Pravastatin Sodium 10 MG Oral Tablet

Generic Name: PRAVASTATIN SODIUM
Brand Name: pravastatin sodium
  • Substance Name(s):
  • PRAVASTATIN SODIUM

DRUG INTERACTIONS

7. For the concurrent therapy of either cyclosporine, fibrates, niacin (nicotinic acid), or erythromycin, the risk of myopathy increases [see Warnings and Precautions ( 5.1) and Clinical Pharmacology ( 12.3) ]. Concomitant lipid-lowering therapies: use with fibrates or lipid-modifying doses (≥1 g/day) of niacin increases the risk of adverse skeletal muscle effects. Caution should be used when prescribing with pravastatin sodium. ( 7) Cyclosporine: combination increases exposure. Limit pravastatin to 20 mg once daily. ( 2.5, 7.1) Clarithromycin: combination increases exposure. Limit pravastatin to 40 mg once daily. ( 2.6, 7.2) 7.1 Cyclosporine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of cyclosporine. Limit pravastatin to 20 mg once daily for concomitant use with cyclosporine [see Dosage and Administration ( 2.5) , Warnings and Precautions ( 5.1) , and Clinical Pharmacology ( 12.3) ]. 7.2 Clarithromycin The risk of myopathy/rhabdomyolysis is increased with concomitant administration of clarithromycin. Limit pravastatin to 40 mg once daily for concomitant use with clarithromycin [see Dosage and Administration ( 2.6) , Warnings and Precautions ( 5.1) , and Clinical Pharmacology ( 12.3) ]. 7.3 Colchicine The risk of myopathy/rhabdomyolysis is increased with concomitant administration of colchicine [see Warnings and Precautions ( 5.1) ]. 7.4 Gemfibrozil Due to an increased risk of myopathy/rhabdomyolysis when HMG-CoA reductase inhibitors are coadministered with gemfibrozil, concomitant administration of pravastatin sodium with gemfibrozil should be avoided [see Warnings and Precautions ( 5.1) ]. 7.5 Other Fibrates Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concurrent administration of other fibrates, pravastatin sodium should be administered with caution when used concomitantly with other fibrates [see Warnings and Precautions ( 5.1) ]. 7.6 Niacin The risk of skeletal muscle effects may be enhanced when pravastatin is used in combination with niacin; a reduction in pravastatin sodium dosage should be considered in this setting [see Warnings and Precautions ( 5.1) ].

OVERDOSAGE

10. To date, there has been limited experience with overdosage of pravastatin. If an overdose occurs, it should be treated symptomatically with laboratory monitoring and supportive measures should be instituted as required.

DESCRIPTION

11. Pravastatin sodium is one of a class of lipid-lowering compounds, the statins, which reduce cholesterol biosynthesis. These agents are competitive inhibitors of HMG-CoA reductase, the enzyme catalyzing the early rate-limiting step in cholesterol biosynthesis, conversion of HMG-CoA to mevalonate. Pravastatin sodium is designated chemically as 1-Naphthalene-heptanoic acid, 1,2,6,7,8,8a-hexahydro-β,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-, monosodium salt, [1S-[1α(βS*,δS*),2α,6α,8β(R*),8aα]]-. Structural formula: Pravastatin sodium, USP is white to yellowish white powder or crystalline powder, hygroscopic in nature. It is a relatively polar hydrophilic compound with a partition coefficient (octanol/water) of 0.59 at a pH of 7. It is freely soluble in water and in methanol. Soluble in ethanol. Each pravastatin sodium tablet, USP intended for oral administration contains 10 mg or 20 mg or 40 mg or 80 mg of pravastatin sodium. In addition, each tablet contains the following inactive ingredients: croscarmellose sodium, lactose anhydrous, magnesium stearate, microcrystalline cellulose, polyoxyl 35 castor oil and sodium carbonate anhydrous. Pravastatin Sodium Tablets, USP

CLINICAL STUDIES

14. 14.1 Prevention of Coronary Heart Disease In the Pravastatin Primary Prevention Study (WOS), 3 the effect of pravastatin sodium on fatal and nonfatal CHD was assessed in 6595 men 45 to 64 years of age, without a previous MI, and with LDL-C levels between 156 to 254 mg/dL (4 to 6.7 mmol/L). In this randomized, doubleblind, placebo-controlled study, patients were treated with standard care, including dietary advice, and either pravastatin sodium 40 mg daily (N=3302) or placebo (N=3293) and followed for a median duration of 4.8 years. Median (25 th, 75 th percentile) percent changes from baseline after 6 months of pravastatin treatment in Total-C, LDL-C, TG, and HDL-C were −20.3 (−26.9, −11.7), −27.7 (−36, −16.9), −9.1 (−27.6, 12.5), and 6.7 (−2.1, 15.6), respectively. Pravastatin sodium significantly reduced the rate of first coronary events (either CHD death or nonfatal MI) by 31% (248 events in the placebo group [CHD death=44, nonfatal MI=204] versus 174 events in the pravastatin sodium group [CHD death=31, nonfatal MI=143], p=0.0001 [see figure below]). The risk reduction with pravastatin sodium was similar and significant throughout the entire range of baseline LDL cholesterol levels. This reduction was also similar and significant across the age range studied with a 40% risk reduction for patients younger than 55 years and a 27% risk reduction for patients 55 years and older. The Pravastatin Primary Prevention Study included only men, and therefore it is not clear to what extent these data can be extrapolated to a similar population of female patients. Pravastatin sodium also significantly decreased the risk for undergoing myocardial revascularization procedures (coronary artery bypass graft [CABG] surgery or percutaneous transluminal coronary angioplasty [PTCA]) by 37% (80 vs 51 patients, p=0.009) and coronary angiography by 31% (128 vs 90, p=0.007). Cardiovascular deaths were decreased by 32% (73 vs 50, p=0.03) and there was no increase in death from non-cardiovascular causes. Pravastatin Sodium Tablets, USP 14.2 Secondary Prevention of Cardiovascular Events In the LIPID4 study, the effect of pravastatin, 40 mg daily, was assessed in 9014 patients (7498 men; 1516 women; 3514 elderly patients [age ≥65 years]; 782 diabetic patients) who had experienced either an MI `(5754 patients) or had been hospitalized for unstable angina pectoris (3260 patients) in the preceding 3 to 36 months. Patients in this multicenter, double-blind, placebo-controlled study participated for an average of 5.6 years (median of 5.9 years) and at randomization had Total-C between 114 and 563 mg/dL (mean 219 mg/dL), LDL-C between 46 and 274 mg/dL (mean 150 mg/dL), TG between 35 and 2710 mg/dL (mean 160 mg/dL), and HDL-C between 1 and 103 mg/dL (mean 37 mg/dL). At baseline, 82% of patients were receiving aspirin and 76% were receiving antihypertensive medication. Treatment with pravastatin significantly reduced the risk for total mortality by reducing coronary death (see Table 5). The risk reduction due to treatment with pravastatin on CHD mortality was consistent regardless of age. Pravastatin significantly reduced the risk for total mortality (by reducing CHD death) and CHD events (CHD mortality or nonfatal MI) in patients who qualified with a history of either MI or hospitalization for unstable angina pectoris. Table 5 LIPID – Primary and Secondary Endpoints Number (%) of Subjects Event Pravastatin 40 mg (N=4512) Placebo (N=4502) Risk Reduction p-value Primary Endpoint CHD mortality 287 (6.4) 373 (8.3) 24% 0.0004 Secondary Endpoints Total mortality 498 (11.0) 633 (14.1) 23% <0.0001 CHD mortality or nonfatal MI 557 (12.3) 715 (15.9) 24% <0.0001 Myocardial revascularization procedures (CABG or PTCA) 584 (12.9) 706 (15.7) 20% <0.0001 Stroke All-cause 169 (3.7) 204 (4.5) 19% 0.0477 Non-hemorrhagic 154 (3.4) 196 (4.4) 23% 0.0154 Cardiovascular mortality 331 (7.3) 433 (9.6) 25% <0.0001 In the CARE5 study, the effect of pravastatin, 40 mg daily, on CHD death and nonfatal MI was assessed in 4159 patients (3583 men and 576 women) who had experienced a MI in the preceding 3 to 20 months and who had normal (below the 75th percentile of the general population) plasma total cholesterol levels. Patients in this double-blind, placebo-controlled study participated for an average of 4.9 years and had a mean baseline Total-C of 209 mg/dL. LDL-C levels in this patient population ranged from 101 to 180 mg/dL (mean 139 mg/dL). At baseline, 84% of patients were receiving aspirin and 82% were taking antihypertensive medications. Median (25th , 75th percentile) percent changes from baseline after 6 months of pravastatin treatment in Total-C, LDL-C, TG, and HDL-C were −22.0 (−28.4, −14.9), −32.4 (−39.9, −23.7), −11.0 (−26.5, 8.6), and 5.1 (−2.9, 12.7), respectively. Treatment with pravastatin significantly reduced the rate of first recurrent coronary events (either CHD death or nonfatal MI), the risk of undergoing revascularization procedures (PTCA, CABG), and the risk for stroke or TIA (see Table 6). Table 6 CARE – Primary and Secondary Endpoints Number (%) of Subjects Event Pravastatin 40 mg (N=2081) Placebo (N=2078) Risk Reduction p-value Primary Endpoint CHD mortality or nonfatal MI The risk reduction due to treatment with pravastatin was consistent in both sexes. 212 (10.2) 274 (13.2) 24% 0.003 Secondary Endpoints Myocardial revascularization procedures (CABG or PTCA) 294 (14.1) 391 (18.8) 27% 200 mg/dL and LDL-C 95 th percentile for age and sex and one parent with either a clinical or molecular diagnosis of familial hypercholesterolemia. The mean baseline LDL-C value was 239 mg/dL and 237 mg/dL in the pravastatin (range: 151 to 405 mg/dL) and placebo (range: 154 to 375 mg/dL) groups, respectively. Pravastatin significantly decreased plasma levels of LDL-C, Total-C, and ApoB in both children and adolescents (see Table 10). The effect of pravastatin treatment in the 2 age groups was similar. Table 10 Lipid-Lowering Effects of Pravastatin in Pediatric Patients with Heterozygous Familial Hypercholesterolemia: Least-Squares Mean % Change from Baseline at Month 24 (Last Observation Carried Forward: Intent-to-Treat) a Pravastatin 20 mg (Aged 8 to 13 years) N=65 Pravastatin 40 mg (Aged 14 to 18 years) N=41 Combined Pravastatin (Aged 8 to 18 years) N=106 Combined Placebo (Aged 8 to 18 years) N=108 95% CI of the Difference Between Combined Pravastatin and Placebo a The above least-squares mean values were calculated based on log-transformed lipid values. b Significant at p ≤ 0.0001 when compared with placebo. LDL-C −26.04 b −21.07 b −24.07 b −1.52 (−26.74, −18.86) TC −20.75 b −13.08 b −17.72 b −0.65 (−20.40, −13.83) HDL-C 1.04 13.71 5.97 3.13 (−1.71, 7.43) TG −9.58 −0.30 −5.88 −3.27 (−13.95, 10.01) ApoB (N) −23.16 b (61) −18.08 b (39) −21.11 b (100) −0.97 (106) (−24.29, −16.18) The mean achieved LDL-C was 186 mg/dL (range: 67 to 363 mg/dL) in the pravastatin group compared to 236 mg/dL (range: 105 to 438 mg/dL) in the placebo group. The safety and efficacy of pravastatin doses above 40 mg daily have not been studied in children. The long-term efficacy of pravastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

HOW SUPPLIED

16. /STORAGE AND HANDLING 16.1 How Supplied Pravastatin Sodium Tablets USP, 10 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC46’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-500-01 Pravastatin Sodium Tablets USP, 20 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC45’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-501-01 Pravastatin Sodium Tablets USP, 40 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC44’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 100 (10 x 10) NDC 68084-502-01 Pravastatin Sodium Tablets USP, 80 mg are white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC43’ on one side and plain on the other side and are supplied as follows: Unit dose packages of 30 (5 x 6) NDC 68084-746-25 16.2 Storage Store at 20° to 25° C (68° to 77° F) [See USP Controlled Room Temperature]. Protect from light and moisture

GERIATRIC USE

8.5 Geriatric Use Two secondary prevention trials with pravastatin (CARE and LIPID) included a total of 6593 subjects treated with pravastatin 40 mg for periods ranging up to 6 years. Across these 2 studies, 36.1% of pravastatin subjects were aged 65 and older and 0.8% were aged 75 and older. The beneficial effect of pravastatin in elderly subjects in reducing cardiovascular events and in modifying lipid profiles was similar to that seen in younger subjects. The adverse event profile in the elderly was similar to that in the overall population. Other reported clinical experience has not identified differences in responses to pravastatin between elderly and younger patients. Mean pravastatin AUCs are slightly (25% to 50%) higher in elderly subjects than in healthy young subjects, but mean maximum plasma concentration (C max), time to maximum plasma concentration (T max), and half-life (t ½) values are similar in both age groups and substantial accumulation of pravastatin would not be expected in the elderly [see Clinical Pharmacology ( 12.3) ]. Since advanced age (≥ 65 years) is a predisposing factor for myopathy, pravastatin sodium should be prescribed with caution in the elderly [see Warnings and Precautions ( 5.1) and Clinical Pharmacology ( 12.3) ].

DOSAGE FORMS AND STRENGTHS

3. Pravastatin sodium tablets, USP are supplied as: 10 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC46’ on one side and plain on the other side. 20 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC45’ on one side and plain on the other side. 40 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC44’ on one side and plain on the other side. 80 mg tablets: white to off-white, oval-shaped, biconvex uncoated tablets debossed with the logo of ‘ZC43’ on one side and plain on the other side. Tablets: 10 mg, 20 mg, 40 mg and 80 mg. ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action Pravastatin is a reversible inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the enzyme that catalyzes the conversion of HMG-CoA to mevalonate, an early and rate limiting step in the biosynthetic pathway for cholesterol. In addition, pravastatin reduces VLDL and TG and increases HDL-C.

INDICATIONS AND USAGE

1. Therapy with lipid-altering agents should be only one component of multiple risk factor intervention in individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Drug therapy is indicated as an adjunct to diet when the response to a diet restricted in saturated fat and cholesterol and other nonpharmacologic measures alone has been inadequate. Pravastatin sodium tablet, USP is an HMG-CoA reductase inhibitor (statin) indicated as an adjunctive therapy to diet to: Reduce the risk of MI, revascularization, and cardiovascular mortality in hypercholesterolemic patients without clinically evident CHD. ( 1.1) Reduce the risk of total mortality by reducing coronary death, MI, revascularization, stroke/TIA, and the progression of coronary atherosclerosis in patients with clinically evident CHD. ( 1.1) Reduce elevated Total-C, LDL-C, ApoB, and TG levels and to increase HDL-C in patients with primary hypercholesterolemia and mixed dyslipidemia. ( 1.2) Reduce elevated serum TG levels in patients with hypertriglyceridemia. ( 1.2) Treat patients with primary dysbetalipoproteinemia who are not responding to diet. ( 1.2) Treat children and adolescent patients ages 8 years and older with heterozygous familial hypercholesterolemia after failing an adequate trial of diet therapy. ( 1.2) Limitations of use: Pravastatin sodium tablets, USP have not been studied in Fredrickson Types I and V dyslipidemias. ( 1.3) 1.1 Prevention of Cardiovascular Disease In hypercholesterolemic patients without clinically evident coronary heart disease (CHD), pravastatin sodium tablets, USP are indicated to: reduce the risk of myocardial infarction (MI). reduce the risk of undergoing myocardial revascularization procedures. reduce the risk of cardiovascular mortality with no increase in death from non-cardiovascular causes. In patients with clinically evident CHD, pravastatin sodium tablet is indicated to: reduce the risk of total mortality by reducing coronary death. reduce the risk of MI. reduce the risk of undergoing myocardial revascularization procedures. reduce the risk of stroke and stroke/transient ischemic attack (TIA). slow the progression of coronary atherosclerosis. 1.2 Hyperlipidemia Pravastatin sodium tablet is indicated: as an adjunct to diet to reduce elevated total cholesterol (Total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and triglyceride (TG) levels and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hypercholesterolemia and mixed dyslipidemia ( Fredrickson Types IIa and IIb). 1 as an adjunct to diet for the treatment of patients with elevated serum TG levels ( Fredrickson Type IV). for the treatment of patients with primary dysbetalipoproteinemia ( Fredrickson Type III) who do not respond adequately to diet. as an adjunct to diet and lifestyle modification for treatment of heterozygous familial hypercholesterolemia (HeFH) in children and adolescent patients ages 8 years and older if after an adequate trial of diet the following findings are present: LDL-C remains ≥ 190 mg/dL or LDL-C remains ≥ 160 mg/dL and: there is a positive family history of premature cardiovascular disease (CVD) or two or more other CVD risk factors are present in the patient. 1.3 Limitations of Use Pravastatin sodium has not been studied in conditions where the major lipoprotein abnormality is elevation of chylomicrons (Fredrickson Types I and V).

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of pravastatin sodium in children and adolescents from 8 to 18 years of age have been evaluated in a placebo-controlled study of 2 years duration. Patients treated with pravastatin had an adverse experience profile generally similar to that of patients treated with placebo with influenza and headache commonly reported in both treatment groups. [See Adverse Reactions ( 6.4) .] Doses greater than 40 mg have not been studied in this population. Children and adolescent females of childbearing potential should be counseled on appropriate contraceptive methods while on pravastatin therapy [see Contraindications ( 4.3) and Use in Specific Populations ( 8.1) ]. For dosing information [see Dosage and Administration ( 2.3) .] Doubleblind, placebo-controlled pravastatin studies in children less than 8 years of age have not been conducted.

PREGNANCY

4.3 Pregnancy Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. Cholesterol and other products of cholesterol biosynthesis are essential components for fetal development (including synthesis of steroids and cell membranes). Since statins decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol, they are contraindicated during pregnancy and in nursing mothers. PRAVASTATIN SHOULD BE ADMINISTERED TO WOMEN OF CHILDBEARING AGE ONLY WHEN SUCH PATIENTS ARE HIGHLY UNLIKELY TO CONCEIVE AND HAVE BEEN INFORMED OF THE POTENTIAL HAZARDS. If the patient becomes pregnant while taking this class of drug, therapy should be discontinued immediately and the patient apprised of the potential hazard to the fetus [see Use in Specific Populations ( 8.1) ].

NUSRING MOTHERS

4.4 Nursing Mothers A small amount of pravastatin is excreted in human breastmilk. Because statins have the potential for serious adverse reactions in nursing infants, women who require pravastatin sodium treatment should not breastfeed their infants [see Use in Specific Populations ( 8.3) ].

WARNING AND CAUTIONS

5. WARNINGS AND PRECAUTIONS Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): predisposing factors include advanced age (≥65), uncontrolled hypothyroidism, and renal impairment. Patients should be advised to promptly report to their physician any unexplained and/or persistent muscle pain, tenderness, or weakness. Pravastatin therapy should be discontinued if myopathy is diagnosed or suspected. ( 5.1, 8.5) Liver enzyme abnormalities: persistent elevations in hepatic transaminases can occur. Check liver enzyme tests before initiating therapy and as clinically indicated thereafter. ( 5.2) 5.1 Skeletal Muscle Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with pravastatin and other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects. Uncomplicated myalgia has also been reported in pravastatin-treated patients [see Adverse Reactions (6)]. Myopathy, defined as muscle aching or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values to greater than 10 times the upper limit of normal (ULN), was rare ( 6 months) stable liver disease, due primarily to hepatitis C or non-alcoholic fatty liver disease, were treated with 80 mg pravastatin or placebo for up to 9 months. The primary safety endpoint was the proportion of subjects with at least one ALT ≥ 2 times the upper limit of normal for those with normal ALT (≤ the upper limit of normal) at baseline or a doubling of the baseline ALT for those with elevated ALT (> the upper limit of normal) at baseline. By Week 36, 12 out of 160 (7.5%) subjects treated with pravastatin met the prespecified safety ALT endpoint compared to 20 out of 160 (12.5%) subjects receiving placebo. Conclusions regarding liver safety are limited since the study was not large enough to establish similarity between groups (with 95% confidence) in the rates of ALT elevation. It is recommended that liver function tests be performed prior to the initiation of therapy and when clinically indicated. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of pravastatin [see Contraindications ( 4.2) ]. Caution should be exercised when pravastatin is administered to patients who have a recent (< 6 months) history of liver disease, have signs that may suggest liver disease (e.g., unexplained aminotransferase elevations, jaundice), or are heavy users of alcohol. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including pravastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with pravastatin sodium, promptly interrupt therapy. If an alternate etiology is not found do not restart pravastatin sodium. 5.3 Endocrine Function Statins interfere with cholesterol synthesis and lower circulating cholesterol levels and, as such, might theoretically blunt adrenal or gonadal steroid hormone production. Results of clinical trials with pravastatin in males and post-menopausal females were inconsistent with regard to possible effects of the drug on basal steroid hormone levels. In a study of 21 males, the mean testosterone response to human chorionic gonadotropin was significantly reduced (p < 0.004) after 16 weeks of treatment with 40 mg of pravastatin. However, the percentage of patients showing a ≥ 50% rise in plasma testosterone after human chorionic gonadotropin stimulation did not change significantly after therapy in these patients. The effects of statins on spermatogenesis and fertility have not been studied in adequate numbers of patients. The effects, if any, of pravastatin on the pituitary-gonadal axis in pre-menopausal females are unknown. Patients treated with pravastatin who display clinical evidence of endocrine dysfunction should be evaluated appropriately. Caution should also be exercised if a statin or other agent used to lower cholesterol levels is administered to patients also receiving other drugs (e.g., ketoconazole, spironolactone, cimetidine) that may diminish the levels or activity of steroid hormones. In a placebo-controlled study of 214 pediatric patients with HeFH, of which 106 were treated with pravastatin (20 mg in the children aged 8 to 13 years and 40 mg in the adolescents aged 14 to 18 years) for 2 years, there were no detectable differences seen in any of the endocrine parameters (ACTH, cortisol, DHEAS, FSH, LH, TSH, estradiol [girls] or testosterone [boys]) relative to placebo. There were no detectable differences seen in height and weight changes, testicular volume changes, or Tanner score relative to placebo.

INFORMATION FOR PATIENTS

17. PATIENT COUNSELING INFORMATION Patients should be advised to report promptly unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever or if these muscle signs or symptoms persist after discontinuing pravastatin [see Warnings and Precautions ( 5.1) ]. It is recommended that liver enzyme tests be performed before the initiation of pravastatin sodium, and thereafter when clinically indicated. All patients treated with pravastatin sodium should be advised to promptly report any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine, or jaundice [see Warnings and Precautions ( 5.2) ]. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

DOSAGE AND ADMINISTRATION

2. Adults: the recommended starting dose is 40 mg once daily. Use 80 mg dose only for patients not reaching LDL-C goal with 40 mg. ( 2.2) Significant renal impairment: the recommended starting dose is 10 mg once daily. ( 2.2) Children (ages 8 to 13 years, inclusive): the recommended starting dose is 20 mg once daily. ( 2.3) Adolescents (ages 14 to 18 years): the recommended starting dose is 40 mg once daily. ( 2.3) 2.1 General Dosing Information The patient should be placed on a standard cholesterol-lowering diet before receiving pravastatin sodium tablets and should continue on this diet during treatment with pravastatin sodium tablets [see NCEP Treatment Guidelines for details on dietary therapy]. 2.2 Adult Patients The recommended starting dose is 40 mg once daily. If a daily dose of 40 mg does not achieve desired cholesterol levels, 80 mg once daily is recommended. In patients with significant renal impairment, a starting dose of 10 mg daily is recommended. Pravastatin sodium tablets can be administered orally as a single dose at any time of the day, with or without food. Since the maximal effect of a given dose is seen within 4 weeks, periodic lipid determinations should be performed at this time and dosage adjusted according to the patient’s response to therapy and established treatment guidelines. 2.3 Pediatric Patients Children (Ages 8 to 13 Years, Inclusive) The recommended dose is 20 mg once daily in children 8 to 13 years of age. Doses greater than 20 mg have not been studied in this patient population. Adolescents (Ages 14 to 18 Years) The recommended starting dose is 40 mg once daily in adolescents 14 to 18 years of age. Doses greater than 40 mg have not been studied in this patient population. Children and adolescents treated with pravastatin should be reevaluated in adulthood and appropriate changes made to their cholesterol-lowering regimen to achieve adult goals for LDL-C [see Indications and Usage ( 1.2) ]. 2.4 Concomitant Lipid-Altering Therapy Pravastatin sodium tablets may be used with bile acid resins. When administering a bile-acid-binding resin (e.g., cholestyramine, colestipol) and pravastatin, pravastatin sodium tablets should be given either 1 hour or more before or at least 4 hours following the resin. [See Clinical Pharmacology ( 12.3) .] 2.5 Dosage in Patients Taking Cyclosporine In patients taking immunosuppressive drugs such as cyclosporine concomitantly with pravastatin, therapy should begin with 10 mg of pravastatin sodium once-a-day at bedtime and titration to higher doses should be done with caution. Most patients treated with this combination received a maximum pravastatin sodium dose of 20 mg/day. In patients taking cyclosporine, therapy should be limited to 20 mg of pravastatin sodium once daily [see Warnings and Precautions ( 5.1) and Drug Interactions ( 7.1) ]. 2.6 Dosage in Patients Taking Clarithromycin In patients taking clarithromycin, therapy should be limited to 40 mg of pravastatin sodium once daily [see Drug Interactions ( 7.2) ].

