Diphenhydramine Hydrochloride 50 MG Oral Capsule

Generic Name: DIPHENHYDRAMINE HCL
Brand Name: Sleep Aid Maximum Strength
  • Substance Name(s):
  • DIPHENHYDRAMINE HYDROCHLORIDE

WARNINGS

Warnings Do not use for children under 12 years of age with any other product containing diphenhydramine, even one used on skin Ask a doctor before use if you have a breathing problem such as emphysema or chronic bronchitis glaucoma trouble urinating due to an enlarged prostate gland Ask a doctor or pharmacist before use if you are taking sedatives or tranquilizers. When using this product avoid alcoholic drinks. Stop use and ask a doctor if sleeplessness persists continuously for more than 2 weeks. Insomnia may be a symptom of a serious underlying medical illness. If pregnant or breast-feeding, ask a health professional before use. Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

INDICATIONS AND USAGE

Use for relief of occasional sleeplessness.

INACTIVE INGREDIENTS

Inactive ingredients edible white ink, FD&C blue #1, gelatin, glycerin, light mineral oil*, polyethylene glycol, purified water, sorbitol-sorbitan *may contain this ingredient

PURPOSE

Purpose Nighttime sleep-aid

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Ask a doctor before use if you have a breathing problem such as emphysema or chronic bronchitis glaucoma trouble urinating due to an enlarged prostate gland

DOSAGE AND ADMINISTRATION

Directions adults and children 12 years of age and over: 1 softgel (50 mg) at bedtime if needed, or as directed by a doctor

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use.

DO NOT USE

Do not use for children under 12 years of age with any other product containing diphenhydramine, even one used on skin

STOP USE

Stop use and ask a doctor if sleeplessness persists continuously for more than 2 weeks. Insomnia may be a symptom of a serious underlying medical illness.

ACTIVE INGREDIENTS

Active ingredient (in each softgel) Diphenhydramine HCl 50 mg Purpose Nighttime sleep-aid

ASK DOCTOR OR PHARMACIST

Ask a doctor or pharmacist before use if you are taking sedatives or tranquilizers.

Ondansetron 4 MG Oral Tablet

Generic Name: ONDANSETRON HYDROCHLORIDE
Brand Name: ondansetron
  • Substance Name(s):
  • ONDANSETRON HYDROCHLORIDE

WARNINGS

Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5-HT3 receptor antagonists. ECG changes including QT interval prolongation has been seen in patients receiving ondansetron. In addition, post-marketing cases of Torsade de Pointes have been reported in patients using ondansetron. Avoid ondansetron hydrochloride in patients with congenital long QT syndrome. ECG monitoring is recommended in patients with electrolyte abnormalities (e.g., hypokalemia or hypomagnesemia), congestive heart failure, bradyarrhythmias or patients taking other medicinal products that lead to QT prolongation.

DRUG INTERACTIONS

Drug Interactions Ondansetron does not itself appear to induce or inhibit the cytochrome P-450 drug-metabolizing enzyme system of the liver (see CLINICAL PHARMACOLOGY, Pharmacokinetics). Because ondansetron is metabolized by hepatic cytochrome P-450 drug-metabolizing enzymes (CYP3A4, CYP2D6, CYP1A2), inducers or inhibitors of these enzymes may change the clearance and, hence, the half-life of ondansetron. On the basis of available data, no dosage adjustment is recommended for patients on these drugs. Apomorphine Based on reports of profound hypotension and loss of consciousness when apomorphine was administered with ondansetron, concomitant use of apomorphine with ondansetron is contraindicated (see CONTRAINDICATIONS). Phenytoin, Carbamazepine, and Rifampicin In patients treated with potent inducers of CYP3A4 (i.e., phenytoin, carbamazepine, and rifampicin), the clearance of ondansetron was significantly increased and ondansetron blood concentrations were decreased. However, on the basis of available data, no dosage adjustment for ondansetron is recommended for patients on these drugs.1, 3 Tramadol Although no pharmacokinetic drug interaction between ondansetron and tramadol has been observed, data from 2 small studies indicate that ondansetron may be associated with an increase in patient controlled administration of tramadol.4, 5 Chemotherapy Tumor response to chemotherapy in the P-388 mouse leukemia model is not affected by ondansetron. In humans, carmustine, etoposide, and cisplatin do not affect the pharmacokinetics of ondansetron. In a crossover study in 76 pediatric patients, I.V. ondansetron did not increase blood levels of high-dose methotrexate.

OVERDOSAGE

There is no specific antidote for ondansetron overdose. Patients should be managed with appropriate supportive therapy. Individual intravenous doses as large as 150 mg and total daily intravenous doses as large as 252 mg have been inadvertently administered without significant adverse events. These doses are more than 10 times the recommended daily dose. In addition to the adverse events listed above, the following events have been described in the setting of ondansetron overdose: “Sudden blindness” (amaurosis) of 2 to 3 minutes’ duration plus severe constipation occurred in 1 patient that was administered 72 mg of ondansetron intravenously as a single dose. Hypotension (and faintness) occurred in a patient that took 48 mg of ondansetron tablets. Following infusion of 32 mg over only a 4-minute period, a vasovagal episode with transient second-degree heart block was observed. In all instances, the events resolved completely.

DESCRIPTION

The active ingredient in ondansetron tablets is ondansetron hydrochloride (HCl) as the dihydrate, the racemic form of ondansetron and a selective blocking agent of the serotonin 5-HT3 receptor type. Chemically it is (±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one, monohydrochloride, dihydrate. It has the following structural formula: The molecular formula is C18H19N3O•HCl•2H2O, representing a molecular weight of 365.9. Ondansetron HCl dihydrate is a white to off-white powder that is soluble in water and normal saline. Each 4 mg ondansetron tablet, USP for oral administration contains ondansetron hydrochloride dihydrate equivalent to 4 mg of ondansetron. Each 8 mg ondansetron tablet, USP for oral administration contains ondansetron hydrochloride dihydrate equivalent to 8 mg of ondansetron. Each tablet also contains the inactive ingredients croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, pregelatinized starch, titanium dioxide, triacetin, and iron oxide yellow (8 mg tablet only). This product meets USP Dissolution Test 3. chemical structure

HOW SUPPLIED

Product: 50090-1600 NDC: 50090-1600-0 10 TABLET, FILM COATED in a BOTTLE NDC: 50090-1600-1 6 TABLET, FILM COATED in a BOTTLE NDC: 50090-1600-2 20 TABLET, FILM COATED in a BOTTLE NDC: 50090-1600-3 8 TABLET, FILM COATED in a BOTTLE NDC: 50090-1600-4 3 TABLET, FILM COATED in a BOTTLE NDC: 50090-1600-5 12 TABLET, FILM COATED in a BOTTLE Product: 50090-1015 NDC: 50090-1015-0 4 TABLET, FILM COATED in a BOTTLE NDC: 50090-1015-1 10 TABLET, FILM COATED in a BOTTLE NDC: 50090-1015-2 3 TABLET, FILM COATED in a BOTTLE NDC: 50090-1015-3 30 TABLET, FILM COATED in a BOTTLE NDC: 50090-1015-4 6 TABLET, FILM COATED in a BOTTLE

GERIATRIC USE

Geriatric Use Of the total number of subjects enrolled in cancer chemotherapy-induced and postoperative nausea and vomiting in US- and foreign-controlled clinical trials, for which there were subgroup analyses, 938 were 65 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Dosage adjustment is not needed in patients over the age of 65 (see CLINICAL PHARMACOLOGY).

INDICATIONS AND USAGE

INDICATIONS & USAGE Prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy, including cisplatin ≥ 50 mg/m2. Prevention of nausea and vomiting associated with initial and repeat courses of moderately emetogenic cancer chemotherapy. Prevention of nausea and vomiting associated with radiotherapy in patients receiving either total body irradiation, single high-dose fraction to the abdomen, or daily fractions to the abdomen. Prevention of postoperative nausea and/or vomiting. As with other antiemetics, routine prophylaxis is not recommended for patients in whom there is little expectation that nausea and/or vomiting will occur postoperatively. In patients where nausea and/or vomiting must be avoided postoperatively, ondansetron tablets are recommended even where the incidence of postoperative nausea and/or vomiting is low.

PEDIATRIC USE

Pediatric Use Little information is available about dosage in pediatric patients 4 years of age or younger (see CLINICAL PHARMACOLOGYand DOSAGE AND ADMINISTRATIONsections for use in pediatric patients 4 to 18 years of age).

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category B. Reproduction studies have been performed in pregnant rats and rabbits at daily oral doses up to 15 and 30 mg/kg/day, respectively, and have revealed no evidence of impaired fertility or harm to the fetus due to ondansetron. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed

NUSRING MOTHERS

Nursing Mothers Ondansetron is excreted in the breast milk of rats. It is not known whether ondansetron is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when ondansetron is administered to a nursing woman.

