ1 receptor is not absolute, but it may explain the relative absence of myorelaxant and anticonvulsant effects in animal studies as well as the preservation of deep sleep (stages 3 and 4) in human studies of zolpidem tartrate at hypnotic doses.

INDICATIONS AND USAGE

1 Ambien (zolpidem tartrate) is indicated for the short-term treatment of insomnia characterized by difficulties with sleep initiation. Ambien has been shown to decrease sleep latency for up to 35 days in controlled clinical studies [see Clinical Studies (14)]. The clinical trials performed in support of efficacy were 4–5 weeks in duration with the final formal assessments of sleep latency performed at the end of treatment. Ambien is indicated for the short-term treatment of insomnia characterized by difficulties with sleep initiation. Ambien has been shown to decrease sleep latency for up to 35 days in controlled clinical studies. (1)

PEDIATRIC USE

8.4 Pediatric use Safety and effectiveness of zolpidem have not been established in pediatric patients. In an 8-week controlled study, 201 pediatric patients (aged 6–17 years) with insomnia associated with attention-deficit/hyperactivity disorder (90% of the patients were using psychoanaleptics) were treated with an oral solution of zolpidem (n=136), or placebo (n=65). Zolpidem did not significantly decrease latency to persistent sleep, compared to placebo, as measured by polysomnography after 4 weeks of treatment. Psychiatric and nervous system disorders comprised the most frequent (> 5%) treatment emergent adverse reactions observed with zolpidem versus placebo and included dizziness (23.5% vs. 1.5%), headache (12.5% vs. 9.2%), and hallucinations (7.4% vs. 0%) [see Warnings and Precautions(5.6)] . Ten patients on zolpidem (7.4%) discontinued treatment due to an adverse reaction.

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are no adequate and well-controlled studies of Ambien in pregnant women. Ambien should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Administration of zolpidem to pregnant rats and rabbits resulted in adverse effects on offspring development at doses greater than the Ambien maximum recommended human dose (MRHD) of 10 mg/day (approximately 8 mg/day zolpidem base); however, teratogenicity was not observed. When zolpidem was administered at oral doses of 4, 20, and 100 mg base/kg (approximately 5, 24 and 120 times the MRHD on a mg/m2 basis) to pregnant rats during the period of organogenesis, dose-related decreases in fetal skull ossification occurred at all but the lowest dose, which is approximately 5 times the MRHD on a mg/m2 basis. In rabbits treated during organogenesis with zolpidem at oral doses of 1, 4, and 16 mg base/kg (approximately 2.5, 10 and 40 times the MRHD on a mg/m2 basis), increased embryo-fetal death and incomplete fetal skeletal ossification occurred at the highest dose. The no-effect dose for embryo-fetal toxicity in rabbits is approximately 10 times the MRHD on a mg/m2 basis. Administration of zolpidem to rats at oral doses of 4, 20, and 100 mg base/kg (approximately 5, 24 and 120 times the MRHD on a mg/m2 basis) during the latter part of pregnancy and throughout lactation produced decreased offspring growth and survival at all but the lowest dose, which is approximately 5 times the MRHD on a mg/m2 basis. Neonatal Complications Studies in children to assess the effects of prenatal exposure to zolpidem have not been conducted; however, cases of severe neonatal respiratory depression have been reported when zolpidem was used at the end of pregnancy, especially when taken with other CNS depressants. Children born to mothers taking sedative-hypnotic drugs may be at some risk for withdrawal symptoms during the postnatal period. Neonatal flaccidity has also been reported in infants born to mothers who received sedative-hypnotic drugs during pregnancy.

NUSRING MOTHERS

8.3 Nursing mothers Zolpidem is excreted in human milk. Studies in lactating mothers indicate that the half-life of zolpidem is similar to that in non-lactating women (2.6 ± 0.3 hr). The effect of zolpidem on the nursing infant is not known. Caution should be exercised when Ambien is administered to a nursing woman.

BOXED WARNING

AMBIEN is a federally controlled substance (C-IV) because it can be abused or lead to dependence. Keep AMBIEN in a safe place to prevent misuse and abuse. Selling or giving away AMBIEN may harm others, and is against the law. Tell your doctor if you have ever abused or have been dependent on alcohol, prescription medicines or street drugs.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Need to evaluate for co-morbid diagnosis: Reevaluate if insomnia persists after 7 to 10 days of use (5.1) Severe anaphylactic/anaphylactoid reactions: Angioedema and anaphylaxis have been reported. Do not rechallenge if such reactions occur. (5.2) Abnormal thinking, behavioral changes and complex behaviors: May include “sleep-driving” and hallucinations. Immediately evaluate any new onset behavioral changes. (5.3) Depression: Worsening of depression or, suicidal thinking may occur. Prescribe the least amount feasible to avoid intentional overdose (5.3, 5.6) Withdrawal effects: Symptoms may occur with rapid dose reduction or discontinuation. (5.4, 9.3) CNS depressant effects: Use can impair alertness and motor coordination. If used in combination with other CNS depressants, dose reductions may be needed due to additive effects. Do not use with alcohol (2.3, 5.5) Elderly/debilitated patients: Use lower dose due to impaired motor, cognitive performance and increased sensitivity (2.2, 5.6) Patients with hepatic impairment, mild to moderate COPD, impaired drug metabolism or hemodynamic responses, mild to moderate sleep apnea: Use with caution and monitor closely. (5.6) 5.1 Need to evaluate for co-morbid diagnoses Because sleep disturbances may be the presenting manifestation of a physical and/or psychiatric disorder, symptomatic treatment of insomnia should be initiated only after a careful evaluation of the patient. The failure of insomnia to remit after 7 to 10 days of treatment may indicate the presence of a primary psychiatric and/or medical illness that should be evaluated. Worsening of insomnia or the emergence of new thinking or behavior abnormalities may be the consequence of an unrecognized psychiatric or physical disorder. Such findings have emerged during the course of treatment with sedative/hypnotic drugs, including zolpidem. 5.2 Severe anaphylactic and anaphylactoid reactions Rare cases of angioedema involving the tongue, glottis or larynx have been reported in patients after taking the first or subsequent doses of sedative-hypnotics, including zolpidem. Some patients have had additional symptoms such as dyspnea, throat closing or nausea and vomiting that suggest anaphylaxis. Some patients have required medical therapy in the emergency department. If angioedema involves the throat, glottis or larynx, airway obstruction may occur and be fatal. Patients who develop angioedema after treatment with zolpidem should not be rechallenged with the drug. 5.3 Abnormal thinking and behavioral changes A variety of abnormal thinking and behavior changes have been reported to occur in association with the use of sedative/hypnotics. Some of these changes may be characterized by decreased inhibition (e.g., aggressiveness and extroversion that seemed out of character), similar to effects produced by alcohol and other CNS depressants. Visual and auditory hallucinations have been reported as well as behavioral changes such as bizarre behavior, agitation and depersonalization. In controlled trials, < 1% of adults with insomnia who received zolpidem reported hallucinations. In a clinical trial, 7.4% of pediatric patients with insomnia associated with attention-deficit/hyperactivity disorder (ADHD), who received zolpidem reported hallucinations [see Use in Specific Populations (8.4)]. Complex behaviors such as "sleep-driving" (i.e., driving while not fully awake after ingestion of a sedative-hypnotic, with amnesia for the event) have been reported with sedative-hypnotics, including zolpidem. These events can occur in sedative-hypnotic-naive as well as in sedative-hypnotic-experienced persons. Although behaviors such as "sleep-driving" may occur with Ambien alone at therapeutic doses, the use of alcohol and other CNS depressants with Ambien appears to increase the risk of such behaviors, as does the use of Ambien at doses exceeding the maximum recommended dose. Due to the risk to the patient and the community, discontinuation of Ambien should be strongly considered for patients who report a "sleep-driving" episode. Other complex behaviors (e.g., preparing and eating food, making phone calls, or having sex) have been reported in patients who are not fully awake after taking a sedative-hypnotic. As with "sleep-driving", patients usually do not remember these events. Amnesia, anxiety and other neuro-psychiatric symptoms may occur unpredictably. In primarily depressed patients, worsening of depression, including suicidal thoughts and actions (including completed suicides), has been reported in association with the use of sedative/hypnotics. It can rarely be determined with certainty whether a particular instance of the abnormal behaviors listed above is drug induced, spontaneous in origin, or a result of an underlying psychiatric or physical disorder. Nonetheless, the emergence of any new behavioral sign or symptom of concern requires careful and immediate evaluation. 5.4 Withdrawal effects Following the rapid dose decrease or abrupt discontinuation of sedative/hypnotics, there have been reports of signs and symptoms similar to those associated with withdrawal from other CNS-depressant drugs [see Drug Abuse and Dependence (9)]. 5.5 CNS depressant effects Ambien, like other sedative/hypnotic drugs, has CNS-depressant effects. Due to the rapid onset of action, Ambien should only be taken immediately prior to going to bed. Patients should be cautioned against engaging in hazardous occupations requiring complete mental alertness or motor coordination such as operating machinery or driving a motor vehicle after ingesting the drug, including potential impairment of the performance of such activities that may occur the day following ingestion of Ambien. Ambien showed additive effects when combined with alcohol and should not be taken with alcohol. Patients should also be cautioned about possible combined effects with other CNS-depressant drugs. Dosage adjustments may be necessary when Ambien is administered with such agents because of the potentially additive effects. 5.6 Special populations Use in the elderly and/or debilitated patients: Impaired motor and/or cognitive performance after repeated exposure or unusual sensitivity to sedative/hypnotic drugs is a concern in the treatment of elderly and/or debilitated patients. Therefore, the recommended Ambien dosage is 5 mg in such patients to decrease the possibility of side effects [see Dosage and Administration (2.2)]. These patients should be closely monitored. Use in patients with concomitant illness: Clinical experience with Ambien (zolpidem tartrate) in patients with concomitant systemic illness is limited. Caution is advisable in using Ambien in patients with diseases or conditions that could affect metabolism or hemodynamic responses. Although studies did not reveal respiratory depressant effects at hypnotic doses of zolpidem in normal subjects or in patients with mild to moderate chronic obstructive pulmonary disease (COPD), a reduction in the Total Arousal Index together with a reduction in lowest oxygen saturation and increase in the times of oxygen desaturation below 80% and 90% was observed in patients with mild-to-moderate sleep apnea when treated with Ambien (10 mg) when compared to placebo. Since sedative/hypnotics have the capacity to depress respiratory drive, precautions should be taken if Ambien is prescribed to patients with compromised respiratory function. Post-marketing reports of respiratory insufficiency, most of which involved patients with pre-existing respiratory impairment, have been received. Ambien should be used with caution in patients with sleep apnea syndrome or myasthenia gravis. Data in end-stage renal failure patients repeatedly treated with Ambien did not demonstrate drug accumulation or alterations in pharmacokinetic parameters. No dosage adjustment in renally impaired patients is required; however, these patients should be closely monitored [see Clinical Pharmacology (12.3)]. A study in subjects with hepatic impairment did reveal prolonged elimination in this group; therefore, treatment should be initiated with 5 mg in patients with hepatic compromise, and they should be closely monitored [see Dosage and Administration (2.2) and Clinical Pharmacology (12.3)]. Use in patients with depression: As with other sedative/hypnotic drugs, Ambien should be administered with caution to patients exhibiting signs or symptoms of depression. Suicidal tendencies may be present in such patients and protective measures may be required. Intentional over-dosage is more common in this group of patients; therefore, the least amount of drug that is feasible should be prescribed for the patient at any one time. Use in pediatric patients: Safety and effectiveness of zolpidem have not been established in pediatric patients. In an 8-week study in pediatric patients (aged 6–17 years) with insomnia associated with ADHD, zolpidem did not decrease sleep latency compared to placebo. Hallucinations were reported in 7.4% of the pediatric patients who received zolpidem; none of the pediatric patients who received placebo reported hallucinations [see Use in Specific Populations (8.4)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Prescribers or other healthcare professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with sedative-hypnotics, should counsel them in its appropriate use, and should instruct them to read the accompanying Medication Guide [see Medication Guide (17.4)]. 17.1 Severe anaphylactic and anaphylactoid reactions Inform patients that severe anaphylactic and anaphylactoid reactions have occurred with zolpidem. Describe the signs/symptoms of these reactions and advise patients to seek medical attention immediately if any of them occur. 17.2 Sleep-driving and other complex behaviors There have been reports of people getting out of bed after taking a sedative-hypnotic and driving their cars while not fully awake, often with no memory of the event. If a patient experiences such an episode, it should be reported to his or her doctor immediately, since “sleep-driving” can be dangerous. This behavior is more likely to occur when Ambien is taken with alcohol or other central nervous system depressants [see Warnings and Precautions (5.3)]. Other complex behaviors (e.g., preparing and eating food, making phone calls, or having sex) have been reported in patients who are not fully awake after taking a sedative-hypnotic. As with “sleep-driving”, patients usually do not remember these events. In addition, patients should be advised to report all concomitant medications to the prescriber. Patients should be instructed to report events such as “sleep-driving” and other complex behaviors immediately to the prescriber. 17.3 Administration instructions Patients should be counseled to take Ambien right before they get into bed and only when they are able to stay in bed a full night (7–8 hours) before being active again. Ambien tablets should not be taken with or immediately after a meal. Advise patients NOT to take Ambien when drinking alcohol. 17.4 Medication Guide

DOSAGE AND ADMINISTRATION

2 The dose of Ambien should be individualized. Adult dose: 10 mg once daily immediately before bedtime (2.1) Elderly/debilitated patients/hepatically impaired:5 mg once daily immediately before bedtime (2.2) Downward dosage adjustment may be necessary when used with CNS depressants (2.3) Should not be taken with or immediately after a meal (2.4) 2.1 Dosage in adults The recommended dose for adults is 10 mg once daily immediately before bedtime. The total Ambien dose should not exceed 10 mg per day. 2.2 Special populations Elderly or debilitated patients may be especially sensitive to the effects of zolpidem tartrate. Patients with hepatic insufficiency do not clear the drug as rapidly as normal subjects. The recommended dose of Ambien in both of these patient populations is 5 mg once daily immediately before bedtime [see Warnings and Precautions (5.6)]. 2.3 Use with CNS depressants Dosage adjustment may be necessary when Ambien is combined with other CNS depressant drugs because of the potentially additive effects [see Warnings and Precautions (5.5)]. 2.4 Administration The effect of Ambien may be slowed by ingestion with or immediately after a meal.

Clarithromycin 500 MG Oral Tablet

Generic Name: CLARITHROMYCIN
Brand Name: Clarithromycin
  • Substance Name(s):
  • CLARITHROMYCIN

WARNINGS

Use In Pregnancy CLARITHROMYCIN SHOULD NOT BE USED IN PREGNANT WOMEN EXCEPT IN CLINICAL CIRCUMSTANCES WHERE NO ALTERNATIVE THERAPY IS APPROPRIATE. IF PREGNANCY OCCURS WHILE TAKING THIS DRUG, THE PATIENT SHOULD BE APPRISED OF THE POTENTIAL HAZARD TO THE FETUS. CLARITHROMYCIN HAS DEMONSTRATED ADVERSE EFFECTS OF PREGNANCY OUTCOME AND/OR EMBRYO-FETAL DEVELOPMENT IN MONKEYS, RATS, MICE, AND RABBITS AT DOSES THAT PRODUCED PLASMA LEVELS 2 TO 17 TIMES THE SERUM LEVELS ACHIEVED IN HUMANS TREATED AT THE MAXIMUM RECOMMENDED HUMAN DOSES. (See PRECAUTIONS: Pregnancy.) Hepatotoxicity Hepatic dysfunction, including increased liver enzymes, and hepatocellular and/or cholestatic hepatitis, with or without jaundice, has been reported with clarithromycin. This hepatic dysfunction may be severe and is usually reversible. In some instances, hepatic failure with fatal outcome has been reported and generally has been associated with serious underlying diseases and/or concomitant medications. Discontinue clarithromycin immediately if signs and symptoms of hepatitis occur. QT Prolongation Clarithromycin has been associated with prolongation of the QT interval and infrequent cases of arrhythmia. Cases of torsades de pointes have been spontaneously reported during postmarketing surveillance in patients receiving clarithromycin. Fatalities have been reported. Clarithromycin should be avoided in patients with ongoing proarrhythmic conditions such as uncorrected hypokalemia or hypomagnesemia, clinically significant bradycardia (see CONTRAINDICATIONS ) and in patients receiving Class IA (quinidine, procainamide) or Class III (dofetilide, amiodarone, sotalol) antiarrhythmic agents. Elderly patients may be more susceptible to drug-associated effects on the QT interval. Drug Interactions Serious adverse reactions have been reported in patients taking clarithromycin concomitantly with CYP3A4 substrates. These include colchicine toxicity with colchicine; rhabdomyolysis with simvastatin, lovastatin, and atorvastatin; and hypotension with calcium channel blockers metabolized by CYP3A4 (e.g., verapamil, amlodipine, diltiazem) (see PRECAUTIONS: Drug Interactions ). Life-threatening and fatal drug interactions have been reported in patients treated with clarithromycin and colchicine. Clarithromycin is a strong CYP3A4 inhibitor and this interaction may occur while using both drugs at their recommended doses. If co-administration of clarithromycin and colchicine is necessary in patients with normal renal and hepatic function, the dose of colchicine should be reduced. Patients should be monitored for clinical symptoms of colchicine toxicity. Concomitant administration of clarithromycin and colchicine is contraindicated in patients with renal or hepatic impairment (see CONTRAINDICATIONS and PRECAUTIONS: Drug Interactions ). Clostridium difficile Associated Diarrhea Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including clarithromycin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. For information about warnings of other drugs indicated in combination with clarithromycin, refer to the section of their package inserts. Acute Hypersensitivity Reactions In the event of severe acute hypersensitivity reactions, such as anaphylaxis, Stevens-Johnson Syndrome, toxic epidermal necrolysis, drug rash with eosinophilia and systemic symptoms (DRESS), and Henoch-Schonlein purpura clarithromycin therapy should be discontinued immediately and appropriate treatment should be urgently initiated. Oral Hypoglycemic Agents/Insulin The concomitant use of clarithromycin and oral hypoglycemic agents and/or insulin can result in significant hypoglycemia. With certain hypoglycemic drugs such as nateglinide, pioglitazone, repaglinide and rosiglitazone, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Careful monitoring of glucose is recommended. Oral Anticoagulants There is a risk of serious hemorrhage and significant elevations in INR and prothrombin time when clarithromycin is co-administered with warfarin. INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently. HMG-CoA Reductase Inhibitors (statins) Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see CONTRAINDICATIONS ) as these statins are extensively metabolized by CYP3A4, and concomitant treatment with clarithromycin increases their plasma concentration, which increases the risk of myopathy, including rhabdomyolysis. Cases of rhabdomyolysis have been reported in patients taking clarithromycin concomitantly with these statins. If treatment with clarithromycin cannot be avoided, therapy with lovastatin or simvastatin must be suspended during the course of treatment. Caution should be exercised when prescribing clarithromycin with statins. In situations where the concomitant use of clarithromycin with atorvastatin or pravastatin cannot be avoided, atorvastatin dose should not exceed 20 mg daily and pravastatin dose should not exceed 40 mg daily. Use of a statin that is not dependent on CYP3A metabolism (e.g.fluvastatin) can be considered. It is recommended to prescribe the lowest registered dose if concomitant use cannot be avoided.