Atenolol 100 MG Oral Tablet

Generic Name: ATENOLOL
Brand Name: Atenolol
  • Substance Name(s):
  • ATENOLOL

WARNINGS

Cardiac Failure Sympathetic stimulation is necessary in supporting circulatory function in congestive heart failure, and beta blockade carries the potential hazard of further depressing myocardial contractility and precipitating more severe failure. In patients with acute myocardial infarction, cardiac failure which is not promptly and effectively controlled by 80 mg of intravenous furosemide or equivalent therapy is a contraindication to beta-blocker treatment. In Patients Without a History of Cardiac Failure Continued depression of the myocardium with beta-blocking agents over a period of time can, in some cases, lead to cardiac failure. At the first sign or symptom of impending cardiac failure, patients should be treated appropriately according to currently recommended guidelines, and the response observed closely. If cardiac failure continues despite adequate treatment, atenolol should be withdrawn. (See DOSAGE AND ADMINISTRATION.) Cessation of Therapy With Atenolol Patients with coronary artery disease, who are being treated with atenolol, should be advised against abrupt discontinuation of therapy. Severe exacerbation of angina and the occurrence of myocardial infarction and ventricular arrhythmias have been reported in angina patients following the abrupt discontinuation of therapy with beta blockers. The last two complications may occur with or without preceding exacerbation of the angina pectoris. As with other beta blockers, when discontinuation of atenolol is planned, the patients should be carefully observed and advised to limit physical activity to a minimum. If the angina worsens or acute coronary insufficiency develops, it is recommended that atenolol be promptly reinstituted, at least temporarily. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue atenolol therapy abruptly even in patients treated only for hypertension. (See DOSAGE AND ADMINISTRATION.) Concomitant Use of Calcium Channel Blockers Bradycardia and heart block can occur and the left ventricular end diastolic pressure can rise when beta blockers are administered with verapamil or diltiazem. Patients with preexisting conduction abnormalities or left ventricular dysfunction are particularly susceptible (see PRECAUTIONS). Bronchospastic Diseases PATIENTS WITH BRONCHOSPASTIC DISEASE SHOULD, IN GENERAL, NOT RECEIVE BETA BLOCKERS. Because of its relative beta1 selectivity, however, atenolol may be used with caution in patients with bronchospastic disease who do not respond to, or cannot tolerate, other antihypertensive treatment. Since beta1 selectivity is not absolute, the lowest possible dose of atenolol should be used with therapy initiated at 50 mg and a beta2-stimulating agent (bronchodilator) should be made available. If dosage must be increased, dividing the dose should be considered in order to achieve lower peak blood levels. Major Surgery Chronically administered beta-blocking therapy should not be routinely withdrawn prior to major surgery, however the impaired ability of the heart to respond to reflex adrenergic stimuli may augment the risks of general anesthesia and surgical procedures. Diabetes and Hypoglycemia Atenolol should be used with caution in diabetic patients if a beta-blocking agent is required. Beta blockers may mask tachycardia occurring with hypoglycemia, but other manifestations such as dizziness and sweating may not be significantly affected. At recommended doses atenolol does not potentiate insulin-induced hypoglycemia and, unlike nonselective beta blockers, does not delay recovery of blood glucose to normal levels. Thyrotoxicosis Beta-adrenergic blockade may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Abrupt withdrawal of beta blockade might precipitate a thyroid storm; therefore, patients suspected of developing thyrotoxicosis from whom atenolol therapy is to be withdrawn should be monitored closely. (See DOSAGE AND ADMINISTRATION.) Untreated Pheochromocytoma Atenolol should not be given to patients with untreated pheochromocytoma. Pregnancy and Fetal Injury Atenolol can cause fetal harm when administered to a pregnant woman. Atenolol crosses the placental barrier and appears in cord blood. Administration of atenolol, starting in the second trimester of pregnancy, has been associated with the birth of infants that are small for gestational age. No studies have been performed on the use of atenolol in the first trimester and the possibility of fetal injury cannot be excluded. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Neonates born to mothers who are receiving atenolol at parturition or breast-feeding may be at risk for hypoglycemia and bradycardia. Caution should be exercised when atenolol is administered during pregnancy or to a woman who is breast-feeding. (See PRECAUTIONS: Nursing Mothers.) Atenolol has been shown to produce a dose related increase in embryo/fetal resorptions in rats at doses equal to or greater than 50 mg/kg/day or 25 or more times the maximum recommended human antihypertensive dose.* Although similar effects were not seen in rabbits, the compound was not evaluated in rabbits at doses above 25 mg/kg/day or 12.5 times the maximum recommended human antihypertensive dose.* * Based on the maximum dose of 100 mg/day in a 50 kg patient.

DRUG INTERACTIONS

Drug Interactions Catecholamine-depleting drugs (e.g., reserpine) may have an additive effect when given with beta-blocking agents. Patients treated with atenolol plus a catecholamine depletor should therefore be closely observed for evidence of hypotension and/or marked bradycardia which may produce vertigo, syncope, or postural hypotension. Calcium channel blockers may also have an additive effect when given with atenolol (see WARNINGS). Disopyramide is a Type l antiarrhythmic drug with potent negative inotropic and chronotropic effects. Disopyramide has been associated with severe bradycardia, asystole and heart failure when administered with beta-blockers. Amiodarone is an antiarrhythmic agent with negative chronotropic properties that may be additive to those seen with beta-blockers. Beta blockers may exacerbate the rebound hypertension which can follow the withdrawal of clonidine. If the two drugs are coadministered, the beta blocker should be withdrawn several days before the gradual withdrawal of clonidine. If replacing clonidine by beta-blocker therapy, the introduction of beta blockers should be delayed for several days after clonidine administration has stopped. Concomitant use of prostaglandin synthase inhibiting drugs, e.g., indomethacin, may decrease the hypotensive effects of beta-blockers. Information on concurrent usage of atenolol and aspirin is limited. Data from several studies, i.e., TIMI-II, ISIS-2, currently do not suggest any clinical interaction between aspirin and beta blockers in the acute myocardial infarction setting. While taking beta blockers, patients with a history of anaphylactic reaction to a variety of allergens may have a more severe reaction on repeated challenge, either accidental, diagnostic or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat the allergic reaction. Both digitalis glycosides and beta-blockers slow atrioventricular conduction and decrease heart rate. Concomitant use can increase the risk of bradycardia.

OVERDOSAGE

Overdosage with atenolol has been reported with patients surviving acute doses as high as 5 g. One death was reported in a man who may have taken as much as 10 g acutely. The predominant symptoms reported following atenolol overdose are lethargy, disorder of respiratory drive, wheezing, sinus pause and bradycardia. Additionally, common effects associated with overdosage of any beta-adrenergic blocking agent and which might also be expected in atenolol overdose are congestive heart failure, hypotension, bronchospasm and/or hypoglycemia. Treatment of overdose should be directed to the removal of any unabsorbed drug by induced emesis, gastric lavage, or administration of activated charcoal. Atenolol can be removed from the general circulation by hemodialysis. Other treatment modalities should be employed at the physician’s discretion and may include: Bradycardia: Atropine intravenously. If there is no response to vagal blockade, give isoproterenol cautiously. In refractory cases, a transvenous cardiac pacemaker may be indicated. Heart Block (second or third degree): Isoproterenol or transvenous cardiac pacemaker. Cardiac Failure: Digitalize the patient and administer a diuretic. Glucagon has been reported to be useful. Hypotension: Vasopressors such as dopamine or norepinephrine (levarterenol). Monitor blood pressure continuously. Bronchospasm: A beta2 stimulant such as isoproterenol or terbutaline and/or aminophylline. Hypoglycemia: Intravenous glucose. Based on the severity of symptoms, management may require intensive support care and facilities for applying cardiac and respiratory support.

DESCRIPTION

Atenolol, USP, a synthetic, beta1-selective (cardioselective) adrenoreceptor blocking agent, may be chemically described as Benzeneacetamide, 4-[2′-hydroxy-3′-[(1-methylethyl)amino]propoxy]-. The molecular and structural formulas are: Atenolol (free base) has a molecular weight of 266.34. It is a relatively polar hydrophilic compound with a water solubility of 26.5 mg/mL at 37°C and a log partition coefficient (octanol/water) of 0.23. It is freely soluble in 1N HCl (300 mg/mL at 25°C) and less soluble in chloroform (3 mg/mL at 25°C). Each tablet for oral administration contains 25 mg, 50 mg or 100 mg of atenolol, USP and the following inactive ingredients: colloidal silicon dioxide, magnesium stearate, microcrystalline cellulose, sodium lauryl sulfate and sodium starch glycolate. Structural Formula

HOW SUPPLIED

Atenolol Tablets, USP are available containing 25 mg, 50 mg or 100 mg of atenolol, USP. The 25 mg tablets are white to off-white, round, unscored tablets debossed with A2 on one side of the tablet and M on the other side. The 50 mg tablets are white, round, scored tablets debossed with 231 above the score on one side of the tablet and M on the other side. The 100 mg tablets are white, round, unscored tablets debossed with M on one side of the tablet and 757 on the other side. They are available as follows: NDC 0615-3533-39 blistercards of 30 tablets Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.] Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Mylan Pharmaceuticals Inc. Morgantown, WV 26505 U.S.A. REVISED JANUARY 2013 ATEN:R25 Mylan Logo symbol

GERIATRIC USE

Geriatric Use Hypertension and Angina Pectoris Due to Coronary Atherosclerosis Clinical studies of atenolol did not include sufficient number of patients aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Acute Myocardial Infarction Of the 8,037 patients with suspected acute myocardial infarction randomized to atenolol in the ISIS-1 trial (see CLINICAL PHARMACOLOGY), 33% (2,644) were 65 years of age and older. It was not possible to identify significant differences in the efficacy and safety between older and younger patients; however, elderly patients with systolic blood pressure < 120 mm Hg seemed less likely to benefit (see INDICATIONS AND USAGE). In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Evaluation of patients with hypertension or myocardial infarction should always include assessment of renal function.

INDICATIONS AND USAGE

Hypertension Atenolol tablets are indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure lowers the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes including atenolol tablets. Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise and limited sodium intake. Many patients will require more than one drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC). Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly. Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal. Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure or diabetic kidney disease). These considerations may guide selection of therapy. Atenolol tablets may be administered with other antihypertensive agents. Angina Pectoris Due to Coronary Atherosclerosis Atenolol tablets are indicated for the long-term management of patients with angina pectoris. Acute Myocardial Infarction Atenolol tablets are indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Treatment can be initiated as soon as the patient’s clinical condition allows. (See DOSAGE AND ADMINISTRATION, CONTRAINDICATIONS, and WARNINGS.) In general, there is no basis for treating patients like those who were excluded from the ISIS-1 trial (blood pressure less than 100 mm Hg systolic, heart rate less than 50 bpm) or have other reasons to avoid beta blockade. As noted above, some subgroups (e.g., elderly patients with systolic blood pressure below 120 mm Hg) seemed less likely to benefit.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

Usage in Pregnancy Teratogenic Effects Pregnancy Category D See WARNINGS: Pregnancy and Fetal Injury.

NUSRING MOTHERS

Nursing Mothers Atenolol is excreted in human breast milk at a ratio of 1.5 to 6.8 when compared to the concentration in plasma. Caution should be exercised when atenolol is administered to a nursing woman. Clinically significant bradycardia has been reported in breast fed infants. Premature infants, or infants with impaired renal function, may be more likely to develop adverse effects. Neonates born to mothers who are receiving atenolol at parturition or breast-feeding may be at risk for hypoglycemia and bradycardia. Caution should be exercised when atenolol is administered during pregnancy or to a woman who is breast-feeding. (See WARNINGS: Pregnancy and Fetal Injury.)

BOXED WARNING

Cessation of Therapy With Atenolol Patients with coronary artery disease, who are being treated with atenolol, should be advised against abrupt discontinuation of therapy. Severe exacerbation of angina and the occurrence of myocardial infarction and ventricular arrhythmias have been reported in angina patients following the abrupt discontinuation of therapy with beta blockers. The last two complications may occur with or without preceding exacerbation of the angina pectoris. As with other beta blockers, when discontinuation of atenolol is planned, the patients should be carefully observed and advised to limit physical activity to a minimum. If the angina worsens or acute coronary insufficiency develops, it is recommended that atenolol be promptly reinstituted, at least temporarily. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue atenolol therapy abruptly even in patients treated only for hypertension. (See DOSAGE AND ADMINISTRATION.)

DOSAGE AND ADMINISTRATION

Hypertension The initial dose of atenolol is 50 mg given as one tablet a day either alone or added to diuretic therapy. The full effect of this dose will usually be seen within one to two weeks. If an optimal response is not achieved, the dosage should be increased to atenolol 100 mg given as one tablet a day. Increasing the dosage beyond 100 mg a day is unlikely to produce any further benefit. Atenolol tablets may be used alone or concomitantly with other antihypertensive agents including thiazide-type diuretics, hydralazine, prazosin, and alpha-methyldopa. Angina Pectoris The initial dose of atenolol is 50 mg given as one tablet a day. If an optimal response is not achieved within one week, the dosage should be increased to atenolol 100 mg given as one tablet a day. Some patients may require a dosage of 200 mg once a day for optimal effect. Twenty-four hour control with once daily dosing is achieved by giving doses larger than necessary to achieve an immediate maximum effect. The maximum early effect on exercise tolerance occurs with doses of 50 mg to 100 mg, but at these doses the effect at 24 hours is attenuated, averaging about 50% to 75% of that observed with once a day oral doses of 200 mg. Acute Myocardial Infarction In patients with definite or suspected acute myocardial infarction, treatment with atenolol I.V. injection should be initiated as soon as possible after the patient’s arrival in the hospital and after eligibility is established. Such treatment should be initiated in a coronary care or similar unit immediately after the patient’s hemodynamic condition has stabilized. Treatment should begin with the intravenous administration of 5 mg atenolol over 5 minutes followed by another 5 mg intravenous injection 10 minutes later. Atenolol I.V. injection should be administered under carefully controlled conditions including monitoring of blood pressure, heart rate, and electrocardiogram. Dilutions of atenolol I.V. injection in Dextrose Injection USP, Sodium Chloride Injection USP, or Sodium Chloride and Dextrose Injection may be used. These admixtures are stable for 48 hours if they are not used immediately. In patients who tolerate the full intravenous dose (10 mg), atenolol tablets 50 mg should be initiated 10 minutes after the last intravenous dose followed by another 50 mg oral dose 12 hours later. Thereafter, atenolol tablets can be given orally either 100 mg once daily or 50 mg twice a day for a further 6 to 9 days or until discharge from the hospital. If bradycardia or hypotension requiring treatment or any other untoward effects occur, atenolol tablets should be discontinued. (See full prescribing information prior to initiating therapy with atenolol tablets.) Data from other beta blocker trials suggest that if there is any question concerning the use of IV beta blocker or clinical estimate that there is a contraindication, the IV beta blocker may be eliminated and patients fulfilling the safety criteria may be given atenolol tablets 50 mg twice daily or 100 mg once a day for at least seven days (if the IV dosing is excluded). Although the demonstration of efficacy of atenolol is based entirely on data from the first seven postinfarction days, data from other beta blocker trials suggest that treatment with beta blockers that are effective in the postinfarction setting may be continued for one to three years if there are no contraindications. Atenolol tablets are an additional treatment to standard coronary care unit therapy. Elderly Patients or Patients with Renal Impairment Atenolol is excreted by the kidneys; consequently dosage should be adjusted in cases of severe impairment of renal function. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy. Evaluation of patients with hypertension or myocardial infarction should always include assessment of renal function. Atenolol excretion would be expected to decrease with advancing age. No significant accumulation of atenolol occurs until creatinine clearance falls below 35 mL/min/1.73 m2. Accumulation of atenolol and prolongation of its half-life were studied in subjects with creatinine clearance between 5 and 105 mL/min. Peak plasma levels were significantly increased in subjects with creatinine clearances below 30 mL/min. The following maximum oral dosages are recommended for elderly, renally-impaired patients and for patients with renal impairment due to other causes: Creatinine Clearance (mL/min/1.73m2) Atenolol Elimination Half-Life (hrs) Maximum Dosage 15 to 35 16 to 27 50 mg daily 27 25 mg daily Some renally-impaired or elderly patients being treated for hypertension may require a lower starting dose of atenolol: 25 mg given as one tablet a day. If this 25 mg dose is used, assessment of efficacy must be made carefully. This should include measurement of blood pressure just prior to the next dose (“trough” blood pressure) to ensure that the treatment effect is present for a full 24 hours. Although a similar dosage reduction may be considered for elderly and/or renally-impaired patients being treated for indications other than hypertension, data are not available for these patient populations. Patients on hemodialysis should be given 25 mg or 50 mg after each dialysis; this should be done under hospital supervision as marked falls in blood pressure can occur. Cessation of Therapy in Patients with Angina Pectoris If withdrawal of atenolol tablets therapy is planned, it should be achieved gradually and patients should be carefully observed and advised to limit physical activity to a minimum.

gabapentin 100 MG Oral Capsule

Generic Name: GABAPENTIN
Brand Name: Gabapentin
  • Substance Name(s):
  • GABAPENTIN

DRUG INTERACTIONS

7 •Morphine increases gabapentin concentrations; dose adjustment may be needed (5.4, 7.2) 7.1 Other Antiepileptic Drugs Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly co-administered antiepileptic drugs [see Clinical Pharmacology (12.3)]. 7.2 Opioids Hydrocodone Co-administration of gabapentin with hydrocodone decreases hydrocodone exposure [see Clinical Pharmacology (12.3)].The potential for alteration in hydrocodone exposure and effect should be considered when gabapentin is started or discontinued in a patient taking hydrocodone. Morphine When gabapentin is administered with morphine, patients should be observed for signs of central nervous system (CNS) depression, such as somnolence, sedation and respiratory depression [see Clinical Pharmacology (12.3)]. 7.3 MAALOX® (aluminum hydroxide, magnesium hydroxide) The mean bioavailability of gabapentin was reduced by about 20% with concomitant use of an antacid (Maalox®) containing magnesium and aluminum hydroxides. It is recommended that gabapentin be taken at least 2 hours following Maalox administration [see Clinical Pharmacology (12.3)]. 7.4 Drug/Laboratory Test Interactions Because false positive readings were reported with the Ames N-Multistix SG® dipstick test for urinary protein when gabapentin was added to other antiepileptic drugs, the more specific sulfosalicylic acid precipitation procedure is recommended to determine the presence of urine protein.

OVERDOSAGE

10 A lethal dose of gabapentin was not identified in mice and rats receiving single oral doses as high as 8000 mg/kg. Signs of acute toxicity in animals included ataxia, labored breathing, ptosis, sedation, hypoactivity, or excitation. Acute oral overdoses of gabapentin up to 49 grams have been reported. In these cases, double vision, slurred speech, drowsiness, lethargy, and diarrhea were observed. All patients recovered with supportive care. Coma, resolving with dialysis, has been reported in patients with chronic renal failure who were treated with gabapentin. Gabapentin can be removed by hemodialysis. Although hemodialysis has not been performed in the few overdose cases reported, it may be indicated by the patient’s clinical state or in patients with significant renal impairment. If overexposure occurs, call your poison control center at 1-800-222-1222.

DESCRIPTION

11 The active ingredient in gabapentin capsules, USP is gabapentin, USP which has the chemical name 1-(aminomethyl)cyclohexaneacetic acid. The molecular formula of gabapentin is C9H17NO2 and the molecular weight is 171.24. The structural formula of gabapentin is: Gabapentin, USP is a white to off-white crystalline solid with a pKa1 of 3.7 and a pKa2 of 10.7. It is freely soluble in water and both basic and acidic aqueous solutions. The log of the partition coefficient (n-octanol/0.05M phosphate buffer) at pH 7.4 is –1.25. Each gabapentin, USP capsule contains 100 mg, 300 mg, or 400 mg of gabapentin and the following inactive ingredients: magnesium stearate, pregelatinized starch (corn), starch (corn) and talc. The 100 mg capsule shell contains gelatin, sodium lauryl sulfate and titanium dioxide. The 300 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, and iron oxide yellow. The 400 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, FD&C Yellow No.6 and FD&C Blue No.1. chem structure

CLINICAL STUDIES

14 14.1 Postherpetic Neuralgia Gabapentin was evaluated for the management of postherpetic neuralgia (PHN) in two randomized, double-blind, placebo-controlled, multicenter studies. The intent-to-treat (ITT) population consisted of a total of 563 patients with pain for more than 3 months after healing of the herpes zoster skin rash (Table 6). TABLE 6. Controlled PHN Studies: Duration, Dosages, and Number of Patients Study Study Duration Gabapentin (mg/day)a Target Dose Patients Receiving Gabapentin Patients Receiving Placebo 1 8 weeks 3600 113 116 2 7 weeks 1800, 2400 223 111 Total 336 227 a Given in 3 divided doses (TID) Each study included a 7 -or 8-week double-blind phase (3 or 4 weeks of titration and 4 weeks of fixed dose). Patients initiated treatment with titration to a maximum of 900 mg/day gabapentin over 3 days. Dosages were then to be titrated in 600 to 1200 mg/day increments at 3-to 7-day intervals to the target dose over 3 to 4 weeks. Patients recorded their pain in a daily diary using an 11-point numeric pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). A mean pain score during baseline of at least 4 was required for randomization. Analyses were conducted using the ITT population (all randomized patients who received at least one dose of study medication). Both studies demonstrated efficacy compared to placebo at all doses tested. The reduction in weekly mean pain scores was seen by Week 1 in both studies, and were maintained to the end of treatment. Comparable treatment effects were observed in all active treatment arms.Pharmacokinetic/pharmacodynamic modeling provided confirmatory evidence of efficacy across all doses. Figures 1 and 2 show pain intensity scores over time for Studies 1 and 2. Figure 1. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 1 Figure 2. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 2 The proportion of responders (those patients reporting at least 50% improvement in endpoint pain score compared with baseline) was calculated for each study (Figure 3). Figure 3. Proportion of Responders (patients with ≥50% reduction in pain score) at Endpoint: Controlled PHN Studies figure 1 figure 2 figure 3 14.2 Epilepsy for Partial Onset Seizures (Adjunctive Therapy) The effectiveness of gabapentin as adjunctive therapy (added to other antiepileptic drugs) was established in multicenter placebo-controlled, double-blind, parallel-group clinical trials in adult and pediatric patients (3 years and older) with refractory partial seizures. Evidence of effectiveness was obtained in three trials conducted in 705 patients (age 12 years and above) and one trial conducted in 247 pediatric patients (3 to 12 years of age). The patients enrolled had a history of at least 4 partial seizures per month in spite of receiving one or more antiepileptic drugs at therapeutic levels and were observed on their established antiepileptic drug regimen during a 12-week baseline period (6 weeks in the study of pediatric patients). In patients continuing to have at least 2 (or 4 in some studies) seizures per month, gabapentin or placebo was then added on to the existing therapy during a 12-week treatment period. Effectiveness was assessed primarily on the basis of the percent of patients with a 50% or greater reduction in seizure frequency from baseline to treatment (the “responder rate”) and a derived measure called response ratio, a measure of change defined as (T -B)/(T + B), in which B is the patient’s baseline seizure frequency and T is the patient’s seizure frequency during treatment. Response ratio is distributed within the range -1 to +1. A zero value indicates no change while complete elimination of seizures would give a value of -1; increased seizure rates would give positive values. A response ratio of -0.33 corresponds to a 50% reduction in seizure frequency. The results given below are for all partial seizures in the intent-to-treat (all patients who received any doses of treatment) population in each study, unless otherwise indicated. One study compared gabapentin 1200 mg/day, in three divided doses, with placebo. Responder rate was 23% (14/61) in the gabapentin group and 9% (6/66) in the placebo group; the difference between groups was statistically significant. Response ratio was also better in the gabapentin group (-0.199) than in the placebo group (-0.044), a difference that also achieved statistical significance. A second study compared primarily gabapentin 1200 mg/day, in three divided doses (N=101), with placebo (N=98). Additional smaller gabapentin dosage groups (600 mg/day, N=53; 1800 mg/day, N=54) were also studied for information regarding dose response. Responder rate was higher in the gabapentin 1200 mg/day group (16%) than in the placebo group (8%), but the difference was not statistically significant. The responder rate at 600 mg (17%) was also not significantly higher than in the placebo, but the responder rate in the 1800 mg group (26%) was statistically significantly superior to the placebo rate. Response ratio was better in the gabapentin 1200 mg/day group (-0.103) than in the placebo group (-0.022); but this difference was also not statistically significant (p = 0.224). A better response was seen in the gabapentin 600 mg/day group (-0.105) and 1800 mg/day group (-0.222) than in the 1200 mg/day group, with the 1800 mg/day group achieving statistical significance compared to the placebo group. A third study compared gabapentin 900 mg/day, in three divided doses (N=111), and placebo (N=109). An additional gabapentin 1200 mg/day dosage group (N=52) provided dose-response data. A statistically significant difference in responder rate was seen in the gabapentin 900 mg/day group (22%) compared to that in the placebo group (10%). Response ratio was also statistically significantly superior in the gabapentin 900 mg/day group (-0.119) compared to that in the placebo group (-0.027), as was response ratio in 1200 mg/day gabapentin (-0.184) compared to placebo. Analyses were also performed in each study to examine the effect of gabapentin on preventing secondarily generalized tonic-clonic seizures. Patients who experienced a secondarily generalized tonic-clonic seizure in either the baseline or in the treatment period in all three placebo-controlled studies were included in these analyses. There were several response ratio comparisons that showed a statistically significant advantage for gabapentin compared to placebo and favorable trends for almost all comparisons. Analysis of responder rate using combined data from all three studies and all doses (N=162, gabapentin; N=89, placebo) also showed a significant advantage for gabapentin over placebo in reducing the frequency of secondarily generalized tonic-clonic seizures. In two of the three controlled studies, more than one dose of gabapentin was used. Within each study, the results did not show a consistently increased response to dose. However, looking across studies, a trend toward increasing efficacy with increasing dose is evident (see Figure 4). Figure 4. Responder Rate in Patients Receiving Gabapentin Expressed as a Difference from Placebo by Dose and Study: Adjunctive Therapy Studies in Patients ≥12 Years of Age with Partial Seizures In the figure, treatment effect magnitude, measured on the Y axis in terms of the difference in the proportion of gabapentin and placebo-assigned patients attaining a 50% or greater reduction in seizure frequency from baseline, is plotted against the daily dose of gabapentin administered (X axis). Although no formal analysis by gender has been performed, estimates of response (Response Ratio) derived from clinical trials (398 men, 307 women) indicate no important gender differences exist. There was no consistent pattern indicating that age had any effect on the response to gabapentin. There were insufficient numbers of patients of races other than Caucasian to permit a comparison of efficacy among racial groups. A fourth study in pediatric patients age 3 to 12 years compared 25 to 35 mg/kg/day gabapentin (N=118) with placebo (N=127). For all partial seizures in the intent-to-treat population, the response ratio was statistically significantly better for the gabapentin group (-0.146) than for the placebo group (-0.079). For the same population, the responder rate for gabapentin (21%) was not significantly different from placebo (18%). A study in pediatric patients age 1 month to 3 years compared 40 mg/kg/day gabapentin (N=38) with placebo (N=38) in patients who were receiving at least one marketed antiepileptic drug and had at least one partial seizure during the screening period (within 2 weeks prior to baseline). Patients had up to 48 hours of baseline and up to 72 hours of double-blind video EEG monitoring to record and count the occurrence of seizures. There were no statistically significant differences between treatments in either the response ratio or responder rate. figure 4

HOW SUPPLIED

16 /STORAGE AND HANDLING Gabapentin capsules, USP are supplied as follows: 100 mg capsules: White-White, opaque hard gelatin capsules printed with “IP 101” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-591-10 300 mg capsules: Buff-Buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-236-10 400 mg capsules: Light caramel-Light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-984-10 Store gabapentin capsules at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Dispense in tight (USP), child-resistant containers.