DOSAGE AND ADMINISTRATION

Prevention of Nausea and Vomiting Associated With Highly Emetogenic Cancer Chemotherapy The recommended adult oral dosage of ondansetron tablets is 24 mg given as three 8 mg tablets administered 30 minutes before the start of single-day highly emetogenic chemotherapy, including cisplatin ≥ 50 mg/m2. Multiday, single-dose administration of a 24 mg dosage has not been studied. Pediatric Use There is no experience with the use of a 24 mg dosage in pediatric patients. Geriatric Use The dosage recommendation is the same as for the general population Prevention of Nausea and Vomiting Associated With Moderately Emetogenic Cancer Chemotherapy The recommended adult oral dosage is one 8 mg ondansetron tablet given twice a day. The first dose should be administered 30 minutes before the start of emetogenic chemotherapy, with a subsequent dose 8 hours after the first dose. One 8 mg ondansetron tablet should be administered twice a day (every 12 hours) for 1 to 2 days after completion of chemotherapy. Pediatric Use For pediatric patients 12 years of age and older, the dosage is the same as for adults. For pediatric patients 4 through 11 years of age, the dosage is one 4 mg ondansetron tablet or one 4 mg given 3 times a day. The first dose should be administered 30 minutes before the start of emetogenic chemotherapy, with subsequent doses 4 and 8 hours after the first dose. One 4 mg ondansetron tablet should be administered 3 times a day (every 8 hours) for 1 to 2 days after completion of chemotherapy. Geriatric Use The dosage is the same as for the general population. Prevention of Nausea and Vomiting Associated With Radiotherapy, Either Total Body Irradiation, or Single High-Dose Fraction or Daily Fractions to the Abdomen The recommended oral dosage is one 8 mg ondansetron tablet given 3 times a day. For total body irradiation, one 8 mg ondansetron tablet should be administered 1 to 2 hours before each fraction of radiotherapy administered each day. For single high-dose fraction radiotherapy to the abdomen, one 8 mg ondansetron tablet should be administered 1 to 2 hours before radiotherapy, with subsequent doses every 8 hours after the first dose for 1 to 2 days after completion of radiotherapy. For daily fractionated radiotherapy to the abdomen, one 8 mg ondansetron tablet should be administered 1 to 2 hours before radiotherapy, with subsequent doses every 8 hours after the first dose for each day radiotherapy is given. Pediatric Use There is no experience with the use of ondansetron tablet in the prevention of radiation-induced nausea and vomiting in pediatric patients. Geriatric Use The dosage recommendation is the same as for the general population. Postoperative Nausea and Vomiting The recommended dosage is 16 mg given as two 8 mg ondansetron tablets 1 hour before induction of anesthesia. Pediatric Use There is no experience with the use of ondansetron tablets in the prevention of postoperative nausea and vomiting in pediatric patients. Geriatric Use The dosage is the same as for the general population. Dosage Adjustment for Patients With Impaired Renal Function The dosage recommendation is the same as for the general population. There is no experience beyond first-day administration of ondansetron. Dosage Adjustment for Patients With Impaired Hepatic Function In patients with severe hepatic impairment (Child-Pugh2 score of 10 or greater), clearance is reduced and apparent volume of distribution is increased with a resultant increase in plasma half-life. In such patients, a total daily dose of 8 mg should not be exceeded.

Plaquenil 200 MG Oral Tablet

Generic Name: HYDROXYCHLOROQUINE SULFATE
Brand Name: Plaquenil
  • Substance Name(s):
  • HYDROXYCHLOROQUINE SULFATE

WARNINGS

, General PLAQUENIL is not effective against chloroquine-resistant strains of P. falciparum. Before starting a long-term treatment, both eyes should be carefully examined for visual acuity, central visual field and color vision. Examination should also include fundoscopy. These examinations should be repeated at least annually. Retinal toxicity is largely dose-related. The risk of retinal damage is small with daily doses of up to 6.5 mg/kg body weight. Exceeding the recommended daily dose sharply increases the risk of retinal toxicity. This examination should be more frequent and adapted to the patient in the following situations: -daily dosage exceeding 6.5 mg/kg ideal body weight. Absolute body weight used as a guide to dosage, could result in an overdosage in the obese; -renal insufficiency; -cumulative dose more than 200 g; -elderly; -impaired visual acuity. If any visual disturbance occurs (visual acuity, color vision), the drug should be immediately discontinued and the patient closely observed for possible progression of the abnormality. Retinal changes (and visual disturbances) may progress even after cessation of the therapy. (See ADVERSE REACTIONS section) Suicidal behavior has been reported in very rare cases in patients treated with hydroxychloroquine. Children are especially sensitive to the 4-aminoquinoline compounds. A number of fatalities have been reported following the accidental ingestion of chloroquine, sometimes in relatively small doses (0.75 g or 1 g in one 3-year-old child). Patients should be strongly warned to keep these drugs out of the reach of children. Use of PLAQUENIL in patients with psoriasis may precipitate a severe attack of psoriasis. When used in patients with porphyria the condition may be exacerbated. The preparation should not be used in these conditions unless in the judgment of the physician the benefit to the patient outweighs the possible hazard. Usage in Pregnancy Usage of this drug during pregnancy should be avoided except in the suppression or treatment of malaria when in the judgment of the physician the benefit outweighs the possible hazard. It should be noted that radioactively-tagged chloroquine administered intravenously to pregnant, pigmented CBA mice passed rapidly across the placenta. It accumulated selectively in the melanin structures of the fetal eyes and was retained in the ocular tissues for five months after the drug had been eliminated from the rest of the body.

OVERDOSAGE

The 4-aminoquinoline compounds are very rapidly and completely absorbed after ingestion, and in accidental overdosage, or rarely with lower doses in hypersensitive patients, toxic symptoms may occur within 30 minutes. The symptoms of overdosage may include headache, drowsiness, visual disturbances, cardiovascular collapse, convulsions, hypokalemia, rhythm and conduction disorders including QT prolongation, torsade de pointe, ventricular tachycardia and ventricular fibrillation, followed by sudden potentially fatal respiratory and cardiac arrest. Immediate medical attention is required, as these effects may appear shortly after the overdose. Treatment is symptomatic and must be prompt with immediate evacuation of the stomach by emesis (at home, before transportation to the hospital) or gastric lavage until the stomach is completely emptied. If finely powdered, activated charcoal is introduced by the stomach tube, after lavage, and within 30 minutes after ingestion of the tablets, it may inhibit further intestinal absorption of the drug. To be effective, the dose of activated charcoal should be at least five times the estimated dose of hydroxychloroquine ingested. Convulsions, if present, should be controlled before attempting gastric lavage. If due to cerebral stimulation, cautious administration of an ultrashort-acting barbiturate may be tried but, if due to anoxia, it should be corrected by oxygen administration, artificial respiration or, in shock with hypotension, by vasopressor therapy. Because of the importance of supporting respiration, tracheal intubation or tracheostomy, followed by gastric lavage, may also be necessary. Exchange transfusions have been used to reduce the level of 4-aminoquinoline drug in the blood. A patient who survives the acute phase and is asymptomatic should be closely observed for at least six hours. Fluids may be forced, and sufficient ammonium chloride (8 g daily in divided doses for adults) may be administered for a few days to acidify the urine to help promote urinary excretion in cases of both overdosage and sensitivity.

DESCRIPTION

Hydroxychloroquine sulfate is a colorless crystalline solid, soluble in water to at least 20 percent; chemically the drug is 2-[[4-[(7-Chloro-4-quinolyl)amino]pentyl]ethylamino] ethanol sulfate (1:1). PLAQUENIL (hydroxychloroquine sulfate) tablets contain 200 mg hydroxychloroquine sulfate, equivalent to 155 mg base, and are for oral administration. Inactive Ingredients: Dibasic Calcium Phosphate, Hydroxypropyl Methylcellulose, Magnesium Stearate, Polyethylene glycol 400, Polysorbate 80, Corn Starch, Titanium Dioxide.

HOW SUPPLIED

PLAQUENIL tablets are white, to off-white, film coated tablets imprinted “PLAQUENIL” on one face in black ink. Each tablet contains 200 mg hydroxychloroquine sulfate (equivalent to 155 mg base). Bottles of 100 tablets (NDC 0024-1562-10). Dispense in a tight, light-resistant container as defined in the USP/NF. Store at room temperature up to 30° C (86° F).

INDICATIONS AND USAGE

INDICATIONS PLAQUENIL is indicated for the suppressive treatment and treatment of acute attacks of malaria due to Plasmodium vivax, P. malariae, P. ovale, and susceptible strains of P. falciparum. It is also indicated for the treatment of discoid and systemic lupus erythematosus, and rheumatoid arthritis.

BOXED WARNING

WARNING PHYSICIANS SHOULD COMPLETELY FAMILIARIZE THEMSELVES WITH THE COMPLETE CONTENTS OF THIS LEAFLET BEFORE PRESCRIBING HYDROXYCHLOROQUINE.