DRUG INTERACTIONS

Drug Interactions Clarithromycin use in patients who are receiving theophylline may be associated with an increase of serum theophylline concentrations. Monitoring of serum theophylline concentrations should be considered for patients receiving high doses of theophylline or with baseline concentrations in the upper therapeutic range. In two studies in which theophylline was administered with clarithromycin (a theophylline sustained-release formulation was dosed at either 6.5 mg/kg or 12 mg/kg together with 250 or 500 mg q12h clarithromycin), the steady-state levels of C max, C min, and the area under the serum concentration time curve (AUC) of theophylline increased about 20%. Hypotension, bradyarrhythmias, and lactic acidosis have been observed in patients receiving concurrent verapamil, belonging to the calcium channel blockers drug class. Concomitant administration of single doses of clarithromycin and carbamazepine has been shown to result in increased plasma concentrations of carbamazepine. Blood level monitoring of carbamazepine may be considered. When clarithromycin and terfenadine were coadministered, plasma concentrations of the active acid metabolite of terfenadine were threefold higher, on average, than the values observed when terfenadine was administered alone. The pharmacokinetics of clarithromycin and the 14-hydroxy-clarithromycin were not significantly affected by coadministration of terfenadine once clarithromycin reached steady-state conditions. Concomitant administration of clarithromycin with terfenadine is contraindicated. (See CONTRAINDICATIONS .) Clarithromycin 500 mg every 8 hours was given in combination with omeprazole 40 mg daily to healthy adult subjects. The steady-state plasma concentrations of omeprazole were increased (C max, AUC 0-24, and T 1/2 increases of 30%, 89%, and 34%, respectively), by the concomitant administration of clarithromycin. The mean 24-hour gastric pH value was 5.2 when omeprazole was administered alone and 5.7 when co-administered with clarithromycin. Co-administration of clarithromycin with ranitidine bismuth citrate resulted in increased plasma ranitidine concentrations (57%), increased plasma bismuth trough concentrations (48%), and increased 14-hydroxy-clarithromycin plasma concentrations (31%). These effects are clinically insignificant. Simultaneous oral administration of clarithromycin tablets and zidovudine to HIV-infected adult patients may result in decreased steady-state zidovudine concentrations. Following administration of clarithromycin 500 mg tablets twice daily with zidovudine 100 mg every 4 hours, the steady-state zidovudine AUC decreased 12% compared to administration of zidovudine alone (n=4). Individual values ranged from a decrease of 34% to an increase of 14%. When clarithromycin tablets were administered two to four hours prior to zidovudine, the steady-state zidovudine C max increased 100% whereas the AUC was unaffected (n=24). Administration of clarithromycin and zidovudine should be separated by at least two hours. The impact of co-administration of clarithromycin extended-release tablets and zidovudine has not been evaluated. Simultaneous administration of clarithromycin tablets and didanosine to 12 HIV-infected adult patients resulted in no statistically significant change in didanosine pharmacokinetics. Following administration of fluconazole 200 mg daily and clarithromycin 500 mg twice daily to 21 healthy volunteers, the steady-state clarithromycin C min and AUC increased 33% and 18%, respectively. Steady-state concentrations of 14-OH clarithromycin were not significantly affected by concomitant administration of fluconazole. No dosage adjustment of clarithromycin is necessary when co-administered with fluconazole. Ritonavir Concomitant administration of clarithromycin and ritonavir (n=22) resulted in a 77% increase in clarithromycin AUC and a 100% decrease in the AUC of 14-OH clarithromycin. Clarithromycin may be administered without dosage adjustment to patients with normal renal function taking ritonavir. Since concentrations of 14-OH clarithromycin are significantly reduced when clarithromycin is co-administered with ritonavir, alternative antibacterial therapy should be considered for indications other than infections due to Mycobacterium avium complex (see PRECAUTIONS: Drug Interactions ). Doses of clarithromycin greater than 1000 mg per day should not be co-administered with protease inhibitors. Spontaneous reports in the post-marketing period suggest that concomitant administration of clarithromycin and oral anticoagulants may potentiate the effects of the oral anticoagulants. Prothrombin times should be carefully monitored while patients are receiving clarithromycin and oral anticoagulants simultaneously. Digoxin is a substrate for P-glycoprotein (Pgp) and clarithromycin is known to inhibit Pgp. When clarithromycin and digoxin are co-administered, inhibition of Pgp by clarithromycin may lead to increased exposure of digoxin. Elevated digoxin serum concentrations in patients receiving clarithromycin and digoxin concomitantly have been reported in post-marketing surveillance. Some patients have shown clinical signs consistent with digoxin toxicity, including potentially fatal arrhythmias. Monitoring of serum digoxin concentrations should be considered, especially for patients with digoxin concentrations in the upper therapeutic range. Co-administration of clarithromycin, known to inhibit CYP3A, and a drug primarily metabolized by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both therapeutic and adverse effects of the concomitant drug. Clarithromycin should be used with caution in patients receiving treatment with other drugs known to be CYP3A enzyme substrates, especially if the CYP3A substrate has a narrow safety margin (e.g., carbamazepine) and/or the substrate is extensively metabolized by this enzyme. Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolized by CYP3A should be monitored closely in patients concurrently receiving clarithromycin. The following are examples of some clinically significant CYP3A based drug interactions. Interactions with other drugs metabolized by the CYP3A isoform are also possible. Carbamazepine and Terfenadine Increased serum concentrations of carbamazepine and the active acid metabolite of terfenadine were observed in clinical trials with clarithromycin. Colchicine Colchicine is a substrate for both CYP3A and the efflux transporter, P-glycoprotein (Pgp). Clarithromycin and other macrolides are known to inhibit CYP3A and Pgp. When a single dose of colchicine 0.6 mg was administered with clarithromycin 250 mg BID for 7 days, the colchicine C max increased 197% and the AUC0-∞ increased 239% compared to administration of colchicine alone. The dose of colchicine should be reduced when co-administered with clarithromycin in patients with normal renal and hepatic function. Concomitant use of clarithromycin and colchicine is contraindicated in patients with renal or hepatic impairment. (See WARNINGS ). Efavirenz, Nevirapine, Rifampicin, Rifabutin, and Rifapentine Inducers of CYP3A enzymes, such as efavirenz, nevirapine, rifampicin, rifabutin, and rifapentine will increase the metabolism of clarithromycin, thus decreasing plasma concentrations of clarithromycin, while increasing those of 14-OH-clarithromycin. Since the microbiological activities of clarithromycin and 14-OHclarithromycin are different for different bacteria, the intended therapeutic effect could be impaired during concomitant administration of clarithromycin and enzyme inducers. Alternative antibacterial treatment should be considered when treating patients receiving inducers of CYP3A. Sildenafil, Tadalafil, and Vardenafil Each of these phosphodiesterase inhibitors is primarily metabolized by CYP3A, and CYP3A will be inhibited by concomitant administration of clarithromycin. Co-administration of clarithromycin with sildenafil, tadalafil, or vardenafil will result in increased exposure of these phosphodiesterase inhibitors. Coadministration of these phosphodiesterase inhibitors with clarithromycin is not recommended. Tolterodine The primary route of metabolism for tolterodine is via CYP2D6. However, in a subset of the population devoid of CYP2D6, the identified pathway of metabolism is via CYP3A. In this population subset, inhibition of CYP3A results in significantly higher serum concentrations of tolterodine. Tolterodine 1 mg twice daily is recommended in patients deficient in CYP2D6 activity (poor metabolizers) when co-administered with clarithromycin. Triazolobenzodiazepines (e.g., alprazolam, midazolam, triazolam) When a single dose of midazolam was co-administered with clarithromycin tablets (500 mg twice daily for 7 days), midazolam AUC increased 174% after intravenous administration of midazolam and 600% after oral administration. When oral midazolam is co-administered with clarithromycin, dose adjustments may be necessary and possible prolongation and intensity of effect should be anticipated. Caution and appropriate dose adjustments should be considered when triazolam or alprazolam is co-administered with clarithromycin. For benzodiazepines which are not metabolized by CYP3A (e.g., temazepam, nitrazepam, lorazepam), a clinically important interaction with clarithromycin is unlikely. There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g., somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested. Atazanavir Both clarithromycin and atazanavir are substrates and inhibitors of CYP3A, and there is evidence of a bidirectional drug interaction. Following administration of clarithromycin (500 mg twice daily) with atazanavir (400 mg once daily), the clarithromycin AUC increased 94%, the 14-OH clarithromycin AUC decreased 70% and the atazanavir AUC increased 28%. When clarithromycin is co-administered with atazanavir, the dose of clarithromycin should be decreased by 50%. Since concentrations of 14-OH clarithromycin are significantly reduced when clarithromycin is co-administered with atazanavir, alternative antibacterial therapy should be considered for indications other than infections due to Mycobacterium avium complex (see PRECAUTIONS: Drug Interactions ). Doses of clarithromycin greater than 1000 mg per day should not be co-administered with protease inhibitors. Itraconazole Both clarithromycin and itraconazole are substrates and inhibitors of CYP3A, potentially leading to a bidirectional drug interaction when administered concomitantly. Clarithromycin may increase the plasma concentrations of itraconazole, while itraconazole may increase the plasma concentrations of clarithromycin. Patients taking itraconazole and clarithromycin concomitantly should be monitored closely for signs or symptoms of increased or prolonged adverse reactions. Saquinavir Both clarithromycin and saquinavir are substrates and inhibitors of CYP3A and there is evidence of a bidirectional drug interaction. Following administration of clarithromycin (500 mg bid) and saquinavir (soft gelatin capsules, 1200 mg tid) to 12 healthy volunteers, the steady-state saquinavir AUC and C max increased 177% and 187% respectively compared to administration of saquinavir alone. Clarithromycin AUC and C max increased 45% and 39% respectively, whereas the 14–OH clarithromycin AUC and C max decreased 24% and 34% respectively, compared to administration with clarithromycin alone. No dose adjustment of clarithromycin is necessary when clarithromycin is co-administered with saquinavir in patients with normal renal function. When saquinavir is co-administered with ritonavir, consideration should be given to the potential effects of ritonavir on clarithromycin (refer to interaction between clarithromycin and ritonavir) (see PRECAUTIONS: Drug Interactions ). The following CYP3A based drug interactions have been observed with erythromycin products and/or with clarithromycin in post-marketing experience: Antiarrhythmics There have been postmarketing reports of torsades de pointes occurring with concurrent use of clarithromycin and quinidine or disopyramide. Electrocardiograms should be monitored for QTc prolongation during coadministration of clarithromycin with these drugs. Serum concentrations of these medications should also be monitored. Ergotamine/Dihydroergotamine Post-marketing reports indicate that coadministration of clarithromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterized by vasospasm and ischemia of the extremities and other tissues including the central nervous system. Concomitant administration of clarithromycin with ergotamine or dihydroergotamine is contraindicated (see CONTRAINDICATIONS ). Triazolobenzodiazepines (such as Triazolam and Alprazolam) and Related Benzodiazepines (such as Midazolam) Erythromycin has been reported to decrease the clearance of triazolam and midazolam, and thus, may increase the pharmacologic effect of these benzodiazepines. There have been post-marketing reports of drug interactions and CNS effects (e.g., somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Sildenafil (Viagra) Erythromycin has been reported to increase the systemic exposure (AUC) of sildenafil. A similar interaction may occur with clarithromycin; reduction of sildenafil dosage should be considered. (See Viagra package insert.) There have been spontaneous or published reports of CYP3A based interactions of erythromycin and/or clarithromycin with cyclosporine, carbamazepine, tacrolimus, alfentanil, disopyramide, rifabutin, quinidine, methylprednisolone, cilostazol, bromocriptine and vinblastine. Concomitant administration of clarithromycin with cisapride, pimozide, astemizole, or terfenadine is contraindicated (see CONTRAINDICATIONS ). In addition, there have been reports of interactions of erythromycin or clarithromycin with drugs not thought to be metabolized by CYP3A, including hexobarbital, phenytoin, and valproate.

OVERDOSAGE

Overdosage of clarithromycin can cause gastrointestinal symptoms such as abdominal pain, vomiting, nausea, and diarrhea. Adverse reactions accompanying overdosage should be treated by the prompt elimination of unabsorbed drug and supportive measures. As with other macrolides, clarithromycin serum concentrations are not expected to be appreciably affected by hemodialysis or peritoneal dialysis.

DESCRIPTION

Clarithromycin is a semi-synthetic macrolide antibiotic. Chemically, it is 6-0-methylerythromycin. The molecular formula is C 38H 69NO 13, and the molecular weight is 747.96. The structural formula is: Clarithromycin is a white to off-white crystalline powder. It is soluble in acetone, slightly soluble in methanol, ethanol, and acetonitrile, and practically insoluble in water. Each clarithromycin tablet intended for oral administration contains 250 mg or 500 mg of clarithromycin. In addition, each clarithromycin tablet contains the following inactive ingredients: croscarmellose sodium, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate 80, povidone, talc, and titanium dioxide. Clarithromycin chemical structure