RECENT MAJOR CHANGES

•Warnings and Precautions: Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) 9/2015

GERIATRIC USE

8.5 Geriatric Use The total number of patients treated with gabapentin in controlled clinical trials in patients with postherpetic neuralgia was 336, of which 102 (30%) were 65 to 74 years of age, and 168 (50%) were 75 years of age and older. There was a larger treatment effect in patients 75 years of age and older compared with younger patients who received the same dosage. Since gabapentin is almost exclusively eliminated by renal excretion, the larger treatment effect observed in patients ≥75 years may be a consequence of increased gabapentin exposure for a given dose that results from an age-related decrease in renal function. However, other factors cannot be excluded. The types and incidence of adverse reactions were similar across age groups except for peripheral edema and ataxia, which tended to increase in incidence with age. Clinical studies of gabapentin in epilepsy did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients [see Dosage and Administration (2.4), Adverse Reactions (6), and Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: •100 mg: white-white, opaque hard gelatin capsules printed with “IP 101” on both cap and body. •300 mg: buff-buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. •400 mg: light caramel-light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. •Capsules: 100 mg, 300 mg, and 400 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action The precise mechanisms by which gabapentin produces its analgesic and antiepileptic actions are unknown. Gabapentin is structurally related to the neurotransmitter gamma-aminobutyric acid (GABA) but has no effect on GABA binding, uptake, or degradation. In vitro studies have shown that gabapentin binds with high-affinity to the α2δ subunit of voltage-activated calcium channels; however, the relationship of this binding to the therapeutic effects of gabapentin is unknown.

INDICATIONS AND USAGE

1 Gabapentin capsules, USP are indicated for: •Management of postherpetic neuralgia in adults •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy Gabapentin capsules are indicated for: •Postherpetic neuralgia in adults (1) •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy (1)

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of gabapentin in the management of postherpetic neuralgia in pediatric patients have not been established. Effectiveness as adjunctive therapy in the treatment of partial seizures in pediatric patients below the age of 3 years has not been established [see Clinical Studies (14.2)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C: There are no adequate and well-controlled studies in pregnant women. In nonclinical studies in mice, rats, and rabbits, gabapentin was developmentally toxic when administered to pregnant animals at doses similar to or lower than those used clinically. Gabapentin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. When pregnant mice received oral doses of gabapentin (500, 1000, or 3000 mg/kg/day) during the period of organogenesis, embryo-fetal toxicity (increased incidences of skeletal variations) was observed at the two highest doses. The no-effect dose for embryo-fetal developmental toxicity in mice was 500 mg/kg/day or approximately ½ of the maximum recommended human dose (MRHD) of 3600 mg/kg on a body surface area (mg/m2) basis. In studies in which rats received oral doses of gabapentin (500 to 2000 mg/kg/day), during pregnancy, adverse effect on offspring development (increased incidences of hydroureter and/or hydronephrosis) were observed at all doses. The lowest effect dose for developmental toxicity in rats is approximately equal to the MRHD on a mg/m2 basis. When pregnant rabbits were treated with gabapentin during the period of organogenesis, an increase in embryo-fetal mortality was observed at all doses tested (60, 300, or 1500 mg/kg). The lowest effect dose for embryo-fetal developmental toxicity in rabbits is less than the MRHD on a mg/m2 basis. In a published study, gabapentin (400 mg/kg/day) was administered by intraperitoneal injection to neonatal mice during the first postnatal week, a period of synaptogenesis in rodents (corresponding to the last trimester of pregnancy in humans). Gabapentin caused a marked decrease in neuronal synapse formation in brains of intact mice and abnormal neuronal synapse formation in a mouse model of synaptic repair. Gabapentin has been shown in vitro to interfere with activity of the α2δ subunit of voltage-activated calcium channels, a receptor involved in neuronal synaptogenesis. The clinical significance of these findings is unknown. To provide information regarding the effects of in utero exposure to gabapentin, physicians are advised to recommend that pregnant patients taking gabapentin enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

NUSRING MOTHERS

8.3 Nursing Mothers Gabapentin is secreted into human milk following oral administration. A nursed infant could be exposed to a maximum dose of approximately 1 mg/kg/day of gabapentin. Because the effect on the nursing infant is unknown, gabapentin should be used in women who are nursing only if the benefits clearly outweigh the risks.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Drug Reaction with Eosinophilia and Systemic Symptoms (Multiorgan hypersensitivity): discontinue gabapentin if an alternative etiology cannot be established (5.1) •Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) • Driving impairment: warn patients not to drive until they have gained sufficient experience with gabapentin to assess whether it will impair their ability to drive (5.3) • Somnolence/Sedation and Dizziness: gabapentin may impair the patient’s ability to operate complex machinery (5.4) •Increased seizure frequency may occur in patients with seizure disorders if gabapentin is abruptly discontinued (5.5) • Suicidal Behavior and Ideation: monitor for suicidal thoughts and behavior (5.6) • Neuropsychiatric Adverse Reactions in Children 3 to 12 Years of Age: monitor for such events (5.7) 5.1 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, has occurred with gabapentin. Some of these reactions have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Gabapentin should be discontinued if an alternative etiology for the signs or symptoms cannot be established. 5.2 Anaphylaxis and Angioedema Gabapentin can cause anaphylaxis and angioedema after the first dose or at any time during treatment. Signs and symptoms in reported cases have included difficulty breathing, swelling of the lips, throat, and tongue, and hypotension requiring emergency treatment. Patients should be instructed to discontinue gabapentin and seek immediate medical care should they experience signs or symptoms of anaphylaxis or angioedema. 5.3 Effects on Driving and Operating Heavy Machinery Patients taking gabapentin should not drive until they have gained sufficient experience to assess whether gabapentin impairs their ability to drive. Driving performance studies conducted with a prodrug of gabapentin (gabapentin enacarbil tablet, extended release) indicate that gabapentin may cause significant driving impairment. Prescribers and patients should be aware that patients’ ability to assess their own driving competence, as well as their ability to assess the degree of somnolence caused by gabapentin, can be imperfect. The duration of driving impairment after starting therapy with gabapentin is unknown. Whether the impairment is related to somnolence [see Warnings and Precautions (5.4)] or other effects of gabapentin is unknown. Moreover, because gabapentin causes somnolence and dizziness [see Warnings and Precautions (5.4)], patients should be advised not to operate complex machinery until they have gained sufficient experience on gabapentin to assess whether gabapentin impairs their ability to perform such tasks. 5.4 Somnolence/Sedation and Dizziness During the controlled epilepsy trials in patients older than 12 years of age receiving doses of gabapentin up to 1800 mg daily, somnolence, dizziness, and ataxia were reported at a greater rate in patients receiving gabapentin compared to placebo: i.e., 19% in drug versus 9% in placebo for somnolence, 17% in drug versus 7% in placebo for dizziness, and 13% in drug versus 6% in placebo for ataxia. In these trials somnolence, ataxia and fatigue were common adverse reactions leading to discontinuation of gabapentin in patients older than 12 years of age, with 1.2%, 0.8% and 0.6% discontinuing for these events, respectively. During the controlled trials in patients with post-herpetic neuralgia, somnolence and dizziness were reported at a greater rate compared to placebo in patients receiving gabapentin, in dosages up to 3600 mg per day: i.e., 21% in gabapentin-treated patients versus 5% in placebo-treated patients for somnolence and 28% in gabapentin-treated patients versus 8% in placebo-treated patients for dizziness. Dizziness and somnolence were among the most common adverse reactions leading to discontinuation of gabapentin. Patients should be carefully observed for signs of central nervous system (CNS) depression, such as somnolence and sedation, when gabapentin is used with other drugs with sedative properties because of potential synergy. In addition, patients who require concomitant treatment with morphine may experience increases in gabapentin concentrations and may require dose adjustment [see Drug Interactions (7.2) ]. 5.5 Withdrawal Precipitated Seizure, Status Epilepticus Antiepileptic drugs should not be abruptly discontinued because of the possibility of increasing seizure frequency. In the placebo-controlled epilepsy studies in patients >12 years of age, the incidence of status epilepticus in patients receiving gabapentin was 0.6% (3 of 543) vs. 0.5% in patients receiving placebo (2 of 378). Among the 2074 patients >12 years of age treated with gabapentin across all epilepsy studies (controlled and uncontrolled), 31 (1.5%) had status epilepticus. Of these, 14 patients had no prior history of status epilepticus either before treatment or while on other medications. Because adequate historical data are not available, it is impossible to say whether or not treatment with gabapentin is associated with a higher or lower rate of status epilepticus than would be expected to occur in a similar population not treated with gabapentin. 5.6 Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including gabapentin, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono-and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 2 shows absolute and relative risk by indication for all evaluated AEDs. TABLE 2. Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1000 Patients Drug Patients with Events Per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1000 Patients Epilepsy 1 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing gabapentin or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. 5.7 Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age) Gabapentin use in pediatric patients with epilepsy 3 to 12 years of age is associated with the occurrence of central nervous system related adverse reactions. The most significant of these can be classified into the following categories: 1) emotional lability (primarily behavioral problems), 2) hostility, including aggressive behaviors, 3) thought disorder, including concentration problems and change in school performance, and 4) hyperkinesia (primarily restlessness and hyperactivity). Among the gabapentin-treated patients, most of the reactions were mild to moderate in intensity. In controlled clinical epilepsy trials in pediatric patients 3 to 12 years of age, the incidence of these adverse reactions was: emotional lability 6% (gabapentin-treated patients) vs. 1.3% (placebo-treated patients); hostility 5.2% vs. 1.3%; hyperkinesia 4.7% vs. 2.9%; and thought disorder 1.7% vs. 0%. One of these reactions, a report of hostility, was considered serious. Discontinuation of gabapentin treatment occurred in 1.3% of patients reporting emotional lability and hyperkinesia and 0.9% of gabapentin-treated patients reporting hostility and thought disorder. One placebo-treated patient (0.4%) withdrew due to emotional lability. 5.8 Tumorigenic Potential In an oral carcinogenicity study, gabapentin increased the incidence of pancreatic acinar cell tumors in rats [see Nonclinical Toxicology (13.1)]. The clinical significance of this finding is unknown. Clinical experience during gabapentin’s premarketing development provides no direct means to assess its potential for inducing tumors in humans. In clinical studies in adjunctive therapy in epilepsy comprising 2085 patient-years of exposure in patients >12 years of age, new tumors were reported in 10 patients (2 breast, 3 brain, 2 lung, 1 adrenal, 1 non-Hodgkin’s lymphoma, 1 endometrial carcinoma in situ), and preexisting tumors worsened in 11 patients (9 brain, 1 breast, 1 prostate) during or up to 2 years following discontinuation of gabapentin. Without knowledge of the background incidence and recurrence in a similar population not treated with gabapentin, it is impossible to know whether the incidence seen in this cohort is or is not affected by treatment. 5.9 Sudden and Unexplained Death in Patients with Epilepsy During the course of premarketing development of gabapentin, 8 sudden and unexplained deaths were recorded among a cohort of 2203 epilepsy patients treated (2103 patient-years of exposure) with gabapentin. Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night. This represents an incidence of 0.0038 deaths per patient-year. Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving gabapentin (ranging from 0.0005 for the general population of epileptics to 0.003 for a clinical trial population similar to that in the gabapentin program, to 0.005 for patients with refractory epilepsy). Consequently, whether these figures are reassuring or raise further concern depends on comparability of the populations reported upon to the gabapentin cohort and the accuracy of the estimates provided.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Administration Information Inform patients that gabapentin is taken orally with or without food. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Prior to initiation of treatment with gabapentin, instruct patients that a rash or other signs or symptoms of hypersensitivity (such as fever or lymphadenopathy) may herald a serious medical event and that the patient should report any such occurrence to a physician immediately [see Warnings and Precautions (5.1)]. Anaphylaxis and Angioedema Advise patients to discontinue gabapentin and seek medical care if they develop signs or symptoms of anaphylaxis or angioedema [see Warnings and Precautions (5.2)]. Dizziness and Somnolence and Effects on Driving and Operating Heavy Machinery Advise patients that gabapentin may cause dizziness, somnolence, and other symptoms and signs of CNS depression. Other drugs with sedative properties may increase these symptoms. Accordingly, although patients’ ability to determine their level of impairment can be unreliable, advise them neither to drive a car nor to operate other complex machinery until they have gained sufficient experience on gabapentin to gauge whether or not it affects their mental and/or motor performance adversely. Inform patients that it is not known how long this effect lasts [see Warnings and Precautions (5.3) and Warnings and Precautions (5.4)]. Suicidal Thinking and Behavior Counsel the patient, their caregivers, and families that AEDs, including gabapentin, may increase the risk of suicidal thoughts and behavior. Advise patients of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Instruct patients to report behaviors of concern immediately to healthcare providers [see Warnings and Precautions (5.6)]. Use in Pregnancy Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breast feeding or intend to breast feed during therapy [see Use in Specific Populations (8.1) and (8.3)]. Encourage patients to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 [see Use in Specific Populations (8.1)]. This product’s label may have been updated. For full prescribing information, please visit www.amneal.com. *Trademarks are the property of their respective owners. Manufactured by: Amneal Pharmaceuticals 400 Crossing Boulevard, 3rd Floor Bridgewater, NJ 08807 Distributed by: McKesson Packaging Services a business unit of McKesson Corporation 7101 Weddington Rd., Concord, NC 28027 IS-4015283 November 2015

DOSAGE AND ADMINISTRATION

2 •Postherpetic Neuralgia (2.1) •Dose can be titrated up as needed to a dose of 1800 mg/day •Day 1: Single 300 mg dose •Day 2: 600 mg/day (i.e., 300 mg two times a day) •Day 3: 900 mg/day (i.e., 300 mg three times a day) •Epilepsy with Partial Onset Seizures (2.2) •Patients 12 years of age and older: starting dose is 300 mg three times daily; may be titrated up to 600 mg three times daily •Patients 3 to 11 years of age: starting dose range is 10 to 15 mg/kg/day, given in three divided doses; recommended dose in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses; the recommended dose in patients 5 to 11 years of age is 25 to 35 mg/kg/day, given in three divided doses. The recommended dose is reached by upward titration over a period of approximately 3 days • Dose should be adjusted in patients with reduced renal function (2.3, 2.4) 2.1 Dosage for Postherpetic Neuralgia In adults with postherpetic neuralgia, gabapentin capsules, USP may be initiated on Day 1 as a single 300 mg dose, on Day 2 as 600 mg/day (300 mg two times a day), and on Day 3 as 900 mg/day (300 mg three times a day). The dose can subsequently be titrated up as needed for pain relief to a dose of 1800 mg/day (600 mg three times a day). In clinical studies, efficacy was demonstrated over a range of doses from 1800 mg/day to 3600 mg/day with comparable effects across the dose range; however, in these clinical studies, the additional benefit of using doses greater than 1800 mg/day was not demonstrated. 2.2 Dosage for Epilepsy with Partial Onset Seizures Patients 12 years of age and above The starting dose is 300 mg three times a day. The recommended maintenance dose of gabapentin capsules, USP is 300 mg to 600 mg three times a day. Dosages up to 2400 mg/day have been well tolerated in long-term clinical studies. Doses of 3600 mg/day have also been administered to a small number of patients for a relatively short duration, and have been well tolerated. Administer gabapentin capsules, USP three times a day using 300 mg or 400 mg capsules. The maximum time between doses should not exceed 12 hours. Pediatric Patients Age 3 to 11 years The starting dose range is 10 mg/kg/day to 15 mg/kg/day, given in three divided doses, and the recommended maintenance dose reached by upward titration over a period of approximately 3 days. The recommended maintenance dose of gabapentin capsules, USP in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses. The recommended maintenance dose of gabapentin capsules, USP in patients 5 to 11 years of age is 25 mg/kg/day to 35 mg/kg/day, given in three divided doses. Gabapentin capsules, USP may be administered as the oral solution, capsule, or tablet, or using combinations of these formulations. Dosages up to 50 mg/kg/day have been well tolerated in a long-term clinical study. The maximum time interval between doses should not exceed 12 hours. 2.3 Dosage Adjustment in Patients with Renal Impairment Dosage adjustment in patients 12 years of age and older with renal impairment or undergoing hemodialysis is recommended, as follows (see dosing recommendations above for effective doses in each indication): TABLE 1. Gabapentin Capsules, USP Dosage Based on Renal Function Renal Function Creatinine Clearance (mL/min) Total Daily Dose Range (mg/day) Dose Regimen (mg) ≥ 60 900 to 3600 300 TID 400 TID 600 TID 800 TID 1200 TID >30 to 59 400 to 1400 200 BID 300 BID 400 BID 500 BID 700 BID >15 to 29 200 to 700 200 QD 300 QD 400 QD 500 QD 700 QD 15a 100 to 300 100 QD 125 QD 150 QD 200 QD 300 QD Post-Hemodialysis Supplemental Dose (mg)b Hemodialysis 125b 150 b 200 b 250 b 350 b TID = Three times a day; BID = Two times a day; QD = Single daily dose a For patients with creatinine clearance <15 mL/min, reduce daily dose in proportion to creatinine clearance (e.g., patients with a creatinine clearance of 7.5 mL/min should receive one-half the daily dose that patients with a creatinine clearance of 15 mL/min receive). b Patients on hemodialysis should receive maintenance doses based on estimates of creatinine clearance as indicated in the upper portion of the table and a supplemental post-hemodialysis dose administered after each 4 hours of hemodialysis as indicated in the lower portion of the table. Creatinine clearance (CLCr) is difficult to measure in outpatients. In patients with stable renal function, creatinine clearance can be reasonably well estimated using the equation of Cockcroft and Gault: The use of gabapentin capsules, USP in patients less than 12 years of age with compromised renal function has not been studied. formula 2.4 Dosage in Elderly Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients. 2.5 Administration Information Administer gabapentin capsules, USP orally with or without food. Gabapentin capsules, USP should be swallowed whole with water. If the gabapentin capsules, USP dose is reduced, discontinued, or substituted with an alternative medication, this should be done gradually over a minimum of 1 week (a longer period may be needed at the discretion of the prescriber).

tiZANidine HCl 4 MG Oral Tablet

Generic Name: TIZANIDINE
Brand Name: tizanidine
  • Substance Name(s):
  • TIZANIDINE HYDROCHLORIDE

DRUG INTERACTIONS

7 7.1 Fluvoxamine Concomitant use of fluvoxamine and tizanidine is contraindicated. Changes in pharmacokinetics of tizanidine when administered with fluvoxamine resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment [see Contraindications (4) and Clinical Pharmacology (12.3)]. 7.2 Ciprofloxacin Concomitant use of ciprofoxacin and tizanidine is contraindicated. Changes in pharmacokinetics of tizanidine when administered with ciprofloxacin resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment [See Contraindications (4) and Clinical Pharmacology (12.3)] 7.3 CYP1A2 Inhibitors other than Fluvoxamine and Ciprofloxacin Because of potential drug interactions, concomitant use of tizanidine with other CYP1A2 inhibitors, such as zileuton, fluoroquinolones other than strong CYP1A2 inhibitors (which are contraindicated), antiarrythmics (amiodarone, mexiletine, propafenone, and verapamil), cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine) should be avoided. If their use is clinically necessary, therapy should be initiated with 2 mg dose and increased in 2 to 4 mg steps daily based on patient response to therapy. If adverse reactions such as hypotension, bradycardia, or excessive drowsiness occur, reduce or discontinue tizanidine therapy [see Warnings and Precautions (5.5) and Clinical Pharmacology (12.3)] 7.4 Oral Contraceptives Concomitant use of tizanidine with oral contraceptives is not recommended. However, if concomitant use is clinically necessary, initiate tizanidine with a single 2 mg dose and increase in 2 to 4 mg steps daily based on patient response to therapy. If adverse reactions such as hypotension, bradycardia, or excessive drowsiness occur, reduce or discontinue tizanidine therapy [see Clinical Pharmacology (12.3)] 7.5 Alcohol Alcohol increases the overall amount of drug in the bloodstream after a dose of tizanidine. This was associated with an increase in adverse reactions of tizanidine. The CNS depressant effects of tizanidine and alcohol are additive [see Clinical Pharmacology (12.3)] 7.6 Other CNS Depressants The sedative effects of tizanidine with CNS depressants (e.g., benzodiazepines, opioids, tricyclic antidepressants) may be additive. Monitor patients who take tizanidine with another CNS depressant for symptoms of excess sedation [see Clinical Pharmacology (12.3)] 7.7 α2-adrenergic Agonists Because hypotensive effects may be cumulative, it is not recommended that tizanidine be used with other α2-adrenergic agonists [see Warnings and Precautions (5.1)]

OVERDOSAGE

10 A review of the safety surveillance database revealed cases of intentional and accidental tizanidine overdose. Some of the cases resulted in fatality and many of the intentional overdoses were with multiple drugs including CNS depressants. The clinical manifestations of tizanidine overdose were consistent with its known pharmacology. In the majority of cases a decrease in sensorium was observed including lethargy, somnolence, confusion and coma. Depressed cardiac function is also observed including most often bradycardia and hypotension. Respiratory depression is another common feature of tizanidine overdose. Should overdose occur, basic steps to ensure the adequacy of an airway and the monitoring of cardiovascular and respiratory systems should be undertaken. Tizanidine is a lipid-soluble drug, which is only slightly soluble in water and methanol. Therefore, dialysis is not likely to be an efficient method of removing drug from the body. In general, symptoms resolve within one to three days following discontinuation of tizanidine and administration of appropriate therapy. Due to the similar mechanism of action, symptoms and management of tizanidine overdose are similar to that following clonidine overdose. For the most recent information concerning the management of overdose, contact a poison control center.

DESCRIPTION

11 Tizanidine hydrochloride is a centrally acting α2-adrenergic agonist. Tizanidine HCl (tizanidine) is a white to off-white, fine crystalline powder, which is odorless or with a faint characteristic odor. Tizanidine is slightly soluble in water and methanol; solubility in water decreases as the pH increases. Its chemical name is 5-chloro-4-(2-imidazolin-2-ylamino)-2,1,3-benzothiadiazole hydrochloride. Tizanidine’s molecular formula is C9H8ClN5S-HCl, its molecular weight is 290.2 and its structural formula is: Tizanidine Tablets, USP are supplied as 2, and 4 mg tablets for oral administration. Tizanidine Tablets, USP are composed of the active ingredient, tizanidine hydrochloride (2.288 mg equivalent to 2 mg tizanidine base, and 4.576 mg equivalent to 4 mg tizanidine base), and the inactive ingredients, anhydrous lactose, colloidal silicon dioxide, microcrystalline cellulose and stearic acid. Meets USP Dissolution Test 2

CLINICAL STUDIES

14 Tizanidine’s capacity to reduce increased muscle tone associated with spasticity was demonstrated in two adequate and well controlled studies in patients with multiple sclerosis or spinal cord injury (Studies 1 and 2). Single-Dose Study in Patients with Multiple Sclerosis with Spasticity In Study 1, patients with multiple sclerosis were randomized to receive single oral doses of drug or placebo. Patients and assessors were blind to treatment assignment and efforts were made to reduce the likelihood that assessors would become aware indirectly of treatment assignment (e.g., they did not provide direct care to patients and were prohibited from asking questions about side effects). In all, 140 patients received placebo, 8 mg or 16 mg of tizanidine. Response was assessed by physical examination; muscle tone was rated on a 5 point scale (Ashworth score), with a score of 0 used to describe normal muscle tone. A score of 1 indicated a slight spastic catch while a score of 2 indicated more marked muscle resistance. A score of 3 was used to describe considerable increase in tone, making passive movement difficult. A muscle immobilized by spasticity was given a score of 4. Spasm counts were also collected. Assessments were made at 1, 2, 3 and 6 hours after treatment. A statistically significant reduction of the Ashworth score for tizanidine compared to placebo was detected at 1, 2 and 3 hours after treatment. Figure 2 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale. The greatest reduction in muscle tone was 1 to 2 hours after treatment. By 6 hours after treatment, muscle tone in the 8 and 16 mg tizanidine groups was indistinguishable from muscle tone in placebo treated patients. Within a given patient, improvement in muscle tone was correlated with plasma concentration. Plasma concentrations were variable from patient to patient at a given dose. Although 16 mg produced a larger effect, adverse events including hypotension were more common and more severe than in the 8 mg group. There were no differences in the number of spasms occurring in each group. Seven-Week Study in Patients with Spinal Cord Injury with Spasticity In a 7-week study (Study 2), 118 patients with spasticity secondary to spinal cord injury were randomized to either placebo or tizanidine. Steps similar to those taken in the first study were employed to ensure the integrity of blinding. Patients were titrated over 3 weeks up to a maximum tolerated dose or 36 mg daily given in three unequal doses (e.g., 10 mg given in the morning and afternoon and 16 mg given at night). Patients were then maintained on their maximally tolerated dose for 4 additional weeks (i.e., maintenance phase). Throughout the maintenance phase, muscle tone was assessed on the Ashworth scale within a period of 2.5 hours following either the morning or afternoon dose. The number of daytime spasms was recorded daily by patients. At endpoint (the protocol-specified time of outcome assessment), there was a statistically significant reduction in muscle tone and frequency of spasms in the tizanidine treated group compared to placebo. The reduction in muscle tone was not associated with a reduction in muscle strength (a desirable outcome) but also did not lead to any consistent advantage of tizanidine treated patients on measures of activities of daily living. Figure 3 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.2 Tizanidine Tablets Tizanidine Tablets, USP 2 mg are available for oral administration as white to off-white, round, scored tablets, imprinted “APO” over “TI-2” on one side and plain with a bisect score on the other side. They are supplied as follows: Bottles of 100 (NDC 60505-0251-1) Bottles of 150 (NDC 60505-0251-3) Bottles of 1000 (NDC 60505-0251-2) Tizanidine Tablets, USP 4 mg are available for oral administration as white to off-white, round, scored tablets, imprinted “APO” over “TI-4” on one side and plain with a quadrisect score on the other side. They are supplied as follows: Bottles of 100 (NDC 60505-0252-1) Bottles of 150 (NDC 60505-0252-3) Bottles of 1000 (NDC 60505-0252-2) Store at 20° to 25°C (68° to 77°F); excursions permitted from 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Dispense in a tight, light-resistant container [see USP].