Ipratropium Bromide 0.042 MG/ACTUAT Metered Dose Nasal Spray

WARNINGS

Immediate hypersensitivity reactions may occur after administration of ipratropium bromide, as demonstrated by urticaria, angioedema, rash, bronchospasm, anaphylaxis, and oropharyngeal edema. If such a reaction occurs, therapy with ipratropium bromide nasal solution 0.06% (Nasal Spray) should be stopped at once and alternative treatment should be considered.

OVERDOSAGE

Acute overdosage by intranasal administration is unlikely since ipratropium bromide is not well absorbed systemically after intranasal or oral administration. Following administration of a 20 mg oral dose (equivalent to ingesting more than two bottles of ipratropium bromide nasal solution 0.06% [Nasal Spray]) to 10 male volunteers, no change in heart rate or blood pressure was noted. Following a 2 mg intravenous infusion over 15 minutes to the same 10 male volunteers, plasma ipratropium concentrations of 22-45 ng/mL were observed (>100 times the concentrations observed following intranasal administration). Following intravenous infusion these 10 volunteers had a mean increase of heart rate of 50 bpm and less than 20 mmHg change in systolic or diastolic blood pressure at the time of peak ipratropium levels.

DESCRIPTION

The active ingredient in Ipratropium Bromide Nasal Solution 0.06% (Nasal Spray) is ipratropium bromide monohydrate. It is an anticholinergic agent chemically described as 8-azoniabicyclo [3.2.1] octane, 3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-, bromide monohydrate, (3-endo,8-syn)-: a synthetic quaternary ammonium compound, chemically related to atropine. Its structural formula is: ipratropium bromide monohydrate C 20H 30BrNO 3 • H 2O Mol. Wt. 430.4 Ipratropium bromide is a white to off-white crystalline substance, freely soluble in water and methanol, sparingly soluble in ethanol, and insoluble in non-polar media. In aqueous solution, it exists in an ionized state as a quaternary ammonium compound. Ipratropium bromide nasal solution 0.06% (Nasal Spray) is a metered-dose, manual pump spray unit which delivers 42 mcg ipratropium bromide (on an anhydrous basis) per spray (70 μL) in an isotonic aqueous solution, pH-adjusted to 4.7 with hydrochloric acid and/or sodium hydroxide (if needed). It also contains benzalkonium chloride, edetate disodium, sodium chloride, and purified water. Each bottle contains 165 sprays. MM1

HOW SUPPLIED

Ipratropium bromide nasal solution 0.06% (Nasal Spray) is supplied in a white high density polyethylene (HDPE) bottle fitted with a metered nasal spray pump, a safety clip to prevent accidental discharge of the spray, and a clear plastic dust cap. It contains 16.6 g of product formulation, 165 sprays, each delivering 42 mcg of ipratropium bromide per spray (70 μL), or 10 days of therapy at the maximum recommended dose (two sprays per nostril four times a day). (NDC 24208-399-15)

INDICATIONS AND USAGE

INDICATIONS & USAGE Ipratropium bromide nasal solution 0.06% (Nasal Spray) is indicated for the symptomatic relief of rhinorrhea associated with the common cold or seasonal allergic rhinitis for adults and children age 5 years and older. Ipratropium bromide nasal solution 0.06% (Nasal Spray) does not relieve nasal congestion or sneezing associated with the common cold or seasonal allergic rhinitis. The safety and effectiveness of the use of ipratropium bromide nasal solution 0.06% (Nasal Spray) beyond four days in patients with the common cold or beyond three weeks in patients with seasonal allergic rhinitis has not been established.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION For Symptomatic Relief of Rhinorrhea Associated with the Common Cold: The recommended dose of ipratropium bromide nasal solution 0.06% (Nasal Spray) is two sprays (84 mcg) per nostril three or four times daily (total dose 504 to 672 mcg/day) in adults and children age 12 years and older. Optimum dosage varies with response of the individual patient. The recommended dose of ipratropium bromide nasal solution 0.06% (Nasal Spray) for children age 5-11 years is two sprays (84 mcg) per nostril three times daily (total dose of 504 mcg/day). The safety and effectiveness of the use of ipratropium bromide nasal solution 0.06% (Nasal Spray) beyond four days in patients with the common cold have not been established. For Symptomatic Relief of Rhinorrhea Associated with Seasonal Allergic Rhinitis: The recommended dose of ipratropium bromide nasal solution 0.06% (Nasal Spray) is two sprays (84 mcg) per nostril four times daily (total dose 672 mcg/day) in adults and children age 5 years and older. The safety and effectiveness of the use of ipratropium bromide nasal solution 0.06% (Nasal Spray) beyond three weeks in patients with seasonal allergic rhinitis have not been established. Initial pump priming requires seven sprays of the pump. If used regularly as recommended, no further priming is required. If not used for more than 24 hours, the pump will require two sprays, or if not used for more than seven days, the pump will require seven sprays to reprime. Avoid spraying into eyes.

Albuterol 0.83 MG/ML Inhalant Solution

Generic Name: ALBUTEROL SULFATE
Brand Name: Albuterol Sulfate
  • Substance Name(s):
  • ALBUTEROL SULFATE

WARNINGS

As with other inhaled beta-adrenergic agonists, albuterol sulfate inhalation solution can produce paradoxical bronchospasm, which can be life threatening. If it occurs, the preparation should be discontinued immediately and alternative therapy instituted. Fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs and with the home use of nebulizers. It is, therefore, essential that the physician instruct the patient in the need for further evaluation, if his/her asthma becomes worse. In individual patients, any beta2-adrenergic agonist, including albuterol solution for inhalation, may have a clinically significant cardiac effect. Immediate hypersensitivity reactions may occur after administration of albuterol as demonstrated by rare cases of urticaria, angioedema, rash, bronchospasm, and oropharyngeal edema.

DRUG INTERACTIONS

Drug Interactions Other sympathomimetic aerosol bronchodilators or epinephrine should not be used concomitantly with albuterol. Albuterol should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors or tricyclic antidepressants, since the action of albuterol on the vascular system may be potentiated. Beta-receptor blocking agents and albuterol inhibit the effect of each other.

OVERDOSAGE

Manifestations of overdosage may include seizures, anginal pain, hypertension, hypokalemia, tachycardia with rates up to 200 beats/min, and exaggeration of the pharmacological effects listed in ADVERSE REACTIONS. In isolated cases in children 2 to 12 years of age, tachycardia with rates >200 beats/min has been observed. The oral LD50 in rats and mice was greater than 2,000 mg/kg. The inhalational LD50 could not be determined. There is insufficient evidence to determine if dialysis is beneficial for overdosage of albuterol inhalation solution.

DESCRIPTION

Albuterol Sulfate Inhalation Solution is a relatively selective beta2-adrenergic bronchodilator (see CLINICAL PHARMACOLOGY section below). Albuterol sulfate, the racemic form of albuterol, has the chemical name α1-[(tert-Butylamino)methyl]-4-hydroxy-m-xylene-α,α’-diol sulfate (2:1) (salt), and the following structural formula: Albuterol sulfate has a molecular weight of 576.70, and the molecular formula (C13H21NO3)2 • H2SO4. Albuterol sulfate is a white or practically white powder, freely soluble in water and slightly soluble in alcohol. The World Health Organization recommended name for albuterol base is salbutamol. Albuterol Sulfate Inhalation Solution 0.083% requires no dilution before administration. Each milliliter of Albuterol Sulfate Inhalation Solution 0.083% contains 0.83 mg of albuterol (as 1 mg of albuterol sulfate) in an isotonic, sterile, aqueous solution containing sodium chloride; sulfuric acid is used to adjust the pH to between 3 and 5. Albuterol Sulfate Inhalation Solution 0.083% contains no sulfiting agents or preservatives. Albuterol Sulfate Inhalation Solution is a clear, colorless to light yellow solution. Chemical Structure

HOW SUPPLIED

Unit-dose plastic vial containing Albuterol Sulfate Inhalation Solution 0.083%, 2.5 mg/3 mL(Potency expressed as albuterol, equivalent to 3 mg albuterol sulfate). Equivalent to 0.5 mL albuterol (as the sulfate) 0.5% (2.5 mg albuterol) diluted to 3 mL. Supplied in cartons as listed below. NDC 33261-0789-01 25 vials per carton / 25 vials per foil pouch Storage PROTECT FROM LIGHT. Store in pouch until time of use. Store between 2° and 25° C (36° and 77° F). Rx only.

INDICATIONS AND USAGE

Albuterol sulfate inhalation solution is indicated for the relief of bronchospasm in patients 2 years of age and older with reversible obstructive airway disease and acute attacks of bronchospasm.