CLINICAL STUDIES

Mycobacterial Infections Prophylaxis A randomized, double-blind study (561) compared clarithromycin 500 mg b.i.d. to placebo in patients with CDC-defined AIDS and CD 4 counts <100 cells/µL. This study accrued 682 patients from November 1992 to January 1994, with a median CD 4 cell count at study entry of 30 cells/µL. Median duration of clarithromycin was 10.6 months vs. 8.2 months for placebo. More patients in the placebo arm than the clarithromycin arm discontinued prematurely from the study (75.6% and 67.4%, respectively). However, if premature discontinuations due to MAC or death are excluded, approximately equal percentages of patients on each arm (54.8% on clarithromycin and 52.5% on placebo) discontinued study drug early for other reasons. The study was designed to evaluate the following endpoints: MAC bacteremia, defined as at least one positive culture for M. aviumcomplex bacteria from blood or another normally sterile site. Survival Clinically significant disseminated MAC disease, defined as MAC bacteremia accompanied by signs or symptoms of serious MAC infection, including fever, night sweats, weight loss, anemia, or elevations in liver function tests. MAC Bacteremia In patients randomized to clarithromycin, the risk of MAC bacteremia was reduced by 69% compared to placebo. The difference between groups was statistically significant (p2% Adverse Event Incidence Rates for either treatment group. Adverse Event Clarithromycin (n = 339) % Placebo (n = 339) % Body as a Whole Abdominal Pain 5.0% 3.5% Headache 2.7% 0.9% Digestive Diarrhea 7.7% 4.1% Dyspepsia 3.8% 2.7% Flatulence 2.4% 0.9% Nausea 11.2% 7.1% Vomiting 5.9% 3.2% Skin & Appendages Rash 3.2% 3.5% Special Senses Taste Perversion 8.0% 0.3% Among these events, taste perversion was the only event that had significantly higher incidence in the clarithromycin-treated group compared to the placebo-treated group. Discontinuation due to adverse events was required in 18% of patients receiving clarithromycin compared to 17% of patients receiving placebo in this trial. Primary reasons for discontinuation in clarithromycin treated patients include headache, nausea, vomiting, depression and taste perversion. Changes in Laboratory Values of Potential Clinical Importance In immuno-compromised patients receiving prophylaxis against M. avium, evaluations of laboratory values were made by analyzing those values outside the seriously abnormal value (i.e., the extreme high or low limit) for the specified test. Percentage of Patients Includes only patients with baseline values within the normal range or borderline high (hematology variables) and within the normal range or borderline low (chemistry variables). Exceeding Extreme Laboratory Value in Patients Receiving Prophylaxis Against M. avium Complex Clarithromycin 500 mg b.i.d. Placebo Hemoglobin <8 g/dL 4/118 3% 5/103 5% Platelet Count <50 x 10 9/L 11/249 4% 12/250 5% WBC Count 5 x ULN ULN = Upper Limit of Normal 7/196 4% 5/208 2% SGPT >5 x ULN 6/217 3% 4/232 2% Alk. Phos. >5 x ULN 5/220 2% 5/218 2% Treatment Three randomized studies (500, 577, and 521) compared different dosages of clarithromycin in patients with CDC-defined AIDS and CD 4 counts <100 cells/mcL. These studies accrued patients from May 1991 to March 1992. Study 500 was randomized, double-blind; Study 577 was open-label compassionate use. Both studies used 500 and 1000 mg b.i.d. doses; Study 500 also had a 2000 mg b.i.d. group. Study 521 was a pediatric study at 3.75, 7.5, and 15 mg/kg b.i.d. Study 500 enrolled 154 adult patients, Study 577 enrolled 469 adult patients, and Study 521 enrolled 25 patients between the ages of 1 to 20. The majority of patients had CD 4 cell counts <50/mcL at study entry. The studies were designed to evaluate the following end points: Change in MAC bacteremia or blood cultures negative for M. avium. Change in clinical signs and symptoms of MAC infection including one or more of the following: fever, night sweats, weight loss, diarrhea, splenomegaly, and hepatomegaly. The results for the 500 study are described below. The 577 study results were similar to the results of the 500 study. Results with the 7.5 mg/kg b.i.d. dose in the pediatric study were comparable to those for the 500 mg b.i.d. regimen in the adult studies. Study 069 compared the safety and efficacy of clarithromycin in combination with ethambutol versus clarithromycin in combination with ethambutol and clofazimine for the treatment of disseminated MAC (dMAC) infection 5. This 24-week study enrolled 106 patients with AIDS and dMAC, with 55 patients randomized to receive clarithromycin and ethambutol, and 51 patients randomized to receive clarithromycin, ethambutol, and clofazimine. Baseline characteristics between study arms were similar with the exception of median CFU counts being at least 1 log higher in the clarithromycin, ethambutol, and clofazimine arm. Compared to prior experience with clarithromycin monotherapy, the two-drug regimen of clarithromycin and ethambutol was well tolerated and extended the time to microbiologic relapse, largely through suppressing the emergence of clarithromycin resistant strains. However, the addition of clofazimine to the regimen added no additional microbiologic or clinical benefit. Tolerability of both multidrug regimens was comparable with the most common adverse events being gastrointestinal in nature. Patients receiving the clofazimine-containing regimen had reduced survival rates; however, their baseline mycobacterial colony counts were higher. The results of this trial support the addition of ethambutol to clarithromycin for the treatment of initial dMAC infections but do not support adding clofazimine as a third agent. MAC Bacteremia Decreases in MAC bacteremia or negative blood cultures were seen in the majority of patients in all dose groups. Mean reductions in colony forming units (CFU) are shown below. Included in the table are results from a separate study with a four drug regimen 6 (ciprofloxacin, ethambutol, rifampicin, and clofazimine). Since patient populations and study procedures may vary between these two studies, comparisons between the clarithromycin results and the combination therapy results should be interpreted cautiously. Mean Reductions in Log CFU from Baseline (After 4 Weeks of Therapy) 500 mg b.i.d. (N=35) 1000 mg b.i.d. (N=32) 2000 mg b.i.d. (N=26) Four Drug Regimen (N=24) 1.5 2.3 2.3 1.4 Although the 1000 mg and 2000 mg b.i.d. doses showed significantly better control of bacteremia during the first four weeks of therapy, no significant differences were seen beyond that point. The percent of patients whose blood was sterilized as shown by one or more negative cultures at any time during acute therapy was 61% (30/49) for the 500 mg b.i.d. group and 59% (29/49) and 52% (25/48) for the 1000 and 2000 mg b.i.d. groups, respectively. The percent of patients who had 2 or more negative cultures during acute therapy that were sustained through study Day 84 was 25% (12/49) in both the 500 and 1000 mg b.i.d. groups and 8% (4/48) for the 2000 mg b.i.d. group. By Day 84, 23% (11/49), 37% (18/49), and 56% (27/48) of patients had died or discontinued from the study, and 14% (7/49), 12% (6/49), and 13% (6/48) of patients had relapsed in the 500, 1000, and 2000 mg b.i.d. dose groups, respectively. All of the isolates had an MIC 3% Hemoglobin Increase > 1 gm b.i.d. dose (mg) % ever gaining % gaining ≥ 6 weeks b.i.d. dose (mg) % ever increasing % increasing ≥ 6 weeks 500 33% 14% 500 58% 26% 1000 26% 17% 1000 37% 6% 2000 26% 12% 2000 62% 18% The median duration of response, defined as improvement or resolution of clinical signs and symptoms, was 2 to 6 weeks. Since the study was not designed to determine the benefit of monotherapy beyond 12 weeks, the duration of response may be underestimated for the 25 to 33% of patients who continued to show clinical response after 12 weeks. Survival Median survival time from study entry (Study 500) was 249 days at the 500 mg b.i.d. dose compared to 215 days with the 1000 mg b.i.d. dose. However, during the first 12 weeks of therapy, there were 2 deaths in 53 patients in the 500 mg b.i.d. group versus 13 deaths in 51 patients in the 1000 mg b.i.d. group. The reason for this apparent mortality difference is not known. Survival in the two groups was similar beyond 12 weeks. The median survival times for these dosages were similar to recent historical controls with MAC when treated with combination therapies. 5 Median survival time from study entry in Study 577 was 199 days for the 500 mg b.i.d. dose and 179 days for the 1000 mg b.i.d. dose. During the first four weeks of therapy, while patients were maintained on their originally assigned dose, there were 11 deaths in 255 patients taking 500 mg b.i.d. and 18 deaths in 214 patients taking 1000 mg b.i.d. Safety The adverse event profiles showed that both the 500 and 1000 mg b.i.d. doses were well tolerated. The 2000 mg b.i.d. dose was poorly tolerated and resulted in a higher proportion of premature discontinuations. In AIDS patients and other immunocompromised patients treated with the higher doses of clarithromycin over long periods of time for mycobacterial infections, it was often difficult to distinguish adverse events possibly associated with clarithromycin administration from underlying signs of HIV disease or intercurrent illness. The following analyses summarize experience during the first 12 weeks of therapy with clarithromycin. Data are reported separately for Study 500 (randomized, double-blind) and Study 577 (open-label, compassionate use) and also combined. Adverse events were reported less frequently in Study 577, which may be due in part to differences in monitoring between the two studies. In adult patients receiving clarithromycin 500 mg b.i.d., the most frequently reported adverse events, considered possibly or probably related to study drug, with an incidence of 5% or greater, are listed below. Most of these events were mild to moderate in severity, although 5% (Study 500: 8%; Study 577: 4%) of patients receiving 500 mg b.i.d. and 5% (Study 500: 4%; Study 577: 6%) of patients receiving 1000 mg b.i.d. reported severe adverse events. Excluding those patients who discontinued therapy or died due to complications of their underlying non-mycobacterial disease, approximately 8% (Study 500: 15%; Study 577: 7%) of the patients who received 500 mg b.i.d. and 12% (Study 500: 14%; Study 577: 12%) of the patients who received 1000 mg b.i.d. discontinued therapy due to drug-related events during the first 12 weeks of therapy. Overall, the 500 and 1000 mg b.i.d. doses had similar adverse event profiles. Treatment-related Includes those events possibly or probably related to study drug and excludes concurrent conditions. Adverse Event Incidence Rates (%) in Immunocompromised Adult Patients During the First 12 Weeks of Therapy with 500 mg b.i.d. Clarithromycin Dose Adverse Event Study 500 (n=53) Study 577 (n=255) Combined (n=308) Abdominal Pain 7.5 2.4 3.2 Diarrhea 9.4 1.6 2.9 Flatulence 7.5 0.0 1.3 Headache 7.5 0.4 1.6 Nausea 28.3 9.0 12.3 Rash 9.4 2.0 3.2 Taste Perversion 18.9 0.4 3.6 Vomiting 24.5 3.9 7.5 A limited number of pediatric AIDS patients have been treated with clarithromycin suspension for mycobacterial infections. The most frequently reported adverse events, excluding those due to the patient’s concurrent condition, were consistent with those observed in adult patients. Changes in Laboratory Values In immunocompromised patients treated with clarithromycin for mycobacterial infections, evaluations of laboratory values were made by analyzing those values outside the seriously abnormal level (i.e., the extreme high or low limit) for the specified test. Percentage of Patients Includes only patients with baseline values within the normal range or borderline high (hematology variables) and within the normal range or borderline low (chemistry variables) Exceeding Extreme Laboratory Value Limits During First 12 Weeks of Treatment 500 mg b.i.d. Dose Includes all values within the first 12 weeks for patients who start on 500 mg b.i.d. Study 500 Study 577 Combined BUN >50 mg/dL 0% <1% <1% Platelet Count <50 x 10 9/L 0% <1% 5 x ULN ULN = Upper Limit of Normal 0% 3% 2% SGPT >5 x ULN 0% 2% 1% WBC <1 x 10 9/L 0% 1% 1% Otitis Media In a controlled clinical study of acute otitis media performed in the United States, where significant rates of beta-lactamase producing organisms were found, clarithromycin was compared to an oral cephalosporin. In this study, very strict evaluability criteria were used to determine clinical response. For the 223 patients who were evaluated for clinical efficacy, the clinical success rate (i.e., cure plus improvement) at the post-therapy visit was 88% for clarithromycin and 91% for the cephalosporin. In a smaller number of patients, microbiologic determinations were made at the pre-treatment visit. The following presumptive bacterial eradication/clinical cure outcomes (i.e., clinical success) were obtained: U.S. Acute Otitis Media Study Clarithromycin vs. Oral Cephalosporin Efficacy Results Pathogen Outcome S. pneumoniae clarithromycin success rate, 13/15 (87%), control 4/5 H. influenzae None of the H. influenzae isolated pre-treatment was resistant to clarithromycin; 6% were resistant to the control agent. clarithromycin success rate, 10/14 (71%), control ¾ M. catarrhalis clarithromycin success rate, 4/5, control 1/1 S. pyogenes clarithromycin success rate, 3/3, control 0/1 Overall clarithromycin success rate, 30/37 (81%), control 8/11 (73%) Safety The incidence of adverse events in all patients treated, primarily diarrhea and vomiting, did not differ clinically or statistically for the two agents. In two other controlled clinical trials of acute otitis media performed in the United States, where significant rates of beta-lactamase producing organisms were found, clarithromycin was compared to an oral antimicrobial agent that contained a specific beta-lactamase inhibitor. In these studies, very strict evaluability criteria were used to determine the clinical responses. In the 233 patients who were evaluated for clinical efficacy, the combined clinical success rate (i.e., cure and improvement) at the post-therapy visit was 91% for both clarithromycin and the control. For the patients who had microbiologic determinations at the pre-treatment visit, the following presumptive bacterial eradication/clinical cure outcomes (i.e., clinical success) were obtained: Two U.S. Acute Otitis Media Studies Clarithromycin vs. Antimicrobial/Beta-lactamase Inhibitor Efficacy Results Pathogen Outcome S. pneumoniae clarithromycin success rate, 43/51 (84%), control 55/56 (98%) H. influenzae Of the H. influenzae isolated pre-treatment, 3% were resistant to clarithromycin and 10% were resistant to the control agent. clarithromycin success rate, 36/45 (80%), control 31/33 (94%) M. catarrhalis clarithromycin success rate, 9/10 (90%), control 6/6 S. pyogenes clarithromycin success rate, 3/3, control 5/5 Overall clarithromycin success rate, 91/109 (83%), control 97/100 (97%) Safety The incidence of adverse events in all patients treated, primarily diarrhea (15% vs. 38%) and diaper rash (3% vs. 11%) in young children, was clinically and statistically lower in the clarithromycin arm versus the control arm. Duodenal Ulcer Associated with H. pylori Infection Clarithromycin + Lansoprazole and Amoxicillin H. pylori Eradication for Reducing the Risk of Duodenal Ulcer Recurrence Two U.S. randomized, double-blind clinical studies in patients with H. pylori and duodenal ulcer disease (defined as an active ulcer or history of an active ulcer within one year) evaluated the efficacy of clarithromycin in combination with lansoprazole and amoxicillin capsules as triple 14-day therapy for eradication of H. pylori. Based on the results of these studies, the safety and efficacy of the following eradication regimen were established: Triple therapy: Clarithromycin 500 mg b.i.d. + Lansoprazole 30 mg b.i.d. + Amoxicillin 1 gm b.i.d. Treatment was for 14 days. H. pylori eradication was defined as two negative tests (culture and histology) at 4 to 6 weeks following the end of treatment. The combination of clarithromycin plus lansoprazole and amoxicillin as triple therapy was effective in eradicating H. pylori. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. A randomized, double-blind clinical study performed in the U.S. in patients with H. pylori and duodenal ulcer disease (defined as an active ulcer or history of an ulcer within one year) compared the efficacy of clarithromycin in combination with lansoprazole and amoxicillin as triple therapy for 10 and 14 days. This study established that the 10-day triple therapy was equivalent to the 14-day triple therapy in eradicating H. pylori. H. pylori Eradication Rates-Triple Therapy (Clarithromycin/Lansoprazole/Amoxicillin) Percent of Patients Cured [95% Confidence Interval] (number of patients) Study Duration Triple Therapy Evaluable Analysis Based on evaluable patients with confirmed duodenal ulcer (active or within one year) and H. pylori infection at baseline defined as at least two of three positive endoscopic tests from CLOtest® (Delta West LTD., Bentley, Australia), histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients were dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as evaluable failures of therapy. Triple Therapy Intent-to-Treat Analysis Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within one year). All dropouts were included as failures of therapy. M93-131 14 days 92 (p<0.05) versus clarithromycin/lansoprazole and lansoprazole/amoxicillin dual therapy. [80.0 – 97.7] (n = 48) 86 c [73.3 – 93.5] (n = 55) M95-392 14 days 86 (p<0.05) versus clarithromycin/amoxicillin dual therapy. [75.7 – 93.6] (n = 66) 83 [72.0 – 90.8] (n = 70) M95-399 The 95% confidence interval for the difference in eradication rates, 10-day minus 14-day, is (-10.5, 8.1) in the evaluable analysis and (-9.7, 9.1) in the intent-to-treat analysis. 14 days 85 [77.0 – 91] (n = 113) 82 [73.9 – 88.1] (n = 126) 10 days 84 [76.0 – 89.8] (n = 123) 81 [73.9 – 87.6] (n = 135) Clarithromycin + Omeprazole and Amoxicillin Therapy H. pylori Eradication for Reducing the Risk of Duodenal Ulcer Recurrence Three U.S., randomized, double-blind clinical studies in patients with H. pylori infection and duodenal ulcer disease (n = 558) compared clarithromycin plus omeprazole and amoxicillin to clarithromycin plus amoxicillin. Two studies (Studies 126 and 127) were conducted in patients with an active duodenal ulcer, and the third study (Study 446) was conducted in patients with a duodenal ulcer in the past 5 years, but without an ulcer present at the time of enrollment. The dosage regimen in the studies was clarithromycin 500 mg b.i.d. plus omeprazole 20 mg b.i.d. plus amoxicillin 1 gram b.i.d. for 10 days. In Studies 126 and 127, patients who took the omeprazole regimen also received an additional 18 days of omeprazole 20 mg q.d. Endpoints studied were eradication of H. pylori and duodenal ulcer healing (studies 126 and 127 only). H. pylori status was determined by CLOtest®, histology, and culture in all three studies. For a given patient, H. pylori was considered eradicated if at least two of these tests were negative, and none was positive. The combination of clarithromycin plus omeprazole and amoxicillin was effective in eradicating H. pylori. Per-Protocol and Intent-To-Treat H. pylori Eradication Rates % of Patients Cured [95% Confidence Interval] Clarithromycin + Omeprazole + Amoxicillin Clarithromycin + Amoxicillin Per- Protocol Patients were included in the analysis if they had confirmed duodenal ulcer disease (active ulcer studies 126 and 127; history of ulcer within 5 years, study M96-446) and H. pylori infection at baseline defined as at least two of three positive endoscopic tests from CLOtest®, histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. The impact of eradication on ulcer recurrence has not been assessed in patients with a past history of ulcer. Intent- To-Treat Patients were included in the analysis if they had documented H. pylori infection at baseline and had confirmed duodenal ulcer disease. All dropouts were included as failures of therapy. Per- Protocol Intent- To-Treat Study 126 p<0.05 versus clarithromycin plus amoxicillin.77 [64, 86] (n = 64) 69 [57, 79] (n = 80) 43 [31, 56] (n = 67) 37 [27, 48] (n = 84) Study 127 78 [67, 88] (n = 65) 73 [61, 82] (n = 77) 41 [29, 54] (n = 68) 36 [26, 47] (n = 84) Study M96-446 90 [80, 96] (n = 69) 83 [74, 91] (n = 84) 33 [24, 44] (n = 93) 32 [23, 42] (n = 99) Safety In clinical trials using combination therapy with clarithromycin plus omeprazole and amoxicillin, no adverse reactions peculiar to the combination of these drugs have been observed. Adverse reactions that have occurred have been limited to those that have been previously reported with clarithromycin, omeprazole, or amoxicillin. The most frequent adverse experiences observed in clinical trials using combination therapy with clarithromycin plus omeprazole and amoxicillin (n=274) were diarrhea (14%), taste perversion (10%), and headache (7%). For information about adverse reactions with omeprazole or amoxicillin, refer to the ADVERSE REACTIONS section of their package inserts. Clarithromycin + Omeprazole Therapy Four randomized, double-blind, multi-center studies (067, 100, 812b, and 058) evaluated clarithromycin 500 mg t.i.d. plus omeprazole 40 mg q.d. for 14 days, followed by omeprazole 20 mg q.d. (067, 100, and 058) or by omeprazole 40 mg q.d. (812b) for an additional 14 days in patients with active duodenal ulcer associated with H. pylori. Studies 067 and 100 were conducted in the U.S. and Canada and enrolled 242 and 256 patients, respectively. H. pylori infection and duodenal ulcer were confirmed in 219 patients in Study 067 and 228 patients in Study 100. These studies compared the combination regimen to omeprazole and clarithromycin monotherapies. Studies 812b and 058 were conducted in Europe and enrolled 154 and 215 patients, respectively. H. pylori infection and duodenal ulcer were confirmed in 148 patients in Study 812b and 208 patients in Study 058. These studies compared the combination regimen to omeprazole monotherapy. The results for the efficacy analyses for these studies are described below. Duodenal Ulcer Healing The combination of clarithromycin and omeprazole was as effective as omeprazole alone for healing duodenal ulcer. End-of-Treatment Ulcer Healing Rates Percent of Patients Healed (n/N) Study Clarithromycin + Omeprazole Omeprazole Clarithromycin U.S. Studies Study 100 94% (58/62) p<0.05 for clarithromycin + omeprazole versus clarithromycin monotherapy. 88% (60/68) 71% (49/69) Study 067 88% (56/64) 85% (55/65) 64% (44/69) Non-U.S. Studies Study 058 99% (84/85) 95% (82/86) N/A Study 812b In Study 812b patients received omeprazole 40 mg daily for days 15 to 28. 100% (64/64) 99% (71/72) N/A Eradication of H. pylori Associated with Duodenal Ulcer The combination of clarithromycin and omeprazole was effective in eradicating H. pylori. H. pylori Eradication Rates (Per-Protocol Analysis) at 4 to 6 weeks Percent of Patients Cured (n/N) Study Clarithromycin + Omeprazole Omeprazole Clarithromycin U.S. Studies Study 100 64% (39/61) Statistically significantly higher than clarithromycin monotherapy (p<0.05) Statistically significantly higher than omeprazole monotherapy (p<0.05). 0% (0/59) 39% (17/44) Study 067 74% (39/53) 0% (0/54) 31% (13/42) Non-U.S. Studies Study 058 74% (64/86) 1% (1/90) N/A Study 812b 83% (50/60) 1% (1/74) N/A H. pylori eradication was defined as no positive test (culture or histology) at 4 weeks following the end of treatment, and two negative tests were required to be considered eradicated. In the per-protocol analysis, the following patients were excluded: dropouts, patients with major protocol violations, patients with missing H. pylori tests post-treatment, and patients that were not assessed for H. pylori eradication at 4 weeks after the end of treatment because they were found to have an unhealed ulcer at the end of treatment. Ulcer recurrence at 6-months following the end of treatment was assessed for patients in whom ulcers were healed post-treatment. Ulcer Recurrence at 6 months by H. pylori Status at 4 to 6 Weeks H. pylori Negative H. pylori Positive U.S. Studies Study 100 Clarithromycin + Omeprazole 6% (2/34) 56% (9/16) Omeprazole – (0/0) 71% (35/49) Clarithromycin 12% (2/17) 32% (7/22) Study 067 Clarithromycin + Omeprazole 38% (11/29) 50% (6/12) Omeprazole – (0/0) 67% (31/46) Clarithromycin 18% (2/11) 52% (14/27) Non-U.S. Studies Study 058 Clarithromycin + Omeprazole 6% (3/53) 24% (4/17) Omeprazole 0% (0/3) 55% (39/71) Study 812b See 12-Month Recurrence Rates. Clarithromycin + Omeprazole 5% (2/42) 0% (0/7) Omeprazole 0% (0/1) 54% (32/59) 12-Month Recurrence Rates Clarithromycin + Omeprazole 3% (1/40) 0% (0/6) Omeprazole 0% (0/1) 67% (29/43) Thus, in patients with duodenal ulcer associated with H. pylori infection, eradication of H. pylori reduced ulcer recurrence. Safety The adverse event profiles for the four studies showed that the combination of clarithromycin 500 mg t.i.d. and omeprazole 40 mg q.d. for 14 days, followed by omeprazole 20 mg q.d. (067, 100, and 058) or 40 mg q.d.(812b) for an additional 14 days was well tolerated. Of the 346 patients who received the combination, 12 (3.5%) patients discontinued study drug due to adverse events. Adverse Events with an Incidence of 3% or Greater Adverse Event Clarithromycin + Omeprazole (n = 346) % of Patients Omeprazole (n = 355) % of Patients Clarithromycin (n = 166) % of Patients Studies 067 and 100, only Taste Perversion 15% 1% 16% Nausea 5% 1% 3% Headache 5% 6% 9% Diarrhea 4% 3% 7% Vomiting 4% <1% 1% Abdominal Pain 3% 2% 1% Infection 3% 4% 2% Most of these events were mild to moderate in severity. Changes in Laboratory Values Changes in laboratory values with possible clinical significance in patients taking clarithromycin and omeprazole were as follows: Hepatic–– elevated direct bilirubin <1%; GGT <1%; SGOT (AST) <1%; SGPT (ALT) <1%. Renal–– elevated serum creatinine <1%. For information on omeprazole, refer to the ADVERSE REACTIONS section of the PRILOSEC package insert. Clarithromycin + Ranitidine Bismuth Citrate Therapy In a U.S. double-blind, randomized, multicenter, dose-comparison trial, ranitidine bismuth citrate 400 mg b.i.d. for 4 weeks plus clarithromycin 500 mg b.i.d. for the first 2 weeks was found to have an equivalent H. pylori eradication rate (based on culture and histology) when compared to ranitidine bismuth citrate 400 mg b.i.d. for 4 weeks plus clarithromycin 500 mg t.i.d. for the first 2 weeks. The intent-to-treat H. pylori eradication rates are shown below: H. pylori Eradication Rates in Study H2BA-3001 Analysis RBC 400 mg + Clarithromycin 500 mg b.i.d. RBC 400 mg + Clarithromycin 500 mg t.i.d 95% CI Rate Difference ITT 65% (122/188) [58%, 72%] 63% (122/195) [55%, 69%] (-8%, 12%) Per-Protocol 72% (117/162) [65%, 79%] 71% (120/170) [63%,77%] (-9%, 12%) H. pylori eradication was defined as no positive test at 4 weeks following the end of treatment. Patients must have had two tests performed, and these must have been negative to be considered eradicated of H. pylori. The following patients were excluded from the per-protocol analysis: patients not infected with H. pylori prestudy, dropouts, patients with major protocol violations, patients with missing H. pylori tests. Patients excluded from the intent-to-treat analysis included those not infected with H. pylori prestudy and those with missing H. pylori tests prestudy. Patients were assessed for H. pylori eradication (4 weeks following treatment) regardless of their healing status (at the end of treatment). The relationship between H. pylori eradication and duodenal ulcer recurrence was assessed in a combined analysis of six U.S. randomized, double-blind, multicenter, placebo-controlled trials using ranitidine bismuth citrate with or without antibiotics. The results from approximately 650 U.S. patients showed that the risk of ulcer recurrence within 6 months of completing treatment was two times less likely in patients whose H. pylori infection was eradicated compared to patients in whom H. pylori infection was not eradicated. Safety In clinical trials using combination therapy with clarithromycin plus ranitidine bismuth citrate, no adverse reactions peculiar to the combination of these drugs (using clarithromycin twice daily or three times a day) were observed. Adverse reactions that have occurred have been limited to those reported with clarithromycin or ranitidine bismuth citrate. (See ADVERSE REACTIONS section of the Tritec package insert.) The most frequent adverse experiences observed in clinical trials using combination therapy with clarithromycin (500 mg three times a day) with ranitidine bismuth citrate (n = 329) were taste disturbance (11%), diarrhea (5%), nausea and vomiting (3%). The most frequent adverse experiences observed in clinical trials using combination therapy with clarithromycin (500 mg twice daily) with ranitidine bismuth citrate (n = 196) were taste disturbance (8%), nausea and vomiting (5%), and diarrhea (4%).