DOSAGE FORMS AND STRENGTHS

3 Tablets 2 mg – white to off-white, round, scored tablets, imprinted “APO” over “TI-2” on one side and plain with a bisect score on the other side. 4 mg- white to off-white, round, scored tablets, imprinted “APO” over “TI-4” on one side and plain with a quadrisect score on the other side. Tablets 2 mg and 4 mg (3)

INDICATIONS AND USAGE

1 Tizanidine is a central alpha-2-adrenergic agonist indicated for the management of spasticity. Because of the short duration of therapeutic effect, treatment with tizanidine should be reserved for those daily activities and times when relief of spasticity is most important [see Dosage and Administration (2.1)]. Tizanidine is a central alpha-2-adrenergic agonist indicated for the management of spasticity. Because of the short duration of therapeutic effect, treatment with tizanidine should be reserved for those daily activities and times when relief of spasticity is most important. (1)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Hypotension: monitor for signs and symptoms of hypotension, in particular in patients receiving concurrent antihypertensives; tizanidine should not be used with other α2-adrenergic agonists (5.1, 7.7) Risk of liver injury: monitor ALTs; discontinue tizanidine if liver injury occurs (5.2) Sedation: Tizanidine may interfere with everyday activities; sedative effects of tizanidine, alcohol, and other CNS depressants are additive (5.3, 7.5, 7.6) Hallucinations: consider discontinuation of tizanidine (5.4) Less potent inhibitors of CYP1A2: may cause hypotension, bradycardia, or excessive drowsiness, use caution if tizanidine is used with less potent inhibitors of CYP1A2, e.g., zileuton, other fluoroquinolones, antiarrythmics , cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine (5.5, 7.3, 12.3) Renal impairment (creatinine clearance < 25 mL/min): use tizanidine with caution, and monitor closely for dry mouth, somnolence, asthenia and dizziness as indicators of potential overdose (5.7) 5.1 Hypotension Tizanidine is an α2-adrenergic agonist that can produce hypotension. Syncope has been reported in the post marketing setting. The chance of significant hypotension may possibly be minimized by titration of the dose and by focusing attention on signs and symptoms of hypotension prior to dose advancement. In addition, patients moving from a supine to fixed upright position may be at increased risk for hypotension and orthostatic effects. Monitor for hypotension when tizanidine is used in patients receiving concurrent antihypertensive therapy. It is not recommended that tizanidine be used with other α2-adrenergic agonists. Clinically significant hypotension (decreases in both systolic and diastolic pressure) has been reported with concomitant administration of either fluvoxamine or ciprofloxacin and single doses of 4 mg of tizanidine. Therefore, concomitant use of tizanidine with fluvoxamine or with ciprofloxacin, potent inhibitors of CYP1A2, is contraindicated [see Contraindications (4) and Drug Interactions (7.1, 7.2)]. 5.2 Risk of Liver Injury Tizanidine may cause hepatocellular liver injury. Tizanidine should be used with caution in patients with any hepatic impairment. Monitoring of aminotransferase levels is recommended for baseline and 1 month after maximum dose is achieved, or if hepatic injury is suspected [see Dosage and Administration (2.3) and Use in Specific Populations (8.7)]. 5.3 Sedation Tizanidine can cause sedation, which may interfere with everyday activity. In the multiple dose studies, the prevalence of patients with sedation peaked following the first week of titration and then remained stable for the duration of the maintenance phase of the study. The CNS depressant effects of tizanidine with alcohol and other CNS depressants (e.g., benzodiazepines, opioids, tricyclic antidepressants) may be additive. Monitor patients who take tizanidine with another CNS depressant for symptoms of excess sedation [see Drug Interactions (7.5, 7.6)]. 5.4 Hallucinosis/Psychotic-Like Symptoms Tizanidine use has been associated with hallucinations. Formed, visual hallucinations or delusions have been reported in 5 of 170 patients (3%) in two North American controlled clinical studies. Most of the patients were aware that the events were unreal. One patient developed psychosis in association with the hallucinations. One patient among these 5 continued to have problems for at least 2 weeks following discontinuation of tizanidine. Consider discontinuing tizanidine in patients who develop hallucinations. 5.5 Interaction with CYP1A2 Inhibitors Because of potential drug interactions, tizanidine is contraindicated in patients taking potent CYP1A2 inhibitors, such as fluvoxamine or ciprofloxacin. Adverse reactions such as hypotension, bradycardia, or excessive drowsiness can occur when tizanidine is taken with other CYP1A2 inhibitors, such as zileuton, fluoroquinolones other than ciprofloxacin (which is contraindicated), antiarrythmics (amiodarone, mexiletine, propafenone), cimetidine, famotidine, oral contraceptives, acyclovir, and ticlopidine). Concomitant use should be avoided unless the necessity for tizanidine therapy is clinically evident. In such a case, use with caution [see Drug Interactions (7.3) and Clinical Pharmacology (12.3)]. 5.6 Hypersensitivity Reactions Tizanidine can cause anaphylaxis. Signs and symptoms including respiratory compromise, urticaria, and angioedema of the throat and tongue have been reported. Patients should be informed of the signs and symptoms of severe allergic reactions and instructed to discontinue tizanidine and seek immediate medical care should these signs and symptoms occur [see Contraindications (4)]. 5.7 Increased Risk of Adverse Reactions in Patients with Renal Impairment Tizanidine should be used with caution in patients with renal insufficiency (creatinine clearance < 25 mL/min), as clearance is reduced by more than 50%. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased. These patients should be monitored closely for the onset or increase in severity of the common adverse events (dry mouth, somnolence, asthenia and dizziness) as indicators of potential overdose [see Dosage and Administration (2.2) and Use in Specific Populations (8.6)]. 5.8 Withdrawal Adverse Reactions Withdrawal adverse reactions include rebound hypertension, tachycardia, and hypertonia. To minimize the risk of these reactions, particularly in patients who have been receiving high doses (20 to 28 mg daily) for long periods of time (9 weeks or more) or who may be on concomitant treatment with narcotics, the dose should be decreased slowly (2 to 4 mg per day) [see Dosage and Administration (2.2)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Serious Drug Interactions Advise patients they should not take tizanidine if they are taking fluvoxamine or ciprofloxacin because of the increased risk of serious adverse reactions including severe lowering of blood pressure and sedation. Instruct patients to inform their physicians or pharmacists when they start or stop taking any medication because of the risks associated with interaction between tizanidine and other medicines. Tizanidine Dosing Tell patients to take tizanidine exactly as prescribed (consistently either with or without food) and not to switch between tablets and capsules. Inform patients that they should not take more tizanidine than prescribed because of the risk of adverse events at single doses greater than 8 mg or total daily doses greater than 36 mg. Tell patients that they should not suddenly discontinue tizanidine, because rebound hypertension and tachycardia may occur. Effects of Tizanidine Warn patients that they may experience hypotension and to be careful when changing from a lying or sitting to a standing position. Tell patients that tizanidine may cause them to become sedated or somnolent and they should be careful when performing activities that require alertness, such as driving a vehicle or operating machinery. Tell patients that the sedation may be additive when tizanidine is taken in conjunction with drugs (baclofen, benzodiazepines) or substances (e.g., alcohol) that act as CNS depressants. Remind patients that if they depend on their spasticity to sustain posture and balance in locomotion, or whenever spasticity is utilized to obtain increased function, that tizanidine decreases spasticity and caution should be used. APOTEX INC. Tizanidine Tablets, USP 2 mg and 4 mg Manufactured by Manufactured for Apotex Inc. Apotex Corp. Toronto, Ontario Weston, Florida Canada M9L 1T9 33326 Revised: October 2015 Rev. 5

DOSAGE AND ADMINISTRATION

2 Recommended starting dose: 2 mg; dose can be repeated at 6 to 8 hour intervals, up to a maximum of 3 doses in 24 hours (2.1) Dosage can be increased by 2 mg to 4 mg per dose, with 1 to 4 days between increases; total daily dose should not exceed 36 mg (2.1) Tizanidine pharmacokinetics differs between tablets and capsules, and when taken with or without food. These differences could result in a change in tolerability and control of symptoms (2.1, 12.3) To discontinue tizanidine, decrease dose slowly to minimize the risk of withdrawal and rebound hypertension, tachycardia, and hypertonia (2.2) 2.1 Dosing Information Tizanidine tablets may be prescribed with or without food. Once the formulation has been selected and the decision to take with or without food has been made, this regimen should not be altered. Food has complex effects on tizanidine pharmacokinetics, which differ with the different formulations. Tizanidine capsules and tizanidine tablets are bioequivalent to each other under fasting conditions (more than 3 hours after a meal), but not under fed conditions (within 30 minutes of a meal). These pharmacokinetic differences may result in clinically significant differences when switching administration of tablet and capsules and when switching administration between the fed or fasted state. These changes may result in increased adverse events, or delayed or more rapid onset of activity, depending upon the nature of the switch. For this reason, the prescriber should be thoroughly familiar with the changes in kinetics associated with these different conditions [see Clinical Pharmacology (12.3)]. The recommended starting dose is 2 mg. Because the effect of tizanidine peaks at approximately 1 to 2 hours post-dose and dissipates between 3 to 6 hours post-dose, treatment can be repeated at 6 to 8 hour intervals, as needed, to a maximum of three doses in 24 hours. Dosage can be gradually increased by 2 mg to 4 mg at each dose, with 1 to 4 days between dosage increases, until a satisfactory reduction of muscle tone is achieved. The total daily dose should not exceed 36 mg. Single doses greater than 16 mg have not been studied. 2.2 Dosing in Patients with Renal Impairment Tizanidine should be used with caution in patients with renal insufficiency (creatinine clearance < 25 mL/min), as clearance is reduced by more than 50%. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased [see Warnings and Precautions (5.7)]. 2.3 Dosing in Patients with Hepatic Impairment Tizanidine should be used with caution in patients with any hepatic impairment. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased. Monitoring of aminotransferase levels is recommended for baseline and 1 month after maximum dose is achieved, or if hepatic injury is suspected [see Use in Specific Populations (8.7)]. 2.4 Drug Discontinuation If therapy needs to be discontinued, particularly in patients who have been receiving high doses (20 mg to 36 mg daily) for long periods (9 weeks or more) or who may be on concomitant treatment with narcotics, the dose should be decreased slowly (2 mg to 4 mg per day) to minimize the risk of withdrawal and rebound hypertension, tachycardia, and hypertonia [see Drug Abuse and Dependence (9.3)].

Hydroxyzine Hydrochloride 25 MG Oral Tablet

Generic Name: HYDROXYZINE HYDROCHLORIDE
Brand Name: HYDROXYZINE HYDROCHLORIDE
  • Substance Name(s):
  • HYDROXYZINE HYDROCHLORIDE

OVERDOSAGE

SECTION The most common manifestation of hydrOXYzine overdosage is hypersedation. As in the management of overdosage with any drug, it should be borne in mind that multiple agents may have been taken. If vomiting has not occurred spontaneously, it should be induced. Immediate gastric lavage is also recommended. General supportive care, including frequent monitoring of the vital signs and close observation of the patient, is indicated. Hypotension, though unlikely, may be controlled with intravenous fluids and levarterenol or metaraminol. Do not use epinephrine as hydrOXYzine counteracts its pressor action. There is no specific antidote. It is doubtful that hemodialysis would be of any value in the treatment of overdosage with hydrOXYzine. However, if other agents such as barbiturates have been ingested concomitantly, hemodialysis may be indicated. There is no practical method to quantitate hydrOXYzine in body fluids or tissue after its ingestion or administration.

DESCRIPTION

SECTION HydrOXYzine hydrochloride has the chemical name of 2-[2-[4- (p-Chloro-α-phenylbenzyl)-1-piperazinyl] ethoxy] ethanol dihydrochloride. HydrOXYzine hydrochloride occurs as a white, odorless powder which is very soluble in water. Each tablet for oral administration contains 10 mg, 25 mg or 50 mg hydrOXYzine HCl. Inactive ingredients include: lactose monohydrate, colloidal silicon dioxide, hypromellose, magnesium stearate, microcrystalline cellulose, sodium starch glycolate, stearic acid, polyethylene glycol, polysorbate 80, and titanium dioxide. image description

HOW SUPPLIED

SECTION HydrOXYzine Hydrochloride Tablets, USP, 10 mg – Round, white, film-coated tablet, debossed “H/105”, supplied in bottles of 100, 500, and 1000. Bottles of 100 NDC 23155-105-01 Bottles of 500 NDC 23155-105-05 Bottles of 1000 NDC 23155-105-10 25 mg – Round, white, film-coated tablet, debossed “H/106”, supplied in bottles of 100, 500, and 1000. Bottles of 100 NDC 23155-106-01 Bottles of 500 NDC 23155-106-05 Bottles of 1000 NDC 23155-106-10 50 mg- Round, white, film-coated tablet, debossed “H/107”, supplied in bottles of 100, 500, and 1000. Bottles of 100 NDC 23155-107-01 Bottles of 500 NDC 23155-107-05 Bottles of 1000 NDC 23155-107-10 Dispense in a tight container as defined in the USP. Store at controlled room temperature 20°-25°C (68°-77°F); [see USP Controlled Room Temperature]. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. Manufactured for: Heritage Pharmaceuticals Inc. Eatontown, NJ 07724 1-866-901-DRUG (3784) Iss.06/14

INDICATIONS AND USAGE

INDICATIONS & USAGE SECTION For symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested. Useful in the management of pruritus due to allergic conditions such as chronic urticaria and atopic and contact dermatoses, and in histamine-mediated pruritus. As a sedative when used as a premedication and following general anesthesia, hydrOXYzine may potentiate meperidine and barbiturates, so their use in pre-anesthetic adjunctive therapy should be modified on an individual basis. Atropine and other belladonna alkaloids are not affected by the drug. HydrOXYzine is not known to interfere with the action of digitalis in any way and it may be used concurrently with this agent. The effectiveness of hydrOXYzine as an antianxiety agent for long term use, that is more than 4 months, has not been assessed by systematic clinical studies. The physician should reassess periodically the usefulness of the drug for the individual patient.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION SECTION For symptomatic relief of anxiety and tension associated with psychoneurosis and as an adjunct in organic disease states in which anxiety is manifested: Adults, 50-100 mg q.i.d.; children under 6 years, 50 mg daily in divided doses; children over 6 years, 50-100 mg daily in divided doses. For use in the management of pruritus due to allergic conditions such as chronic urticaria and atopic and contact dermatoses and in histamine-mediated pruritus: adults, 25 mg t.i.d. or q.i.d.; children under 6 years, 50 mg daily in divided doses; children over 6 years, 50-100 mg daily in divided doses. As a sedative when used as a premedication and following general anesthesia: 50-100 mg for adults and 0.6 mg/kg of body weight in children. When treatment is initiated by the intramuscular route of administration, subsequent doses may be administered orally. As with all potent medication, the dosage should be adjusted according to the patient’s response to therapy. Close

Metoprolol Tartrate 25 MG Oral Tablet

Generic Name: METOPROLOL TARTRATE
Brand Name: Metoprolol tartrate
  • Substance Name(s):
  • METOPROLOL TARTRATE

WARNINGS

Heart Failure Beta blockers, like Metoprolol tartrate, can cause depression of myocardial contractility and may precipitate heart failure and cardiogenic shock. If signs or symptoms of heart failure develop, treat the patient according to recommended guidelines. It may be necessary to lower the dose of Metoprolol tartrate tablets or to discontinue it. Ischemic Heart Disease Do not abruptly discontinue Metoprolol tartrate therapy in patients with coronary artery disease. Severe exacerbation of angina, myocardial infarction and ventricular arrhythmias have been reported in patients with coronary artery disease following the abrupt discontinuation of therapy with beta-blockers. When discontinuing chronically administered metoprolol tartrate, particularly in patients with coronary artery disease, the dosage should be gradually reduced over a period of 1 to 2 weeks and the patient should be carefully monitored. If angina markedly worsens or acute coronary insufficiency develops, metoprolol tartrate administration should be reinstated promptly, at least temporarily, and other measures appropriate for the management of unstable angina should be taken. Patients should be warned against interruption or discontinuation of therapy without the physician’s advice. Because coronary artery disease is common and may be unrecognized, it may be prudent not to discontinue metoprolol tartrate therapy abruptly even in patients treated only for hypertension. Use During Major Surgery : Chronically administered beta-blocking therapy should not be routinely withdrawn prior to major surgery; however, the impaired ability of the heart to respond to reflex adrenergic stimuli may augment the risks of general anesthesia and surgical procedures. Bradycardia Bradycardia, including sinus pause, heart block, and cardiac arrest have occurred with the use of metoprolol tartrate. Patients with first-degree atrioventricular block, sinus node dysfunction, or conduction disorders may be at increased risk. Monitor heart rate and rhythm in patients receiving metoprolol tartrate. If severe bradycardia develops, reduce or stop metoprolol tartrate. Exacerbation of Bronchospastic Disease Patients with bronchospastic disease should, in general, not receive beta blockers, including metoprolol tartrate. Because of its relative beta1 selectivity, however, metoprolol tartrate may be used in patients with bronchospastic disease who do not respond to, or cannot tolerate, other antihypertensive treatment. Because beta1 selectivity is not absolute use the lowest possible dose of metoprolol tartrate and consider administering metoprolol tartrate in smaller doses three times daily, instead of larger doses two times daily, to avoid the higher plasma levels associated with the longer dosing interval (see DOSAGE AND ADMINISTRATION).Bronchodilators, including beta2 agonists, should be readily available or administered concomitantly. Diabetes and Hypoglycemia: Beta blockers may mask tachycardia occurring with hypoglycemia, but other manifestations such as dizziness and sweating may not be significantly affected. Pheochromocytoma: If metoprolol is used in the setting of pheochromocytoma, it should begiven in combination with an alpha blocker, and only after the alpha blocker has been initiated.Administration of beta blockers alone in the setting of pheochromocytoma has been associated with a paradoxical increase in blood pressure due to the attenuation of beta-mediated vasodilatation in skeletal muscle. Thyrotoxicosis: Metoprolol tartrate may mask certain clinical signs (e.g., tachycardia) of hyperthyroidism. Avoid abrupt withdrawal of beta blockade, which might precipitate a thyroid storm.

OVERDOSAGE

Acute Toxicity Several cases of overdosage have been reported, some leading to death. Oral LD50’s (mg/kg): mice, 1158 to 2460; rats, 3090 to 4670. Signs and Symptoms Potential signs and symptoms associated with overdosage with metoprolol are bradycardia, hypotension, bronchospasm, myocardial infarction, cardiac failure and death. Management There is no specific antidote. In general, patients with acute or recent myocardial infarction may be more hemodynamically unstable than other patients and should be treated accordingly (see WARNINGS, Myocardial Infarction).On the basis of the pharmacologic actions of metoprolol tartrate, the following general measures should be employed: Elimination of the Drug: Gastric lavage should be performed. Other clinical manifestations of overdose should be managed symptomatically based on modern methods of intensive care. Hypotension: A vasopressor should be administered, e.g., levarterenol or dopamine. Bronchospasm: A beta -stimulating agent and/or a theophylline derivative should be 2 administered. Cardiac Failure: A digitalis glycoside and diuretic should be administered. In shock resulting from inadequate cardiac contractility, administration of dobutamine, isoproterenol, or glucagon may be considered.

DESCRIPTION

Metoprolol tartrate, USP is a selective beta1 -adrenoreceptor blocking agent, available as 25, 50 and 100 mg tablets for oral administration. Metoprolol tartrate is (±)-1-(isopropylamino)-3-[p- (2-methoxyethyl) phenoxy]-2-propanol (2:1) dextro-tartrate salt, and its structural formula is: Metoprolol tartrate USP is a white, practically odorless, crystalline powder with a molecular weight of 684.82. It is very soluble in water; freely soluble in methylene chloride, in chloroform, and in alcohol; slightly soluble in acetone; and insoluble in ether. Inactive Ingredients. Tablets contain colloidal silicon dioxide, hydroxypropyl methylcellulose,monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate, povidone, sodium starch glycolate, talc and titanium dioxide. metoprolol-1

HOW SUPPLIED

Product: 50090-1273 NDC: 50090-1273-0 180 TABLET in a BOTTLE NDC: 50090-1273-1 60 TABLET in a BOTTLE NDC: 50090-1273-2 90 TABLET in a BOTTLE NDC: 50090-1273-3 30 TABLET in a BOTTLE

INDICATIONS AND USAGE

Hypertension Metoprolol tartrate tablets are indicated for the treatment of hypertension. They may be used alone or in combination with other antihypertensive agents. Angina Pectoris Metoprolol tartrate tablets are indicated in the long-term treatment of angina pectoris. Myocardial Infarction Metoprolol tartrate tablets are indicated in the treatment of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality when used alone ot in conjunction with intravenous metoprolol tartrate. Oral metoprolol tartrate can be initiated after intravenous metoprolol tartrate therapy, or alternatively, oral treatment can begin within 3 to 10 days of acute event(see DOSAGE AND ADMINISTRATION, CONTRAINDICATIONS, and WARNINGS).

DOSAGE AND ADMINISTRATION

Hypertension The dosage of metoprolol tartrate tablets should be individualized. Metoprolol tartrate tablets should be taken with or immediately following meals. The usual initial dosage of Metoprolol tartrate tablets is 100 mg daily in single or divided doses, whether used alone or added to a diuretic. The dosage may be increased at weekly (or longer) intervals until optimum blood pressure reduction is achieved. In general, the maximum effect of any given dosage level will be apparent after 1 week of therapy. The effective dosage range of Metoprolol tartrate tablets is 100 to 450 mg per day. Dosages above 450 mg per day have not been studied. While once-daily dosing is effective and can maintain a reduction in blood pressure throughout the day, lower doses (especially 100 mg) may not maintain a full effect at the end of the 24-hour period, and larger or more frequent daily doses may be required. This can be evaluated by measuring blood pressure near the end of the dosing interval to determine whether satisfactory control is being maintained throughout the day. Beta selectivity diminishes as the dose of metoprolol is increased. Angina Pectoris The dosage of metoprolol tartrate tablets should be individualized. Metoprolol tartrate tablets should be taken with or immediately following meals. The usual initial dosage of Metoprolol tartrate tablets is 100 mg daily, given in two divided doses. The dosage may be gradually increased at weekly intervals until optimum clinical response has been obtained or there is pronounced slowing of the heart rate. The effective dosage range of Metoprolol tartrate tablets is 100 to 400 mg per day. Dosages above 400 mg per day have not been studied. If treatment is to be discontinued, the dosage should be reduced gradually over a period of 1 to 2 weeks (see WARNINGS). Myocardial Infarction Early Treatment: During the early phase of definite or suspected acute myocardial infarction, treatment with metoprolol tartrate can be initiated as soon as possible after the patient’s arrival in the hospital. Such treatment should be initiated in a coronary care or similar unit immediately after the patient’s hemodynamic condition has stabilized. Treatment in this early phase should begin with the intravenous administration of three bolus injections of 5 mg of metoprolol tartrate each; the injections should be given at approximately 2-minute intervals. During the intravenous administration of metoprolol, blood pressure, heart rate,and electrocardiogram should be carefully monitored.In patients who tolerate the full intravenous dose (15 mg), metoprolol tartrate tablets, 50 mg every 6 hours, should be initiated 15 minutes after the last intravenous dose and continued for 48 hours. Thereafter, patients should receive a maintenance dosage of 100 mg twice daily (see Late Treatment below). Patients who appear not to tolerate the full intravenous dose should be started on metoprolol tartrate tablets either 25 mg or 50 mg every 6 hours (depending on the degree of intolerance) 15 minutes after the last intravenous dose or as soon as their clinical condition allows. In patients with severe intolerance, treatment with metoprolol should be discontinued (see WARNINGS). Late Treatment: Patients with contraindications to treatment during the early phase of suspected or definite myocardial infarction, patients who appear not to tolerate the full early treatment, and patients in whom the physician wishes to delay therapy for any other reason should be started on metoprolol tartrate tablets, 100 mg twice daily, as soon as their clinical condition allows. Therapy should be continued for at least 3 months. Although the efficacy of metoprolol beyond 3 months has not been conclusively established, data from studies with other beta blockers suggest that treatment should be continued for 1 to 3 years. Special populations Pediatric patients: No pediatric studies have been performed. The safety and efficacy of Metoprolol Tartrate in pediatric patients have not been established. Renal impairment: No dose adjustment of Metoprolol Tartrate is required in patients with renal impairment. Hepatic impairment: Metoprolol Tartrate blood levels are likely to increase substantially in patients with hepatic impairment. Therefore, Metoprolol Tartrate should be initiated at low doses with cautious gradual dose titration according to clinical response. Geriatric patients (>65 years): In general, use a low initial starting dose in elderly patients given their greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Method of administration: For oral treatment, the tablets should be swallowed un-chewed with a glass of water. Metoprolol Tartrate should always be taken in standardized relation with meals. If the physician asks the patient to take Metoprolol Tartrate either before breakfast or with breakfast, then the patient should continue taking Metoprolol Tartrate with the same schedule during the course of therapy.

Cyclobenzaprine hydrochloride 10 MG Oral Tablet

Generic Name: CYCLOBENZAPRINE HYDROCHLORIDE
Brand Name: CYCLOBENZAPRINE HYDROCHLORIDE
  • Substance Name(s):
  • CYCLOBENZAPRINE HYDROCHLORIDE

WARNINGS

Serotonin Syndrome The development of a potentially life-threatening serotonin syndrome has been reported with Cyclobenzaprine Hydrochloride when used in combination with other drugs, such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), tramadol, bupropion, meperidine, verapamil, or (MAO) inhibitors. The concomitant use of Cyclobenzaprine Hydrochloride with MAO inhibitors is contraindicated (see CONTRAINDICATIONS). Serotonin syndrome symptoms may include mental status changes (e.g., confusion, agitation, hallucinations), autonomic instability (e.g., diaphoresis, tachycardia, labile blood pressure, hyperthermia), neuromuscular abnormalities (e.g., tremor, ataxia, hyperreflexia, clonus, muscle rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Treatment with Cyclobenzaprine Hydrochloride and any concomitant serotonergic agents should be discontinued immediately if the above reactions occur and supportive symptomatic treatment should be initiated. If concomitant treatment with Cyclobenzaprine Hydrochloride and other serotonergic drugs is clinically warranted, careful observation is advised, particularly during treatment initiation or dose increases (see PRECAUTIONS, Drug Interactions). Cyclobenzaprine is closely related to the tricyclic antidepressants, e.g., amitriptyline and imipramine. In short term studies for indications other than muscle spasm associated with acute musculoskeletal conditions, and usually at doses somewhat greater than those recommended for skeletal muscle spasm, some of the more serious central nervous system reactions noted with the tricyclic antidepressants have occurred (see , below, and ADVERSE REACTIONS). Tricyclic antidepressants have been reported to produce arrhythmias, sinus tachycardia, prolongation of the conduction time leading to myocardial infarction and stroke. Cyclobenzaprine HCl may enhance the effects of alcohol, barbiturates, and other CNS depressants.