PEDIATRIC USE

Pediatric Use The safety and effectiveness of albuterol sulfate inhalation solution have been established in children 2 years of age or older. Use of albuterol sulfate inhalation solution in these age-groups is supported by evidence from adequate and well-controlled studies of albuterol sulfate inhalation solution in adults; the likelihood that the disease course, pathophysiology, and the drug’s effect in pediatric and adult patients are substantially similar; and published reports of trials in pediatric patients 3 years of age or older. The recommended dose for the pediatric population is based upon three published dose comparison studies of efficacy and safety in children aged 5 to 17 years, and on the safety profile in both adults and pediatric patients at doses equal to or higher than the recommended doses. The safety and effectiveness of albuterol sulfate inhalation solution in children below 2 years of age have not been established.

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Albuterol has been shown to be teratogenic in mice when given subcutaneously in doses corresponding to 1.25 times the human nebulization dose (based on a 50 kg human). There are no adequate and well-controlled studies in pregnant women. Albuterol should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. A reproduction study in CD-1 mice with albuterol (0.025, 0.25, and 2.5 mg/kg subcutaneously, corresponding to 0.125, 1.25 and 12.5 times the maximum human nebulization dose, respectively) showed cleft palate formation in 5 of 111 (4.5%) fetuses at 0.25 mg/kg and in 10 of 108 (9.3%) fetuses at 2.5 mg/kg. None were observed at 0.025 mg/kg. Cleft palate also occurred in 22 of 72 (30.5%) fetuses from females treated with 2.5 mg/kg isoproterenol (positive control). A reproduction study in Stride Dutch rabbits revealed cranioschisis in 7 of 19 (37%) fetuses at 50 mg/kg, corresponding to 250 times the maximum nebulization dose for a 50 kg human. During worldwide marketing experience, various congenital anomalies, including cleft palate and limb defects, have been rarely reported in the offspring of patients being treated with albuterol. Some of the mothers were taking multiple medications during their pregnancies. No consistent pattern of defects can be discerned, and a relationship between albuterol use and congenital anomalies has not been established.

NUSRING MOTHERS

Nursing Mothers It is not known whether this drug is excreted in human milk. Because of the potential for tumorigenicity shown for albuterol in some animal studies, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

INFORMATION FOR PATIENTS

Information For Patients The action of albuterol sulfate inhalation solution may last up to six hours, and therefore it should not be used more frequently than recommended. Do not increase the dose or frequency of medication without medical consultation. If symptoms get worse, medical consultation should be sought promptly. While taking albuterol sulfate inhalation solution, other anti-asthma medicines should not be used unless prescribed. Drug compatibility (physical and chemical), efficacy, and safety of albuterol sulfate inhalation solution when mixed with other drugs in a nebulizer have not been established. See illustrated ” Patient’s Instructions for Use .”

DOSAGE AND ADMINISTRATION

Adults and Children 2 to 12 Years of Age The usual dosage for adults and for children weighing at least 15 kg is 2.5 mg of albuterol (one vial) administered three to four times daily by nebulization. Children weighing < 15 kg who require < 2.5 mg/dose (i.e., less than a full vial) should use albuterol inhalation solution, 0.5% instead of albuterol inhalation solution, 0.083%. More frequent administration or higher doses are not recommended. To administer 2.5 mg of albuterol, administer the entire contents of one sterile unit dose vial (3 mL of 0.083% inhalation solution) by nebulization. The flow rate is regulated to suit the particular nebulizer so that albuterol inhalation solution will be delivered over approximately 5 to 15 minutes. The use of albuterol sulfate inhalation solution can be continued as medically indicated to control recurring bouts of bronchospasm. During this time most patients gain optimum benefit from regular use of the inhalation solution. If a previously effective dosage regimen fails to provide the usual relief, medical advice should be sought immediately, as this is often a sign of seriously worsening asthma which would require reassessment of therapy.

ProAir HFA 0.09 MG/ACTUAT Metered Dose Inhaler, 200 ACTUAT

Generic Name: ALBUTEROL SULFATE
Brand Name: PROAIR HFA
  • Substance Name(s):
  • ALBUTEROL SULFATE

DRUG INTERACTIONS

7 Other short-acting sympathomimetic aerosol bronchodilators should not be used concomitantly with PROAIR HFA Inhalation Aerosol. If additional adrenergic drugs are to be administered by any route, they should be used with caution to avoid deleterious cardiovascular effects. Other short-acting sympathomimetic aerosol bronchodilators and adrenergic drugs: May potentiate effect. (7) Beta-blockers: May decrease effectiveness of PROAIR HFA and produce severe bronchospasm. Patients with asthma should not normally be treated with beta-blockers. (7.1) Diuretics, or non-potassium sparing diuretics: May potentiate hypokalemia or ECG changes. Consider monitoring potassium levels. (7.2) Digoxin: May decrease serum digoxin levels. Consider monitoring digoxin levels. (7.3) Monoamine oxidase (MAO) inhibitors and tricyclic antidepressants: May potentiate effect of albuterol on the cardiovascular system. Consider alternative therapy in patients taking MAOs or tricyclic antidepressants. (7.4) 7.1 Beta-Blockers Beta-adrenergic-receptor blocking agents not only block the pulmonary effect of beta-agonists, such as PROAIR HFA Inhalation Aerosol, but may produce severe bronchospasm in asthmatic patients. Therefore, patients with asthma should not normally be treated with beta-blockers. However, under certain circumstances, e.g., as prophylaxis after myocardial infarction, there may be no acceptable alternatives to the use of beta-adrenergic-blocking agents in patients with asthma. In this setting, consider cardioselective beta-blockers, although they should be administered with caution. 7.2 Diuretics The ECG changes and/or hypokalemia which may result from the administration of non-potassium sparing diuretics (such as loop or thiazide diuretics) can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is not known, caution is advised in the coadministration of beta-agonists with non-potassium sparing diuretics. Consider monitoring potassium levels. 7.3 Digoxin Mean decreases of 16% and 22% in serum digoxin levels were demonstrated after single dose intravenous and oral administration of albuterol, respectively, to normal volunteers who had received digoxin for 10 days. The clinical significance of these findings for patients with obstructive airway disease who are receiving albuterol and digoxin on a chronic basis is unclear. Nevertheless, it would be prudent to carefully evaluate the serum digoxin levels in patients who are currently receiving digoxin and PROAIR HFA Inhalation Aerosol. 7.4 Monoamine Oxidase Inhibitors or Tricyclic Antidepressants PROAIR HFA Inhalation Aerosol should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors or tricyclic antidepressants, or within 2 weeks of discontinuation of such agents, because the action of albuterol on the cardiovascular system may be potentiated. Consider alternative therapy in patients taking MAO inhibitors or tricyclic antidepressants.

OVERDOSAGE

10 The expected symptoms with overdosage are those of excessive beta-adrenergic stimulation and/or occurrence or exaggeration of any of the symptoms listed under ADVERSE REACTIONS, e.g., seizures, angina, hypertension or hypotension, tachycardia with rates up to 200 beats per minute, arrhythmias, nervousness, headache, tremor, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, and insomnia. Hypokalemia may also occur. As with all sympathomimetic medications, cardiac arrest and even death may be associated with abuse of PROAIR HFA Inhalation Aerosol. Treatment consists of discontinuation of PROAIR HFA Inhalation Aerosol together with appropriate symptomatic therapy. The judicious use of a cardioselective beta-receptor blocker may be considered, bearing in mind that such medication can produce bronchospasm. There is insufficient evidence to determine if dialysis is beneficial for overdosage of PROAIR HFA Inhalation Aerosol. The oral median lethal dose of albuterol sulfate in mice is greater than 2,000 mg/kg (approximately 6,800 times the maximum recommended daily inhalation dose for adults on a mg/m2 basis and approximately 3,200 times the maximum recommended daily inhalation dose for children on a mg/m2 basis). In mature rats, the subcutaneous median lethal dose of albuterol sulfate is approximately 450 mg/kg (approximately 3,000 times the maximum recommended daily inhalation dose for adults on a mg/m2 basis and approximately 1,400 times the maximum recommended daily inhalation dose for children on a mg/m2 basis). In young rats, the subcutaneous median lethal dose is approximately 2,000 mg/kg (approximately 14,000 times the maximum recommended daily inhalation dose for adults on a mg/m2 basis and approximately 6,400 times the maximum recommended daily inhalation dose for children on a mg/m2 basis). The inhalation median lethal dose has not been determined in animals.