HOW SUPPLIED

Clarithromycin tablets 250 mg are white, oval-shaped, film-coated tablets, debossed GG C6 on one side and plain on the reverse side, and are supplied as follows: NDC 0781-1961-31 in bottles of 30 tablets NDC 0781-1961-60 in bottles of 60 tablets NDC 0781-1961-01 in bottles of 100 tablets NDC 0781-1961-10 in bottles of 1000 tablets Clarithromycin tablets 500 mg are white, oval-shaped, film-coated tablets, debossed GG C9 on one side and plain on the reverse side, and are supplied as follows: NDC 0781-1962-31 in bottles of 30 tablets NDC 0781-1962-60 in bottles of 60 tablets NDC 0781-1962-01 in bottles of 100 tablets NDC 0781-1962-05 in bottles of 500 tablets Store at 20°-25°C (68°-77°F) (see USP Controlled Room Temperature). Dispense in a tight container as described in the USP. Protect from light.

GERIATRIC USE

Geriatric Use In a steady-state study in which healthy elderly subjects (age 65 to 81 years old) were given 500 mg every 12 hours, the maximum serum concentrations and area under the curves of clarithromycin and 14-OH clarithromycin were increased compared to those achieved in healthy young adults. These changes in pharmacokinetics parallel known age-related decreases in renal function. In clinical trials, elderly patients did not have an increased incidence of adverse events when compared to younger patients. Dosage adjustment should be considered in elderly patients with severe renal impairment. Elderly patients may be more susceptible to development of torsades de pointes arrhythmias than younger patients. (See WARNINGS and PRECAUTIONS .)

INDICATIONS AND USAGE

Clarithromycin tablets are indicated for the treatment of mild to moderate infections caused by susceptible isolates of the designated bacteria in the conditions as listed below: Adults Pharyngitis/Tonsillitis due to Streptococcus pyogenes (The usual drug of choice in the treatment and prevention of streptococcal infections and the prophylaxis of rheumatic fever is penicillin administered by either the intramuscular or the oral route. Clarithromycin is generally effective in the eradication of S. pyogenes from the nasopharynx; however, data establishing the efficacy of clarithromycin in the subsequent prevention of rheumatic fever are not available at present.) Acute maxillary sinusitis due to Haemophilusinfluenzae, Moraxella catarrhalis, or Streptococcus pneumoniae Acute bacterial exacerbation of chronic bronchitis due to Haemophilusinfluenzae, Haemophilusparainfluenzae, Moraxella catarrhalis, or Streptococcus pneumoniae Community-Acquired Pneumonia due to Haemophilusinfluenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, or Chlamydia pneumoniae (TWAR) Uncomplicated skin and skin structure infections due to Staphylococcus aureus, or Streptococcus pyogenes (Abscesses usually require surgical drainage.) Disseminated mycobacterial infections due to Mycobacterium avium, or Mycobacterium intracellulare Clarithromycin tablets in combination with amoxicillin and lansoprazole or omeprazole delayed-release capsules, as triple therapy, are indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or five-year history of duodenal ulcer) to eradicate H. pylori. Clarithromycin tablets in combination with omeprazole capsules or ranitidine bismuth citrate tablets are also indicated for the treatment of patients with an active duodenal ulcer associated with H. pylori infection. However, regimens which contain clarithromycin as the single antimicrobial agent are more likely to be associated with the development of clarithromycin resistance among patients who fail therapy. Clarithromycin-containing regimens should not be used in patients with known or suspected clarithromycin resistant isolates because the efficacy of treatment is reduced in this setting. In patients who fail therapy, susceptibility testing should be done if possible. If resistance to clarithromycin is demonstrated, a non-clarithromycin-containing therapy is recommended. (For information on development of resistance see Microbiology section.) The eradication of H. pylori has been demonstrated to reduce the risk of duodenal ulcer recurrence. Children Pharyngitis/Tonsillitis due to Streptococcus pyogenes Community-Acquired Pneumonia due to Mycoplasma pneumoniae, Streptococcus pneumoniae, or Chlamydia pneumoniae (TWAR) Acute maxillary sinusitis due to Haemophilusinfluenzae, Moraxella catarrhalis, or Streptococcus pneumoniae Acute otitis media due to Haemophilusinfluenzae, Moraxella catarrhalis,or Streptococcus pneumoniae NOTE: For information on otitis media, see CLINICAL STUDIES: Otitis Media . Uncomplicated skin and skin structure infections due to Staphylococcus aureus, or Streptococcus pyogenes (Abscesses usually require surgical drainage.) Disseminated mycobacterial infections due to Mycobacterium avium, or Mycobacterium intracellulare Prophylaxis Clarithromycin tablets are indicated for the prevention of disseminated Mycobacterium avium complex (MAC) disease in patients with advanced HIV infection. To reduce the development of drug-resistant bacteria and maintain the effectiveness of clarithromycin tablets and other antibacterial drugs, clarithromycin tablets should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

PEDIATRIC USE

Pediatric Use Safety and effectiveness of clarithromycin in pediatric patients under 6 months of age have not been established. The safety of clarithromycin has not been studied in MAC patients under the age of 20 months. Neonatal and juvenile animals tolerated clarithromycin in a manner similar to adult animals. Young animals were slightly more intolerant to acute overdosage and to subtle reductions in erythrocytes, platelets and leukocytes but were less sensitive to toxicity in the liver, kidney, thymus, and genitalia.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Four teratogenicity studies in rats (three with oral doses and one with intravenous doses up to 160 mg/kg/day administered during the period of major organogenesis) and two in rabbits at oral doses up to 125 mg/kg/day (approximately 2 times the recommended maximum human dose based on mg/m 2) or intravenous doses of 30 mg/kg/day administered during gestation days 6 to 18 failed to demonstrate any teratogenicity from clarithromycin. Two additional oral studies in a different rat strain at similar doses and similar conditions demonstrated a low incidence of cardiovascular anomalies at doses of 150 mg/kg/day administered during gestation days 6 to 15. Plasma levels after 150 mg/kg/day were 2 times the human serum levels. Four studies in mice revealed a variable incidence of cleft palate following oral doses of 1000 mg/kg/day (2 and 4 times the recommended maximum human dose based on mg/m 2, respectively) during gestation days 6 to 15. Cleft palate was also seen at 500 mg/kg/day. The 1000 mg/kg/day exposure resulted in plasma levels 17 times the human serum levels. In monkeys, an oral dose of 70 mg/kg/day (an approximate equidose of the recommended maximum human dose based on mg/m 2) produced fetal growth retardation at plasma levels that were 2 times the human serum levels. There are no adequate and well-controlled studies in pregnant women. Clarithromycin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. (See WARNINGS .)

NUSRING MOTHERS

Nursing Mothers It is not known whether clarithromycin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when clarithromycin is administered to a nursing woman. It is known that clarithromycin is excreted in the milk of lactating animals and that other drugs of this class are excreted in human milk. Preweaned rats, exposed indirectly via consumption of milk from dams treated with 150 mg/kg/day for 3 weeks, were not adversely affected, despite data indicating higher drug levels in milk than in plasma.

BOXED WARNING

Note: When testing Streptococcus pyogenes and Streptococcus pneumoniae, susceptibility and resistance to clarithromycin can be predicted using erythromycin.

INFORMATION FOR PATIENTS

Information to Patients Patients should be counseled that antibacterial drugs including clarithromycin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When clarithromycin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by clarithromycin or other antibacterial drugs in the future. Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible. Clarithromycin tablets may interact with some drugs; therefore patients should be advised to report to their doctor the use of any other medications. Clarithromycin tablets can be taken with or without food and can be taken with milk.

DOSAGE AND ADMINISTRATION

Clarithromycin tablets may be given with or without food. Clarithromycin may be administered without dosage adjustment in the presence of hepatic impairment if there is normal renal function. In patients with severe renal impairment (CLCR < 30 mL/min), the dose of clarithromycin should be reduced by 50%. However, when patients with moderate or severe renal impairment are taking clarithromycin concomitantly with atazanavir or ritonavir, the dose of clarithromycin should be reduced by 50% or 75% for patients with CLCR of 30 to 60 mL/min or < 30 mL/min, respectively. ADULT DOSAGE GUIDELINES Clarithromycin Tablets Infection Dosage (q12h) Duration (days) Pharyngitis/Tonsillitis due to S. pyogenes 250 mg 10 Acute maxillary sinusitis due to H. influenzae M. catarrhalis S. pneumoniae 500 mg 14 Acute exacerbation of chronic bronchitis due to H. influenzae 500 mg 7-14 H. parainfluenzae 500 mg 7 M. catarrhalis 250 mg 7-14 S. pneumoniae 250 mg 7-14 Community-Acquired Pneumonia due to H. influenzae 250 mg 7 H. parainfluenzae — — M. catarrhalis — — S. pneumoniae 250 mg 7-14 C. pneumoniae 250 mg 7-14 M. pneumoniae 250 mg 7-14 Uncomplicated skin and skin structure S. aureus S. pyogenes 250 mg 7-14 H. pylori Eradication to Reduce the Risk of Duodenal Ulcer Recurrence Triple Therapy: Clarithromycin/Lansoprazole/Amoxicillin The recommended adult dose is 500 mg clarithromycin, 30 mg lansoprazole, and 1 gram amoxicillin, all given twice daily (q12h) for 10 or 14 days. (See INDICATIONS AND USAGE and CLINICAL STUDIES sections.) Triple Therapy: Clarithromycin/Omeprazole/Amoxicillin The recommended adult dose is 500 mg clarithromycin, 20 mg omeprazole, and 1 gram amoxicillin, all given twice daily (q12h) for 10 days. (See INDICATIONS AND USAGE and CLINICAL STUDIES sections.) In patients with an ulcer present at the time of initiation of therapy, an additional 18 days of omeprazole 20 mg once daily is recommended for ulcer healing and symptom relief. Dual Therapy: Clarithromycin/Omeprazole The recommended adult dose is 500 mg clarithromycin given three times daily (q8h) and 40 mg omeprazole given once daily (qAM) for 14 days. (See INDICATIONS AND USAGE and CLINICAL STUDIES sections.) An additional 14 days of omeprazole 20 mg once daily is recommended for ulcer healing and symptom relief. Dual Therapy: Clarithromycin/Ranitidine Bismuth Citrate The recommended adult dose is 500 mg clarithromycin given twice daily (q12h) or three times daily (q8h) and 400 mg ranitidine bismuth citrate given twice daily (q12h) for 14 days. An additional 14 days of 400 mg twice daily is recommended for ulcer healing and symptom relief. Clarithromycin and ranitidine bismuth citrate combination therapy is not recommended in patients with creatinine clearance less than 25 mL/min. (See INDICATIONS AND USAGE and CLINICAL STUDIES sections.) Children The usual recommended daily dosage is 15 mg/kg/day divided q12h for 10 days. PEDIATRIC DOSAGE GUIDELINES Based on Body Weight Dosing Calculated on 7.5 mg/kg q12h Weight Dose (q12h) kg lbs 9 20 62.5 mg 17 37 125 mg 25 55 187.5 mg 33 73 250 mg Mycobacterial Infections Prophylaxis The recommended dose of clarithromycin for the prevention of disseminated Mycobacterium avium disease is 500 mg b.i.d. In children, the recommended dose is 7.5 mg/kg b.i.d. up to 500 mg b.i.d. No studies of clarithromycin for MAC prophylaxis have been performed in pediatric populations and the doses recommended for prophylaxis are derived from MAC treatment studies in children. Dosing recommendations for children are in the table above. Treatment Clarithromycin is recommended as the primary agent for the treatment of disseminated infection due to Mycobacterium aviumcomplex. Clarithromycin should be used in combination with other antimycobacterial drugs that have shown in vitro activity against MAC or clinical benefit in MAC treatment. (See CLINICAL STUDIES .) The recommended dose for mycobacterial infections in adults is 500 mg b.i.d. In children, the recommended dose is 7.5 mg/kg b.i.d. up to 500 mg b.i.d. Dosing recommendations for children are in the table above. Clarithromycin therapy should continue for life if clinical and mycobacterial improvements are observed.

Benzoyl Peroxide 25 MG/ML Medicated Liquid Soap

Generic Name: SULFUR, BENZOYL PEROXIDE, SALICYLIC ACID
Brand Name: Acne Clearning Treatment Face
  • Substance Name(s):
  • SALICYLIC ACID
  • SULFUR
  • BENZOYL PEROXIDE

WARNINGS

Warnings: For external use only. Do not use if you have sensitive skin and/or are sensitive to [active ingredient] When using this product skin irritation and dryness is more likely to occur if you use another topical acne medication at the same time. If irritation occurs, only use one topical acne medication at a time avoid unnecessary sun exposure and use sun screen, Acne Clearing Moisture with SPF 45 skin irritation may occur, characterized by redness, burning, itching, peeling, and possibly swelling. Irritation may be reduced by using the product less frequently or in a lower concentration Stop use and ask a doctor if irritation becomes severe

INDICATIONS AND USAGE

Directions: Acne Clearing Cleanser Acne Clearing Tonic Acne Clearing Treatment 101

INACTIVE INGREDIENTS

Ingredients: Purified Water, Ethyl Alcohol, Hamammelis Extract, Chamomile Extract, Salicyl Alcohol, Ethhylene Glycol, Propylene Glycol, Dodecyl Benzene Sulfonate, EDTA, Methylparaben, Propylparaben. Purified Water, Sulfer, Catalase, Aqueous extract of arnica, Glycerin, Cetyl Alcohol, Ceteareth-12, Bromelain, Ultrez 21, Mineral Oil, Ethhylene Glycol, Propylene Glycol, Sodium Ascorbyl Phosphate, Triethanolamine, Ascorbic Acid, Dodecyl Benzene Sulfonate, Peppermint oil, Piperine, Mint Base, EDTA, BHT, BHA, Methylparaben, Propylparaben.Purified Water, Sulfer, Catalase, Aqueous extract of arnica, Glycerin, Cetyl Alcohol, Ceteareth-12, Bromelain, Ultrez 21, Mineral Oil, Ethhylene Glycol, Propylene Glycol, Sodium Ascorbyl Phosphate, Triethanolamine, Ascorbic Acid, Dodecyl Benzene Sulfonate, Peppermint oil, Piperine, Mint Base, EDTA, BHT, BHA, Methylparaben, Propylparaben.

PURPOSE

Uses:For the management of acne helps clear up acne blemishes, black heads, helps prevent the development of new acne pimples penetrates pores to reduce the number of acne pimples, white heads and black heads help keep skin clear of new acne pimples, white heads and black heads helps prevent new acne pimples, white heads and black heads from forming help prevent the development of new pimples, white heads and black heads

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children.If swallowed get medical help or contact a Poison Control center immediately.

DOSAGE AND ADMINISTRATION

Three Bottles Acne Clearing Cleanser 240 mL Acne Clearing Tonic 120 mL Acne Clearing Treatment 101 60 mL

ACTIVE INGREDIENTS

Active Ingredient………………………………Purpose Sulphur 5%………………………………………..Acne medication Benzoyl Peroxide 2.5%………………………….Acme medication Salicylic acid 2%………………………………….Acne medication

Augmented Betamethasone 0.5 MG/ML Topical Cream

Generic Name: BETAMETHASONE DIPROPIONATE
Brand Name: Betamethasone Dipropionate
  • Substance Name(s):
  • BETAMETHASONE DIPROPIONATE

DESCRIPTION

11 Betamethasone dipropionate cream USP (augmented), 0.05% contains betamethasone dipropionate USP, a synthetic adrenocorticosteroid, for topical use in a cream base. Betamethasone, an analog of prednisolone, has a high degree of corticosteroid activity and a slight degree of mineralocorticoid activity. Betamethasone dipropionate is the 17,21-dipropionate ester of betamethasone. Chemically, betamethasone dipropionate is 9-fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione 17,21-dipropionate, with the empirical formula C28H37FO7, a molecular weight of 504.6, and the following structural formula: Betamethasone dipropionate is a white to creamy white, odorless crystalline powder, insoluble in water. Each gram of betamethasone dipropionate cream USP (augmented), 0.05% contains: 0.64 mg betamethasone dipropionate USP (equivalent to 0.5 mg betamethasone) in a white cream base of carbomer homopolymer type C, ceteareth-30, chlorocresol, cyclomethicone, glyceryl oleate, propylene glycol, purified water, sodium hydroxide, sorbitol solution, white petrolatum and white wax. Chemical Structure

CLINICAL STUDIES

14 The safety and efficacy of betamethasone dipropionate cream (augmented) for the treatment of corticosteroid-responsive dermatoses have been established in two randomized and active controlled trials in subjects with chronic plaque psoriasis. A total of 81 subjects who received betamethasone dipropionate cream (augmented) were included in these trials. These trials evaluated betamethasone dipropionate cream (augmented) applied once or twice daily for 14 and 21 days, respectively, on bilateral paired psoriatic lesions. Betamethasone dipropionate cream (augmented) was shown to be effective in relieving the signs and symptoms of chronic plaque psoriasis.