OVERDOSAGE

Although rare, deaths may occur from overdosage with cyclobenzaprine HCl. Multiple drug ingestion (including alcohol) is common in deliberate cyclobenzaprine overdose. As management of overdose is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. Signs and symptoms of toxicity may develop rapidly after cyclobenzaprine overdose; therefore, hospital monitoring is required as soon as possible. The acute oral LD50 of cyclobenzaprine HCl is approximately 338 and 425 mg/kg in mice and rats, respectively. Manifestations The most common effects associated with cyclobenzaprine overdose are drowsiness and tachycardia. Less frequent manifestations include tremor, agitation, coma, ataxia, hypertension, slurred speech, confusion, dizziness, nausea, vomiting, and hallucinations. Rare but potentially critical manifestations of overdose are cardiac arrest, chest pain, cardiac dysrhythmias, severe hypotension, seizures, and neuroleptic malignant syndrome. Changes in the electrocardiogram, particularly in QRS axis or width, are clinically significant indicators of cyclobenzaprine toxicity. Other potential effects of overdosage include any of the symptoms listed under ADVERSE REACTIONS. Management General As management of overdose is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. In order to protect against the rare but potentially critical manifestations described above, obtain an ECG and immediately initiate cardiac monitoring. Protect the patient’s airway, establish an intravenous line and initiate gastric decontamination. Observation with cardiac monitoring and observation for signs of CNS or respiratory depression, hypotension, cardiac dysrhythmias and/or conduction blocks, and seizures is necessary. If signs of toxicity occur at any time during this period, extended monitoring is required. Monitoring of plasma drug levels should not guide management of the patient. Dialysis is probably of no value because of low plasma concentrations of the drug. Gastrointestinal Decontamination All patients suspected of an overdose with cyclobenzaprine HCl should receive gastrointestinal decontamination. This should include large volume gastric lavage followed by activated charcoal. If consciousness is impaired, the airway should be secured prior to lavage and emesis is contraindicated. Cardiovascular A maximal limb-lead QRS duration of ≥0.10 seconds may be the best indication of the severity of the overdose. Serum alkalinization, to a pH of 7.45 to 7.55, using intravenous sodium bicarbonate and hyperventilation (as needed), should be instituted for patients with dysrhythmias and/or QRS widening. A pH > 7.60 or a pCO2< 20 mmHg is undesirable. Dysrhythmias unresponsive to sodium bicarbonate therapy/hyperventilation may respond to lidocaine, bretylium or phenytoin. Type 1A and 1C antiarrhythmics are generally contraindicated (e.g., quinidine, disopyramide, and procainamide). CNS In patients with CNS depression, early intubation is advised because of the potential for abrupt deterioration. Seizures should be controlled with benzodiazepines or, if these are ineffective, other anticonvulsants (e.g. phenobarbital, phenytoin). Physostigmine is not recommended except to treat life-threatening symptoms that have been unresponsive to other therapies, and then only in close consultation with a poison control center. Psychiatric Follow-Up Since overdosage is often deliberate, patients may attempt suicide by other means during the recovery phase. Psychiatric referral may be appropriate. Pediatric Management The principles of management of child and adult overdosages are similar. It is strongly recommended that the physician contact the local poison control center for specific pediatric treatment.

DESCRIPTION

Cyclobenzaprine hydrochloride is a white, crystalline tricyclic amine salt. It has a melting point of 217°C, and a pKa of 8.47 at 25°C. It is freely soluble in water and alcohol, sparingly soluble in isopropanol, and insoluble in hydrocarbon solvents. If aqueous solutions are made alkaline, the free base separates. Cyclobenzaprine HCl is designated chemically as 3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-1-propanamine hydrochloride. Cyclobenzaprine hydrochloride tablets, USP are available for oral administration as 5 mg, 7.5 mg and 10 mg tablets. Cyclobenzaprine hydrochloride 5 mg, 7.5 mg and 10 mg tablets contain the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, dibasic calcium phosphate, hydroxypropyl cellulose, hypromellose, polyethylene glycol, magnesium stearate, microcrystalline cellulose, and titanium dioxide.

INDICATIONS AND USAGE

INDICATIONS & USAGE Cyclobenzaprine HCl is indicated as an adjunct to rest and physical therapy for relief of muscle spasm associated with acute, painful musculoskeletal conditions. Improvement is manifested by relief of muscle spasm and its associated signs and symptoms, namely, pain, tenderness, limitation of motion, and restriction in activities of daily living. Cyclobenzaprine HCl should be used only for short periods (up to two or three weeks) because adequate evidence of effectiveness for more prolonged use is not available and because muscle spasm associated with acute, painful musculoskeletal conditions is generally of short duration and specific therapy for longer periods is seldom warranted. Cyclobenzaprine HCl has not been found effective in the treatment of spasticity associated with cerebral or spinal cord disease, or in children with cerebral palsy.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION For most patients, the recommended dose of cyclobenzaprine HCl is 5 mg three times a day. Based on individual patient response, the dose may be increased to either 7.5 mg or 10 mg three times a day. Use of cyclobenzaprine HCl for periods longer than two or three weeks is not recommended. (See INDICATIONS AND USAGE.) Less frequent dosing should be considered for hepatically impaired or elderly patients (see PRECAUTIONS, Impaired Hepatic Function, and Use in the Elderly).

Diazepam 10 MG Oral Tablet

Generic Name: DIAZEPAM
Brand Name: DIAZEPAM
  • Substance Name(s):
  • DIAZEPAM

WARNINGS

SECTION Diazepam is not recommended in the treatment of psychotic patients and should not be employed instead of appropriate treatment. Since diazepam has a central nervous system depressant effect, patients should be advised against the simultaneous ingestion of alcohol and other CNS-depressant drugs during diazepam therapy. As with other agents that have anticonvulsant activity, when diazepam is used as an adjunct in treating convulsive disorders, the possibility of an increase in the frequency and/or severity of grand mal seizures may require an increase in the dosage of standard anticonvulsant medication. Abrupt withdrawal of diazepam in such cases may also be associated with a temporary increase in the frequency and/or severity of seizures. Pregnancy An increased risk of congenital malformations and other developmental abnormalities associated with the use of benzodiazepine drugs during pregnancy has been suggested. There may also be non-teratogenic risks associated with the use of benzodiazepines during pregnancy. There have been reports of neonatal flaccidity, respiratory and feeding difficulties, and hypothermia in children born to mothers who have been receiving benzodiazepines late in pregnancy. In addition, children born to mothers receiving benzodiazepines on a regular basis late in pregnancy may be at some risk of experiencing withdrawal symptoms during the postnatal period. Diazepam has been shown to be teratogenic in mice and hamsters when given orally at daily doses of 100 mg/kg or greater (approximately eight times the maximum recommended human dose [MRHD=1 mg/kg/day] or greater on a mg/m2 basis). Cleft palate and encephalopathy are the most common and consistently reported malformations produced in these species by administration of high, maternally toxic doses of diazepam during organogenesis. Rodent studies have indicated that prenatal exposure to diazepam doses similar to those used clinically can produce long-term changes in cellular immune responses, brain neurochemistry, and behavior. In general, the use of diazepam in women of childbearing potential, and more specifically during known pregnancy, should be considered only when the clinical situation warrants the risk to the fetus. The possibility that a woman of childbearing potential may be pregnant at the time of institution of therapy should be considered. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Patients should also be advised that if they become pregnant during therapy or intend to become pregnant they should communicate with their physician about the desirability of discontinuing the drug. Labor and Delivery Special care must be taken when diazepam is used during labor and delivery, as high single doses may produce irregularities in the fetal heart rate and hypotonia, poor sucking, hypothermia, and moderate respiratory depression in the neonates. With newborn infants it must be remembered that the enzyme system involved in the breakdown of the drug is not yet fully developed (especially in premature infants). Nursing Mothers Diazepam passes into breast milk. Breastfeeding is therefore not recommended in patients receiving diazepam.

OVERDOSAGE

SECTION Overdose of benzodiazepines is usually manifested by central nervous system depression ranging from drowsiness to coma. In mild cases, symptoms include drowsiness, confusion, and lethargy. In more serious cases, symptoms may include ataxia, diminished reflexes, hypotonia, hypotension, respiratory depression, coma (rarely), and death (very rarely). Overdose of benzodiazepines in combination with other CNS depressants (including alcohol) may be fatal and should be closely monitored. Management of Overdosage Following overdose with oral benzodiazepines, general supportive measures should be employed including the monitoring of respiration, pulse, and blood pressure. Vomiting should be induced (within 1 hour) if the patient is conscious. Gastric lavage should be undertaken with the airway protected if the patient is unconscious. Intravenous fluids should be administered. If there is no advantage in emptying the stomach, activated charcoal should be given to reduce absorption. Special attention should be paid to respiratory and cardiac function in intensive care. General supportive measures should be employed, along with intravenous fluids, and an adequate airway maintained. Should hypotension develop, treatment may include intravenous fluid therapy, repositioning, judicious use of vasopressors appropriate to the clinical situation, if indicated, and other appropriate countermeasures. Dialysis is of limited value. As with the management of intentional overdosage with any drug, it should be considered that multiple agents may have been ingested. Flumazenil, a specific benzodiazepine-receptor antagonist, is indicated for the complete or partial reversal of the sedative effects of benzodiazepines and may be used in situations when an overdose with a benzodiazepine is known or suspected. Prior to the administration of flumazenil, necessary measures should be instituted to secure airway, ventilation and intravenous access. Flumazenil is intended as an adjunct to, not as a substitute for, proper management of benzodiazepine overdose. Patients treated with flumazenil should be monitored for resedation, respiratory depression and other residual benzodiazepine effects for an appropriate period after treatment. The prescriber should be aware of a risk of seizure in association with flumazenil treatment, particularly in long-term benzodiazepine users and in cyclic antidepressant overdose. Caution should be observed in the use of flumazenil in epileptic patients treated with benzodiazepines. The complete flumazenil package insert, including CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS, should be consulted prior to use. Withdrawal symptoms of the barbiturate type have occurred after the discontinuation of benzodiazepines (see DRUG ABUSE AND DEPENDENCE

DESCRIPTION

SECTION Diazepam is a benzodiazepine derivative. The chemical name of diazepam is 7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one. It is a colorless to light yellow crystalline compound, insoluble in water. The empirical formula is C16H13ClN2O and the molecular weight is 284.75. The structural formula is as follows: Diazepam is available for oral administration as tablets containing 2 mg, 5 mg or 10 mg diazepam. In addition to the active ingredient diazepam, each tablet contains the following inactive ingredients: calcium stearate, colloidal silicon dioxide, croscarmellose sodium, lactose monohydrate and microcrystalline cellulose with the following dyes: 5-mg tablets contain D&C Yellow #10 aluminum lake; 10-mg tablets contain FD&C Blue #1 aluminum lake. Diazepam 2-mg tablets contain no dye. image description

HOW SUPPLIED

SECTION For oral administration, Diazepam Tablets, USP are supplied as: 2 mg- white, flat-faced beveled edge scored tablets, debossed “2682” on one side and “V” on the reverse side, supplied in bottles of 10, 30, 60, 100, 500, 1000 and 5000. 5 mg- yellow, flat-faced beveled edge scored tablets, debossed “2683” on one side and “V” on the reverse side, supplied in bottles of 10, 30, 60, 90, 100, 120, 500, 1000 and 5000. 10 mg- blue, flat-faced beveled edge scored tablets, debossed “2684” on one side and “V” on the reverse side, supplied in bottles of 10, 30, 60, 90, 100, 120, 500, 1000 and 5000.

INDICATIONS AND USAGE

INDICATIONS & USAGE SECTION Diazepam tablets are indicated for the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. In acute alcohol withdrawal, diazepam may be useful in the symptomatic relief of acute agitation, tremor, impending or acute delirium tremens and hallucinosis. Diazepam is a useful adjunct for the relief of skeletal muscle spasm due to reflex spasm to local pathology (such as inflammation of the muscles or joints, or secondary to trauma); spasticity caused by upper motor neuron disorders (such as cerebral palsy and paraplegia); athetosis; and stiff-man syndrome. Oral diazepam may be used adjunctively in convulsive disorders, although it has not proved useful as the sole therapy. The effectiveness of diazepam in long-term use, that is, more than 4 months, has not been assessed by systematic clinical studies. The physician should periodically reassess the usefulness of the drug for the individual patient.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION SECTION Dosage should be individualized for maximum beneficial effect. While the usual daily dosages given below will meet the needs of most patients, there will be some who may require higher doses. In such cases, dosage should be increased cautiously to avoid adverse effects. ADULTS: USUAL DAILY DOSE: Management of Anxiety Disorders and Relief of Symptoms of Anxiety. Depending upon severity of symptoms – 2 mg to 10 mg, 2 to 4 times daily Symptomatic Relief in Acute Alcohol Withdrawal. 10 mg, 3 or 4 times during the first 24 hours, reducing to 5 mg, 3 or 4 times daily as needed Adjunctively for Relief of Skeletal Muscle Spasm. 2 mg to 10 mg, 3 or 4 times daily Adjunctively in Convulsive Disorders. 2 mg to 10 mg, 2 to 4 times daily Geriatric Patients, or in the presence of debilitating disease. 2 mg to 2½ mg, 1 or 2 times daily initially; increase gradually as needed and tolerated PEDIATRIC PATIENTS: Because of varied responses to CNS-acting drugs, initiate therapy with lowest dose and increase as required. Not for use in pediatric patients under 6 months. 1 mg to 2½ mg, 3 or 4 times daily initially; increase gradually as needed and tolerated

Buprenorphine 2 MG / Naloxone 0.5 MG Sublingual Tablet

Generic Name: BUPRENORPHINE AND NALOXONE
Brand Name: Suboxone
  • Substance Name(s):
  • NALOXONE HYDROCHLORIDE
  • BUPRENORPHINE HYDROCHLORIDE

DRUG INTERACTIONS

7 Monitor patients starting or ending CYP3A4 inhibitors or inducers for potential over or under dosing. (7.1) Use caution in prescribing SUBOXONE sublingual film for patients receiving benzodiazepines or other CNS depressants and warn patients against concomitant self-administration/misuse. (7.3) 7.1 Cytochrome P-450 3A4 (CYP3A4) Inhibitors and Inducers Buprenorphine is metabolized to norbuprenorphine primarily by cytochrome CYP3A4; therefore, potential interactions may occur when SUBOXONE sublingual film is given concurrently with agents that affect CYP3A4 activity. The concomitant use of SUBOXONE sublingual film with CYP3A4 inhibitors (e.g., azole antifungals such as ketoconazole, macrolide antibiotics such as erythromycin, and HIV protease inhibitors) should be monitored and may require dose-reduction of one or both agents. The interaction of buprenorphine with CYP3A4 inducers has not been studied; therefore, it is recommended that patients receiving SUBOXONE sublingual film be monitored for signs and symptoms of opioid withdrawal if inducers of CYP3A4 (e.g., efavirenz, phenobarbital, carbamazepine, phenytoin, rifampicin) are co-administered [see Clinical Pharmacology (12.3)]. 7.2 Antiretrovirals Three classes of antiretroviral agents have been evaluated for CYP3A4 interactions with buprenorphine. Nucleoside reverse transcriptase inhibitors (NRTIs) do not appear to induce or inhibit the P450 enzyme pathway, thus no interactions with buprenorphine are expected. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are metabolized principally by CYP3A4. Efavirenz, nevirapine and etravirine are known CYP3A inducers whereas delaviridine is a CYP3A inhibitor. Significant pharmacokinetic interactions between NNRTIs (e.g., efavirenz and delavirdine) and buprenorphine have been shown in clinical studies, but these pharmacokinetic interactions did not result in any significant pharmacodynamic effects. It is recommended that patients who are on chronic buprenorphine treatment have their dose monitored if NNRTIs are added to their treatment regimen. Studies have shown some antiretroviral protease inhibitors (PIs) with CYP3A4 inhibitory activity (nelfinavir, lopinavir/ritonavir, ritonavir) have little effect on buprenorphine pharmacokinetic and no significant pharmacodynamic effects. Other PIs with CYP3A4 inhibitory activity (atazanavir and atazanavir/ritonavir) resulted in elevated levels of buprenorphine and norbuprenorphine and patients in one study reported increased sedation. Symptoms of opioid excess have been found in post-marketing reports of patients receiving buprenorphine and atazanavir with and without ritonavir concomitantly. Monitoring of patients taking buprenorphine and atazanavir with and without ritonavir is recommended, and dose reduction of buprenorphine may be warranted. 7.3 Benzodiazepines There have been a number of post-marketing reports regarding coma and death associated with the concomitant use of buprenorphine and benzodiazepines. In many, but not all, of these cases, buprenorphine was misused by self-injection. Preclinical studies have shown that the combination of benzodiazepines and buprenorphine altered the usual ceiling effect on buprenorphine-induced respiratory depression, making the respiratory effects of buprenorphine appear similar to those of full opioid agonists. SUBOXONE sublingual film should be prescribed with caution to patients taking benzodiazepines or other drugs that act on the CNS, regardless of whether these drugs are taken on the advice of a physician or are being abused/misused. Patients should be warned that it is extremely dangerous to self-administer non-prescribed benzodiazepines while taking SUBOXONE sublingual film, and should also be cautioned to use benzodiazepines concurrently with SUBOXONE sublingual film only as directed by their physician.

OVERDOSAGE

10 The manifestations of acute overdose include pinpoint pupils, sedation, hypotension, respiratory depression, and death. In the event of overdose, the respiratory and cardiac status of the patient should be monitored carefully. When respiratory or cardiac functions are depressed, primary attention should be given to the re-establishment of adequate respiratory exchange through provision of a patent airway and institution of assisted or controlled ventilation. Oxygen, IV fluids, vasopressors, and other supportive measures should be employed as indicated. In the case of overdose, the primary management should be the re-establishment of adequate ventilation with mechanical assistance of respiration, if required. Naloxone may be of value for the management of buprenorphine overdose. Higher than normal doses and repeated administration may be necessary.

DESCRIPTION

11 SUBOXONE (buprenorphine and naloxone) sublingual film is an orange film, imprinted with a logo identifying the product and strength in white ink. It contains buprenorphine HCl, a mu-opioid receptor partial agonist and a kappa-opioid receptor antagonist, and naloxone HCl dihydrate, an opioid receptor antagonist, at a ratio of 4:1 (ratio of free bases). It is intended for sublingual administration and is available in two dosage strengths, 2 mg buprenorphine with 0.5 mg naloxone and 8 mg buprenorphine with 2 mg naloxone. Each sublingual film also contains polyethylene oxide, hydroxypropyl methylcellulose, maltitol, acesulfame potassium, lime flavor, citric acid, sodium citrate, FD&C yellow #6, and white ink. Chemically, buprenorphine HCl is (2S)-2-[17-Cyclopropylmethyl-4,5α-epoxy-3-hydroxy-6-methoxy-6α,14-ethano-14α-morphinan-7α-yl]-3,3-dimethylbutan-2-ol hydrochloride. It has the following chemical structure: Buprenorphine HCl has the molecular formula C29 H41 NO4 • HCl and the molecular weight is 504.10. It is a white or off-white crystalline powder, sparingly soluble in water, freely soluble in methanol, soluble in alcohol, and practically insoluble in cyclohexane. Chemically, naloxone HCl dihydrate is 17-Allyl-4,5 α -epoxy-3, 14-dihydroxymorphinan-6-one hydrochloride dihydrate. It has the following chemical structure: Naloxone hydrochloride dihydrate has the molecular formula C19H21NO4 • HCl • 2H20 and the molecular weight is 399.87. It is a white to slightly off-white powder and is freely soluble in water, soluble in alcohol, and practically insoluble in toluene and ether.

GERIATRIC USE

8.5 Geriatric Use Clinical studies of SUBOXONE sublingual film, SUBOXONE (buprenorphine and naloxone) sublingual tablets, or SUBUTEX (buprenorphine) sublingual tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently than younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

DOSAGE FORMS AND STRENGTHS

3 SUBOXONE sublingual film is supplied as an orange rectangular sublingual film with a white printed logo in two dosage strengths: buprenorphine/naloxone 2 mg/0.5 mg, and buprenorphine/naloxone 8 mg/2 mg. Sublingual film: 2 mg buprenorphine with 0.5 mg naloxone and 8 mg buprenorphine with 2 mg naloxone. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action SUBOXONE sublingual film contains buprenorphine and naloxone. Buprenorphine is a partial agonist at the mu-opioid receptor and an antagonist at the kappa-opioid receptor. Naloxone is a potent antagonist at mu- opioid receptors and produces opioid withdrawal signs and symptoms in individuals physically dependent on full opioid agonists when administered parenterally.

INDICATIONS AND USAGE

1 SUBOXONE sublingual film is indicated for maintenance treatment of opioid dependence and should be used as part of a complete treatment plan to include counseling and psychosocial support. Under the Drug Addiction Treatment Act (DATA) codified at 21 U.S.C. 823(g), prescription use of this product in the treatment of opioid dependence is limited to physicians who meet certain qualifying requirements, and who have notified the Secretary of Health and Human Services (HHS) of their intent to prescribe this product for the treatment of opioid dependence and have been assigned a unique identification number that must be included on every prescription. SUBOXONE sublingual film is indicated for maintenance treatment of opioid dependence. Prescription use of this product is limited under the Drug Addiction Treatment Act. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of SUBOXONE sublingual film have not been established in pediatric patients.

PREGNANCY

8.1 Pregnancy Pregnancy Category C. There are no adequate and well-controlled studies of SUBOXONE sublingual film or buprenorphine/naloxone in pregnant women. SUBOXONE sublingual film should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Teratogenic Effects: Effects on embryo-fetal development were studied in Sprague-Dawley rats and Russian white rabbits following oral (1:1) and intramuscular (IM) (3:2) administration of mixtures of buprenorphine and naloxone. Following oral administration to rats and rabbits, no teratogenic effects were observed at buprenorphine doses up to 250 mg/kg/day and 40 mg/kg/day, respectively (estimated exposure approximately 150 times and 50 times, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). No definitive drug-related teratogenic effects were observed in rats and rabbits at IM doses up to 30 mg/kg/day (estimated exposure approximately 20 times and 35 times, respectively, the recommended human daily dose of 16 mg on a mg/m2 basis). Acephalus was observed in one rabbit fetus from the low-dose group and omphalocele was observed in two rabbit fetuses from the same litter in the mid-dose group; no findings were observed in fetuses from the high-dose group. Following oral administration of buprenorphine to rats, dose-related post-implantation losses, evidenced by increases in the numbers of early resorptions with consequent reductions in the numbers of fetuses, were observed at doses of 10 mg/kg/day or greater (estimated exposure approximately 6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). In the rabbit, increased post-implantation losses occurred at an oral dose of 40 mg/kg/day. Following IM administration in the rat and the rabbit, post-implantation losses, as evidenced by decreases in live fetuses and increases in resorptions, occurred at 30 mg/kg/day. Buprenorphine was not teratogenic in rats or rabbits after IM or subcutaneous (SC) doses up to 5 mg/kg/day (estimated exposure was approximately 3 and 6 times, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), after IV doses up to 0.8 mg/kg/day (estimated exposure was approximately 0.5 times and equal to, respectively, the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), or after oral doses up to 160 mg/kg/day in rats (estimated exposure was approximately 95 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) and 25 mg/kg/day in rabbits (estimated exposure was approximately 30 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Significant increases in skeletal abnormalities (e.g., extra thoracic vertebra or thoraco-lumbar ribs) were noted in rats after SC administration of 1 mg/kg/day and up (estimated exposure was approximately 0.6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), but were not observed at oral doses up to 160 mg/kg/day. Increases in skeletal abnormalities in rabbits after IM administration of 5 mg/kg/day (estimated exposure was approximately 6 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) or oral administration of 1 mg/kg/day or greater (estimated exposure was approximately equal to the recommended human daily sublingual dose of 16 mg on a mg/m2 basis) were not statistically significant. In rabbits, buprenorphine produced statistically significant pre-implantation losses at oral doses of 1 mg/kg/day or greater and post-implantation losses that were statistically significant at IV doses of 0.2 mg/kg/day or greater (estimated exposure approximately 0.3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Non-teratogenic Effects: Dystocia was noted in pregnant rats treated intramuscularly with buprenorphine 5 mg/kg/day (approximately 3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Fertility, peri-, and post-natal development studies with buprenorphine in rats indicated increases in neonatal mortality after oral doses of 0.8 mg/kg/day and up (approximately 0.5 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), after IM doses of 0.5 mg/kg/day and up (approximately 0.3 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis), and after SC doses of 0.1 mg/kg/day and up (approximately 0.06 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis). Delays in the occurrence of righting reflex and startle response were noted in rat pups at an oral dose of 80 mg/kg/day (approximately 50 times the recommended human daily sublingual dose of 16 mg on a mg/m2 basis).