DESCRIPTION

11 The active ingredient of PROAIR HFA (albuterol sulfate) Inhalation Aerosol is albuterol sulfate, a racemic salt, of albuterol. Albuterol sulfate has the chemical name α1-[(tert-butylamino) methyl]-4-hydroxy-m-xylene-α,α’-diol sulfate (2:1) (salt), and has the following chemical structure: The molecular weight of albuterol sulfate is 576.7, and the empirical formula is (C13H21NO3)2•H2SO4. Albuterol sulfate is a white to off-white crystalline powder. It is soluble in water and slightly soluble in ethanol. Albuterol sulfate is the official generic name in the United States, and salbutamol sulfate is the World Health Organization recommended generic name. PROAIR HFA Inhalation Aerosol is a pressurized metered-dose aerosol unit for oral inhalation. It contains a microcrystalline suspension of albuterol sulfate in propellant HFA-134a (1, 1, 1, 2-tetrafluoroethane) and ethanol. Prime the inhaler before using for the first time and in cases where the inhaler has not been used for more than 2 weeks by releasing three sprays into the air, away from the face. After priming, each actuation delivers 108 mcg albuterol sulfate, from the actuator mouthpiece (equivalent to 90 mcg of albuterol base). Each canister provides 200 actuations (inhalations). This product does not contain chlorofluorocarbons (CFCs) as the propellant. proair-hfa

CLINICAL STUDIES

14 14.1 Bronchospasm Associated with Asthma Adult and Adolescent Patients 12 Years of Age and Older: In a 6-week, randomized, double-blind, placebo-controlled trial, PROAIR HFA Inhalation Aerosol (58 patients) was compared to a matched placebo HFA inhalation aerosol (58 patients) in asthmatic patients 12 to 76 years of age at a dose of 180 mcg albuterol four times daily. An evaluator-blind marketed active comparator HFA-134a albuterol inhaler arm (56 patients) was included. Serial FEV1 measurements, shown below as percent change from test-day baseline at Day 1 and at Day 43, demonstrated that two inhalations of PROAIR HFA Inhalation Aerosol produced significantly greater improvement in FEV1 over the pre-treatment value than the matched placebo, as well as a comparable bronchodilator effect to the marketed active comparator HFA-134a albuterol inhaler. FEV1 as Mean Percent Change from Test-Day Pre-Dose in a 6-Week Clinical Trial Day 1 Day 43 In this study, 31 of 58 patients treated with PROAIR HFA Inhalation Aerosol achieved a 15% increase in FEV1 within 30 minutes post-dose on Day 1. In these patients, the median time to onset, median time to peak effect, and median duration of effect were 8.2 minutes, 47 minutes, and approximately 3 hours, respectively. In some patients, the duration of effect was as long as 6 hours. In a placebo-controlled, single-dose, crossover study, PROAIR HFA Inhalation Aerosol, administered at albuterol doses of 90, 180 and 270 mcg, produced bronchodilator responses significantly greater than those observed with a matched placebo HFA inhalation aerosol and comparable to a marketed active comparator HFA-134a albuterol inhaler. Pediatric Patients 4 to 11 Years of Age: In a 3-week, randomized, double-blind, placebo-controlled trial, the same formulation of albuterol as in PROAIR HFA Inhalation Aerosol (50 patients) was compared to a matched placebo HFA inhalation aerosol (45 patients) in asthmatic children 4 to 11 years of age at a dose of 180 mcg albuterol four times daily. Serial FEV1 measurements, expressed as the maximum percent change from test-day baseline in percent predicted FEV1 at Day 1 and at Day 22 observed within two hours post-dose, demonstrated that two inhalations of HFA albuterol sulfate produced significantly greater improvement in FEV1 over the pre-treatment value than the matched placebo. In this study, 21 of 50 pediatric patients treated with the same formulation of albuterol as in PROAIR HFA Inhalation Aerosol achieved a 15% increase in FEV1 within 30 minutes post-dose on Day 1. In these patients, the median time to onset, median time to peak effect and median duration of effect were 10 minutes, 31 minutes, and approximately 4 hours, respectively. In some pediatric patients, the duration of effect was as long as 6 hours. In a placebo-controlled, single-dose, crossover study in 55 pediatric patients 4 to 11 years of age, PROAIR HFA Inhalation Aerosol, administered at albuterol doses of 90 and 180 mcg, was compared with a matched placebo HFA inhalation aerosol. Serial FEV1 measurements, expressed as the baseline-adjusted percent predicted FEV1 observed over 6 hours post-dose, demonstrated that one and two inhalations of PROAIR HFA Inhalation Aerosol produced significantly greater bronchodilator responses than the matched placebo. 14.2 Exercise-Induced Bronchospasm In a randomized, single-dose, crossover study in 24 adults and adolescents with exercise-induced bronchospasm (EIB), two inhalations of PROAIR HFA taken 30 minutes before exercise prevented EIB for the hour following exercise (defined as maintenance of FEV1 within 80% of post-dose, pre-exercise baseline values) in 83% (20 of 24) of patients as compared to 25% (6 of 24) of patients when they received placebo. Some patients who participated in these clinical trials were using concomitant steroid therapy. proair-hfa proair-hfa

HOW SUPPLIED

16 /STORAGE AND HANDLING PROAIR HFA (albuterol sulfate) Inhalation Aerosol is supplied as a pressurized aluminum canister with a red plastic actuator and white dust cap each in boxes of one. Each canister contains 8.5 g of the formulation and provides 200 actuations (NDC 21695-851-85). Each actuation delivers 120 mcg of albuterol sulfate from the canister valve and 108 mcg of albuterol sulfate from the actuator mouthpiece (equivalent to 90 mcg of albuterol base). SHAKE WELL BEFORE USE. Store between 15° and 25°C (59° and 77°F). Contents under pressure. Do not puncture or incinerate. Protect from freezing temperatures and prolonged exposure to direct sunlight. Exposure to temperatures above 120°F may cause bursting. For best results, canister should be at room temperature before use. Avoid spraying in eyes. Keep out of reach of children. See FDA-Approved Patient Labeling (17.8) for priming and cleaning instructions. The red actuator supplied with PROAIR HFA Inhalation Aerosol should not be used with the canister from any other inhalation aerosol products. The PROAIR HFA Inhalation Aerosol canister should not be used with the actuator from any other inhalation aerosol products. The labeled amount of medication in each actuation cannot be assured after 200 actuations, even though the canister may not be completely empty. Discard the inhaler (canister plus actuator) after 200 actuations have been used. Never immerse the canister into water to determine how full the canister is (“float test”). PROAIR HFA Inhalation Aerosol does not contain chlorofluorocarbons (CFCs) as the propellant.

RECENT MAJOR CHANGES

Indications and Usage 9/2008 Dosage and Administration 9/2008

GERIATRIC USE

8.5 Geriatric Use Clinical studies of PROAIR HFA Inhalation Aerosol did not include sufficient numbers of patients aged 65 and over to determine whether they respond differently from younger patients. Other reported clinical experience has not identified differences in responses between elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy [see Warnings and Precautions ( 5.4, 5.7 )]. All beta2-adrenergic agonists, including albuterol, are known to be substantially excreted by the kidney, and the risk of toxic reactions may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 PROAIR HFA is an inhalation aerosol. PROAIR HFA is supplied as an 8.5 g/200 actuations pressurized aluminum canister with a red plastic actuator and white dust cap each in boxes of one. Each actuation delivers 120 mcg of albuterol sulfate from the canister valve and 108 mcg of albuterol sulfate from the actuator mouthpiece (equivalent to 90 mcg of albuterol base). Inhalation Aerosol: Each actuation delivers 108 mcg of albuterol sulfate from the actuator mouthpiece (equivalent to 90 mcg of albuterol base). Supplied in 8.5-g canister containing 200 actuations. ( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action Albuterol sulfate is a beta2-adrenergic agonist. The pharmacologic effects of albuterol sulfate are attributable to activation of beta2-adrenergic receptors on airway smooth muscle. Activation of beta2-adrenergic receptors leads to the activation of adenylcyclase and to an increase in the intracellular concentration of cyclic-3′, 5′ adenosine monophosphate (cyclic AMP). This increase of cyclic AMP is associated with the activation of protein kinase A, which in turn inhibits the phosphorylation of myosin and lowers intracellular ionic calcium concentrations, resulting in muscle relaxation. Albuterol relaxes the smooth muscle of all airways, from the trachea to the terminal bronchioles. Albuterol acts as a functional antagonist to relax the airway irrespective of the spasmogen involved, thus protecting against all bronchoconstrictor challenges. Increased cyclic AMP concentrations are also associated with the inhibition of release of mediators from mast cells in the airway. While it is recognized that beta2-adrenergic receptors are the predominant receptors on bronchial smooth muscle, data indicate that there are beta-receptors in the human heart, 10% to 50% of which are cardiac beta2-adrenergic receptors. The precise function of these receptors has not been established [see Warnings and Precautions ( 5.4 )]. Albuterol has been shown in most controlled clinical trials to have more effect on the respiratory tract, in the form of bronchial smooth muscle relaxation, than isoproterenol at comparable doses while producing fewer cardiovascular effects. However, inhaled albuterol, like other beta-adrenergic agonist drugs, can produce a significant cardiovascular effect in some patients, as measured by pulse rate, blood pressure, symptoms, and/or electrocardiographic changes [see Warnings and Precautions ( 5.4 )].