HOW SUPPLIED

16 /STORAGE AND HANDLING Betamethasone dipropionate cream USP (augmented), 0.05% is a white cream supplied in 15 g (NDC 51672-1310-1), 30 g (NDC 51672-1310-2) and 50 g (NDC 51672-1310-3) tubes. Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature].

GERIATRIC USE

8.5 Geriatric Use Clinical trials of betamethasone dipropionate cream (augmented) included 104 subjects who were 65 years of age and over and 8 subjects who were 75 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. However, greater sensitivity of some older individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3 Cream, 0.05%. Each gram of betamethasone dipropionate cream USP (augmented), 0.05% contains 0.64 mg betamethasone dipropionate (equivalent to 0.5 mg betamethasone) in a white cream base. Cream, 0.05% (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Corticosteroids play a role in cellular signaling, immune function, inflammation, and protein regulation; however, the precise mechanism of action of betamethasone dipropionate cream (augmented) in corticosteroid responsive dermatoses is unknown.

INDICATIONS AND USAGE

1 Betamethasone dipropionate cream (augmented) is a corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses in patients 13 years of age or older. Betamethasone dipropionate cream (augmented), 0.05% is a corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses in patients 13 years of age and older. (1)

PEDIATRIC USE

8.4 Pediatric Use Use of betamethasone dipropionate cream (augmented) in pediatric patients younger than 13 years of age is not recommended due to the potential for HPA axis suppression [see Warnings and Precautions (5.1) ]. In an open-label HPA axis safety trial in subjects 3 months to 12 years of age with atopic dermatitis, betamethasone dipropionate cream (augmented), 0.05% was applied twice daily for 2 to 3 weeks over a mean body surface area of 58% (range 35% to 95%). In 19 of 60 (32%) evaluable subjects, adrenal suppression was indicated by either a ≤5 mcg/dL pre-stimulation cortisol, or a cosyntropin post-stimulation cortisol ≤18 mcg/dL and/or an increase of <7 mcg/dL from the baseline cortisol. Out of the 19 subjects with HPA axis suppression, 4 subjects were tested 2 weeks after discontinuation of betamethasone dipropionate cream (augmented), and 3 of the 4 (75%) had complete recovery of HPA axis function. The proportion of subjects with adrenal suppression in this trial was progressively greater, the younger the age group [see Warnings and Precautions (5.1) ]. Because of a higher ratio of skin surface area to body mass, pediatric patients are at a greater risk than adults of systemic toxicity when treated with topical drugs. They are, therefore, also at greater risk of HPA axis suppression and adrenal insufficiency upon the use of topical corticosteroids. Rare systemic effects such as Cushing's syndrome, linear growth retardation, delayed weight gain, and intracranial hypertension have been reported in pediatric patients, especially those with prolonged exposure to large doses of high potency topical corticosteroids. Local adverse reactions including skin atrophy have also been reported with use of topical corticosteroids in pediatric patients. Avoid use of betamethasone dipropionate cream (augmented) in the treatment of diaper dermatitis.

PREGNANCY

8.1 Pregnancy Teratogenic Effects: Pregnancy Category C There are no adequate and well-controlled studies in pregnant women. Betamethasone dipropionate cream (augmented) should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Betamethasone dipropionate has been shown to be teratogenic in rabbits when given by the intramuscular route at doses of 0.05 mg/kg. The abnormalities observed included umbilical hernias, cephalocele, and cleft palate.

NUSRING MOTHERS

8.3 Nursing Mothers Systemically administered corticosteroids appear in human milk and can suppress growth, interfere with endogenous corticosteroid production, or cause other untoward effects. It is not known whether topical administration of corticosteroids can result in sufficient systemic absorption to produce detectable quantities in human milk. Because many drugs are excreted in human milk, caution should be exercised when betamethasone dipropionate cream (augmented) is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Effects on endocrine system: Betamethasone dipropionate cream (augmented) can cause reversible HPA axis suppression with the potential for glucocorticosteroid insufficiency during and after withdrawal of treatment. Risk factor(s) include the use of high-potency topical corticosteroids, use over a large surface area or to areas under occlusion, prolonged use, altered skin barrier, liver failure, and use in pediatric patients. Modify use should HPA axis suppression develop. (5.1, 8.4) 5.1 Effects on Endocrine System Betamethasone dipropionate cream (augmented) can produce reversible hypothalamic-pituitary-adrenal (HPA) axis suppression with the potential for glucocorticosteroid insufficiency. This may occur during treatment or after withdrawal of treatment. Factors that predispose to HPA axis suppression include the use of high-potency steroids, large treatment surface areas, prolonged use, use of occlusive dressings, altered skin barrier, liver failure, and young age. Evaluation for HPA axis suppression may be done by using the adrenocorticotropic hormone (ACTH) stimulation test. Betamethasone dipropionate cream (augmented), 0.05% was applied once daily at 7 grams per day for 1 week to diseased skin, in adult subjects with psoriasis or atopic dermatitis, to study its effects on the HPA axis. The results suggested that the drug lowered adrenal corticosteroid secretion, although plasma cortisol levels did not go below the lower limit of the normal range. In an open-label pediatric trial of 60 evaluable subjects (3 months to 12 years of age), 19 subjects showed evidence of HPA axis suppression. Four (4) subjects were tested 2 weeks after discontinuation of betamethasone dipropionate cream (augmented), 0.05%, and 3 of the 4 (75%) had complete recovery of HPA axis function. The proportion of subjects with adrenal suppression in this trial was progressively greater, the younger the age group. If HPA axis suppression is documented, gradually withdraw the drug, reduce the frequency of application, or substitute with a less potent corticosteroid. Infrequently, signs and symptoms of steroid withdrawal may occur, requiring supplemental systemic corticosteroids. Cushing’s syndrome and hyperglycemia may also occur with topical corticosteroids. These events are rare and generally occur after prolonged exposure to excessively large doses, especially of high-potency topical corticosteroids. Pediatric patients may be more susceptible to systemic toxicity due to their larger skin surface to body mass ratios [see Use in Specific Populations (8.4) ]. 5.2 Allergic Contact Dermatitis Allergic contact dermatitis with corticosteroids is usually diagnosed by observing failure to heal rather than noting a clinical exacerbation. Such an observation should be corroborated with appropriate diagnostic patch testing. If irritation develops, topical corticosteroids should be discontinued and appropriate therapy instituted.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Inform patients of the following: Discontinue therapy when control is achieved, unless directed otherwise by the physician. Use no more than 50 grams per week. Avoid contact with the eyes. Avoid use of betamethasone dipropionate cream (augmented) on the face, underarms, or groin areas unless directed by the physician. Do not occlude the treatment area with bandage or other covering, unless directed by the physician. Note that local reactions and skin atrophy are more likely to occur with occlusive use, prolonged use or use of higher potency corticosteroids.

DOSAGE AND ADMINISTRATION

2 Apply a thin film of betamethasone dipropionate cream (augmented) to the affected skin areas once or twice daily. Therapy should be discontinued when control is achieved. Betamethasone dipropionate cream (augmented) is a high-potency corticosteroid. Treatment with betamethasone dipropionate cream (augmented) should not exceed 50 g per week because of the potential for the drug to suppress the hypothalamic-pituitary-adrenal (HPA) axis. Betamethasone dipropionate cream (augmented) should not be used with occlusive dressings unless directed by a physician. Betamethasone dipropionate cream (augmented) is for topical use only. It is not for oral, ophthalmic, or intravaginal use. Avoid use on the face, groin, or axillae, or if skin atrophy is present at the treatment site. Apply a thin film to the affected skin areas once or twice daily. (2) Discontinue therapy when control is achieved. (2) Use no more than 50 g per week. (2) Do not use with occlusive dressings unless directed by a physician. (2) Avoid use on the face, groin, or axillae, or if skin atrophy is present at the treatment site. (2) Not for oral, ophthalmic, or intravaginal use. (2)

carBAMazepine 400 MG 12HR Extended Release Oral Tablet

Generic Name: CARBAMAZEPINE
Brand Name: Carbamazepine
  • Substance Name(s):
  • CARBAMAZEPINE

WARNINGS

Serious Dermatologic Reactions Serious and sometimes fatal dermatologic reactions, including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS), have been reported with carbamazepine treatment. The risk of these events is estimated to be about 1 to 6 per 10,000 new users in countries with mainly Caucasian populations. However, the risk in some Asian countries is estimated to be about 10 times higher. Carbamazepine should be discontinued at the first sign of a rash, unless the rash is clearly not drug-related. If signs or symptoms suggest SJS/TEN, use of this drug should not be resumed and alternative therapy should be considered. SJS/TEN and HLA-B*1502 Allele Retrospective case-control studies have found that in patients of Chinese ancestry there is a strong association between the risk of developing SJS/TEN with carbamazepine treatment and the presence of an inherited variant of the HLA-B gene, HLA-B*1502. The occurrence of higher rates of these reactions in countries with higher frequencies of this allele suggests that the risk may be increased in allele-positive individuals of any ethnicity. Across Asian populations, notable variation exists in the prevalence of HLA-B*1502. Greater than 15% of the population is reported positive in Hong Kong, Thailand, Malaysia, and parts of the Philippines, compared to about 10% in Taiwan and 4% in North China. South Asians, including Indians, appear to have intermediate prevalence of HLA-B*1502, averaging 2 to 4%, but higher in some groups. HLA-B*1502 is present in less than 1% of the population in Japan and Korea. HLA-B*1502 is largely absent in individuals not of Asian origin (e.g., Caucasians, African-Americans, Hispanics, and Native Americans). Prior to initiating carbamazepine therapy, testing for HLA-B*1502 should be performed in patients with ancestry in populations in which HLA-B*1502 may be present. In deciding which patients to screen, the rates provided above for the prevalence of HLA-B*1502 may offer a rough guide, keeping in mind the limitations of these figures due to wide variability in rates even within ethnic groups, the difficulty in ascertaining ethnic ancestry, and the likelihood of mixed ancestry. Carbamazepine should not be used in patients positive for HLA-B*1502 unless the benefits clearly outweigh the risks. Tested patients who are found to be negative for the allele are thought to have a low risk of SJS/TEN (see BOXED WARNING and PRECAUTIONS, Laboratory Tests). Over 90% of carbamazepine treated patients who will experience SJS/TEN have this reaction within the first few months of treatment. This information may be taken into consideration in determining the need for screening of genetically at-risk patients currently on carbamazepine. The HLA-B*1502 allele has not been found to predict risk of less severe adverse cutaneous reactions from carbamazepine such as maculopapular eruption (MPE) or to predict Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS). Limited evidence suggests that HLA-B*1502 may be a risk factor for the development of SJS/TEN in patients of Chinese ancestry taking other antiepileptic drugs associated with SJS/TEN, including phenytoin. Consideration should be given to avoiding use of other drugs associated with SJS/TEN in HLA-B*1502 positive patients, when alternative therapies are otherwise equally acceptable. Hypersensitivity Reactions and HLA-A*3101 Allele Retrospective case-control studies in patients of European, Korean, and Japanese ancestry have found a moderate association between the risk of developing hypersensitivity reactions and the presence of HLA-A*3101, an inherited allelic variant of the HLA-A gene, in patients using carbamazepine. These hypersensitivity reactions include SJS/TEN, maculopapular eruptions, and Drug Reaction with Eosinophilia and Systemic Symptoms (see DRESS/Multiorgan hypersensitivity below). HLA-A*3101 is expected to be carried by more than 15% of patients of Japanese, Native American, Southern Indian (for example, Tamil Nadu) and some Arabic ancestry; up to about 10% in patients of Han Chinese, Korean, European, Latin American, and other Indian ancestry; and up to about 5% in African-Americans and patients of Thai, Taiwanese, and Chinese (Hong Kong) ancestry. The risks and benefits of carbamazepine therapy should be weighed before considering carbamazepine in patients known to be positive for HLA-A*3101. Application of HLA genotyping as a screening tool has important limitations and must never substitute for appropriate clinical vigilance and patient management. Many HLA-B*1502-positive and HLA-A*3101-positive patients treated with carbamazepine will not develop SJS/TEN or other hypersensitivity reactions, and these reactions can still occur infrequently in HLA-B*1502-negative and HLA-A*3101-negative patients of any ethnicity. The role of other possible factors in the development of, and morbidity from, SJS/TEN and other hypersensitivity reactions, such as antiepileptic drug (AED) dose, compliance, concomitant medications, comorbidities, and the level of dermatologic monitoring, have not been studied. Aplastic Anemia and Agranulocytosis Aplastic anemia and agranulocytosis have been reported in association with the use of carbamazepine (see BOXED WARNING). Patients with a history of adverse hematologic reaction to any drug may be particularly at risk of bone marrow depression. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, have occurred with carbamazepine. Some of these events have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematologic abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity (e.g., fever, lymphadenopathy) may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Carbamazepine should be discontinued if an alternative etiology for the signs or symptoms cannot be established. Hypersensitivity Hypersensitivity reactions to carbamazepine have been reported in patients who previously experienced this reaction to anticonvulsants including phenytoin, primidone, and phenobarbital. If such history is present, benefits and risks should be carefully considered and, if carbamazepine is initiated, the signs and symptoms of hypersensitivity should be carefully monitored. In patients who have exhibited hypersensitivity reactions to carbamazepine, approximately 25 to 30% may experience hypersensitivity reactions with oxcarbazepine (Trileptal®). Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including carbamazepine, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 1 shows absolute and relative risk by indication for all evaluated AEDs. Table 1 Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1,000 Patients Drug Patients with Events Per 1,000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1,000 Patients Epilepsy 1.0 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1.0 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing carbamazepine or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. General Carbamazepine has shown mild anticholinergic activity; therefore, patients with increased intraocular pressure should be closely observed during therapy. Because of the relationship of the drug to other tricyclic compounds, the possibility of activation of a latent psychosis and, in elderly patients, of confusion or agitation should be borne in mind. The use of carbamazepine should be avoided in patients with a history of hepatic porphyria (e.g., acute intermittent porphyria, variegate porphyria, porphyria cutanea tarda). Acute attacks have been reported in such patients receiving carbamazepine therapy. Carbamazepine administration has also been demonstrated to increase porphyrin precursors in rodents, a presumed mechanism for the induction of acute attacks of porphyria. As with all antiepileptic drugs, carbamazepine should be withdrawn gradually to minimize the potential of increased seizure frequency. Usage in Pregnancy Carbamazepine can cause fetal harm when administered to a pregnant woman. Epidemiological data suggest that there may be an association between the use of carbamazepine during pregnancy and congenital malformations, including spina bifida. There have also been reports that associate carbamazepine with developmental disorders and congenital anomalies (e.g., craniofacial defects, cardiovascular malformations, hypospadias and anomalies involving various body systems). Developmental delays based on neurobehavioral assessments have been reported. When treating or counseling women of childbearing potential, the prescribing physician will wish to weigh the benefits of therapy against the risks. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Retrospective case reviews suggest that, compared with monotherapy, there may be a higher prevalence of teratogenic effects associated with the use of anticonvulsants in combination therapy. Therefore, if therapy is to be continued, monotherapy may be preferable for pregnant women. In humans, transplacental passage of carbamazepine is rapid (30 to 60 minutes), and the drug is accumulated in the fetal tissues, with higher levels found in liver and kidney than in brain and lung. Carbamazepine has been shown to have adverse effects in reproduction studies in rats when given orally in dosages 10 to 25 times the maximum human daily dosage (MHDD) of 1200 mg on a mg/kg basis or 1.5 to 4 times the MHDD on a mg/m2 basis. In rat teratology studies, 2 of 135 offspring showed kinked ribs at 250 mg/kg and 4 of 119 offspring at 650 mg/kg showed other anomalies (cleft palate, 1; talipes, 1; anophthalmos, 2). In reproduction studies in rats, nursing offspring demonstrated a lack of weight gain and an unkempt appearance at a maternal dosage level of 200 mg/kg. Antiepileptic drugs should not be discontinued abruptly in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In individual cases where the severity and frequency of the seizure disorder are such that removal of medication does not pose a serious threat to the patient, discontinuation of the drug may be considered prior to and during pregnancy, although it cannot be said with any confidence that even minor seizures do not pose some hazard to the developing embryo or fetus. Tests to detect defects using currently accepted procedures should be considered a part of routine prenatal care in childbearing women receiving carbamazepine. There have been a few cases of neonatal seizures and/or respiratory depression associated with maternal carbamazepine and other concomitant anticonvulsant drug use. A few cases of neonatal vomiting, diarrhea, and/or decreased feeding have also been reported in association with maternal carbamazepine use. These symptoms may represent a neonatal withdrawal syndrome. To provide information regarding the effects of in utero exposure to carbamazepine, physicians are advised to recommend that pregnant patients taking carbamazepine enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

DRUG INTERACTIONS

Drug Interactions There has been a report of a patient who passed an orange rubbery precipitate in his stool the day after ingesting carbamazepine suspension immediately followed by Thorazine®* solution. Subsequent testing has shown that mixing carbamazepine suspension and chlorpromazine solution (both generic and brand name) as well as carbamazepine suspension and liquid Mellaril®, resulted in the occurrence of this precipitate. Because the extent to which this occurs with other liquid medications is not known, carbamazepine suspension should not be administered simultaneously with other liquid medicinal agents or diluents (See DOSAGE AND ADMINISTRATION). Clinically meaningful drug interactions have occurred with concomitant medications and include (but are not limited to) the following:

OVERDOSAGE

Acute Toxicity Lowest known lethal dose: adults, 3.2 g (a 24-year-old woman died of a cardiac arrest and a 24-year-old man died of pneumonia and hypoxic encephalopathy); children, 4 g (a 14-year-old girl died of a cardiac arrest), 1.6 g (a 3-year-old girl died of aspiration pneumonia). Oral LD50 in animals (mg/kg): mice, 1100 to 3750; rats, 3850 to 4025; rabbits, 1500 to 2680; guinea pigs, 920. Signs and Symptoms The first signs and symptoms appear after 1 to 3 hours. Neuromuscular disturbances are the most prominent. Cardiovascular disorders are generally milder, and severe cardiac complications occur only when very high doses (greater than 60 g) have been ingested. Respiration: Irregular breathing, respiratory depression. Cardiovascular System: Tachycardia, hypotension or hypertension, shock, conduction disorders. Nervous System and Muscles: Impairment of consciousness ranging in severity to deep coma. Convulsions, especially in small children. Motor restlessness, muscular twitching, tremor, athetoid movements, opisthotonos, ataxia, drowsiness, dizziness, mydriasis, nystagmus, adiadochokinesia, ballism, psychomotor disturbances, dysmetria. Initial hyperreflexia, followed by hyporeflexia. Gastrointestinal Tract: Nausea, vomiting. Kidneys and Bladder: Anuria or oliguria, urinary retention. Laboratory Findings: Isolated instances of overdosage have included leukocytosis, reduced leukocyte count, glycosuria, and acetonuria. EEG may show dysrhythmias. Combined Poisoning: When alcohol, tricyclic antidepressants, barbiturates, or hydantoins are taken at the same time, the signs and symptoms of acute poisoning with carbamazepine may be aggravated or modified. Treatment The prognosis in cases of severe poisoning is critically dependent upon prompt elimination of the drug, which may be achieved by inducing vomiting, irrigating the stomach, and by taking appropriate steps to diminish absorption. If these measures cannot be implemented without risk on the spot, the patient should be transferred at once to a hospital, while ensuring that vital functions are safeguarded. There is no specific antidote. Elimination of the Drug: Induction of vomiting. Gastric lavage. Even when more than 4 hours have elapsed following ingestion of the drug, the stomach should be repeatedly irrigated, especially if the patient has also consumed alcohol. Measures to Reduce Absorption: Activated charcoal, laxatives. Measures to Accelerate Elimination: Forced diuresis. Dialysis is indicated only in severe poisoning associated with renal failure. Replacement transfusion is indicated in severe poisoning in small children. Respiratory Depression: Keep the airways free; resort, if necessary, to endotracheal intubation, artificial respiration, and administration of oxygen. Hypotension, Shock: Keep the patient’s legs raised and administer a plasma expander. If blood pressure fails to rise despite measures taken to increase plasma volume, use of vasoactive substances should be considered. Convulsions: Diazepam or barbiturates. Warning: Diazepam or barbiturates may aggravate respiratory depression (especially in children), hypotension, and coma. However, barbiturates should not be used if drugs that inhibit monoamine oxidase have also been taken by the patient either in overdosage or in recent therapy (within 1 week). Surveillance: Respiration, cardiac function (ECG monitoring), blood pressure, body temperature, pupillary reflexes, and kidney and bladder function should be monitored for several days. Treatment of Blood Count Abnormalities: If evidence of significant bone marrow depression develops, the following recommendations are suggested: (1) stop the drug, (2) perform daily CBC, platelet, and reticulocyte counts, (3) do a bone marrow aspiration and trephine biopsy immediately and repeat with sufficient frequency to monitor recovery. Special periodic studies might be helpful as follows: (1) white cell and platelet antibodies, (2) 59Fe-ferrokinetic studies, (3) peripheral blood cell typing, (4) cytogenetic studies on marrow and peripheral blood, (5) bone marrow culture studies for colony-forming units, (6) hemoglobin electrophoresis for A2 and F hemoglobin, and (7) serum folic acid and B12 levels. A fully developed aplastic anemia will require appropriate, intensive monitoring and therapy, for which specialized consultation should be sought.

DESCRIPTION

Carbamazepine USP, is an anticonvulsant and specific analgesic for trigeminal neuralgia, available for oral administration as chewable tablets of 100 and 200 mg, tablets of 200 mg, extended-release tablets of 100 mg, 200 mg, and 400 mg, and as a suspension of 100 mg/5 mL (teaspoon). Its chemical name is 5H-dibenz[b,f]azepine-5-carboxamide, and its structural formula is: C15H12N2O Carbamazepine USP is a white to off-white powder, practically insoluble in water and soluble in alcohol and in acetone. Its molecular weight is 236.27. Inactive Ingredients: Carbamazepine Tablets USP, (Chewable), 100 mg and 200 mg – ammonio methacrylate copolymer, croscarmellose sodium, diethyl phthalate, FD&C red no. 40 lake, magnesium stearate, microcrystalline cellulose, natural cherry flavor, pregelatinized maize starch and sorbitol. Carbamazepine Tablets USP, 200 mg – ammonio methacrylate copolymer, corn starch, croscarmellose sodium, diethyl phthalate, magnesium stearate and microcrystalline cellulose. Carbamazepine Extended-Release Tablets USP, 100 mg, 200 mg, and 400 mg – ammonio methacrylate copolymer, corn starch, diethyl phthalate, lactose monohydrate, magnesium stearate, microcrystalline cellulose and sodium starch glycolate. Carbamazepine Oral Suspension USP, 100 mg/5 mL – citric acid monohydrate, FD&C yellow no. 6, orange flavor, poloxamer 188, potassium sorbate, propylene glycol, purified water, sorbitol solution, sucrose and xanthan gum. Chemical Structure

HOW SUPPLIED

Carbamazepine Extended-Release Tablets USP, 100 mg: White to off-white, round convex tablets embossed with “T91” on one side and plain on the other side. Carbamazepine Extended-Release Tablets USP, 200 mg: White to off-white, round convex tablets embossed with “T26” on one side and plain on the other side. Carbamazepine Extended-Release Tablets USP, 400 mg: White to off-white capsule-shaped tablets embossed with “T29” on one side and plain on the other. They are supplied by State of Florida DOH Central Pharmacy as follows: NDC Strength Quantity/Form Color Source Prod. Code 53808-1068-1 400 MG 30 Tablets in a Blister Pack WHITE 51672-4125 Store Carbamazepine Extended-Release Tablets USP at 20°C to 25°C (68°F to 77°F) [see USP Controlled Room Temperature]. Protect from moisture.

GERIATRIC USE

Geriatric Use No systematic studies in geriatric patients have been conducted.

MECHANISM OF ACTION

Mechanism of Action Carbamazepine has demonstrated anticonvulsant properties in rats and mice with electrically and chemically induced seizures. It appears to act by reducing polysynaptic responses and blocking the post-tetanic potentiation. Carbamazepine greatly reduces or abolishes pain induced by stimulation of the infraorbital nerve in cats and rats. It depresses thalamic potential and bulbar and polysynaptic reflexes, including the linguomandibular reflex in cats. Carbamazepine is chemically unrelated to other anticonvulsants or other drugs used to control the pain of trigeminal neuralgia. The mechanism of action remains unknown. The principal metabolite of carbamazepine, carbamazepine-10,11-epoxide, has anticonvulsant activity as demonstrated in several in vivo animal models of seizures. Though clinical activity for the epoxide has been postulated, the significance of its activity with respect to the safety and efficacy of carbamazepine has not been established.

INDICATIONS AND USAGE

Epilepsy Carbamazepine is indicated for use as an anticonvulsant drug. Evidence supporting efficacy of carbamazepine as an anticonvulsant was derived from active drug-controlled studies that enrolled patients with the following seizure types: 1. Partial seizures with complex symptomatology (psychomotor, temporal lobe). Patients with these seizures appear to show greater improvement than those with other types. 2. Generalized tonic-clonic seizures (grand mal). 3. Mixed seizure patterns which include the above, or other partial or generalized seizures. Absence seizures (petit mal) do not appear to be controlled by carbamazepine (see PRECAUTIONS, General). Trigeminal Neuralgia Carbamazepine is indicated in the treatment of the pain associated with true trigeminal neuralgia. Beneficial results have also been reported in glossopharyngeal neuralgia. This drug is not a simple analgesic and should not be used for the relief of trivial aches or pains.

PEDIATRIC USE

Pediatric Use Substantial evidence of carbamazepine’s effectiveness for use in the management of children with epilepsy (see INDICATIONS AND USAGE for specific seizure types) is derived from clinical investigations performed in adults and from studies in several in vitro systems which support the conclusion that (1) the pathogenetic mechanisms underlying seizure propagation are essentially identical in adults and children, and (2) the mechanism of action of carbamazepine in treating seizures is essentially identical in adults and children. Taken as a whole, this information supports a conclusion that the generally accepted therapeutic range of total carbamazepine in plasma (i.e., 4 to 12 mcg/mL) is the same in children and adults. The evidence assembled was primarily obtained from short-term use of carbamazepine. The safety of carbamazepine in children has been systematically studied up to 6 months. No longer-term data from clinical trials is available.

PREGNANCY

Usage in Pregnancy

NUSRING MOTHERS

Nursing Mothers Carbamazepine and its epoxide metabolite are transferred to breast milk. The ratio of the concentration in breast milk to that in maternal plasma is about 0.4 for carbamazepine and about 0.5 for the epoxide. The estimated doses given to the newborn during breastfeeding are in the range of 2 to 5 mg daily for carbamazepine and 1 to 2 mg daily for the epoxide. Because of the potential for serious adverse reactions in nursing infants from carbamazepine, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNINGS SERIOUS DERMATOLOGIC REACTIONS AND HLA-B*1502 ALLELE SERIOUS AND SOMETIMES FATAL DERMATOLOGIC REACTIONS, INCLUDING TOXIC EPIDERMAL NECROLYSIS (TEN) AND STEVENS-JOHNSON SYNDROME (SJS), HAVE BEEN REPORTED DURING TREATMENT WITH CARBAMAZEPINE. THESE REACTIONS ARE ESTIMATED TO OCCUR IN 1 TO 6 PER 10,000 NEW USERS IN COUNTRIES WITH MAINLY CAUCASIAN POPULATIONS, BUT THE RISK IN SOME ASIAN COUNTRIES IS ESTIMATED TO BE ABOUT 10 TIMES HIGHER. STUDIES IN PATIENTS OF CHINESE ANCESTRY HAVE FOUND A STRONG ASSOCIATION BETWEEN THE RISK OF DEVELOPING SJS/TEN AND THE PRESENCE OF HLA-B*1502, AN INHERITED ALLELIC VARIANT OF THE HLA-B GENE. HLA-B*1502 IS FOUND ALMOST EXCLUSIVELY IN PATIENTS WITH ANCESTRY ACROSS BROAD AREAS OF ASIA. PATIENTS WITH ANCESTRY IN GENETICALLY AT-RISK POPULATIONS SHOULD BE SCREENED FOR THE PRESENCE OF HLA-B*1502 PRIOR TO INITIATING TREATMENT WITH CARBAMAZEPINE. PATIENTS TESTING POSITIVE FOR THE ALLELE SHOULD NOT BE TREATED WITH CARBAMAZEPINE UNLESS THE BENEFIT CLEARLY OUTWEIGHS THE RISK (SEE WARNINGS AND PRECAUTIONS, LABORATORY TESTS). APLASTIC ANEMIA AND AGRANULOCYTOSIS APLASTIC ANEMIA AND AGRANULOCYTOSIS HAVE BEEN REPORTED IN ASSOCIATION WITH THE USE OF CARBAMAZEPINE. DATA FROM A POPULATION-BASED CASE CONTROL STUDY DEMONSTRATE THAT THE RISK OF DEVELOPING THESE REACTIONS IS 5 TO 8 TIMES GREATER THAN IN THE GENERAL POPULATION. HOWEVER, THE OVERALL RISK OF THESE REACTIONS IN THE UNTREATED GENERAL POPULATION IS LOW, APPROXIMATELY SIX PATIENTS PER ONE MILLION POPULATION PER YEAR FOR AGRANULOCYTOSIS AND TWO PATIENTS PER ONE MILLION POPULATION PER YEAR FOR APLASTIC ANEMIA. ALTHOUGH REPORTS OF TRANSIENT OR PERSISTENT DECREASED PLATELET OR WHITE BLOOD CELL COUNTS ARE NOT UNCOMMON IN ASSOCIATION WITH THE USE OF CARBAMAZEPINE, DATA ARE NOT AVAILABLE TO ESTIMATE ACCURATELY THEIR INCIDENCE OR OUTCOME. HOWEVER, THE VAST MAJORITY OF THE CASES OF LEUKOPENIA HAVE NOT PROGRESSED TO THE MORE SERIOUS CONDITIONS OF APLASTIC ANEMIA OR AGRANULOCYTOSIS. BECAUSE OF THE VERY LOW INCIDENCE OF AGRANULOCYTOSIS AND APLASTIC ANEMIA, THE VAST MAJORITY OF MINOR HEMATOLOGIC CHANGES OBSERVED IN MONITORING OF PATIENTS ON CARBAMAZEPINE ARE UNLIKELY TO SIGNAL THE OCCURRENCE OF EITHER ABNORMALITY. NONETHELESS, COMPLETE PRETREATMENT HEMATOLOGICAL TESTING SHOULD BE OBTAINED AS A BASELINE. IF A PATIENT IN THE COURSE OF TREATMENT EXHIBITS LOW OR DECREASED WHITE BLOOD CELL OR PLATELET COUNTS, THE PATIENT SHOULD BE MONITORED CLOSELY. DISCONTINUATION OF THE DRUG SHOULD BE CONSIDERED IF ANY EVIDENCE OF SIGNIFICANT BONE MARROW DEPRESSION DEVELOPS.

INFORMATION FOR PATIENTS

Information for Patients Patients should be informed of the availability of a Medication Guide and they should be instructed to read the Medication Guide before taking carbamazepine. Patients should be made aware of the early toxic signs and symptoms of a potential hematologic problem, as well as dermatologic, hypersensitivity or hepatic reactions. These symptoms may include, but are not limited to, fever, sore throat, rash, ulcers in the mouth, easy bruising, lymphadenopathy and petechial or purpuric hemorrhage, and in the case of liver reactions, anorexia, nausea/vomiting, or jaundice. The patient should be advised that, because these signs and symptoms may signal a serious reaction, that they must report any occurrence immediately to a physician. In addition, the patient should be advised that these signs and symptoms should be reported even if mild or when occurring after extended use. Patients should be advised that serious skin reactions have been reported in association with carbamazepine. In the event a skin reaction should occur while taking carbamazepine, patients should consult with their physician immediately (see WARNINGS). Patients, their caregivers, and families should be counseled that AEDs, including carbamazepine, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. Carbamazepine may interact with some drugs. Therefore, patients should be advised to report to their doctors the use of any other prescription or nonprescription medications or herbal products. Caution should be exercised if alcohol is taken in combination with carbamazepine therapy, due to a possible additive sedative effect. Since dizziness and drowsiness may occur, patients should be cautioned about the hazards of operating machinery or automobiles or engaging in other potentially dangerous tasks. Patients should be encouraged to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 (see WARNINGS, Usage in Pregnancy subsection).

DOSAGE AND ADMINISTRATION

(SEE TABLE BELOW) Carbamazepine suspension in combination with liquid chlorpromazine or thioridazine results in precipitate formation, and, in the case of chlorpromazine, there has been a report of a patient passing an orange rubbery precipitate in the stool following coadministration of the two drugs (see PRECAUTIONS, Drug Interactions). Because the extent to which this occurs with other liquid medications is not known, carbamazepine suspension should not be administered simultaneously with other liquid medications or diluents. Monitoring of blood levels has increased the efficacy and safety of anticonvulsants (see PRECAUTIONS, Laboratory Tests). Dosage should be adjusted to the needs of the individual patient. A low initial daily dosage with a gradual increase is advised. As soon as adequate control is achieved, the dosage may be reduced very gradually to the minimum effective level. Medication should be taken with meals. Since a given dose of carbamazepine suspension will produce higher peak levels than the same dose given as the tablet, it is recommended to start with low doses (children 6 to 12 years: ½ teaspoon q.i.d.) and to increase slowly to avoid unwanted side effects. Conversion of patients from oral carbamazepine tablets to carbamazepine suspension: Patients should be converted by administering the same number of mg per day in smaller, more frequent doses (i.e., b.i.d. tablets to t.i.d. suspension). Carbamazepine extended-release tablets is an extended-release formulation for twice-a-day administration. When converting patients from carbamazepine conventional tablets to carbamazepine extended-release tablets, the same total daily mg dose of carbamazepine extended-release tablets should be administered. Carbamazepine extended-release tablets must be swallowed whole and never crushed or chewed. Carbamazepine extended-release tablets should be inspected for chips or cracks. Damaged tablets should not be consumed. Epilepsy (SEE INDICATIONS AND USAGE) Adults and children over 12 years of age-Initial: Either 200 mg b.i.d. for tablets and extended-release tablets, or 1 teaspoon q.i.d. for suspension (400 mg/day). Increase at weekly intervals by adding up to 200 mg/day using a b.i.d. regimen of carbamazepine extended-release tablets or a t.i.d. or q.i.d. regimen of the other formulations until the optimal response is obtained. Dosage generally should not exceed 1000 mg daily in children 12 to 15 years of age, and 1200 mg daily in patients above 15 years of age. Doses up to 1600 mg daily have been used in adults in rare instances. Maintenance: Adjust dosage to the minimum effective level, usually 800 to 1200 mg daily. Children 6 to 12 years of age-Initial: Either 100 mg b.i.d. for tablets or extended-release tablets, or ½ teaspoon q.i.d. for suspension (200 mg/day). Increase at weekly intervals by adding up to 100 mg/day using a b.i.d. regimen of carbamazepine extended-release tablets or a t.i.d. or q.i.d. regimen of the other formulations until the optimal response is obtained. Dosage generally should not exceed 1000 mg daily. Maintenance: Adjust dosage to the minimum effective level, usually 400 to 800 mg daily. Children under 6 years of age-Initial: 10 to 20 mg/kg/day b.i.d. or t.i.d. as tablets, or q.i.d. as suspension. Increase weekly to achieve optimal clinical response administered t.i.d. or q.i.d. Maintenance: Ordinarily, optimal clinical response is achieved at daily doses below 35 mg/kg. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the therapeutic range. No recommendation regarding the safety of carbamazepine for use at doses above 35 mg/kg/24 hours can be made. Combination Therapy: Carbamazepine may be used alone or with other anticonvulsants. When added to existing anticonvulsant therapy, the drug should be added gradually while the other anticonvulsants are maintained or gradually decreased, except phenytoin, which may have to be increased (see PRECAUTIONS, Drug Interactions, and Pregnancy Category D). Trigeminal Neuralgia (SEE INDICATIONS AND USAGE) Initial: On the first day, either 100 mg b.i.d. for tablets or extended-release tablets, or ½ teaspoon q.i.d. for suspension, for a total daily dose of 200 mg. This daily dose may be increased by up to 200 mg/day using increments of 100 mg every 12 hours for tablets or extended-release tablets, or 50 mg (½ teaspoon) q.i.d. for suspension, only as needed to achieve freedom from pain. Do not exceed 1200 mg daily. Maintenance: Control of pain can be maintained in most patients with 400 to 800 mg daily. However, some patients may be maintained on as little as 200 mg daily, while others may require as much as 1200 mg daily. At least once every 3 months throughout the treatment period, attempts should be made to reduce the dose to the minimum effective level or even to discontinue the drug. Dosage Information Initial Dose Subsequent Dose Maximum Daily Dose Indication TabletTablet = Chewable or conventional tablets XRXR = Carbamazepine extended-release tablets Suspension Tablet XR Suspension Tablet XR Suspension Epilepsy Under 6 yr 10 to 20 mg/kg/day b.i.d. or t.i.d. 10 to 20 mg/kg/day q.i.d. Increase weekly to achieve optimal clinical response, t.i.d. or q.i.d. Increase weekly to achieve optimal clinical response, t.i.d. or q.i.d. 35 mg/kg/24 hr (see Dosage and Administration section above) 35 mg/kg/24 hr (see Dosage and Administration section above) 6 to 12 yr 100 mg b.i.d. (200 mg/day) 100 mg b.i.d. (200 mg/day) ½ tsp q.i.d. (200 mg/day) Add up to 100 mg/day at weekly intervals, t.i.d. or q.i.d. Add 100 mg/day at weekly intervals, b.i.d. Add up to 1 tsp (100 mg)/day at weekly intervals, t.i.d. or q.i.d. 1000 mg/24 hr Over 12 yr 200 mg b.i.d. (400 mg/day) 200 mg b.i.d. (400 mg/day) 1 tsp q.i.d. (400 mg/day) Add up to 200 mg/day at weekly intervals, t.i.d. or q.i.d. Add up to 200 mg/day at weekly intervals, b.i.d. Add up to 2 tsp (200 mg)/day at weekly intervals, t.i.d. or q.i.d. 1000 mg/24 hr (12 to 15 yr) 1200 mg/24 hr (> 15 yr) 1600 mg/24 hr (adults, in rare instances) Trigeminal Neuralgia 100 mg b.i.d. (200 mg/day) 100 mg b.i.d. (200 mg/day) ½ tsp q.i.d. (200 mg/day) Add up to 200 mg/day in increments of 100 mg every 12 hr Add up to 200 mg/day in increments of 100 mg every 12 hr Add up to 2 tsp (200 mg)/day in increments of 50 mg (½ tsp) q.i.d. 1200 mg/24 hr