NUSRING MOTHERS

8.3 Nursing Mothers Buprenorphine passes into breast milk. Breast-feeding is not advised in mothers treated with buprenorphine products. An apparent lack of milk production during general reproduction studies with buprenorphine in rats caused decreased viability and lactation indices.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Buprenorphine can be abused in a similar manner to other opioids. Clinical monitoring appropriate to the patient’s level of stability is essential. Multiple refills should not be prescribed early in treatment or without appropriate patient follow-up visits. (5.1) Significant respiratory depression and death have occurred in association with buprenorphine, particularly when taken by the intravenous (IV) route in combination with benzodiazepines or other CNS depressants (including alcohol). (5.2) Consider dose reduction of CNS depressants, SUBOXONE sublingual film or both in situations of concomitant prescription. (5.3) Store SUBOXONE sublingual film safely out of the sight and reach of children. Buprenorphine can cause severe, possibly fatal, respiratory depression in children. (5.4) Chronic administration produces opioid-type physical dependence. Abrupt discontinuation or rapid dose taper may result in opioid withdrawal syndrome. (5.5) Monitor liver function tests prior to initiation and during treatment and evaluate suspected hepatic events. (5.6) Do not administer SUBOXONE sublingual film to patients with known hypersensitivity to buprenorphine or naloxone. (5.7) A marked and intense opioid withdrawal syndrome is highly likely to occur with parenteral misuse of SUBOXONE sublingual film by individuals physically dependent on full opioid agonists or by sublingual administration before the agonist effects of other opioids have subsided. (5.8) Neonatal withdrawal has been reported following use of buprenorphine by the mother during pregnancy. (5.9) SUBOXONE sublingual film is not appropriate as an analgesic. There have been reported deaths of opioid naïve individuals who received a 2 mg sublingual dose. (5.10) Caution patients about the risk of driving or operating hazardous machinery. (5.11) 5.1 Abuse Potential Buprenorphine can be abused in a manner similar to other opioids, legal or illicit. Prescribe and dispense buprenorphine with appropriate precautions to minimize risk of misuse, abuse, or diversion, and ensure appropriate protection from theft, including in the home. Clinical monitoring appropriate to the patient’s level of stability is essential. Multiple refills should not be prescribed early in treatment or without appropriate patient follow-up visits. [see Drug Abuse and Dependence (9.2)]. 5.2 Respiratory Depression Buprenorphine, particularly when taken by the IV route, in combination with benzodiazepines or other CNS depressants (including alcohol), has been associated with significant respiratory depression and death. Many, but not all post-marketing reports regarding coma and death associated with the concomitant use of buprenorphine and benzodiazepines, involved misuse by self-injection. Deaths have also been reported in association with concomitant administration of buprenorphine with other depressants such as alcohol or other CNS depressant drugs. Patients should be warned of the potential danger of self-administration of benzodiazepines or other depressants while under treatment with SUBOXONE sublingual film. [see Drug Interactions (7.3)] In the case of overdose, the primary management should be the re-establishment of adequate ventilation with mechanical assistance of respiration, if required. Naloxone may be of value for the management of buprenorphine overdose. Higher than normal doses and repeated administration may be necessary. SUBOXONE sublingual film should be used with caution in patients with compromised respiratory function (e.g., chronic obstructive pulmonary disease, cor pulmonale, decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression). 5.3 CNS Depression Patients receiving buprenorphine in the presence of opioid analgesics, general anesthetics, benzodiazepines, phenothiazines, other tranquilizers, sedative/hypnotics or other CNS depressants (including alcohol) may exhibit increased CNS depression. Consider dose reduction of CNS depressants, SUBOXONE sublingual film, or both in situations of concomitant prescription. [see Drug Interactions (7.3)]. 5.4 Unintentional Pediatric Exposure Buprenorphine can cause severe, possibly fatal, respiratory depression in children who are accidentally exposed to it. Store buprenorphine-containing medications safely out of the sight and reach of children and destroy any unused medication appropriately [see Disposal of Unused SUBOXONE Sublingual Film (17.2)]. 5.5 Dependence Buprenorphine is a partial agonist at the mu-opioid receptor and chronic administration produces physical dependence of the opioid type, characterized by withdrawal signs and symptoms upon abrupt discontinuation or rapid taper. The withdrawal syndrome is typically milder than seen with full agonists and may be delayed in onset. Buprenorphine can be abused in a manner similar to other opioids. This should be considered when prescribing or dispensing buprenorphine in situations when the clinician is concerned about an increased risk of misuse, abuse, or diversion. [see Drug Abuse and Dependence (9.3)] 5.6 Hepatitis, Hepatic Events Cases of cytolytic hepatitis and hepatitis with jaundice have been observed in individuals receiving buprenorphine in clinical trials and through post-marketing adverse event reports. The spectrum of abnormalities ranges from transient asymptomatic elevations in hepatic transaminases to case reports of death, hepatic failure, hepatic necrosis, hepatorenal syndrome, and hepatic encephalopathy. In many cases, the presence of pre-existing liver enzyme abnormalities, infection with hepatitis B or hepatitis C virus, concomitant usage of other potentially hepatotoxic drugs, and ongoing injecting drug use may have played a causative or contributory role. In other cases, insufficient data were available to determine the etiology of the abnormality. Withdrawal of buprenorphine has resulted in amelioration of acute hepatitis in some cases; however, in other cases no dose reduction was necessary. The possibility exists that buprenorphine had a causative or contributory role in the development of the hepatic abnormality in some cases. Liver function tests, prior to initiation of treatment is recommended to establish a baseline. Periodic monitoring of liver function during treatment is also recommended. A biological and etiological evaluation is recommended when a hepatic event is suspected. Depending on the case, SUBOXONE sublingual film may need to be carefully discontinued to prevent withdrawal signs and symptoms and a return by the patient to illicit drug use, and strict monitoring of the patient should be initiated. 5.7 Allergic Reactions Cases of hypersensitivity to buprenorphine and naloxone containing products have been reported both in clinical trials and in the post-marketing experience. Cases of bronchospasm, angioneurotic edema, and anaphylactic shock have been reported. The most common signs and symptoms include rashes, hives, and pruritus. A history of hypersensitivity to buprenorphine or naloxone is a contraindication to the use of SUBOXONE sublingual film. 5.8 Precipitation of Opioid Withdrawal Signs and Symptoms Because it contains naloxone, SUBOXONE sublingual film is highly likely to produce marked and intense withdrawal signs and symptoms if misused parenterally by individuals dependent on full opioid agonists such as heroin, morphine, or methadone. Because of the partial agonist properties of buprenorphine, SUBOXONE sublingual film may precipitate opioid withdrawal signs and symptoms in such persons if administered sublingually before the agonist effects of the opioid have subsided. 5.9 Neonatal Withdrawal Neonatal withdrawal has been reported in the infants of women treated with buprenorphine during pregnancy. From post-marketing reports, the time to onset of neonatal withdrawal signs ranged from Day 1 to Day 8 of life with most cases occurring on Day 1. Adverse events associated with the neonatal withdrawal syndrome included hypertonia, neonatal tremor, neonatal agitation, and myoclonus, and there have been reports of convulsions, apnea, respiratory depression, and bradycardia. 5.10 Use in Opioid Naïve Patients There have been reported deaths of opioid naive individuals who received a 2 mg dose of buprenorphine as a sublingual tablet for analgesia. SUBOXONE sublingual film is not appropriate as an analgesic. 5.11 Impairment of Ability to Drive or Operate Machinery SUBOXONE sublingual film may impair the mental or physical abilities required for the performance of potentially dangerous tasks such as driving a car or operating machinery, especially during treatment induction and dose adjustment. Patients should be cautioned about driving or operating hazardous machinery until they are reasonably certain that SUBOXONE sublingual film therapy does not adversely affect his or her ability to engage in such activities. 5.12 Orthostatic Hypotension Like other opioids, SUBOXONE sublingual film may produce orthostatic hypotension in ambulatory patients. 5.13 Elevation of Cerebrospinal Fluid Pressure Buprenorphine, like other opioids, may elevate cerebrospinal fluid pressure and should be used with caution in patients with head injury, intracranial lesions and other circumstances when cerebrospinal pressure may be increased. Buprenorphine can produce miosis and changes in the level of consciousness that may interfere with patient evaluation. 5.14 Elevation of Intracholedochal Pressure Buprenorphine has been shown to increase intracholedochal pressure, as do other opioids, and thus should be administered with caution to patients with dysfunction of the biliary tract. 5.15 Effects in Acute Abdominal Conditions As with other opioids, buprenorphine may obscure the diagnosis or clinical course of patients with acute abdominal conditions. 5.16 General Precautions SUBOXONE sublingual film should be administered with caution in debilitated patients and those with myxedema or hypothyroidism, adrenal cortical insufficiency (e.g., Addison’s disease); CNS depression or coma; toxic psychoses; prostatic hypertrophy or urethral stricture; acute alcoholism; delirium tremens; or kyphoscoliosis.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.1 Safe Use Before initiating treatment with Suboxone, explain the points listed below to caregivers and patients. Instruct patients to read the Medication Guide each time Suboxone is dispensed because new information may be available. Patients should be warned that it is extremely dangerous to self-administer non-prescribed benzodiazepines or other CNS depressants (including alcohol) while taking SUBOXONE sublingual film. Patients prescribed benzodiazepines or other CNS depressants should be cautioned to use them only as directed by their physician. [see Warnings and Precautions (5.2), Drug Interactions (7.3)] Patients should be advised that SUBOXONE sublingual film contains an opioid that can be a target for people who abuse prescription medications or street drugs. Patients should be cautioned to keep their films in a safe place, and to protect them from theft. Patients should be instructed to keep SUBOXONE sublingual film in a secure place, out of the sight and reach of children. Accidental or deliberate ingestion by a child may cause respiratory depression that can result in death. Patients should be advised that if a child is exposed to SUBOXONE sublingual film, medical attention should be sought immediately. Patients should be advised never to give SUBOXONE sublingual film to anyone else, even if he or she has the same signs and symptoms. It may cause harm or death. Patients should be advised that selling or giving away this medication is against the law. Patients should be cautioned that SUBOXONE sublingual film may impair the mental or physical abilities required for the performance of potentially dangerous tasks such as driving or operating machinery. Caution should be taken especially during drug induction and dose adjustment and until individuals are reasonably certain that buprenorphine therapy does not adversely affect their ability to engage in such activities. [see Warnings and Precautions (5.11)] Patients should be advised not to change the dosage of SUBOXONE sublingual film without consulting their physician. Patients should be advised to take SUBOXONE sublingual film once a day. Patients should be informed that SUBOXONE sublingual film can cause drug dependence and that withdrawal signs and symptoms may occur when the medication is discontinued. Patients seeking to discontinue treatment with buprenorphine for opioid dependence should be advised to work closely with their physician on a tapering schedule and should be apprised of the potential to relapse to illicit drug use associated with discontinuation of opioid agonist/partial agonist medication-assisted treatment. Patients should be cautioned that, like other opioids, SUBOXONE sublingual film may produce orthostatic hypotension in ambulatory individuals. [see Warnings and Precautions. (5.12)] Patients should inform their physician if any other prescription medications, over-the-counter medications, or herbal preparations are prescribed or currently being used. [see Drug Interactions (7.1, 7.2 and 7.3)] Women of childbearing potential who become pregnant or are planning to become pregnant, should be advised to consult their physician regarding the possible effects of using SUBOXONE sublingual film during pregnancy. [see Use in Specific Populations (8.1)] Patients should be warned that buprenorphine passes into breast milk. Breast-feeding is not advised in mothers treated with buprenorphine products. [see Use in Specific Populations (8.3)]. Patients should inform their family members that, in the event of emergency, the treating physician or emergency room staff should be informed that the patient is physically dependent on an opioid and that the patient is being treated with SUBOXONE sublingual film. Refer to the Medication Guide for additional information regarding the counseling information. 17.2 Disposal of Unused SUBOXONE Sublingual Film Unopened SUBOXONE sublingual films should be disposed of as soon as they are no longer needed: Remove the SUBOXONE film from its foil pouch. Drop the SUBOXONE film into the toilet. Repeat steps 1 and 2 for each SUBOXONE film. Flush the toilet after all unneeded films have been put into the toilet. Foil pouches or cartons should not be flushed down the toilet. RA016 09/2010 Revised 9/7/2010 Manufactured for Reckitt Benckiser Pharmaceuticals Inc., Richmond, VA 23235 by: MonoSol Rx, LLC, Warren, NJ 07059 Distributed by: Reckitt Benckiser Pharmaceuticals Inc. Richmond, VA 23235

DOSAGE AND ADMINISTRATION

2 SUBOXONE sublingual film is administered sublingually as a single daily dose. SUBOXONE sublingual film should be used in patients who have been initially inducted using SUBUTEX® (buprenorphine) sublingual tablets. Administer SUBOXONE sublingual film sublingually as a single daily dose. (2) The recommended daily dose for maintenance is 16/4 mg. 2.1 Maintenance SUBOXONE sublingual film is indicated for maintenance treatment. The recommended target dosage of SUBOXONE sublingual film is 16/4 mg buprenorphine/naloxone/day, as a single daily dose. The dosage of SUBOXONE sublingual film should be progressively adjusted in increments/decrements of 2/0.5 mg or 4/1 mg buprenorphine/naloxone to a level that holds the patient in treatment and suppresses opioid withdrawal signs and symptoms. The maintenance dose of SUBOXONE sublingual film is generally in the range of 4/1 mg buprenorphine/naloxone to 24/6 mg buprenorphine/naloxone per day depending on the individual patient. Dosages higher than this have not been demonstrated to provide any clinical advantage. 2.2 Method of Administration Place the SUBOXONE sublingual film under the tongue. If an additional SUBOXONE sublingual film is necessary to achieve the prescribed dose, place the additional sublingual film sublingually on the opposite side from the first film. Place the sublingual film in a manner to minimize overlapping as much as possible. The sublingual film must be kept under the tongue until the film is completely dissolved. SUBOXONE sublingual film should NOT be chewed, swallowed, or moved after placement. Proper administration technique should be demonstrated to the patient. 2.3 Clinical Supervision Treatment should be initiated with supervised administration, progressing to unsupervised administration as the patient’s clinical stability permits. SUBOXONE sublingual film is subject to diversion and abuse. When determining the prescription quantity for unsupervised administration, consider the patient’s level of stability, the security of his or her home situation, and other factors likely to affect the ability to manage supplies of take-home medication. Ideally patients should be seen at reasonable intervals (e.g., at least weekly during the first month of treatment) based upon the individual circumstances of the patient. Medication should be prescribed in consideration of the frequency of visits. Provision of multiple refills is not advised early in treatment or without appropriate patient follow-up visits. Periodic assessment is necessary to determine compliance with the dosing regimen, effectiveness of the treatment plan, and overall patient progress. Once a stable dosage has been achieved and patient assessment (e.g., urine drug screening) does not indicate illicit drug use, less frequent follow-up visits may be appropriate. A once-monthly visit schedule may be reasonable for patients on a stable dosage of medication who are making progress toward their treatment objectives. Continuation or modification of pharmacotherapy should be based on the physician’s evaluation of treatment outcomes and objectives such as: Absence of medication toxicity. Absence of medical or behavioral adverse effects. Responsible handling of medications by the patient. Patient’s compliance with all elements of the treatment plan (including recovery-oriented activities, psychotherapy, and/or other psychosocial modalities). Abstinence from illicit drug use (including problematic alcohol and/or benzodiazepine use). If treatment goals are not being achieved, the physician should re-evaluate the appropriateness of continuing the current treatment. 2.4 Unstable Patients Physicians will need to decide when they cannot appropriately provide further management for particular patients. For example, some patients may be abusing or dependent on various drugs, or unresponsive to psychosocial intervention such that the physician does not feel that he/she has the expertise to manage the patient. In such cases, the physician may want to assess whether to refer the patient to a specialist or more intensive behavioral treatment environment. Decisions should be based on a treatment plan established and agreed upon with the patient at the beginning of treatment. Patients who continue to misuse, abuse, or divert buprenorphine products or other opioids should be provided with, or referred to, more intensive and structured treatment. 2.5 Stopping Treatment The decision to discontinue therapy with SUBOXONE sublingual film after a period of maintenance should be made as part of a comprehensive treatment plan. Both gradual and abrupt discontinuation of buprenorphine has been used, but the data are insufficient to determine the best method of dose taper at the end of treatment. 2.6 Switching between SUBOXONE (buprenorphine and naloxone) Sublingual Tablets and SUBOXONE Sublingual film Patients being switched between SUBOXONE (buprenorphine and naloxone) sublingual tablets and SUBOXONE sublingual film should be started on the same dosage as the previously administered product. However, dosage adjustments may be necessary when switching between products. Because of the potentially greater relative bioavailability of SUBOXONE sublingual film compared to SUBOXONE (buprenorphine and naloxone) sublingual tablets, patients switching from SUBOXONE (buprenorphine and naloxone) sublingual tablets to SUBOXONE sublingual film should be monitored for over-medication. Those switching from SUBOXONE sublingual film to SUBOXONE (buprenorphine and naloxone) sublingual tablets should be monitored for withdrawal or other indications of under-dosing. In clinical studies, pharmacokinetics of SUBOXONE sublingual film was similar to the respective dosage strengths of SUBOXONE (buprenorphine and naloxone) sublingual tablets, although not all doses and dose combinations met bioequivalence criteria.

FLUoxetine 40 MG Oral Capsule

Generic Name: FLUOXETINE HYDROCHLORIDE
Brand Name: FLUOXETINE
  • Substance Name(s):
  • FLUOXETINE HYDROCHLORIDE

DRUG INTERACTIONS

7 As with all drugs, the potential for interaction by a variety of mechanisms (e.g., pharmacodynamic, pharmacokinetic drug inhibition or enhancement, etc.) is a possibility Monoamine Oxidase Inhibitors (MAOI): Fluoxetine is contraindicated for use with MAOI’s, or within 14 days of discontinuing an MAOI due to risk of drug interaction. At least 5 weeks should be allowed after stopping fluoxetine before starting treatment with an MAOI (4, 7.1) Pimozide: Fluoxetine is contraindicated for use with pimozide due to risk of drug interaction or QTc prolongation (4, 7.9) Thioridazine: Fluoxetine is contraindicated for use with thioridazine due to QTc interval prolongation or potential for elevated thioridazine plasma levels. Do not use thioridazine within 5 weeks of discontinuing Fluoxetine (4, 7.9) Drugs Metabolized by CYP2D6: Fluoxetine is a potent inhibitor of CYP2D6 enzyme pathway (7.9) Tricyclic Antidepressants (TCAs): Monitor TCA levels during coadministration with fluoxetine or when fluoxetine has been recently discontinued (7.9) CNS Acting Drugs: Caution should be used when taken in combination with other centrally acting drugs (7.2) Benzodiazepines: Diazepam – increased t ½ , alprazolam -further psychomotor performance decrement due to increased levels (7.9) Antipsycotics: Potential for elevation of haloperidol and clozapine levels (7.9) Anticonvulsants: Potential for elevated phenytoin and carbamazepine levels and clinical anticonvulsant toxicity (7.9) Serotonergic Drugs: Potential for Serotonin Syndrome (5.2, 7.3) Triptans: There have been rare postmarketing reports of Serotonin Syndrome with use of an SSRI and a triptan (5.2, 7.4) Tryptophan: Concomitant use with tryptophan is not recommended (5.2, 7.5) Drugs that Interfere with Hemostasis (e.g. NSAIDs, Aspirin, Warfarin): May potentiate the risk of bleeding (7.6) Drugs Tightly Bound to Plasma Proteins: May cause a shift in plasma concentrations (7.8, 7.9) Olanzapine: When used in combination with fluoxetine, also refer to the Drug Interactions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules (7.9) 7.1 Monoamine Oxidase Inhibitors (MAOI) There have been reports of serious, sometimes fatal, reactions (including hyperthermia, rigidity, myoclonus, autonomic instability with possible rapid fluctuations of vital signs, and mental status changes that include extreme agitation progressing to delirium and coma) in patients receiving fluoxetine in combination with a monoamine oxidase inhibitor (MAOI), and in patients who have recently discontinued fluoxetine and are then started on an MAOI. Some cases presented with features resembling neuroleptic malignant syndrome. Therefore, fluoxetine should not be used in combination with an MAOI, or within a minimum of 14 days of discontinuing therapy with an MAOI [see Contraindications 4)]. Since fluoxetine and its major metabolite have very long elimination half-lives, at least 5 weeks (perhaps longer, especially if fluoxetine has been prescribed chronically and/or at higher doses) should be allowed after stopping fluoxetine before starting an MAOI [see Clinical Pharmacology ( 12.3)]. 7.2 CNS Acting Drugs Caution is advised if the concomitant administration of fluoxetine and such drugs is required. In evaluating individual cases, consideration should be given to using lower initial doses of the concomitantly administered drugs, using conservative titration schedules, and monitoring of clinical status [see Clinical Pharmacology (12.3)]. 7.3 Serotonergic Drugs Based on the mechanism of action of SNRIs and SSRIs, including fluoxetine, and the potential for serotonin syndrome, caution is advised when fluoxetine is coadministered with other drugs that may affect the serotonergic neurotransmitter systems, such as triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, or St. John’s Wort [see Warnings and Precautions (5.2)]. The concomitant use of fluoxetine with SNRIs, SSRIs, or tryptophan is not recommended [see Drug Interactions (7.4), (7.5)]. 7.4 Triptans Five patients receiving fluoxetine in combination with tryptophan experienced adverse reactions, including agitation, restlessness, and gastrointestinal distress. The concomitant use with tryptophan is not recommended [see Warnings and Precautions (5.2) and Drug Interactions (7.3)]. 7.5 Tryptophan Five patients receiving fluoxetine in combination with tryptophan experienced adverse reactions, including agitation, restlessness, and gastrointestinal distress. The concomitant use with tryptophan is not recommended [see Warnings and Precautions (5.2) and Drug Interactions (7.3)]. 7.6 Drugs that Interfere with Hemostasis (e.g., NSAIDS, Aspirin, Warfarin) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SNRIs or SSRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when fluoxetine is initiated or discontinued [see Warnings and Precautions (5.7)]. 7.7 Electroconvulsive Therapy (ECT) There are no clinical studies establishing the benefit of the combined use of ECT and fluoxetine. There have been rare reports of prolonged seizures in patients on fluoxetine receiving ECT treatment. 7.8 Potential for Other Drugs to affect Fluoxetine Drugs Tightly Bound to Plasma Proteins – Because fluoxetine is tightly bound to plasma protein, adverse effects may result from displacement of protein-bound fluoxetine by other tightly-bound drugs [see Clinical Pharmacology (12.3)]. 7.9 Potential for Fluoxetine to affect Other Drugs Pimozide – Concomitant use in patients taking pimozide is contraindicated. Clinical studies of pimozide with other antidepressants demonstrate an increase in drug interaction or QTc prolongation. While a specific study with pimozide and fluoxetine has not been conducted, the potential for drug interactions or QTc prolongation warrants restricting the concurrent use of pimozide and fluoxetine [see Contraindications (4)]. Thioridazine – Thioridazine should not be administered with fluoxetine or within a minimum of 5 weeks after fluoxetine has been discontinued [see Contraindications (4)]. In a study of 19 healthy male subjects, which included 6 slow and 13 rapid hydroxylators of debrisoquin, a single 25 mg oral dose of thioridazine produced a 2.4-fold higher Cmax and a 4.5-fold higher AUC for thioridazine in the slow hydroxylators compared with the rapid hydroxylators. The rate of debrisoquin hydroxylation is felt to depend on the level of CYP2D6 isozyme activity. Thus, this study suggests that drugs which inhibit CYP2D6, such as certain SSRIs, including fluoxetine, will produce elevated plasma levels of thioridazine. Thioridazine administration produces a dose-related prolongation of the QTc interval, which is associated with serious ventricular arrhythmias, such as torsades de pointes-type arrhythmias, and sudden death. This risk is expected to increase with fluoxetine-induced inhibition of thioridazine metabolism. Drugs Metabolized by CYP2D6 – Fluoxetine inhibits the activity of CYP2D6, and may make individuals with normal CYP2D6 metabolic activity resemble a poor metabolizer. Coadministration of fluoxetine with other drugs that are metabolized by CYP2D6, including certain antidepressants (e.g., TCAs), antipsychotics (e.g., phenothiazines and most atypicals), and antiarrhythmics (e.g., propafenone, flecainide, and others) should be approached with caution. Therapy with medications that are predominantly metabolized by the CYP2D6 system and that have a relatively narrow therapeutic index (see list below) should be initiated at the low end of the dose range if a patient is receiving fluoxetine concurrently or has taken it in the previous 5 weeks. Thus, his/her dosing requirements resemble those of poor metabolizers. If fluoxetine is added to the treatment regimen of a patient already receiving a drug metabolized by CYP2D6, the need for decreased dose of the original medication should be considered. Drugs with a narrow therapeutic index represent the greatest concern (e.g., flecainide, propafenone, vinblastine, and TCAs). Due to the risk of serious ventricular arrhythmias and sudden death potentially associated with elevated plasma levels of thioridazine, thioridazine should not be administered with fluoxetine or within a minimum of 5 weeks after fluoxetine has been discontinued [see Contraindications (4)]. Tricyclic Antidepressants (TCAs) — In 2 studies, previously stable plasma levels of imipramine and desipramine have increased greater than 2-to 10-fold when fluoxetine has been administered in combination. This influence may persist for 3 weeks or longer after fluoxetine is discontinued. Thus, the dose of TCAs may need to be reduced and plasma TCA concentrations may need to be monitored temporarily when fluoxetine is coadministered or has been recently discontinued [see Clinical Pharmacology (12.3)]. Benzodiazapines — The half-life of concurrently administered diazepam may be prolonged in some patients [see Clinical Pharmacology (12.3)]. Coadministration of alprazolam and fluoxetine has resulted in increased alprazolam plasma concentrations and in further psychomotor performance decrement due to increased alprazolam levels. Antipsychotics — Some clinical data suggests a possible pharmacodynamic and/or pharmacokinetic interaction between SSRIs and antipsychotics. Elevation of blood levels of haloperidol and clozapine has been observed in patients receiving concomitant fluoxetine. [see Contraindications (4)]. Anticonvulsants — Patients on stable doses of phenytoin and carbamazepine have developed elevated plasma anticonvulsant concentrations and clinical anticonvulsant toxicity following initiation of concomitant fluoxetine treatment. Lithium — There have been reports of both increased and decreased lithium levels when lithium was used concomitantly with fluoxetine. Cases of lithium toxicity and increased serotonergic effects have been reported. Lithium levels should be monitored when these drugs are administered concomitantly. Drugs Tightly Bound to Plasma Proteins — Because fluoxetine is tightly bound to plasma protein, the administration of fluoxetine to a patient taking another drug that is tightly bound to protein (e.g., Coumadin®, digitoxin) may cause a shift in plasma concentrations potentially resulting in an adverse effect. [see Clinical Pharmacology (12.3)]. Drugs Metabolized by CYP3A4 — In an in vivo interaction study involving coadministration of fluoxetine with single doses of terfenadine (a CYP3A4 substrate), no increase in plasma terfenadine concentrations occurred with concomitant fluoxetine. Additionally, in vitro studies have shown ketoconazole, a potent inhibitor of CYP3A4 activity, to be at least 100 times more potent than fluoxetine or norfluoxetine as an inhibitor of the metabolism of several substrates for this enzyme, including astemizole, cisapride, and midazolam. These data indicate that fluoxetine’s extent of inhibition of CYP3A4 activity is not likely to be of clinical significance. Olanzapine— Fluoxetine (60 mg single dose or 60 mg daily dose for 8 days) causes a small (mean 16%) increase in the maximum concentration of olanzapine and a small (mean 16%) decrease in olanzapine clearance. The magnitude of the impact of this factor is small in comparison to the overall variability between individuals, and therefore dose modification is not routinely recommended. When using f luoxetine and olanzapine and in combination, also refer to the Drug Interactions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules.