INDICATIONS AND USAGE

1 PROAIR HFA inhalation aerosol is a beta2-adrenergic agonist indicated for: Treatment or prevention of bronchospasm in patients 4 years of age and older with reversible obstructive airway disease (1.1) Prevention of exercise-induced bronchospasm in patients 4 years of age and older. (1.2) 1.1 Bronchospasm PROAIR HFA Inhalation Aerosol is indicated for the treatment or prevention of bronchospasm in patients 4 years of age and older with reversible obstructive airway disease. 1.2 Exercise-Induced Bronchospasm PROAIR HFA Inhalation Aerosol is indicated for the prevention of exercise-induced bronchospasm in patients 4 years of age and older.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of PROAIR HFA Inhalation Aerosol for the treatment or prevention of bronchospasm in children 12 years of age and older with reversible obstructive airway disease is based on one 6-week clinical trial in 116 patients 12 years of age and older with asthma comparing doses of 180 mcg four times daily with placebo, and one single-dose crossover study comparing doses of 90, 180, and 270 mcg with placebo in 58 patients [see Clinical Studies ( 14.1 )]. The safety and effectiveness of PROAIR HFA Inhalation Aerosol for treatment of exercise-induced bronchospasm in children 12 years of age and older is based on one single-dose crossover study in 24 adults and adolescents with exercise-induced bronchospasm comparing doses of 180 mcg with placebo [see Clinical Studies ( 14.2 )]. The safety of PROAIR HFA Inhalation Aerosol in children 4 to 11 years of age is based on one 3-week clinical trial in 50 patients 4 to 11 years of age with asthma using the same formulation of albuterol as in PROAIR HFA Inhalation Aerosol comparing doses of 180 mcg four times daily with placebo. The effectiveness of PROAIR HFA Inhalation Aerosol in children 4 to 11 years of age is extrapolated from clinical trials in patients 12 years of age and older with asthma and exercise-induced bronchospasm, based on data from a single-dose study comparing the bronchodilatory effect of PROAIR HFA 90 mcg and 180 mcg with placebo in 55 patients with asthma and a 3-week clinical trial using the same formulation of albuterol as in PROAIR HFA Inhalation Aerosol in 95 asthmatic children 4 to 11 years of age comparing a dose of 180 mcg albuterol four times daily with placebo [see Clinical Studies ( 14.1 )]. The safety and effectiveness of PROAIR HFA Inhalation Aerosol in pediatric patients below the age of 4 years have not been established.

PREGNANCY

8.1 Pregnancy Teratogenic Effects: Pregnancy Category C: There are no adequate and well-controlled studies of PROAIR HFA Inhalation Aerosol or albuterol sulfate in pregnant women. During worldwide marketing experience, various congenital anomalies, including cleft palate and limb defects, have been reported in the offspring of patients treated with albuterol. Some of the mothers were taking multiple medications during their pregnancies. No consistent pattern of defects can be discerned, and a relationship between albuterol use and congenital anomalies has not been established. Animal reproduction studies in mice and rabbits revealed evidence of teratogenicity. PROAIR HFA Inhalation Aerosol should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. In a mouse reproduction study, subcutaneously administered albuterol sulfate produced cleft palate formation in 5 of 111 (4.5%) fetuses at an exposure approximately eight-tenths of the maximum recommended human dose (MRHD) for adults on a mg/m2 basis and in 10 of 108 (9.3%) fetuses at approximately 8 times the MRHD. Similar effects were not observed at approximately one-thirteenth of the MRHD. Cleft palate also occurred in 22 of 72 (30.5%) fetuses from females treated subcutaneously with isoproterenol (positive control). In a rabbit reproduction study, orally administered albuterol sulfate induced cranioschisis in 7 of 19 fetuses (37%) at approximately 630 times the MRHD. In a rat reproduction study, an albuterol sulfate/HFA-134a formulation administered by inhalation did not produce any teratogenic effects at exposures approximately 65 times the MRHD [see Nonclinical Toxicology ( 13.2 )].

NUSRING MOTHERS

8.3 Nursing Mothers Plasma levels of albuterol sulfate and HFA-134a after inhaled therapeutic doses are very low in humans, but it is not known whether the components of PROAIR HFA Inhalation Aerosol are excreted in human milk. Caution should be exercised when PROAIR HFA Inhalation Aerosol is administered to a nursing woman. Because of the potential for tumorigenicity shown for albuterol in animal studies and lack of experience with the use of PROAIR HFA Inhalation Aerosol by nursing mothers, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Life-threatening paradoxical bronchospasm may occur. Discontinue PROAIR HFA immediately and treat with alternative therapy. (5.1) Need for more doses of PROAIR HFA than usual may be a sign of deterioration of asthma and requires reevaluation of treatment. (5.2) PROAIR HFA is not a substitute for corticosteroids. (5.3) Cardiovascular effects may occur. Use with caution in patients sensitive to sympathomimetic drugs and patients with cardiovascular or convulsive disorders. (5.4, 5.7) Excessive use may be fatal. Do not exceed recommended dose. (5.5) Immediate hypersensitivity reactions may occur. Discontinue PROAIR HFA immediately. (5.6) Hypokalemia and changes in blood glucose may occur. (5.7, 5.8) 5.1 Paradoxical Bronchospasm PROAIR HFA Inhalation Aerosol can produce paradoxical bronchospasm that may be life threatening. If paradoxical bronchospasm occurs, PROAIR HFA Inhalation Aerosol should be discontinued immediately and alternative therapy instituted. It should be recognized that paradoxical bronchospasm, when associated with inhaled formulations, frequently occurs with the first use of a new canister. 5.2 Deterioration of Asthma Asthma may deteriorate acutely over a period of hours or chronically over several days or longer. If the patient needs more doses of PROAIR HFA Inhalation Aerosol than usual, this may be a marker of destabilization of asthma and requires re-evaluation of the patient and treatment regimen, giving special consideration to the possible need for anti-inflammatory treatment, e.g., corticosteroids. 5.3 Use of Anti-inflammatory Agents The use of beta-adrenergic-agonist bronchodilators alone may not be adequate to control asthma in many patients. Early consideration should be given to adding anti-inflammatory agents, e.g., corticosteroids, to the therapeutic regimen. 5.4 Cardiovascular Effects PROAIR HFA Inhalation Aerosol, like other beta-adrenergic agonists, can produce clinically significant cardiovascular effects in some patients as measured by pulse rate, blood pressure, and/or symptoms. Although such effects are uncommon after administration of PROAIR HFA Inhalation Aerosol at recommended doses, if they occur, the drug may need to be discontinued. In addition, beta-agonists have been reported to produce ECG changes, such as flattening of the T wave, prolongation of the QTc interval, and ST segment depression. The clinical significance of these findings is unknown. Therefore, PROAIR HFA Inhalation Aerosol, like all sympathomimetic amines, should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension. 5.5 Do Not Exceed Recommended Dose Fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs in patients with asthma. The exact cause of death is unknown, but cardiac arrest following an unexpected development of a severe acute asthmatic crisis and subsequent hypoxia is suspected. 5.6 Immediate Hypersensitivity Reactions Immediate hypersensitivity reactions may occur after administration of albuterol sulfate, as demonstrated by rare cases of urticaria, angioedema, rash, bronchospasm, anaphylaxis, and oropharyngeal edema. The potential for hypersensitivity must be considered in the clinical evaluation of patients who experience immediate hypersensitivity reactions while receiving PROAIR HFA Inhalation Aerosol. 5.7 Coexisting Conditions PROAIR HFA Inhalation Aerosol, like all sympathomimetic amines, should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension; in patients with convulsive disorders, hyperthyroidism, or diabetes mellitus; and in patients who are unusually responsive to sympathomimetic amines. Clinically significant changes in systolic and diastolic blood pressure have been seen in individual patients and could be expected to occur in some patients after use of any beta-adrenergic bronchodilator. Large doses of intravenous albuterol have been reported to aggravate pre-existing diabetes mellitus and ketoacidosis. 5.8 Hypokalemia As with other beta-agonists, PROAIR HFA Inhalation Aerosol may produce significant hypokalemia in some patients, possibly through intracellular shunting, which has the potential to produce adverse cardiovascular effects. The decrease is usually transient, not requiring supplementation.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Patient Labeling (17.8) Patients should be given the following information: 17.1 Frequency of Use The action of PROAIR HFA Inhalation Aerosol should last for 4 to 6 hours. Do not use PROAIR HFA Inhalation Aerosol more frequently than recommended. Instruct patients to not increase the dose or frequency of doses of PROAIR HFA Inhalation Aerosol without consulting the physician. If patients find that treatment with PROAIR HFA Inhalation Aerosol becomes less effective for symptomatic relief, symptoms become worse, and/or they need to use the product more frequently than usual, they should seek medical attention immediately. 17.2 Priming and Cleaning Priming: Priming is essential to ensure appropriate albuterol content in each actuation. Instruct patients to prime the inhaler before using for the first time and in cases where the inhaler has not been used for more than 2 weeks by releasing three sprays into the air, away from the face. Cleaning: To ensure proper dosing and prevent actuator orifice blockage, instruct patients to wash the red plastic actuator mouthpiece and dry thoroughly at least once a week. Detailed cleaning instructions are included in the illustrated Information for the Patient leaflet. 17.3 Paradoxical Bronchospasm Inform patients that PROAIR HFA Inhalation Aerosol can produce paradoxical bronchospasm. Instruct patients to discontinue PROAIR HFA Inhalation Aerosol if paradoxical bronchospasm occurs. 17.4 Concomitant Drug Use While patients are taking PROAIR HFA Inhalation Aerosol, other inhaled drugs and asthma medications should be taken only as directed by a physician. 17.5 Common Adverse Events Common adverse effects of treatment with inhaled albuterol include palpitations, chest pain, rapid heart rate, tremor, or nervousness. 17.6 Pregnancy Patients who are pregnant or nursing should contact their physician about the use of PROAIR HFA Inhalation Aerosol. 17.7 General Information on Use Effective and safe use of PROAIR HFA Inhalation Aerosol includes an understanding of the way that it should be administered. Shake well before each spray. Use PROAIR HFA Inhalation Aerosol only with the actuator supplied with the product. Discard the canister after 200 sprays have been used. Never immerse the canister in water to determine how full the canister is (“float test”). In general, the technique for administering PROAIR HFA Inhalation Aerosol to children is similar to that for adults. Children should use PROAIR HFA Inhalation Aerosol under adult supervision, as instructed by the patient’s physician.