Desogestrel 0.1 MG / Ethinyl Estradiol 0.025 MG Oral Tablet

Generic Name: DESOGESTREL AND ETHINYL ESTRADIOL
Brand Name: CYCLESSA

WARNINGS

Cigarette smoking increases the risk of serious cardiovascular side effects from oral contraceptive use. This risk increases with age and with heavy smoking (15 or more cigarettes per day) and is quite marked in women over 35 years of age. Women who use oral contraceptives should be strongly advised not to smoke. The use of oral contraceptives is associated with increased risks of several serious conditions including venous and arterial thrombotic and thromboembolic events (such as myocardial infarction, thromboembolism, and stroke) hepatic neoplasia, gallbladder disease, and hypertension, although the risk of serious morbidity or mortality is very small in healthy women without underlying risk factors. The risk of morbidity and mortality increases significantly in the presence of other underlying risk factors such as certain inherited thrombophilias, hypertension, hyperlipidemias, obesity, and diabetes. Practitioners prescribing oral contraceptives should be familiar with the following information relating to these risks. The information contained in this package insert is principally based on studies carried out in patients who used oral contraceptives with formulations of higher doses of estrogens and progestogens than those in common use today. The effect of long-term use of the oral contraceptives with formulations of lower doses of both estrogens and progestogens remains to be determined. Throughout this labeling, epidemiologic studies reported are of two types: retrospective or case control studies and prospective or cohort studies. Case control studies provide a measure of the relative risk of a disease, namely, a ratio of the incidence of a disease among oral contraceptive users to that among non-users. The relative risk does not provide information on the actual clinical occurrence of a disease. Cohort studies provide a measure of attributable risk, which is the difference in the incidence of disease between oral contraceptive users and non-users. The attributable risk does provide information about the actual occurrence of a disease in the population (Adapted from refs. 2 and 3 with the authors’ permission). For further information, the reader is referred to a text on epidemiological methods. 1. THROMBOEMBOLIC DISORDERS AND OTHER VASCULAR PROBLEMS a. Thromboembolism An increased risk of thromboembolic and thrombotic disease associated with the use of oral contraceptives is well established. Case control studies have found the relative risk of users compared to non-users to be 3 for the first episode of superficial venous thrombosis, 4 to 11 for deep vein thrombosis or pulmonary embolism, and 1.5 to 6 for women with predisposing conditions for venous thromboembolic disease (2,3,19–24). Cohort studies have shown the relative risk to be somewhat lower, about 3 for new cases and about 4.5 for new cases requiring hospitalization (25). The risk of thromboembolic disease associated with oral contraceptives is not related to length of use and disappears after pill use is stopped (2). Several epidemiologic studies indicate that third generation oral contraceptives, including those containing desogestrel, are associated with a higher risk of venous thromboembolism than certain second generation oral contraceptives (102–104). In general, these studies indicate an approximate two-fold increased risk, which corresponds to an additional 1–2 cases of venous thromboembolism per 10,000 women-years of use. However, data from additional studies have not shown this two-fold increase in risk. A two- to four-fold increase in relative risk of post-operative thromboembolic complications has been reported with the use of oral contraceptives (9,26). The relative risk of venous thrombosis in women who have predisposing conditions is twice that of women without such medical conditions (9,26). If feasible, oral contraceptives should be discontinued at least four weeks prior to and for two weeks after elective surgery of a type associated with an increase in risk of thromboembolism and during and following prolonged immobilization. Since the immediate postpartum period is associated with an increased risk of thromboembolism, oral contraceptives should be started no earlier than four to six weeks after delivery in women who elect not to breast-feed. b. Myocardial infarction An increased risk of myocardial infarction has been attributed to oral contraceptive use. This risk is primarily in smokers or women with other underlying risk factors for coronary artery disease such as hypertension, hypercholesterolemia, morbid obesity, and diabetes. The relative risk of heart attack for current oral contraceptive users has been estimated to be two to six (4–10). The risk is very low in women under the age of 30. Smoking in combination with oral contraceptive use has been shown to contribute substantially to the incidence of myocardial infarction in women in their mid-thirties or older with smoking accounting for the majority of excess cases (11). Mortality rates associated with circulatory disease have been shown to increase substantially in smokers over the age of 35 and non-smokers over the age of 40 (Table 3) among women who use oral contraceptives. TABLE 3: CIRCULATORY DISEASE MORTALITY RATES PER 100,000 WOMAN-YEARS BY AGE, SMOKING STATUS, AND ORAL CONTRACEPTIVE USE. AGE EVER-USERS EVER-USERS CONTROLS CONTROLS NON-SMOKERS SMOKERS NON-SMOKERS SMOKERS Adapted from P.M. Layde and V. Beral, ref. #12. 15–24 0.0 10.5 0.0 0.0 25–34 4.4 14.2 2.7 4.2 35–44 21.5 63.4 6.4 15.2 45+ 52.4 206.7 11.4 27.9 Oral contraceptives may compound the effects of well-known risk factors, such as hypertension, diabetes, hyperlipidemias, age, and obesity (13). In particular, some progestogens are known to decrease HDL cholesterol and cause glucose intolerance, while estrogens may create a state of hyperinsulinism (14–18). Oral contraceptives have been shown to increase blood pressure among users (see section 9 in ). Similar effects on risk factors have been associated with an increased risk of heart disease. Oral contraceptives must be used with caution in women with cardiovascular disease risk factors. c. Cerebrovascular diseases Oral contraceptives have been shown to increase both the relative and attributable risks of cerebrovascular events (thrombotic and hemorrhagic strokes), although, in general, the risk is greatest among older (>35 years), hypertensive women who also smoke. Hypertension was found to be a risk factor for both users and non-users, for both types of strokes, while smoking interacted to increase the risk for hemorrhagic strokes (27–29). In a large study, the relative risk of thrombotic strokes has been shown to range from 3 for normotensive users to 14 for users with severe hypertension (30). The relative risk of hemorrhagic stroke is reported to be 1.2 for non-smokers who used oral contraceptives, 2.6 for smokers who did not use oral contraceptives, 7.6 for smokers who used oral contraceptives, 1.8 for normotensive users, and 25.7 for users with severe hypertension (30). The attributable risk is also greater in older women (3). Oral contraceptives also increase the risk for stroke in women with other underlying risk factors such as certain inherited or acquired thrombophilias, hyperlipidemias, and obesity. Women with migraine (particularly migraine with aura) who take combination oral contraceptives may be at an increased risk of stroke. d. Dose-related risk of vascular disease from oral contraceptives A positive association has been observed between the amount of estrogen and progestogen in oral contraceptives and the risk of vascular disease (31–33). A decline in serum high-density lipoproteins (HDL) has been reported with many progestational agents (14–16). A decline in serum high-density lipoproteins has been associated with an increased incidence of ischemic heart disease. Because estrogens increase HDL cholesterol, the net effect of an oral contraceptive depends on a balance achieved between doses of estrogen and progestogen and the nature and absolute amount of progestogens used in the contraceptives. The amount of both hormones should be considered in the choice of an oral contraceptive. Minimizing exposure to estrogen and progestogen is in keeping with good principles of therapeutics. For any particular estrogen/progestogen combination, the dosage regimen prescribed should be one which contains the least amount of estrogen and progestogen that is compatible with a low failure rate and the needs of the individual patient. New acceptors of oral contraceptive agents should be started on a product containing the lowest hormone content that provides satisfactory results in the individual. e. Persistence of risk of vascular disease There are two studies which have shown persistence of risk of vascular disease for ever-users of oral contraceptives. In a study in the United States, the risk of developing myocardial infarction after discontinuing oral contraceptives persists for at least 9 years for women 40–49 years old who had used oral contraceptives for five or more years, but this increased risk was not demonstrated in other age groups (8). In another study in Great Britain, the risk of developing cerebrovascular disease persisted for at least 6 years after discontinuation of oral contraceptives, although excess risk was very small (34). However, both studies were performed with oral contraceptive formulations containing 50 micrograms or more of estrogens. 2. ESTIMATES OF MORTALITY FROM CONTRACEPTIVE USE One study gathered data from a variety of sources which have estimated the mortality rate associated with different methods of contraception at different ages (Table 4). These estimates include the combined risk of death associated with contraceptive methods plus the risk attributable to pregnancy in the event of method failure. Each method of contraception has its specific benefits and risks. The study concluded that with the exception of oral contraceptive users 35 and older who smoke and 40 and older who do not smoke, mortality associated with all methods of birth control is low and below that associated with childbirth. The observation of a possible increase in risk of mortality with age for oral contraceptive users is based on data gathered in the 1970’s – but not reported until 1983 (35). However, current clinical practice involves the use of lower estrogen formulations combined with careful restriction of oral contraceptive use to women who do not have the various risk factors listed in this labeling. Because of these changes in practice and, also, because of some limited new data which suggest that the risk of cardiovascular disease with the use of oral contraceptives may now be less than previously observed (100,101), the Fertility and Maternal Health Drugs Advisory Committee was asked to review the topic in 1989. The Committee concluded that although cardiovascular disease risks may be increased with oral contraceptive use after age 40 in healthy non-smoking women (even with the newer low-dose formulations), there are also greater potential health risks associated with pregnancy in older women and with the alternative surgical and medical procedures which may be necessary if such women do not have access to effective and acceptable means of contraception. Therefore, the Committee recommended that the benefits of low-dose oral contraceptive use by healthy non-smoking women over 40 may outweigh the possible risks. Of course, older women, as all women who take oral contraceptives, should take the lowest possible dose formulation that is effective and meets the individual patient needs. TABLE 4: ANNUAL NUMBER OF BIRTH-RELATED OR METHOD-RELATED DEATHS ASSOCIATED WITH CONTROL OF FERTILITY PER 100,000 NON-STERILE WOMEN, BY FERTILITY CONTROL METHOD ACCORDING TO AGE. Method of control and outcome 15–19 20–24 25–29 30–34 35–39 40–44 Adapted from H.W. Ory, ref. #35. No fertility control methodsDeaths are birth related 7.0 7.4 9.1 14.8 25.7 28.2 Oral contraceptives non-smokerDeaths are method related 0.3 0.5 0.9 1.9 13.8 31.6 Oral contraceptives smoker 2.2 3.4 6.6 13.5 51.1 117.2 IUD 0.8 0.8 1.0 1.0 1.4 1.4 Condom 1.1 1.6 0.7 0.2 0.3 0.4 Diaphragm/spermicide 1.9 1.2 1.2 1.3 2.2 2.8 Periodic abstinence 2.5 1.6 1.6 1.7 2.9 3.6 3. CARCINOMA OF THE REPRODUCTIVE ORGANS AND BREASTS Numerous epidemiologic studies have been performed on the incidence of breast, endometrial, ovarian, and cervical cancer in women using oral contraceptives. Although the risk of breast cancer may be slightly increased among current users of oral contraceptives (RR = 1.24), this excess risk decreases over time after oral contraceptive discontinuation and by 10 years after cessation the increased risk disappears. The risk does not increase with duration of use, and no relationships have been found with dose or type of steroid. The patterns of risk are also similar regardless of a woman’s reproductive history or her family breast cancer history. The subgroup for whom risk has been found to be significantly elevated is women who first used oral contraceptives before age 20, but because breast cancer is so rare at these young ages, the number of cases attributable to this early oral contraceptive use is extremely small. Breast cancers diagnosed in current or previous oral contraceptive users tend to be less advanced clinically than in never-users. Women who currently have or have had breast cancer should not use oral contraceptives because breast cancer is a hormone-sensitive tumor. Some studies suggest that combination oral contraceptive use has been associated with an increase in the risk of cervical intra-epithelial neoplasia in some populations of women (45–48). However, there continues to be controversy about the extent to which such findings may be due to differences in sexual behavior and other factors. In spite of many studies of the relationship between oral contraceptive use and breast and cervical cancers, a cause-and-effect relationship has not been established. 4. HEPATIC NEOPLASIA Benign hepatic adenomas are associated with oral contraceptive use, although the incidence of benign tumors is rare in the United States. Indirect calculations have estimated the attributable risk to be in the range of 3.3 cases/100,000 for users, a risk that increases after four or more years of use especially with oral contraceptives of higher dose (49). Rupture of rare, benign, hepatic adenomas may cause death through intra-abdominal hemorrhage (50,51). Studies from Britain have shown an increased risk of developing hepatocellular carcinoma (52–54) in long-term (>8 years) oral contraceptive users. However, these cancers are extremely rare in the U.S. and the attributable risk (the excess incidence) of liver cancers in oral contraceptive users approaches less than one per million users. 5. OCULAR LESIONS There have been clinical case reports of retinal thrombosis associated with the use of oral contraceptives. Oral contraceptives should be discontinued if there is unexplained partial or complete loss of vision; onset of proptosis or diplopia; papilledema; or retinal vascular lesions. Appropriate diagnostic and therapeutic measures should be undertaken immediately. 6. ORAL CONTRACEPTIVE USE BEFORE OR DURING EARLY PREGNANCY Extensive epidemiologic studies have revealed no increased risk of birth defects in women who have used oral contraceptives prior to pregnancy (55–57). Studies also do not suggest a teratogenic effect, particularly in so far as cardiac anomalies and limb reduction defects are concerned (55,56,58,59), when oral contraceptives are taken inadvertently during early pregnancy. The administration of oral contraceptives to induce withdrawal bleeding should not be used as a test for pregnancy. Oral contraceptives should not be used during pregnancy to treat threatened or habitual abortion. It is recommended that for any patient who has missed two consecutive periods, pregnancy should be ruled out. If the patient has not adhered to the prescribed schedule, the possibility of pregnancy should be considered at the first missed period. Oral contraceptive use should be discontinued if pregnancy is confirmed. 7. GALLBLADDER DISEASE Earlier studies have reported an increased lifetime relative risk of gallbladder surgery in users of oral contraceptives and estrogens (60,61). More recent studies, however, have shown that the relative risk of developing gallbladder disease among oral contraceptive users may be minimal (62–64). The recent findings of minimal risk may be related to the use of oral contraceptive formulations containing lower hormonal doses of estrogens and progestogens. 8. CARBOHYDRATE AND LIPID METABOLIC EFFECTS Oral contraceptives have been shown to cause a decrease in glucose tolerance in a significant percentage of users (17). Oral contraceptives containing greater than 75 micrograms of estrogens cause hyperinsulinism, while lower doses of estrogen cause less glucose intolerance (65). Progestogens increase insulin secretion and create insulin resistance, this effect varying with different progestational agents (17,66). However, in the non-diabetic woman, oral contraceptives appear to have no effect on fasting blood glucose (67). Because of these demonstrated effects, prediabetic and diabetic women should be carefully monitored while taking oral contraceptives. A small proportion of women will have persistent hypertriglyceridemia while on the pill. As discussed earlier (see 1.a. and 1.d.), changes in serum triglycerides and lipoprotein levels have been reported in oral contraceptive users. 9. ELEVATED BLOOD PRESSURE Women with severe hypertension should not be started on hormonal contraceptives. An increase in blood pressure has been reported in women taking oral contraceptives (68) and this increase is more likely in older oral contraceptive users (69) and with continued use (61). Data from the Royal College of General Practitioners (12) and subsequent randomized trials have shown that the incidence of hypertension increases with increasing quantities of progestogens. Women with a history of hypertension or hypertension-related diseases, or renal disease (70) should be encouraged to use another method of contraception. If women elect to use oral contraceptives, they should be monitored closely and if significant elevation of blood pressure occurs, oral contraceptives should be discontinued. For most women, elevated blood pressure will return to normal after stopping oral contraceptives (69), and there is no difference in the occurrence of hypertension between ever- and never-users (68,70,71). 10. HEADACHE The onset or exacerbation of migraine or development of headache with a new pattern which is recurrent, persistent, or severe requires discontinuation of oral contraceptives and evaluation of the cause. 11. BLEEDING IRREGULARITIES Breakthrough bleeding and spotting are sometimes encountered in patients on oral contraceptives, especially during the first three months of use. If bleeding persists or recurs, non-hormonal causes should be considered and adequate diagnostic measures taken to rule out malignancy or pregnancy, as in the case of any abnormal vaginal bleeding. If pathology has been excluded, time or a change to another formulation may solve the problem. In the event of amenorrhea, pregnancy should be ruled out. Some women may encounter post-pill amenorrhea or oligomenorrhea, especially when such a condition was pre-existent. 12. ECTOPIC PREGNANCY Ectopic as well as intrauterine pregnancy may occur in contraceptive failures.