OVERDOSAGE

10 10.1 Human Experience Worldwide exposure to fluoxetine hydrochloride is estimated to be over 38 million patients (circa 1999). Of the 1578 cases of overdose involving fluoxetine hydrochloride, alone or with other drugs, reported from this population, there were 195 deaths. Among 633 adult patients who overdosed on fluoxetine hydrochloride alone, 34 resulted in a fatal outcome, 378 completely recovered, and 15 patients experienced sequelae after overdosage, including abnormal accommodation, abnormal gait, confusion, unresponsiveness, nervousness, pulmonary dysfunction, vertigo, tremor, elevated blood pressure, impotence, movement disorder, and hypomania. The remaining 206 patients had an unknown outcome. The most common signs and symptoms associated with non-fatal overdosage were seizures, somnolence, nausea, tachycardia, and vomiting. The largest known ingestion of fluoxetine hydrochloride in adult patients was 8 grams in a patient who took fluoxetine alone and who subsequently recovered. However, in an adult patient who took fluoxetine alone, an ingestion as low as 520 mg has been associated with lethal outcome, but causality has not been established. Among pediatric patients (ages 3 months to 17 years), there were 156 cases of overdose involving fluoxetine alone or in combination with other drugs. Six patients died, 127 patients completely recovered, 1 patient experienced renal failure, and 22 patients had an unknown outcome. One of the six fatalities was a 9-year-old boy who had a history of OCD, Tourette’s syndrome with tics, attention deficit disorder, and fetal alcohol syndrome. He had been receiving 100 mg of fluoxetine daily for 6 months in addition to clonidine, methylphenidate, and promethazine. Mixed-drug ingestion or other methods of suicide complicated all 6 overdoses in children that resulted in fatalities. The largest ingestion in pediatric patients was 3 grams which was nonlethal. Other important adverse reactions reported with fluoxetine overdose (single or multiple drugs) include coma, delirium, ECG abnormalities (such as QT interval prolongation and ventricular tachycardia, including torsades de pointes-type arrhythmias), hypotension, mania, neuroleptic malignant syndrome-like reactions, pyrexia, stupor, and syncope. 10.2 Animal Experience Studies in animals do not provide precise or necessarily valid information about the treatment of human overdose. However, animal experiments can provide useful insights into possible treatment strategies. The oral median lethal dose in rats and mice was found to be 452 and 248 mg/kg, respectively. Acute high oral doses produced hyperirritability and convulsions in several animal species. Among 6 dogs purposely overdosed with oral fluoxetine, 5 experienced grand mal seizures. Seizures stopped immediately upon the bolus intravenous administration of a standard veterinary dose of diazepam. In this short-term study, the lowest plasma concentration at which a seizure occurred was only twice the maximum plasma concentration seen in humans taking 80 mg/day, chronically. In a separate single-dose study, the ECG of dogs given high doses did not reveal prolongation of the PR, QRS, or QT intervals. Tachycardia and an increase in blood pressure were observed. Consequently, the value of the ECG in predicting cardiac toxicity is unknown. Nonetheless, the ECG should ordinarily be monitored in cases of human overdose [see Overdosage (10.3)]. 10.3 Management of Overdose Treatment should consist of those general measures employed in the management of overdosage with any drug effective in the treatment of Major Depressive Disorder. Ensure an adequate airway, oxygenation, and ventilation. Monitor cardiac rhythm and vital signs. General supportive and symptomatic measures are also recommended. Induction of emesis is not recommended. Gastric lavage with a large-bore orogastric tube withappropriate airway protection, if needed, may be indicated if performed soon after ingestion, or in symptomatic patients. Activated charcoal should be administered. Due to the large volume of distribution of this drug, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. No specific antidotes for fluoxetine are known. A specific caution involves patients who are taking or have recently taken fluoxetine and might ingest excessive quantities of a TCA. In such a case, accumulation of the parent tricyclic and/or an active metabolite may increase the possibility of clinically significant sequelae and extend the time needed for close medical observation [ see Drug Interactions (7.9)]. Based on experience in animals, which may not be relevant to humans, fluoxetine-induced seizures that fail to remit spontaneously may respond to diazepam. In managing overdosage, consider the possibility of multiple drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose. Telephone numbers for certified poison control centers are listed in the Physicians’ Desk Reference (PDR). For specific information about overdosage with olanzapine and fluoxetine in combination, refer to the Overdosage section of the Fluoxetine Hydrochloride and Olanzapine Capsules package insert.

DESCRIPTION

11 Fluoxetine Capsules USP is a selective serotonin reuptake inhibitor for oral administration. It is designated (±)-N-methyl-3-phenyl-3-[(α,α,α­trifluoro- p-tolyl)oxy]propylamine hydrochloride and has the empirical formula of C17H18F3NO•HCl. Its molecular weight is 345.79. The structural formula is: Fluoxetine hydrochloride is a white to off-white crystalline solid with a solubility of 14 mg/mL in water. Each capsule contains fluoxetine hydrochloride equivalent to 40 mg (129.3 µmol) of fluoxetine. The capsules also contain colloidal silicon dioxide, pregelatinized starch and sodium lauryl sulfate. The 40 mg capsule also contains gelatin and FD&C Blue No.1. This is the chemical structure

CLINICAL STUDIES

14 When using f luoxetine and olanzapine in combination, also refer to the Clinical Studies section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. 14.1 Major Depressive Disorder Daily Dosing Adult — The efficacy of fluoxetine was studied in 5-and 6-week placebo-controlled trials with depressed adult and geriatric outpatients (≥18 years of age) whose diagnoses corresponded most closely to the DSM-III (currently DSM-IV) category of Major Depressive Disorder. Fluoxetine was shown to be significantly more effective than placebo as measured by the Hamilton Depression Rating Scale (HAM-D). Fluoxetine was also significantly more effective than placebo on the HAM-D subscores for depressed mood, sleep disturbance, and the anxiety subfactor. Two 6-week controlled studies (N=671, randomized) comparing fluoxetine 20 mg and placebo have shown fluoxetine 20 mg daily to be effective in the treatment of elderly patients (≥60 years of age) with Major Depressive Disorder. In these studies, fluoxetine produced a significantly higher rate of response and remission as defined, respectively, by a 50% decrease in the HAM-D score and a total endpoint HAM-D score of ≤8. Fluoxetine was well tolerated and the rate of treatment discontinuations due to adverse reactions did not differ between fluoxetine (12%) and placebo (9%). A study was conducted involving depressed outpatients who had responded (modified HAMD-17 score of ≤7 during each of the last 3 weeks of open-label treatment and absence of Major Depressive Disorder by DSM-III-R criteria) by the end of an initial 12­week open-treatment phase on fluoxetine 20 mg/day. These patients (N=298) were randomized to continuation on double-blind fluoxetine 20 mg/day or placebo. At 38 weeks (50 weeks total), a statistically significantly lower relapse rate (defined as symptoms sufficient to meet a diagnosis of Major Depressive Disorder for 2 weeks or a modified HAMD-17 score of ≥14 for 3 weeks) was observed for patients taking fluoxetine compared with those on placebo. Pediatric (children and adolescents) — The efficacy of fluoxetine 20 mg/day in children and adolescents (N=315 randomized; 170 children ages 8 to <13, 145 adolescents ages 13 to ≤18) was studied in two 8-to 9-week placebo-controlled clinical trials in depressed outpatients whose diagnoses corresponded most closely to the DSM-III-R or DSM-IV category of Major Depressive Disorder. In both studies independently, fluoxetine produced a statistically significantly greater mean change on the Childhood Depression Rating Scale-Revised (CDRS-R) total score from baseline to endpoint than did placebo. Subgroup analyses on the CDRS-R total score did not suggest any differential responsiveness on the basis of age or gender. 14.2 Obsessive Compulsive Disorder Adult — The effectiveness of fluoxetine for the treatment of Obsessive Compulsive Disorder (OCD) was demonstrated in two 13­week, multicenter, parallel group studies (Studies 1 and 2) of adult outpatients who received fixed fluoxetine doses of 20, 40, or 60 mg/day (on a once-a-day schedule, in the morning) or placebo. Patients in both studies had moderate to severe OCD (DSM-III-R), with mean baseline ratings on the Yale-Brown Obsessive Compulsive Scale (YBOCS, total score) ranging from 22 to 26. In Study 1, patients receiving fluoxetine experienced mean reductions of approximately 4 to 6 units on the YBOCS total score, compared with a 1-unit reduction for placebo patients. In Study 2, patients receiving fluoxetine experienced mean reductions of approximately 4 to 9 units on the YBOCS total score, compared with a 1-unit reduction for placebo patients. While there was no indication of a dose-response relationship for effectiveness in Study 1, a dose-response relationship was observed in Study 2, with numerically better responses in the 2 higher dose groups. The following table provides the outcome classification by treatment group on the Clinical Global Impression (CGI) improvement scale for Studies 1 and 2 combined: Table 6 Outcome Classification (%) on CGI Improvement Scale for Completers in Pool of Two OCD Studies Fluoxetine Outcome Classification Placebo 20 mg 40 mg 60 mg Worse 8% 0% 0% 0% No change 64% 41% 33% 29% Minimally improved 17% 23% 28% 24% Much improved 8% 28% 27% 28% Very much improved 3% 8% 12% 19% Exploratory analyses for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or sex. Pediatric (children and adolescents) — In one 13-week clinical trial in pediatric patients (N=103 randomized; 75 children ages 7 to <13, 28 adolescents ages 13 to <18) with OCD (DSM-IV), patients received fluoxetine 10 mg/day for 2 weeks, followed by 20 mg/day for 2 weeks. The dose was then adjusted in the range of 20 to 60 mg/day on the basis of clinical response and tolerability. Fluoxetine produced a statistically significantly greater mean change from baseline to endpoint than did placebo as measured by the Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS). Subgroup analyses on outcome did not suggest any differential responsiveness on the basis of age or gender. 14.3 Bulimia Nervosa The effectiveness of fluoxetine for the treatment of bulimia was demonstrated in two 8-week and one 16-week, multicenter, parallel group studies of adult outpatients meeting DSM-III-R criteria for bulimia. Patients in the 8-week studies received either 20 or 60 mg/day of fluoxetine or placebo in the morning. Patients in the 16-week study received a fixed fluoxetine dose of 60 mg/ day (once a day) or placebo. Patients in these 3 studies had moderate to severe bulimia with median binge-eating and vomiting frequencies ranging from 7 to 10 per week and 5 to 9 per week, respectively. In these 3 studies, fluoxetine 60 mg, but not 20 mg, was statistically significantly superior to placebo in reducing the number of binge-eating and vomiting episodes per week. The statistically significantly superior effect of 60 mg versus placebo was present as early as Week 1 and persisted throughout each study. The fluoxetine-related reduction in bulimic episodes appeared to be independent of baseline depression as assessed by the Hamilton Depression Rating Scale. In each of these 3 studies, the treatment effect, as measured by differences between fluoxetine 60 mg and placebo on median reduction from baseline in frequency of bulimic behaviors at endpoint, ranged from 1 to 2 episodes per week for binge-eating and 2 to 4 episodes per week for vomiting. The size of the effect was related to baseline frequency, with greater reductions seen in patients with higher baseline frequencies. Although some patients achieved freedom from binge-eating and purging as a result of treatment, for the majority, the benefit was a partial reduction in the frequency of binge-eating and purging. In a longer-term trial, 150 patients meeting DSM-IV criteria for Bulimia Nervosa, purging subtype, who had responded during a single-blind, 8-week acute treatment phase with fluoxetine 60 mg/day, were randomized to continuation of fluoxetine 60 mg/day or placebo, for up to 52 weeks of observation for relapse. Response during the single-blind phase was defined by having achieved at least a 50% decrease in vomiting frequency compared with baseline. Relapse during the double-blind phase was defined as a persistent return to baseline vomiting frequency or physician judgment that the patient had relapsed. Patients receiving continued fluoxetine 60 mg/day experienced a significantly longer time to relapse over the subsequent 52 weeks compared with those receiving placebo. 14.4 Panic Disorder The effectiveness of fluoxetine in the treatment of panic disorder was demonstrated in 2 double-blind, randomized, placebo-controlled, multicenter studies of adult outpatients who had a primary diagnosis of panic disorder (DSM-IV), with or without agoraphobia. Study 1 (N=180 randomized) was a 12-week flexible-dose study. Fluoxetine was initiated at 10 mg/day for the first week, after which patients were dosed in the range of 20 to 60 mg/day on the basis of clinical response and tolerability. A statistically significantly greater percentage of fluoxetine-treated patients were free from panic attacks at endpoint than placebo-treated patients, 42% versus 28%, respectively. Study 2 (N=214 randomized) was a 12-week flexible-dose study. Fluoxetine was initiated at 10 mg/day for the first week, after which patients were dosed in a range of 20 to 60 mg/day on the basis of clinical response and tolerability. A statistically significantly greater percentage of fluoxetine-treated patients were free from panic attacks at endpoint than placebo-treated patients, 62% versus 44%, respectively.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 How Supplied The following product is manufactured by Par Pharmaceutical Companies, Inc. The 40mg 1 capsule is a light blue opaque cap and opaque white body, imprinted with “872” on the cap and “par” on the body. NDC 49884-872-11 – Bottle of 30 NDC 49884-872-01 – Bottle of 100 NDC 49884-872-05 – Bottle of 500 1 Fluoxetine base equivalent. 16.2 Storage and Handling Store at Controlled Room Temperature, 20° to 25°C (68° to 77°F). Protect from light.

RECENT MAJOR CHANGES

GERIATRIC USE

8.5 Geriatric Use US fluoxetine clinical trials included 687 patients ≥65 years of age and 93 patients ≥75 years of age. The efficacy in geriatric patients has been established [see Clinical Studies (14.1)]. For pharmacokinetic information in geriatric patients, [see Clinical Pharmacology (12.4)]. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. SNRIs and SSRIs, including fluoxetine, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse reaction [see Warnings and Precautions (5.8)]. Clinical studies of olanzapine and fluoxetine in combination did not include sufficient numbers of patients ≥65 years of age to determine whether they respond differently from younger patients.

DOSAGE FORMS AND STRENGTHS

3 40 mg capsule is a light blue opaque cap and opaque white body, imprinted with “872” on the cap and “par” on the body. Capsules: 40 mg ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action Although the exact mechanism of fluoxetine is unknown, it is presumed to be linked to its inhibition of CNS neuronal uptake of serotonin

INDICATIONS AND USAGE

1 Fluoxetine is a selective serotonin reuptake inhibitor indicated for: Acute and maintenance treatment of Major Depressive Disorder (MDD) in adult and pediatric patients aged 8 to 18 years (1.1) Acute and maintenance treatment of Obsessive Compulsive Disorder (OCD) in adult and pediatric patients aged 7-17 years (1.2) Acute and maintenance treatment of Bulimia Nervosa in adult patients (1.3) Acute treatment of Panic Disorder, with or without agoraphobia, in adult patients (1.4) Fluoxetine and olanzapine in combination for: Acute treatment of Depressive Episodes Associated with Bipolar I Disorder in adults (1.5) 1.1 Major Depressive Disorder Fluoxetine Hydrochloride is indicated for the acute and maintenance treatment of Major Depressive Disorder in adult patients and in pediatric patients aged 8 to 18 years [see Clinical Studies ( 14.1)]. The usefulness of the drug in adult and pediatric patients receiving fluoxetine for extended periods, should periodically be re-evaluated [see Dosage and Administration ( 2.1)]. 1.2 Obsessive Compulsive Disorder Fluoxetine is indicated for the acute and maintenance treatment of obsessions and compulsions in adult patients and in pediatric patients aged 7 to 17 years with Obsessive Compulsive Disorder (OCD) [see Clinical Studies ( 14.2)]. The effectiveness of fluoxetine in long-term use, i.e., for more than 13 weeks, has not been systematically evaluated in placebo-controlled trials. Therefore, the physician who elects to use fluoxetine for extended periods, should periodically re-evaluate the long-term usefulness of the drug for the individual patient [see Dosage and Administration ( 2.2)]. 1.3 Bulimia Nervosa Fluoxetine is indicated for the acute and maintenance treatment of binge-eating and vomiting behaviors in adult patients with moderate to severe Bulimia Nervosa [see Clinical Studies ( 14.3)]. The physician who elects to use fluoxetine for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient [see Dosage and Administration ( 2.3)]. 1.4 Panic Disorder Fluoxetine is indicated for the acute treatment of Panic Disorder, with or without agoraphobia, in adult patients [see Clinical Studies ( 14.4)]. The effectiveness of fluoxetine in long-term use, i.e., for more than 12 weeks, has not been established in placebo-controlled trials. Therefore, the physician who elects to use fluoxetine for extended periods, should periodically re-evaluate the long-term usefulness of the drug for the individual patient [see Dosage and Administration ( 2.4)] 1.5 Fluoxetine and Olanzapine In Combination: Depressive Episodes Associated with Bipolar I Disorder When using Fluoxetine and olanzapine in combination, also refer to the Clinical Studies section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. Fluoxetine and olanzapine in combination is indicated for the acute treatment of depressive episodes associated with Bipolar I Disorder in adult patients. Fluoxetine monotherapy is not indicated for the treatment of depressive episodes associated with Bipolar I Disorder.

PEDIATRIC USE

8.4 Pediatric Use The efficacy of fluoxetine for the treatment of Major Depressive Disorder was demonstrated in two 8-to 9-week placebo-controlled clinical trials with 315 pediatric outpatients ages 8 to ≤18 [see Clinical Studies (14.1)]. The efficacy of fluoxetine for the treatment of OCD was demonstrated in one 13-week placebo-controlled clinical trial with 103 pediatric outpatients ages 7 to <18 [see Clinical Studies (14.2)]. The safety and effectiveness in pediatric patients <8 years of age in Major Depressive Disorder and <7 years of age in OCD have not been established. Fluoxetine pharmacokinetics were evaluated in 21 pediatric patients (ages 6 to ≤18) with Major Depressive Disorder or OCD [see Clinical Pharmacology (12.3)]. The acute adverse reaction profiles observed in the 3 studies (N=418 randomized; 228 fluoxetine-treated, 190 placebo-treated) were generally similar to that observed in adult studies with fluoxetine. The longer-term adverse reaction profile observed in the 19-week Major Depressive Disorder study (N=219 randomized; 109 fluoxetine-treated, 110 placebo-treated) was also similar to that observed in adult trials with fluoxetine [see Adverse Reactions (6.1)]. Manic reaction, including mania and hypomania, was reported in 6 (1 mania, 5 hypomania) out of 228 (2.6%) fluoxetine-treated patients and in 0 out of 190 (0%) placebo-treated patients. Mania/hypomania led to the discontinuation of 4 (1.8%) fluoxetine-treated patients from the acute phases of the 3 studies combined. Consequently, regular monitoring for the occurrence of mania/hypomania is recommended. As with other SSRIs, decreased weight gain has been observed in association with the use of fluoxetine in children and adolescent patients. After 19 weeks of treatment in a clinical trial, pediatric subjects treated with fluoxetine gained an average of 1.1 cm less in height and 1.1 kg less in weight than subjects treated with placebo. In addition, fluoxetine treatment was associated with a decrease in alkaline phosphatase levels. The safety of fluoxetine treatment for pediatric patients has not been systematically assessed for chronic treatment longer than several months in duration. In particular, there are no studies that directly evaluate the longer-term effects of fluoxetine on the growth, development and maturation of children and adolescent patients. Therefore, height and weight should be monitored periodically in pediatric patients receiving fluoxetine. [see Warnings and Precautions (5.6)]. Fluoxetine is approved for use in pediatric patients with MDD and OCD [see Box Warning and Warnings and Precautions (5.1)]. Anyone considering the use of fluoxetine in a child or adolescent must balance the potential risks with the clinical need. Significant toxicity, including myotoxicity, long-term neurobehavioral and reproductive toxicity, and impaired bone development, has been observed following exposure of juvenile animals to fluoxetine. Some of these effects occurred at clinically relevant exposures. In a study in which fluoxetine (3, 10, or 30 mg/kg) was orally administered to young rats from weaning (Postnatal Day 21) through adulthood (Day 90), male and female sexual development was delayed at all doses, and growth (body weight gain, femur length) was decreased during the dosing period in animals receiving the highest dose. At the end of the treatment period, serum levels of creatine kinase (marker of muscle damage) were increased at the intermediate and high doses, and abnormal muscle and reproductive organ histopathology (skeletal muscle degeneration and necrosis, testicular degeneration and necrosis, epididymal vacuolation and hypospermia) was observed at the high dose. When animals were evaluated after a recovery period (up to 11 weeks after cessation of dosing), neurobehavioral abnormalities (decreased reactivity at all doses and learning deficit at the high dose) and reproductive functional impairment (decreased mating at all doses and impaired fertility at the high dose) were seen; in addition, testicular and epididymal microscopic lesions and decreased sperm concentrations were found in the high dose group, indicating that the reproductive organ effects seen at the end of treatment were irreversible. The reversibility of fluoxetine-induced muscle damage was not assessed. Adverse effects similar to those observed in rats treated with fluoxetine during the juvenile period have not been reported after administration of fluoxetine to adult animals. Plasma exposures (AUC) to fluoxetine in juvenile rats receiving the low, intermediate, and high dose in this study were approximately 0.1-0.2, 1-2, and 5-10 times, respectively, the average exposure in pediatric patients receiving the maximum recommended dose (MRD) of 20 mg/day. Rat exposures to the major metabolite, norfluoxetine, were approximately 0.3-0.8, 1-8, and 3-20 times, respectively, pediatric exposure at the MRD. A specific effect of fluoxetine on bone development has been reported in mice treated with fluoxetine during the juvenile period. When mice were treated with fluoxetine (5 or 20 mg/kg, intraperitoneal) for 4 weeks starting at 4 weeks of age, bone formation was reduced resulting in decreased bon e mineral content and density. These doses did not affect overall growth (body weight gain or femoral length). The doses administered to juvenile mice in this study are approximately 0.5 and 2 times the MRD for pediatric patients on a body surface area (mg/m 2) basis. In another mouse study, administration of fluoxetine (10 mg/kg intraperitoneal) during early postnatal development (Postnatal Days 4 to 21) produced abnormal emotional behaviors (decreased exploratory behavior in elevated plus-maze, increase shock avoidance latency) in adulthood (12 weeks of age). The dose used in this study is approximately equal to the pediatric MRD on a mg/m 2 basis. Because of the early dosing period in this study, the significance of these findings to the approved pediatric use in humans is uncertain. Safety and effectiveness of fluoxetine and olanzapine in combination in patients less than 18 years of age have not been established.

PREGNANCY

8.1 Pregnancy Pregnancy Category C – Fluoxetine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. All pregnancies have a background risk ofbirth defects, loss, or other adverse outcome regardless of drug exposure. Treatment of Pregnant Women during the First Trimester – There are no adequate and well-controlled clinical studies on the use of fluoxetine in pregnant women. Results of a number of published epidemiological studies assessing the risk of fluoxetine exposure during the first trimester of pregnancy have demonstrated inconsistent results. More than 10 cohort studies and case-control studies failed to demonstrate an increased risk for congenital malformations overall. However, one prospective cohort study conducted by the European Network of Teratology Information Services reported an increased risk of cardiovascular malformations in infants born to woman (N=253) exposed to fluoxetine during the first trimester of pregnancy compared to infants of women (N=1,359) who were not exposed to fluoxetine. There was no specific pattern of cardiovascular malformations. Overall, however, a causal relationship has not been established. Treatment of Pregnant Women During the Third Trimester — Neonates exposed to fluoxetine, SNRIs, or SSRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SNRIs and SSRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome. Infants exposed to SSRIs in late pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn (PPHN). PPHN occurs in 1 to 2 per 1000 live births in the general population and is associated with substantial neonatal morbidity and mortality. In a retrospective case-control study of 377 women whose infants were born with PPHN and 836 women whose infants were born healthy, the risk for developing PPHN was approximately six-fold higher for infants exposed to SSRIs after the 20th week of gestation compared to infants who had not been exposed to antidepressants during pregnancy. There is currently no corroborative evidence regarding the risk for PPHN following exposure to SSRIs in pregnancy; this is the first study that has investigated the potential risk. The study did not include enough cases with exposure to individual SSRIs to determine if all SSRIs posed similar levels of PPHN risk. Clinical Considerations – When treating pregnant women with fluoxetine, the physician should carefully consider both the potential risks and potential benefits of treatment taking into account the risk of untreated depression during pregnancy. Physicians should note that in a prospective longitudinal study of 201 women with a history of major depression who were euthymic at the beginning of pregnancy, women who discontinued antidepressant medication during pregnancy were more likely to experience a relapse of major depression than women who continued antidepressant medication. The physician may consider tapering fluoxetine in the third trimester. Animal Data – In embryo-fetal development studies in rats and rabbits, there was no evidence of teratogenicity following administration of fluoxetine doses up to 12.5 and 15 mg/kg/day, respectively (1.5 and 3.6 times, respectively, the maximum recommended human dose (MRHD) of 80 mg on a mg/m2 basis) throughout organogenesis. However, in rat reproduction studies, an increase in stillborn pups, a decrease in pup weight, and an increase in pup deaths during the first 7 days postpartum occurred following maternal exposure to 12 mg/kg/day (1.5 times MRHD on a mg/m2 basis) during gestation or 7.5 mg/kg/day (0.9 times the MRHD on a mg/ m2 basis) during gestation and lactation. There was no evidence of developmental neurotoxicity in the surviving offspring of rats treated with 12 mg/kg/day during gestation. The no-effect dose for rat pup mortality was 5 mg/kg/day (0.6 times the MRHD on a mg/ m2 basis).

NUSRING MOTHERS

8.3 Nursing Mothers Because fluoxetine is excreted in human milk, nursing while on fluoxetine is not recommended. In one breast-milk sample, the concentration of fluoxetine plus norfluoxetine was 70.4 ng/mL. The concentration in the mother’s plasma was 295.0 ng/mL. No adverse effects on the infant were reported. In another case, an infant nursed by a mother on fluoxetine developed crying, sleep disturbance, vomiting, and watery stools. The infant’s plasma drug levels were 340 ng/mL of fluoxetine and 208 ng/mL of norfluoxetine on the second day of feeding.