DOSAGE AND ADMINISTRATION

2 For oral inhalation only Treatment or prevention of bronchospasm in adults and children 4 years of age and older: 2 inhalations every 4 to 6 hours. In some patients, one inhalation every 4 hours may be sufficient. (2.1) Prevention of exercise-induced bronchospasm in adults and children 4 years of age and older: 2 inhalations 15 to 30 minutes before exercise. (2.2) Priming information: Prime PROAIR HFA before using for the first time, or when the inhaler has not been used for more than 2 weeks. To prime PROAIR HFA, release 3 sprays into the air away from the face. Shake well before each spray. (2.3) Cleaning information: At least once a week, wash the actuator with warm water, shake off excess, and air dry thoroughly. (2.3) 2.1 Bronchospasm For treatment of acute episodes of bronchospasm or prevention of symptoms associated with bronchospasm, the usual dosage for adults and children 4 years and older is two inhalations repeated every 4 to 6 hours. More frequent administration or a larger number of inhalations is not recommended. In some patients, one inhalation every 4 hours may be sufficient. 2.2 Exercise-Induced Bronchospasm The usual dosage for adults and children 4 years of age or older is two inhalations 15 to 30 minutes before exercise. 2.3 Administration Information Administer PROAIR HFA by oral inhalation only. Shake well before each spray. To maintain proper use of this product and to prevent medication build-up and blockage, it is important to follow the cleaning directions carefully. Priming: Prime the inhaler before using for the first time and in cases where the inhaler has not been used for more than 2 weeks by releasing three sprays into the air, away from the face. Cleaning: As with all HFA-containing albuterol inhalers, to maintain proper use of this product and to prevent medication build-up and blockage, it is important to keep the plastic mouthpiece clean. The inhaler may cease to deliver medication if the plastic actuator mouthpiece is not properly cleaned and dried. To clean: Wash the plastic mouthpiece with warm running water for 30 seconds, shake off excess water, and air dry thoroughly at least once a week. If the mouthpiece becomes blocked, washing the mouthpiece will remove the blockage. If it is necessary to use the inhaler before it is completely dry, shake off excess water, replace canister, spray twice into the air away from face, and take the prescribed dose. After such use, the mouthpiece should be rewashed and allowed to air dry thoroughly [see Patient Counseling Information ( 17.8 )].

Zantac 150 MG (as ranitidine hydrochloride 168 MG) Oral Tablet

Generic Name: RANITIDINE HYDROCHLORIDE
Brand Name: ZANTAC
  • Substance Name(s):
  • RANITIDINE HYDROCHLORIDE

DRUG INTERACTIONS

Drug Interactions: Ranitidine has been reported to affect the bioavailability of other drugs through several different mechanisms such as competition for renal tubular secretion, alteration of gastric pH, and inhibition of cytochrome P450 enzymes. Procainamide: Ranitidine, a substrate of the renal organic cation transport system, may affect the clearance of other drugs eliminated by this route. High doses of ranitidine (e.g., such as those used in the treatment of Zollinger-Ellison syndrome) have been shown to reduce the renal excretion of procainamide and N-acetylprocainamide resulting in increased plasma levels of these drugs. Although this interaction is unlikely to be clinically relevant at usual ranitidine doses, it may be prudent to monitor for procainamide toxicity when administered with oral ranitidine at a dose exceeding 300 mg per day. Warfarin: There have been reports of altered prothrombin time among patients on concomitant warfarin and ranitidine therapy. Due to the narrow therapeutic index, close monitoring of increased or decreased prothrombin time is recommended during concurrent treatment with ranitidine. Ranitidine may alter the absorption of drugs in which gastric pH is an important determinant of bioavailability. This can result in either an increase in absorption (e.g., triazolam, midazolam, glipizide) or a decrease in absorption (e.g., ketoconazole, atazanavir, delavirdine, gefitinib). Appropriate clinical monitoring is recommended. Atazanavir: Atazanavir absorption may be impaired based on known interactions with other agents that increase gastric pH. Use with caution. See atazanavir label for specific recommendations. Delavirdine: Delavirdine absorption may be impaired based on known interactions with other agents that increase gastric pH. Chronic use of H2-receptor antagonists with delavirdine is not recommended. Gefitinib: Gefitinib exposure was reduced by 44% with the coadministration of ranitidine and sodium bicarbonate (dosed to maintain gastric pH above 5.0). Use with caution. Glipizide: In diabetic patients, glipizide exposure was increased by 34% following a single 150-mg dose of oral ranitidine. Use appropriate clinical monitoring when initiating or discontinuing ranitidine. Ketoconazole: Oral ketoconazole exposure was reduced by up to 95% when oral ranitidine was coadministered in a regimen to maintain a gastric pH of 6 or above. The degree of interaction with usual dose of ranitidine (150 mg twice daily) is unknown. Midazolam: Oral midazolam exposure in 5 healthy volunteers was increased by up to 65% when administered with oral ranitidine at a dose of 150 mg twice daily. However, in another interaction trial in 8 volunteers receiving IV midazolam, a 300-mg oral dose of ranitidine increased midazolam exposure by about 9%. Monitor patients for excessive or prolonged sedation when ranitidine is coadministered with oral midazolam. Triazolam: Triazolam exposure in healthy volunteers was increased by approximately 30% when administered with oral ranitidine at a dose of 150 mg twice daily. Monitor patients for excessive or prolonged sedation.

OVERDOSAGE

There has been limited experience with overdosage. Reported acute ingestions of up to 18 g orally have been associated with transient adverse effects similar to those encountered in normal clinical experience (see ADVERSE REACTIONS). In addition, abnormalities of gait and hypotension have been reported. When overdosage occurs, the usual measures to remove unabsorbed material from the gastrointestinal tract, clinical monitoring, and supportive therapy should be employed. Studies in dogs receiving dosages of ZANTAC in excess of 225 mg/kg/day have shown muscular tremors, vomiting, and rapid respiration. Single oral doses of 1,000 mg/kg in mice and rats were not lethal. Intravenous LD50 values in mice and rats were 77 and 83 mg/kg, respectively.

DESCRIPTION

The active ingredient in ZANTAC 150 Tablets and ZANTAC 300 Tablets is ranitidine hydrochloride (HCl), USP, a histamine H2-receptor antagonist. Chemically it is N[2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethyl]-N′-methyl-2-nitro-1,1-ethenediamine, HCl. It has the following structure: The empirical formula is C13H22N4O3S•HCl, representing a molecular weight of 350.87. Ranitidine HCl is a white to pale yellow granular substance that is soluble in water. It has a slightly bitter taste and sulfur-like odor. Each ZANTAC 150 Tablet for oral administration contains 168 mg of ranitidine HCl equivalent to 150 mg of ranitidine. Each tablet also contains the inactive ingredients FD&C Yellow No. 6 Aluminum Lake, hypromellose, magnesium stearate, microcrystalline cellulose, titanium dioxide, triacetin, and yellow iron oxide. Each ZANTAC 300 Tablet for oral administration contains 336 mg of ranitidine HCl equivalent to 300 mg of ranitidine. Each tablet also contains the inactive ingredients croscarmellose sodium, D&C Yellow No. 10 Aluminum Lake, hypromellose, magnesium stearate, microcrystalline cellulose, titanium dioxide, and triacetin. ranitidine HCl molecular structure