DRUG INTERACTIONS

8. Changes in contraceptive effectiveness associated with co-administration of other drugs a. Anti-infective agents and anticonvulsants Contraceptive effectiveness may be reduced when hormonal contraceptives are co-administered with some antibiotics, anticonvulsants, and other drugs that increase metabolism of contraceptive steroids. This could result in unintended pregnancy or breakthrough bleeding. Examples include barbiturates, rifampin, phenylbutazone, phenytoin, carbamazepine, felbamate, oxcarbazepine, topiramate, and griseofulvin. Since desogestrel is mainly metabolized by the cytochrome P450 2C9 enzyme (CYP 2C9) to form etonogestrel, the active progestin, there is a possibility of interaction with CYP 2C9 substrates or inhibitors (such as: ibuprofen, piroxicam, naproxen, phenytoin, fluconazole, diclofenac, tolbutamide, glipizide, celecoxib, sulfamethoxazole, isoniazid, torsemide, irbesartan, losartan, and valsartan). The clinical relevance of these interactions is unknown. b. Anti-HIV protease inhibitors Several of the anti-HIV protease inhibitors have been studied with co-administration of oral combination hormonal contraceptives; significant changes (increase and decrease) in the plasma levels of the estrogen and progestin have been noted in some cases. The efficacy and safety of these oral contraceptive products may be affected with co-administration of anti-HIV protease inhibitors. Healthcare providers should refer to the label of the individual anti-HIV protease inhibitors for further drug-drug interaction information. c. Herbal products Herbal products containing St. John’s wort (hypericum perforatum) may induce hepatic enzymes (cytochrome P450) and p-glycoprotein transporter and may reduce the effectiveness of contraceptive steroids. This may also result in breakthrough bleeding. Increase in plasma hormone levels associated with co-administered drugs Co-administration of atorvastatin and certain ethinyl estradiol containing oral contraceptives increased AUC values for ethinyl estradiol by approximately 20%. Ascorbic acid and acetaminophen may increase plasma ethinyl estradiol levels, possibly by inhibition of conjugation. CYP 3A4 inhibitors such as itraconazole or ketoconazole may increase plasma hormone levels. Changes in plasma levels of co-administered drugs Combination hormonal contraceptives containing some synthetic estrogens (e.g., ethinyl estradiol) may inhibit the metabolism of other compounds. Increased plasma concentrations of cyclosporine, prednisolone, and theophylline have been reported with concomitant administration of oral contraceptives. Decreased plasma concentrations of acetaminophen and increased clearance of temazepam, salicylic acid, morphine, and clofibric acid have been noted when these drugs were administered with oral contraceptives. No formal drug-drug interaction studies were conducted with CYCLESSA®.

OVERDOSAGE

Serious ill effects have not been reported following acute ingestion of large doses of oral contraceptives by young children. Overdosage may cause nausea, and withdrawal bleeding may occur in females.

DESCRIPTION

CYCLESSA® Tablets (desogestrel and ethinyl estradiol tablets USP) is a triphasic oral contraceptive containing two active components, desogestrel and ethinyl estradiol. Each 28-day treatment cycle pack consists of three active dosing phases: 7 light yellow tablets containing 0.100 mg desogestrel (13-ethyl-11-methylene-18,19-dinor-17α-pregn-4-en-20-yn-17-ol) and 0.025 mg ethinyl estradiol (19-nor-17α-pregna-1,3,5(10)-trien-20-yne-3, 17-diol); 7 orange tablets containing 0.125 mg desogestrel and 0.025 mg ethinyl estradiol, and 7 red tablets containing 0.150 mg desogestrel and 0.025 mg ethinyl estradiol. Inactive ingredients include vitamin E, pregelatinized starch, stearic acid, lactose monohydrate, hydroxypropyl methylcellulose, polyethylene glycol, titanium dioxide, talc, yellow ferric oxide (in light yellow and orange tablets), and red ferric oxide (in orange and red tablets). CYCLESSA® also contains 7 green tablets with the following inert ingredients: lactose monohydrate, corn starch, magnesium stearate, hydroxypropyl methylcellulose, polyethylene glycol, titanium dioxide, FD&C Blue No. 2 aluminum lake, yellow ferric oxide, and talc. The molecular weights for desogestrel and ethinyl estradiol are 310.48 and 296.40, respectively. The structural formulas are as follows: DESOGESTREL ETHINYL ESTRADIOL C22H30O C20H24O2 Chemical Structure Chemical Structure

HOW SUPPLIED

CYCLESSA® Tablets (desogestrel and ethinyl estradiol tablets USP) is available in a 28-day blister card. Each 28-day treatment cycle pack consists of four different dosing phases, as follows: 7 coated, round light yellow tablets (debossed with “T 0 R” on one side and “Organon*” on the other side) containing 0.100 mg desogestrel and 0.025 mg ethinyl estradiol; 7 coated, round orange tablets (debossed with “T 6 R” on one side and “Organon*” on the other side) containing 0.125 mg desogestrel and 0.025 mg ethinyl estradiol; and 7 coated, round red tablets (debossed with “T 1 R” on one side and “Organon*” on the other side) containing 0.150 mg desogestrel and 0.025 mg ethinyl estradiol. Seven round green tablets (debossed with “K 2 H” on one side and “Organon*” on the other side) contain inert ingredients. Box of 6 NDC 0052-0283-06 Box of 1 NDC 0052-0283-08 Storage Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Rx only

GERIATRIC USE

14. This product has not been studied in women over 65 years of age and is not indicated in this population.

INDICATIONS AND USAGE

CYCLESSA® Tablets (desogestrel and ethinyl estradiol tablets USP) is indicated for the prevention of pregnancy in women who elect to use this product as a method of contraception. Oral contraceptives are highly effective. Table 2 lists the typical unintended pregnancy rates for users of combination oral contraceptives and other methods of contraception. The efficacy of these contraceptive methods, except sterilization, the IUD, and implants, depends upon the reliability with which they are used. Correct and consistent use of these methods can result in lower failure rates. TABLE 2: PERCENTAGE OF WOMEN EXPERIENCING AN UNINTENDED PREGNANCY DURING THE FIRST YEAR OF TYPICAL USE AND THE FIRST YEAR OF PERFECT USE OF CONTRACEPTION AND THE PERCENTAGE CONTINUING USE AT THE END OF THE FIRST YEAR, UNITED STATES. % of Women Experiencing an Unintended Pregnancy within the First Year of Use % of Women Continuing Use at One YearAmong couples attempting to avoid pregnancy, the percentage who continue to use a method for one year Method Typical UseAmong typical couples who initiate use of a method (not necessarily for the first time), the percentage who experience an accidental pregnancy during the first year if they do not stop use for any other reason Perfect UseAmong couples who initiate use of a method (not necessarily for the first time) and who use it perfectly (both consistently and correctly), the percentage who experience an accidental pregnancy during the first year if they do not stop use for any other reason (1) (2) (3) (4) Emergency Contraceptive Pills: Treatment initiated within 72 hours after unprotected intercourse reduces risk of pregnancy by at least 75%.The treatment schedule is one dose within 72 hours after unprotected intercourse and a second dose 12 hours after the first dose. The Food and Drug Administration has declared the following brands of oral contraceptives to be safe and effective for emergency contraception: Ovral® (1 dose is 2 white pills), Alesse® (1 dose is 5 pink pills), Nordette® or Levlen® (1 dose is 2 light orange pills), Lo/Ovral® (1 dose is 4 white pills), Triphasil® or Tri-Levlen® (1 dose is 4 yellow pills) Lactational Amenorrhea Method: LAM is a highly effective, temporary method of contraception.However, to maintain effective protection against pregnancy, another method of contraception must be used as soon as menstruation resumes, the frequency or duration of breastfeeds is reduced, bottle feeds are introduced or the baby reaches six months of age Source: Trussell J, Stewart F, Contraceptive Efficacy. In Hatcher RA, Trussell J, Stewart F, Cates W, Stewart GK, Kowal D, Guest F, Contraceptive Technology: Seventeenth Revised Edition. New York, NY: Irvington Publishers, 1998. ChanceThe percentage of women becoming pregnant noted in columns (2) and (3) are based on data from populations where contraception is not used and from women who cease using contraception in order to become pregnant. Among such populations, about 89% became pregnant in one year. This estimate was lowered slightly (to 85%) to represent the percentage that would become pregnant within one year among women now relying on reversible methods of contraception if they abandon contraception altogether 85 85 SpermicidesFoams, creams, gels, vaginal suppositories and vaginal film 26 6 40 Periodic abstinence 25 63 Calendar 9 Ovulation Method 3 Sympto-ThermalCervical mucous (ovulation) method supplemented by calendar in the preovulatory and basal body temperature in the postovulatory phases 2 Post-Ovulation 1 Withdrawal 19 4 CapWith spermicidal cream or jelly Parous Women 40 26 42 Nulliparous Women 20 9 56 Sponge Parous Women 40 20 42 Nulliparous Women 20 9 56 Diaphragm 20 6 56 CondomWithout spermicides Female (Reality) 21 5 56 Male 14 3 61 Pill 5 71 Progestin Only 0.5 Combined 0.1 IUD Progesterone T 2.0 1.5 81 Copper T 380A 0.8 0.6 78 LNg 20 0.1 0.1 81 Depo-Provera 0.3 0.3 70 Norplant and Norplant-2 0.05 0.05 88 Female sterilization 0.5 0.5 100 Male sterilization 0.15 0.10 100

PEDIATRIC USE

13. Safety and efficacy of CYCLESSA® has been established in women of reproductive age. Safety and efficacy are expected to be the same for postpubertal adolescents under the age of 16 and for users 16 years and older. Use of this product before menarche is not indicated.

PREGNANCY

11. Pregnancy Category X (see CONTRAINDICATIONS and WARNINGS sections).

NUSRING MOTHERS

12. NURSING MOTHERS Small amounts of oral contraceptive steroids have been identified in the milk of nursing mothers and a few adverse effects on the child have been reported, including jaundice and breast enlargement. In addition, combination oral contraceptives given in the postpartum period may interfere with lactation by decreasing the quantity and quality of breast milk. If possible, the nursing mother should be advised not to use oral contraceptives but to use other forms of contraception until she has completely weaned her child.

BOXED WARNING

Cigarette smoking increases the risk of serious cardiovascular side effects from oral contraceptive use. This risk increases with age and with heavy smoking (15 or more cigarettes per day) and is quite marked in women over 35 years of age. Women who use oral contraceptives should be strongly advised not to smoke.

INFORMATION FOR PATIENTS

INFORMATION FOR THE PATIENT See Patient Labeling Printed Below

DOSAGE AND ADMINISTRATION

To achieve maximum contraceptive effectiveness, CYCLESSA® Tablets (desogestrel and ethinyl estradiol tablets USP) must be taken exactly as directed, at the same time every day, and at intervals not exceeding 24 hours. CYCLESSA® may be initiated using either a Sunday start or a Day 1 start. NOTE: Seven different “day label strips” are provided to accommodate the selected start regimen. The patient should place the self-adhesive “day label strip” that corresponds to her starting day on the blister card above the first row of tablets. DURING THE FIRST CYCLE OF USE IMPORTANT: The possibility of ovulation and conception prior to initiation of use of CYCLESSA® should be considered. A woman can begin to take CYCLESSA® either on the first Sunday after the onset of her menstrual period (Sunday Start) or on the first day of her menstrual period (Day 1 Start). When switching from another oral contraceptive, CYCLESSA® should be started on the same day that a new pack of the previous oral contraceptive would have been started. SUNDAY START When initiating a Sunday start regimen, another method of contraception, such as condoms or spermicide, should be used for the first 7 consecutive days of taking CYCLESSA® Tablets (desogestrel and ethinyl estradiol tablets USP). Using a Sunday start, tablets are taken daily without interruption as follows: The first light yellow tablet should be taken on the first Sunday after menstruation begins (if menstruation begins on Sunday, the first light yellow tablet is taken on that day). Tablets are then taken sequentially following the arrows marked on the blister card. One light yellow tablet is taken daily for 7 days, followed by 1 orange tablet daily for 7 days, 1 red tablet daily for 7 days, and then 1 green (inactive) tablet daily for 7 days. For all subsequent cycles, the patient then begins a new 28-tablet regimen on the next day (Sunday) after taking the last green (inactive) tablet. [If switching from a Sunday Start oral contraceptive, the first CYCLESSA® tablet should be taken on the second Sunday after the last tablet of a 21 day oral contraceptive regimen or should be taken on the first Sunday after the last inactive tablet of a 28 day regimen.] If a patient misses 1 active tablet in Weeks 1, 2, or 3, she should take the missed tablet as soon as she remembers. If the patient misses 2 consecutive active tablets in Week 1 or Week 2, the patient should take 2 tablets the day she remembers and 2 tablets the next day; thereafter, the patient should resume taking 1 tablet daily until she finishes the cycle pack. The patient should be instructed to use a back-up method of birth control (such as condoms or spermicide) if she has intercourse in the 7 days after she restarts her pills. If the patient misses 2 consecutive red (active) tablets in the third week or misses 3 or more active tablets in a row at any time during the cycle, the patient should keep taking 1 active tablet daily until the next Sunday. On Sunday the patient should throw out the rest of that cycle pack and start a new cycle pack that same day. The patient should be instructed to use a back-up method of birth control if she has intercourse in the 7 days after restarting her pills. Complete instructions to facilitate patient counseling on proper pill usage can be found in Detailed or Brief Patient Labeling (“How to Take the Pill” section). DAY 1 START Counting the first day of menstruation as “Day 1”, the first light yellow tablet should be taken on the first day of menstrual bleeding. Tablets are then taken sequentially without interruption as follows: One light yellow tablet daily for 7 days, then 1 orange tablet daily for 7 days, followed by 1 red tablet daily for 7 days and then 1 green (inactive) tablet daily for 7 days. For all subsequent cycles, the patient then begins a new 28-tablet regimen on the next day after taking the last green (inactive) tablet. [If switching directly from another oral contraceptive, the first light yellow tablet should be taken on the same day that a new pack of the previous oral contraceptive would have been started.] If a patient misses 1 active tablet in Weeks 1, 2, or 3, she should take the missed tablet as soon as she remembers. If the patient misses 2 consecutive active tablets in Week 1 or Week 2, the patient should take 2 tablets the day she remembers and 2 tablets the next day; thereafter, the patient should resume taking 1 tablet daily until she finishes the cycle pack. The patient should be instructed to use a back-up method of birth control (such as condoms or spermicide) if she has intercourse in the 7 days after she restarts her pills. If the patient misses 2 consecutive red tablets in the third week or misses 3 or more active tablets in a row at any time during the cycle, the patient should throw out the rest of that cycle pack and start a new cycle pack that same day. The patient should be instructed to use a back-up method of birth control if she has intercourse in the 7 days after restarting her pills. Complete instructions to facilitate patient counseling on proper pill usage can be found in Detailed or Brief Patient Labeling (“How to Take the Pill” section). ADDITIONAL INSTRUCTIONS FOR BOTH SUNDAY AND DAY 1 STARTS If Spotting or Breakthrough Bleeding Occurs Breakthrough bleeding, spotting, and amenorrhea are frequent reasons for patients discontinuing oral contraceptives. In breakthrough bleeding, as in all cases of irregular bleeding from the vagina, non-functional causes should be considered. In undiagnosed persistent or recurrent abnormal bleeding from the vagina, adequate diagnostic measures are indicated to rule out pregnancy or malignancy. If both pregnancy and pathology have been excluded, time or a change to another preparation may solve the problem. Changing to an oral contraceptive with a higher estrogen content, while potentially useful in minimizing menstrual irregularity, should be done only if necessary since this may increase the risk of thromboembolic disease. Use of CYCLESSA® in the Event of a Missed Menstrual Period If the patient has not adhered to the prescribed schedule, the possibility of pregnancy should be considered at the time of the first missed period and CYCLESSA® use should be discontinued if pregnancy is confirmed. If the patient has adhered to the prescribed regimen and misses two consecutive periods, pregnancy should be ruled out. CYCLESSA® should be discontinued if pregnancy is confirmed. Use of CYCLESSA® Postpartum The use of CYCLESSA® for contraception may be initiated 4 to 6 weeks postpartum in women who elect not to breast-feed. When the tablets are administered during the postpartum period, the increased risk of thromboembolic disease associated with the postpartum period must be considered (see CONTRAINDICATIONS and WARNINGS concerning thromboembolic disease. See also PRECAUTIONS for “Nursing Mothers”). If the patient starts on CYCLESSA® postpartum, and has not yet had a period, she should be instructed to use another method of contraception until a light yellow tablet has been taken daily for 7 consecutive days.

ChloraPrep One-Step (chlorhexidine gluconate 2 % / isopropyl alcohol 70 % ) Topical Solution

Generic Name: CHLORHEXIDINE GLUCONATE AND ISOPROPYL ALCOHOL
Brand Name: ChloraPrep One-Step
  • Substance Name(s):
  • CHLORHEXIDINE GLUCONATE
  • ISOPROPYL ALCOHOL

WARNINGS

Warnings For external use only. Flammable, keep away from fire or flame. To reduce the risk of fire, PREP CAREFULLY: do not use 26-mL applicator for head and neck surgery do not use on an area smaller than 8.4 in. × 8.4 in. Use a smaller applicator instead. solution contains alcohol and gives off flammable vapors avoid getting solution into hairy areas. Hair may take up to 1 hour to dry. Wet hair is flammable. do not drape or use ignition source (e.g., cautery, laser) until solution is completely dry (minimum of 3 minutes on hairless skin; up to 1 hour in hair) do not allow solution to pool remove wet materials from prep area Do not use on patients with known allergies to chlorhexidine gluconate or isopropyl alcohol for lumbar puncture or in contact with the meninges on open skin wounds or as a general skin cleanser When using this product keep out of eyes, ears, and mouth. May cause serious or permanent injury if permitted to enter and remain. If contact occurs, rinse with cold water right away and contact a doctor. Stop use and ask a doctor if irritation, sensitization, or allergic reaction occurs. These may be signs of a serious condition. Keep out of reach of children. If swallowed, get medical help or contact a Poison Control Center right away.

INDICATIONS AND USAGE

Use for the preparation of the patient’s skin prior to surgery. Helps to reduce bacteria that potentially can cause skin infection.

WARNING AND CAUTIONS

WARNING FLAMMABLE Keep away from fire or flame. To reduce risk of fire, PREP CAREFULLY: do not use 26-ml applicator for head and neck surgery or on an area smaller than 8.4 in. × 8.4 in. Use a smaller applicator instead. solution contains alcohol and gives off flammable vapors avoid getting solution into hairy areas. Hair may take up to 1 hour to dry. Wet hair is flammable. do not drape or use ignition source (e.g. cautery, laser) until solution is completely dry (minimum of 3 minutes on hairless skin; up to 1 hour in hair) do not allow solution to pool remove wet materials from prep area

INACTIVE INGREDIENTS

Inactive ingredients FD&C green #3 dye USP purified water

PURPOSE

Purposes Antiseptic Antiseptic

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. If swallowed, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Stop use and ask a doctor if irritation, sensitization, or allergic reaction occurs. These may be signs of a serious condition.

DOSAGE AND ADMINISTRATION

Directions use with care in premature infants or infants under 2 months of age. These products may cause irritation or chemical burns. use in a well ventilated area maximal treatment area for one applicator is approximately 13.2 in. × 13.2 in. (1126 cm 2). remove applicator from package; do not touch sponge hold the applicator with the sponge down. Pinch wing only once to activate the ampules and release the antiseptic. wet the sponge by pressing and releasing the sponge against the treatment area until liquid is visible on the skin completely wet the treatment area with antiseptic dry surgical sites (e.g., abdomen or arm): use gentle back-and-forth strokes for 30 seconds moist surgical sites (e.g., inguinal fold): use gentle back-and-forth strokes for 2 minutes do not allow solution to pool; tuck prep towels to absorb solution, and then remove allow the solution to completely dry (minimum of 3 minutes on hairless skin; up to 1 hour in hair). Do not blot or wipe away. discard the applicator after a single use along with any portion of the solution not required to cover the prep area. It is not necessary to use the entire amount available.

DO NOT USE

Do not use on patients with known allergies to chlorhexidine gluconate or isopropyl alcohol for lumbar puncture or in contact with the meninges on open skin wounds or as a general skin cleanser

ACTIVE INGREDIENTS

Active ingredients Chlorhexidine gluconate 2% w/v Isopropyl alcohol 70% v/v