BOXED WARNING

WARNING: SUICIDALITY AND ANTIDEPRESSANT DRUGS Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of Major Depressive Disorder (MDD) and other psychiatric disorders. Anyone considering the use of fluoxetine or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Fluoxetine is approved for use in pediatric patients with MDD and Obsessive Compulsive Disorder (OCD) [see Warnings and Precautions ( 5.1) and Use in Specific Populations (8.4)]. When using fluoxetine and olanzapine in combination, also refer to Boxed Warning section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. WARNING: SUICIDALITY AND ANTIDEPRESSANT DRUGS S ee full prescribing information for complete boxed warning. Increased risk of suicidal thinking and behavior in children, adolescents, and young adults taking antidepressants for Major Depressive Disorder (MDD) and other psychiatric disorders (5.1). When using fluoxetine and olanzapine in combination, also refer to Boxed Warning section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS When using Fluoxetine and olanzapine in combination, also refer to the Warnings and Precautions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. Clinical Worsening and Suicide Risk: Monitor for clinical worsening and suicidal thinking and behavior (5.1) Serotonin Syndrome or Neuroleptic Malignant Syndrome (NMS)-like Reactions: Have been reported with fluoxetine. Discontinue fluoxetine and initiate supportive treatment (5.2) Allergic Reactions and Rash: Discontinue upon appearance of rash or allergic phenomena (5.3) Activation of Mania/Hypomania: Screen for Bipolar Disorder and monitor for mania/hypomania (5.4) Seizures: Use cautiously in patients with a history of seizures or with conditions that potentially lower the seizure threshold (5.5) Altered Appetite and Weight: Significant weight loss has occurred (5.6) Abnormal Bleeding: May increase the risk of bleeding. Use with NSAIDs, aspirin, warfarin, or drugs that affect coagulation may potentiate the risk of gastrointestinal or other bleeding (5.7) Hyponatremia: Has been reported with fluoxetine in association with syndrome of inappropriate antidiuretic hormone (SIADH) (5.8) Anxiety and Insomnia: May occur (5.9) Potential for Cognitive and Motor Impairment: Has potential to impair judgment, thinking, and motor skills. Use caution when operating machinery (5.11) Long Half-Life: Changes in dose will not be fully reflected in plasma for several weeks (5.12) Fluoxetine and Olanzapine in Combination: When using fluoxetine and olanzapine in combination, also refer to the Warnings and Precautions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules (5.14) 5.1 Clinical Worsening and Suicide Risk Patients with Major Depressive Disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18-24) with Major Depressive Disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, Obsessive Compulsive Disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug versus placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 2. Table 2: Suicidality per 1000 Patients Treated Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 14 additional cases 18-24 5 additional cases Decreases Compared to Placebo 25-64 1 fewer case ≥65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for Major Depressive Disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms [see Warnings and Precautions (5.13)]. Families and caregivers of patients being treated with antidepressants for Major Depressive Disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for Fluoxetine Capsules USP should be written for the smallest quantity of capsules consistent with good patient management, in order to reduce the risk of overdose. It should be noted that fluoxetine is approved in the pediatric population only for Major Depressive Disorder and Obsessive Compulsive Disorder. Safety and effectiveness of fluoxetine and olanzapine in combination in patients less than 18 years of age have not been established. 5.2 Serotonin Syndrome or Neuroleptic Malignant Syndrome (NMS)-like Reactions The development of a potentially life-threatening serotonin syndrome or neuroleptic malignant syndrome (NMS)-like reactions have been reported with SNRIs and SSRIs alone, including fluoxetine treatment, but particularly with concomitant use of serotonergic drugs (including triptans) with drugs which impair metabolism of serotonin (including MAOIs), or with antipsychotics or other dopamine antagonists. Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Serotonin syndrome, in its most severe form can resemble neuroleptic malignant syndrome, which includes hyperthermia, muscle rigidity, autonomic instability with possible rapid fluctuation of vital signs, and mental status changes. Patients should be monitored for the emergence of serotonin syndrome or NMS-like signs and symptoms. The concomitant use of fluoxetine with MAOIs intended to treat depression is contraindicated [see Contraindications (4) and Drug Interactions ( 7.1)]. If concomitant treatment of fluoxetine with a 5-hydroxytryptamine receptor agonist (triptan) is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases [see Drug Interactions ( 7.4)]. The concomitant use of fluoxetine with serotonin precursors (such as tryptophan) is not recommended [see Drug Interactions (7.3)]. Treatment with fluoxetine and any concomitant serotonergic or antidopaminergic agents, including antipsychotics, should be discontinued immediately if the above reactions occur and supportive symptomatic treatment should be initiated. 5.3 Allergic Reactions and Rash In US fluoxetine clinical trials, 7% of 10,782 patients developed various types of rashes and/or urticaria. Among the cases of rash and/or urticaria reported in premarketing clinical trials, almost a third were withdrawn from treatment because of the rash and/or systemic signs or symptoms associated with the rash. Clinical findings reported in association with rash include fever, leukocytosis, arthralgias, edema, carpal tunnel syndrome, respiratory distress, lymphadenopathy, proteinuria, and mild transaminase elevation. Most patients improved promptly with discontinuation of fluoxetine and/or adjunctive treatment with antihistamines or steroids, and all patients experiencing these reactions were reported to recover completely. In premarketing clinical trials, 2 patients are known to have developed a serious cutaneous systemic illness. In neither patient was there an unequivocal diagnosis, but one was considered to have a leukocytoclastic vasculitis, and the other, a severe desquamating syndrome that was considered variously to be a vasculitis or erythema multiforme. Other patients have had systemic syndromes suggestive of serum sickness. Since the introduction of fluoxetine, systemic reactions, possibly related to vasculitis and including lupus-like syndrome, have developed in patients with rash. Although these reactions are rare, they may be serious, involving the lung, kidney, or liver. Death has been reported to occur in association with these systemic reactions. Anaphylactoid reactions, including bronchospasm, angioedema, laryngospasm, and urticaria alone and in combination, have been reported. Pulmonary reactions, including inflammatory processes of varying histopathology and/or fibrosis, have been reported rarely. These reactions have occurred with dyspnea as the only preceding symptom. Whether these systemic reactions and rash have a common underlying cause or are due to different etiologies or pathogenic processes is not known. Furthermore, a specific underlying immunologic basis for these reactions has not been identified. Upon the appearance of rash or of other possibly allergic phenomena for which an alternative etiology cannot be identified, fluoxetine should be discontinued. 5.4 Screening Patients for Bipolar Disorder and Monitoring for Mania/Hypomania A major depressive episode may be the initial presentation of Bipolar Disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/ manic episode in patients at risk for Bipolar Disorder. Whether any of the symptoms described for clinical worsening and suicide risk represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for Bipolar Disorder; such screening should include a detailed psychiatric history, including a family history of suicide, Bipolar Disorder, and depression. It should be noted that fluoxetine and olanzapine in combination is approved for the acute treatment of depressive episodes associated with Bipolar I Disorder [ see Warnings and Precautions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules]. Fluoxetine monotherapy is not indicated for the treatment of depressive episodes associated with Bipolar I Disorder. In US placebo-controlled clinical trials for Major Depressive Disorder, mania/hypomania was reported in 0.1% of patients treated with fluoxetine and 0.1% of patients treated with placebo. Activation of mania/hypomania has also been reported in a small proportion of patients with Major Affective Disorder treated with other marketed drugs effective in the treatment of Major Depressive Disorder [see Use in Specific Populations (8.4)]. In US placebo-controlled clinical trials for OCD, mania/hypomania was reported in 0.8% of patients treated with fluoxetine and no patients treated with placebo. No patients reported mania/hypomania in US placebo-controlled clinical trials for bulimia. In US fluoxetine clinical trials, 0.7% of 10,782 patients reported mania/hypomania [see Use in Specific Populations (8.4)]. 5.5 Seizures In US placebo-controlled clinical trials for Major Depressive Disorder, convulsions (or reactions described as possibly having been seizures) were reported in 0.1% of patients treated with fluoxetine and 0.2% of patients treated with placebo. No patients reported convulsions in US placebo-controlled clinical trials for either OCD or bulimia. In all US fluoxetine clinical trials , 0.2% of 10,782 patients reported convulsions. The percentage appears to be similar to that associated with other marketed drugs effective in the treatment of Major Depressive Disorder. Fluoxetine should be introduced with care in patients with a history of seizures. 5.6 Altered Appetite and Weight Significant weight loss, especially in underweight depressed or bulimic patients, may be an undesirable result of treatment with fluoxetine. In US placebo-controlled clinical trials for Major Depressive Disorder, 11% of patients treated with fluoxetine and 2% of patients treated with placebo reported anorexia (decreased appetite). Weight loss was reported in 1.4% of patients treated with fluoxetine and in 0.5% of patients treated with placebo. However, only rarely have patients discontinued treatment with fluoxetine because of anorexia or weight loss [see Use in Specific Populations (8.4)]. In US placebo-controlled clinical trials for OCD, 17% of patients treated with fluoxetine and 10% of patients treated with placebo reported anorexia (decreased appetite). One patient discontinued treatment with fluoxetine because of anorexia [see Use in Specific Populations (8.4)]. In US placebo-controlled clinical trials for Bulimia Nervosa, 8% of patients treated with fluoxetine 60 mg and 4% of patients treated with placebo reported anorexia (decreased appetite). Patients treated with fluoxetine 60 mg on average lost 0.45 kg compared with a gain of 0.16 kg by patients treated with placebo in the 16-week double-blind trial. Weight change should be monitored during therapy. 5.7 Abnormal Bleeding SNRIs and SSRIs, including fluoxetine, may increase the risk of bleeding reactions. Concomitant use of aspirin, nonsteroidal anti­inflammatory drugs, warfarin, and other anti-coagulants may add to this risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding reactions related to SNRIs and SSRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages. Patients should be cautioned about the risk of bleeding associated with the concomitant use of fluoxetine and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation [see Drug Interactions (7.6)]. 5.8 Hyponatremia Hyponatremia has been reported during treatment with SNRIs and SSRIs, including fluoxetine. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Cases with serum sodium lower than 110 mmol/L have been reported and appeared to be reversible when fluoxetine was discontinued. Elderly patients may be at greater risk of developing hyponatremia with SNRIs and SSRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk [see Use in Specific Populations (8.5)]. Discontinuation of fluoxetine should be considered in patients with symptomatic hyponatremia and appropriate medical intervention should be instituted. Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. More severe and/or acute cases have been associated with hallucination, syncope, seizure, coma, respiratory arrest, and death. 5.9 Anxiety and Insomnia In US placebo-controlled clinical trials for Major Depressive Disorder, 12% to 16% of patients treated with fluoxetine and 7% to 9% of patients treated with placebo reported anxiety, nervousness, or insomnia. In US placebo-controlled clinical trials for OCD, insomnia was reported in 28% of patients treated with fluoxetine and in 22% of patients treated with placebo. Anxiety was reported in 14% of patients treated with fluoxetine and in 7% of patients treated with placebo. In US placebo-controlled clinical trials for Bulimia Nervosa, insomnia was reported in 33% of patients treated with fluoxetine 60 mg, and 13% of patients treated with placebo. Anxiety and nervousness were reported, respectively, in 15% and 11% of patients treated with fluoxetine 60 mg and in 9% and 5% of patients treated with placebo. Among the most common adverse reactions associated with discontinuation (incidence at least twice that for placebo and at least 1% for fluoxetine in clinical trials collecting only a primary reaction associated with discontinuation) in US placebo-controlled fluoxetine clinical trials were anxiety (2% in OCD), insomnia (1% in combined indications and 2% in bulimia), and nervousness (1% in Major Depressive Disorder) see Table 5]. 5.10 Use in Patients with Concomitant Illness Clinical experience with fluoxetine in patients with concomitant systemic illness is limited. Caution is advisable in using fluoxetine in patients with diseases or conditions that could affect metabolism or hemodynamic responses. Cardiovascular — Fluoxetine has not been evaluated or used to any appreciable extent in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were systematically excluded from clinical studies during the product's premarket testing. However, the electrocardiograms of 312 patients who received fluoxetine in double-blind trials were retrospectively evaluated; no conduction abnormalities that resulted in heart block were observed. The mean heart rate was reduced by approximately 3 beats/min. Glycemic Control — In patients with diabetes, fluoxetine may alter glycemic control. Hypoglycemia has occurred during therapy with fluoxetine, and hyperglycemia has developed following discontinuation of the drug. As is true with many other types of medication when taken concurrently by patients with diabetes, insulin and/or oral hypoglycemic, dosage may need to be adjusted when therapy with fluoxetine is instituted or discontinued. 5.11 Potential for Cognitive and Motor Impairment As with any CNS-active drug, fluoxetine has the potential to impair judgment, thinking, or motor skills. Patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that the drug treatment does not affect them adversely. 5.12 Long Elimination Half-Life Because of the long elimination half-lives of the parent drug and its major active metabolite, changes in dose will not be fully reflected in plasma for several weeks, affecting both strategies for titration to final dose and withdrawal from treatment. This is of potential consequence when drug discontinuation is required or when drugs are prescribed that might interact with fluoxetine and norfluoxetine following the discontinuation of fluoxetine [see Clinical Pharmacology (12.3)]. 5.13 Discontinuation of Treatment During marketing of fluoxetine, SNRIs, and SSRIs, there have been spontaneous reports of adverse reactions occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g., paresthesias such as electric shock sensations), anxiety, confusion, headache, lethargy, emotional lability, insomnia, and hypomania. While these reactions are generally self-limiting, there have been reports of serious discontinuation symptoms. Patients should be monitored for these symptoms when discontinuing treatment with fluoxetine. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. Plasma fluoxetine and norfluoxetine concentration decrease gradually at the conclusion of therapy which may minimize the risk of discontinuation symptoms with this drug. 5.14 Fluoxetine and Olanzapine in Combination When using fluoxetine and olanzapine in combination, also refer to the Warnings and Precautions section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See the FDA-approved Medication Guide. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking Fluoxetine as monotherapy or in combination with olanzapine. When using fluoxetine and olanzapine in combination, also refer to the Patient Counseling Information section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. 17.1 General Information Healthcare providers should instruct their patients to read the Medication Guide before starting therapy with Fluoxetine and to reread it each time the prescription is renewed. Healthcare providers should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with fluoxetine and should counsel them in its appropriate use. Healthcare providers should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. Patients should be advised of the following issues and asked to alert their healthcare provider if these occur while taking Fluoxetine. When using f luoxetine and olanzapine in combination, also refer to the Medication Guide for Fluoxetine Hydrochloride and Olanzapine Capsules. 17.2 Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication [see Box Warning and Warnings and Precautions (5.1)]. 17.3 Serotonin Syndrome or Neuroleptic Malignant Syndrome (NMS)-like Reactions Patients should be cautioned about the risk of serotonin syndrome or NMS-like reactions with the concomitant use of fluoxetine and triptans, tramadol, or other serotonergic agents [see Warnings and Precautions (5.2) and Drug Interactions (7.3)]. Patients should be advised of the signs and symptoms associated with serotonin syndrome or NMS-like reactions that may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Serotonin syndrome, in its most severe form can resemble neuroleptic malignant syndrome, in which the symptoms may include hyperthermia, muscle rigidity, autonomic instability with possible rapid fluctuation of vital signs, and mental status changes. Patients should be cautioned to seek medical care immediately if they experience these symptoms. Patients should be cautioned about the risk of serotonin syndrome or NMS-like reactions with the concomitant use of fluoxetine and triptans, tramadol, or other serotonergic agents [see Warnings and Precautions (5.2) and Drug Interactions (7.3)]. 17.4 Allergic Reactions and Rash Patients should be advised to notify their physician if they develop a rash or hives [see Warnings and Precautions (5.3)]. Patients should also be advised of the signs and symptoms associated with a severe allergic reaction, including swelling of the face, eyes, or mouth, or have trouble breathing. Patients should be cautioned to seek medical care immediately if they experience these symptoms. 17.5 Abnormal Bleeding Patients should be cautioned about the concomitant use of fluoxetine and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents have been associated with an increased risk of bleeding [see Warnings and Precautions (5.7) and Drug Interactions (7.6)]. Patients should be advised to call their doctor if they experience any increased or unusual bruising or bleeding while taking Fluoxetine. 17.6 Hyponatremia Patients should be advised that hyponatremia has been reported as a result of treatment with SNRIs and SSRIs, including fluoxetine. Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. More severe and/or acute cases have been associated with hallucination, syncope, seizure, coma, respiratory arrest, and death [see Warnings and Precautions (5.8)]. 17.7 Potential for Cognitive and Motor Impairment Fluoxetine may impair judgment, thinking, or motor skills. Patients should be advised to avoid driving a car or operating hazardous machinery until they are reasonably certain that their performance is not affected [ see Warnings and Precautions (5.11)]. 17.8 Use of Concomitant Medications Patients should be advised to inform their physician if they are taking, or plan to take, any prescription medication, including Fluoxetine Hydrochloride and Olanzapine Capsules, Sarafem ®, or over-the-counter drugs, including herbal supplements or alcohol. Patients should also be advised to inform their physicians if they plan to discontinue any medications they are taking while on fluoxetine. 17.9 Discontinuation of Treatment Patients should be advised to take Fluoxetine exactly as prescribed, and to continue taking Fluoxetine as prescribed even after their symptoms improve. Patients should be advised that they should not alter their dosing regimen, or stop taking Fluoxetine without consulting their physician [see Warnings and Precautions (5.13)]. Patients should be advised to consult with their healthcare provider if their symptoms do not improve with fluoxetine. 17.10 Use in Specific Populations Pregnancy — Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. Fluoxetine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus [see Use in Specific Populations (8.1)]. Nursing Mothers — Patients should be advised to notify their physician if they intend to breast-feed an infant during therapy. Because fluoxetine is excreted in human milk, nursing while taking fluoxetine is not recommended [see Use in Specific Populations (8.3)]. Pediatric Use — Fluoxetine is approved for use in pediatric patients with MDD and OCD [see Box Warning and Warnings and Precautions (5.1)]. Limited evidence is available concerning the longer-term effects of fluoxetine on the development and maturation of children and adolescent patients. Height and weight should be monitored periodically in pediatric patients receiving fluoxetine. Safety and effectiveness of fluoxetine and olanzapine in combination in patients less than 18 years of age have not been established [see Warnings and Precautions (5.6) and Use in Specific Populations (8.4)]. Manufactured by: Par Pharmaceutical Companies, Inc. Spring Valley , NY 10977 R06/11

DOSAGE AND ADMINISTRATION

2 Indication Adult Pediatric 20 mg/day in am (initial dose) 10 to 20 mg/day (initial dose) 20 mg/day in am (initial dose) 10 mg/day (initial dose) 60 mg/day in am – 10 mg/day (initial dose) – Oral in combination with olanzapine: 5 mg of oral olanzapine and 20 mg of fluoxetine once daily (initial dose) – Consider tapering the dose of fluoxetine for pregnant women during the third trimester (2.7) A lower or less frequent dosage should be used in patients with hepatic impairment, the elderly, and for patients with concurrent disease or on multiple concomitant medications (2.7) Fluoxetine and olanzapine in combination: Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability (2.5) Fluoxetine monotherapy is not indicated for the treatment of Depressive Episodes associated with Bipolar I Disorder or treatment resistant depression (2.5) Safety of the coadministration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated (2.5) 2.1 Major Depressive Disorder Initial Treatment Adult — In controlled trials used to support the efficacy of fluoxetine, patients were administered morning doses ranging from 20 to 80 mg/day. Studies comparing fluoxetine 20, 40, and 60 mg/day to placebo indicate that 20 mg/day is sufficient to obtain a satisfactory response in Major Depressive Disorder in most cases. Consequently, a dose of 20 mg/day, administered in the morning, is recommended as the initial dose. A dose increase may be considered after several weeks if insufficient clinical improvement is observed. Doses above 20 mg/day may be administered on a once-a-day (morning) or BID schedule (i.e., morning and noon) and should not exceed a maximum dose of 80 mg/day. Pediatric (children and adolescents) — In the short-term (8 to 9 week) controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Major Depressive Disorder, patients were administered fluoxetine doses of 10 to 20 mg/day [see Clinical Studies (14.1)]. Treatment should be initiated with a dose of 10 or 20 mg/day. After 1 week at 10 mg/day, the dose should be increased to 20 mg/day. However, due to higher plasma levels in lower weight children, the starting and target dose in this group may be 10 mg/day. A dose increase to 20 mg/day may be considered after several weeks if insufficient clinical improvement is observed. All patients — As with other drugs effective in the treatment of Major Depressive Disorder, the full effect may be delayed until 4 weeks of treatment or longer. It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacologic therapy. Whether the dose needed to induce remission is identical to the dose needed to maintain and/or sustain euthymia is unknown. Daily Dosing Systematic evaluation of fluoxetine in adult patients has shown that its efficacy in major depressive disorder is maintained for periods of up to 38 weeks following 12 weeks of open-label acute treatment (50 weeks total) at a dose of 20 mg/day [ see CLINICAL STUDIES (14.1)]. Dosage of a TCA may need to be reduced, and plasma TCA concentrations may need to be monitored temporarily when fluoxetine is coadministered or has been recently discontinued ( see Other drugs effective in the treatment of major depressive disorder under PRECAUTIONS, Drug Interactions (7.9)]. At least 14 days should elapse between discontinuation of an MAOI and initiation of therapy with fluoxetine. In addition, at least 5 weeks, perhaps longer, should be allowed after stopping fluoxetine before starting an MAOI [see Contraindications (4) and Drug Interactions ( 7.1)]. 2.2 Obsessive Compulsive Disorder Initial Treatmen t Adult — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of OCD, patients were administered fixed daily doses of 20, 40, or 60 mg of fluoxetine or placebo [see Clinical Studies (14.2)]. In one of these studies, no dose-response relationship for effectiveness was demonstrated. Consequently, a dose of 20 mg/day, administered in the morning, is recommended as the initial dose. Since there was a suggestion of a possible dose-response relationship for effectiveness in the second study, a dose increase may be considered after several weeks if insufficient clinical improvement is observed. The full therapeutic effect may be delayed until 5 weeks of treatment or longer. Doses above 20 mg/day may be administered on a once-a-day (i.e., morning) or BID schedule (i.e., morning and noon). A dose range of 20 to 60 mg/day is recommended; however, doses of up to 80 mg/day have been well tolerated in open studies of OCD. The maximum fluoxetine dose should not exceed 80 mg/day. Pediatric (children and adolescents) — In the controlled clinical trial of fluoxetine supporting its effectiveness in the treatment of OCD, patients were administered fluoxetine doses in the range of 10 to 60 mg/day [see Clinical Studies (14.2)]. In adolescents and higher weight children, treatment should be initiated with a dose of 10 mg/day. After 2 weeks, the dose should be increased to 20 mg/day. Additional dose increases may be considered after several more weeks if insufficient clinical improvement is observed. A dose range of 20 to 60 mg/day is recommended. In lower weight children, treatment should be initiated with a dose of 10 mg/day. Additional dose increases may be considered after several more weeks if insufficient clinical improvement is observed. A dose range of 20 to 30 mg/day is recommended. Experience with daily doses greater than 20 mg is very minimal, and there is no experience with doses greater than 60 mg. Maintenance/Continuation Treatment — While there are no systematic studies that answer the question of how long to continue fluoxetine, OCD is a chronic condition and it is reasonable to consider continuation for a responding patient. Although the efficacy of fluoxetine after 13 weeks has not been documented in controlled trials, adult patients have been continued in therapy under double-blind conditions for up to an additional 6 months without loss of benefit. However, dosage adjustments should be made to maintain the patient on the lowest effective dosage, and patients should be periodically reassessed to determine the need for treatment. 2.3 Bulimia Nervosa Initial Treatment — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Bulimia Nervosa, patients were administered fixed daily fluoxetine doses of 20 or 60 mg, or placebo [see Clinical Studies (14.3)]. Only the 60 mg dose was statistically significantly superior to placebo in reducing the frequency of binge-eating and vomiting. Consequently, the recommended dose is 60 mg/day, administered in the morning. For some patients it may be advisable to titrate up to this target dose over several days. Fluoxetine doses above 60 mg/day have not been systematically studied in patients with bulimia. Maintenance/Continuation Treatment — Systematic evaluation of continuing fluoxetine 60 mg/day for periods of up to 52 weeks in patients with bulimia who have responded while taking fluoxetine 60 mg/day during an 8-week acute treatment phase has demonstrated a benefit of such maintenance treatment [see Clinical Studies (14.3)]. Nevertheless, patients should be periodically reassessed to determine the need for maintenance treatment. 2.4 Panic Disorder Initial Treatment — In the controlled clinical trials of fluoxetine supporting its effectiveness in the treatment of Panic Disorder, patients were administered fluoxetine doses in the range of 10 to 60 mg/day [see Clinical Studies (14.4)]. Treatment should be initiated with a dose of 10 mg/day. After one week, the dose should be increased to 20 mg/day. The most frequently administered dose in the 2 flexible-dose clinical trials was 20 mg/day. A dose increase may be considered after several weeks if no clinical improvement is observed. Fluoxetine doses above 60 mg/day have not been systematically evaluated in patients with Panic Disorder. Maintenance/Continuation Treatment — While there are no systematic studies that answer the question of how long to continue fluoxetine, panic disorder is a chronic condition and it is reasonable to consider continuation for a responding patient. Nevertheless, patients should be periodically reassessed to determine the need for continued treatment. 2.5 Fluoxetine and Olanzapine in Combination: Depressive Episodes Associated with Bipolar I Disorder When using f luoxetine and olanzapine in combination, also refer to the Clinical Studies section of the package insert for Fluoxetine Hydrochloride and Olanzapine Capsules. Fluoxetine should be administered in combination with oral olanzapine once daily in the evening, without regard to meals, generally beginning with 5 mg of oral olanzapine and 20 mg of fluoxetine. Dosage adjustments, if indicated, can be made according to efficacy and tolerability within dose ranges of fluoxetine 20 to 50 mg and oral olanzapine 5 to 12.5 mg. Antidepressant efficacy was demonstrated with olanzapine and fluoxetine in combination with a dose range of olanzapine 6 to 12 mg and fluoxetine 25 to 50 mg. Safety and efficacy of fluoxetine in combination with olanzapine was determined in clinical trials supporting approval of Fluoxetine Hydrochloride and Olanzapine Capsules. Fluoxetine Hydrochloride and Olanzapine Capsulesis dosed between 3mg/25mg per day (olanzapine/fluoxetine) and 12 mg/50 mg (olanzapine/fluoxetine) per day. The following table demonstrates the appropriate individual component doses of fluoxetine and olanzapine versus Fluoxetine Hydrochloride and Olanzapine Capsules. Dosage adjustments, if indicated, should be made with the individual components according to efficacy and tolerability. Table 1: Approximate Dose Correspondence Between Symbyax®1 and the Combination of Fluoxetine and Olanzapine 1 Fluoxetine Hydrochloride and Olanzapine Capsules is a fixed-dose combination of fluoxetine and olanzapine. Use in Combination For Fluoxetine Hydrochloride and Olanzapine Capsules (mg/day) Olanzapine (mg/day) Fluoxetine (mg/day) 3 mg olanzapine/25 mg fluoxetine 2.5 20 6 mg olanzapine/25 mg fluoxetine 5 20 12 mg olanzapine/25 mg fluoxetine 10+2.5 20 6 mg olanzapine/50 mg fluoxetine 5 40+10 12 mg olanzapine/50 mg fluoxetine 10+2.5 40+10 While there is no body of evidence to answer the question of how long a patient treated with fluoxetine and olanzapine in combination should remain on it, it is generally accepted that Bipolar I Disorder, including the depressive episodes associated with Bipolar I Disorder, is a chronic illness requiring chronic treatment. The physician should periodically re-examine the need for continued pharmacotherapy. Safety of coadministration of doses above 18 mg olanzapine with 75 mg fluoxetine has not been evaluated in clinical studies Fluoxetine monotherapy is not indicated for the treatment of depressive episodes associated with Bipolar I Disorder 2.7 Dosing in Specific Populations Treatment of pregnant Women During the Third Trimester — When treating pregnant women with fluoxetine during the third trimester, the physician should carefully consider the potential risks and potential benefits of treatment. Neonates exposed to SNRIs or SSRIs late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. The physician may consider tapering fluoxetine in the third trimester [see Use in Specific Populations (8.1)]. Geriatric — A lower or less frequent dosage should be considered for the elderly [see Use in Specific Populations (8.5)] Hepatic Impairment — As with many other medications, a lower or less frequent dosage should be used in patients with hepatic impairment [see Clinical Pharmacology (12.4) and Use in Specific Populations (8.6)]. Concomitant Illness — Patients with concurrent disease or on multiple concomitant medications may require dosage adjustments [see Clinical Pharmacology (12.4) and Warnings and Precautions (5.10)]. Fluoxetine and Olanzapine in Combination — The starting dose of oral olanzapine 2.5 to 5 mg with fluoxetine 20 mg should be used for patients with a predisposition to hypotensive reactions, patients with hepatic impairment, or patients who exhibit a combination of factors that may slow the metabolism of olanzapine or fluoxetine in combination (female gender, geriatric age, non-smoking status), or those patients who may be pharmacodynamically sensitive to olanzapine. Dosing modifications may be necessary in patients who exhibit a combination of factors that may slow metabolism. When indicated, dose escalation should be performed with caution in these patients. Fluoxetine and olanzapine in combination have not been systematically studied in patients over 65 years of age or in patients less than 18 years of age [see Warnings and Precautions (5.14) and Drug Interactions (7.9)]. 2.8 Discontinuation of Treatment Symptoms associated with discontinuation of fluoxetine, SNRIs, and SSRIs, have been reported [see Warnings and Precautions ( 5.13)].