CLINICAL STUDIES

Clinical Trials: Active Duodenal Ulcer: In a multicenter, double-blind, controlled, US trial of endoscopically diagnosed duodenal ulcers, earlier healing was seen in the patients treated with ZANTAC as shown in Table 3. Table 3. Duodenal Ulcer Patient Healing Rates ZANTACa Placeboa Number Entered Healed/ Evaluable Number Entered Healed/ Evaluable Outpatients Week 2 69/182 (38%)b 31/164 (19%) 195 188 Week 4 137/187 (73%)b 76/168 (45%) a All patients were permitted antacids as needed for relief of pain. b P<0.0001. In these trials, patients treated with ZANTAC reported a reduction in both daytime and nocturnal pain, and they also consumed less antacid than the placebo-treated patients. Table 4. Mean Daily Doses of Antacid Ulcer Healed Ulcer Not Healed ZANTAC 0.06 0.71 Placebo 0.71 1.43 Foreign trials have shown that patients heal equally well with 150 mg twice daily and 300 mg at bedtime (85% versus 84%, respectively) during a usual 4-week course of therapy. If patients require extended therapy of 8 weeks, the healing rate may be higher for 150 mg twice daily as compared with 300 mg at bedtime (92% versus 87%, respectively). Trials have been limited to short-term treatment of acute duodenal ulcer. Patients whose ulcers healed during therapy had recurrences of ulcers at the usual rates. Maintenance Therapy in Duodenal Ulcer: Ranitidine has been found to be effective as maintenance therapy for patients following healing of acute duodenal ulcers. In 2 independent, double-blind, multicenter, controlled trials, the number of duodenal ulcers observed was significantly less in patients treated with ZANTAC (150 mg at bedtime) than in patients treated with placebo over a 12-month period. Table 5. Duodenal Ulcer Prevalence Double-Blind, Multicenter, Placebo-Controlled Trials MulticenterTrial Drug Duodenal Ulcer Prevalence No. of Patients 0-4 Months 0-8 Months 0-12 Months USA RAN 20%a 24% 35%a 138 PLC 44% 54% 59% 139 Foreign RAN 12%a 21%a 28%a 174 PLC 56% 64% 68% 165 % = Life table estimate. a = P<0.05 (ZANTAC versus comparator). RAN = ranitidine (ZANTAC). PLC = placebo. As with other H2-antagonists, the factors responsible for the significant reduction in the prevalence of duodenal ulcers include prevention of recurrence of ulcers, more rapid healing of ulcers that may occur during maintenance therapy, or both. Gastric Ulcer: In a multicenter, double-blind, controlled, US trial of endoscopically diagnosed gastric ulcers, earlier healing was seen in the patients treated with ZANTAC as shown in Table 6. Table 6. Gastric Ulcer Patient Healing Rates ZANTACa Placeboa Number Entered Healed/ Evaluable Number Entered Healed/ Evaluable Outpatients Week 2 16/83 (19%) 10/83 (12%) 92 94 Week 6 50/73 (68%)b 35/69 (51%) a All patients were permitted antacids as needed for relief of pain. b P = 0.009. In this multicenter trial, significantly more patients treated with ZANTAC became pain free during therapy. Maintenance of Healing of Gastric Ulcers: In 2 multicenter, double-blind, randomized, placebo-controlled, 12-month trials conducted in patients whose gastric ulcers had been previously healed, ZANTAC 150 mg at bedtime was significantly more effective than placebo in maintaining healing of gastric ulcers. Pathological Hypersecretory Conditions (such as Zollinger-Ellison syndrome): ZANTAC inhibits gastric acid secretion and reduces occurrence of diarrhea, anorexia, and pain in patients with pathological hypersecretion associated with Zollinger-Ellison syndrome, systemic mastocytosis, and other pathological hypersecretory conditions (e.g., postoperative, “short-gut” syndrome, idiopathic). Use of ZANTAC was followed by healing of ulcers in 8 of 19 (42%) patients who were intractable to previous therapy. Gastroesophageal Reflux Disease (GERD): In 2 multicenter, double-blind, placebo-controlled, 6-week trials performed in the United States and Europe, ZANTAC 150 mg twice daily was more effective than placebo for the relief of heartburn and other symptoms associated with GERD. Ranitidine-treated patients consumed significantly less antacid than did placebo-treated patients. The US trial indicated that ZANTAC 150 mg twice daily significantly reduced the frequency of heartburn attacks and severity of heartburn pain within 1 to 2 weeks after starting therapy. The improvement was maintained throughout the 6-week trial period. Moreover, patient response rates demonstrated that the effect on heartburn extends through both the day and night time periods. In 2 additional US multicenter, double-blind, placebo-controlled, 2-week trials, ZANTAC 150 mg twice daily was shown to provide relief of heartburn pain within 24 hours of initiating therapy and a reduction in the frequency of severity of heartburn. Erosive Esophagitis: In 2 multicenter, double-blind, randomized, placebo-controlled, 12-week trials performed in the United States, ZANTAC 150 mg 4 times daily was significantly more effective than placebo in healing endoscopically diagnosed erosive esophagitis and in relieving associated heartburn. The erosive esophagitis healing rates were as follows: Table 7. Erosive Esophagitis Patient Healing Rates Healed/Evaluable Placeboa n = 229 ZANTAC 150 mg 4 times dailya n = 215 Week 4 43/198 (22%) 96/206 (47%)b Week 8 63/176 (36%) 142/200 (71%)b Week 12 92/159 (58%) 162/192 (84%)b a All patients were permitted antacids as needed for relief of pain. b P<0.001 versus placebo. No additional benefit in healing of esophagitis or in relief of heartburn was seen with a ranitidine dose of 300 mg 4 times daily. Maintenance of Healing of Erosive Esophagitis: In 2 multicenter, double-blind, randomized, placebo-controlled, 48-week trials conducted in patients whose erosive esophagitis had been previously healed, ZANTAC 150 mg twice daily was significantly more effective than placebo in maintaining healing of erosive esophagitis.

HOW SUPPLIED

ZANTAC 150 Tablets (ranitidine HCl equivalent to 150 mg of ranitidine) are peach, film-coated, 5-sided tablets embossed with “ZANTAC 150” on one side and “Glaxo” on the other. They are available in bottles of 60 (NDC 0173-0344-42) tablets. ZANTAC 300 Tablets (ranitidine HCl equivalent to 300 mg of ranitidine) are yellow, film-coated, capsule-shaped tablets embossed with “ZANTAC 300” on one side and “Glaxo” on the other. They are available in bottles of 30 (NDC 0173-0393-40) tablets. Store between 15° and 30°C (59° and 86°F) in a dry place. Protect from light. Replace cap securely after each opening. GlaxoSmithKline Research Triangle Park, NC 27709 ZANTAC is a registered trademark of Boehringer Ingelheim Pharmaceuticals, Inc., used under license. MULTISTIX is a trademark of its respective owner and is not a trademark of the GSK group of companies. The maker of this brand is not affiliated with and does not endorse the GSK group of companies or its products. ©2016 the GSK group of companies. All rights reserved. August 2016 ZNT:9PI

GERIATRIC USE

Geriatric Use: Of the total number of subjects enrolled in US and foreign controlled clinical trials of oral formulations of ZANTAC, for which there were subgroup analyses, 4,197 were aged 65 and older, while 899 were aged 75 and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. This drug is known to be substantially excreted by the kidney and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, caution should be exercised in dose selection, and it may be useful to monitor renal function (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Geriatrics and DOSAGE AND ADMINISTRATION: Dosage Adjustment for Patients with Impaired Renal Function).

INDICATIONS AND USAGE

ZANTAC is indicated in: 1.Short-term treatment of active duodenal ulcer. Most patients heal within 4 weeks. Trials available to date have not assessed the safety of ranitidine in uncomplicated duodenal ulcer for periods of more than 8 weeks. 2.Maintenance therapy for duodenal ulcer patients at reduced dosage after healing of acute ulcers. No placebo-controlled comparative trials have been carried out for periods of longer than 1 year. 3.The treatment of pathological hypersecretory conditions (e.g., Zollinger-Ellison syndrome and systemic mastocytosis). 4.Short-term treatment of active, benign gastric ulcer. Most patients heal within 6 weeks and the usefulness of further treatment has not been demonstrated. Trials available to date have not assessed the safety of ranitidine in uncomplicated, benign gastric ulcer for periods of more than 6 weeks. 5.Maintenance therapy for gastric ulcer patients at reduced dosage after healing of acute ulcers. Placebo-controlled trials have been carried out for 1 year. 6.Treatment of GERD. Symptomatic relief commonly occurs within 24 hours after starting therapy with ZANTAC 150 mg twice daily. 7.Treatment of endoscopically diagnosed erosive esophagitis. Symptomatic relief of heartburn commonly occurs within 24 hours of therapy initiation with ZANTAC 150 mg 4 times daily. 8.Maintenance of healing of erosive esophagitis. Placebo-controlled trials have been carried out for 48 weeks. Concomitant antacids should be given as needed for pain relief to patients with active duodenal ulcer; active, benign gastric ulcer; hypersecretory states; GERD; and erosive esophagitis.

PEDIATRIC USE

Pediatric Use: The safety and effectiveness of ZANTAC have been established in the age-group of 1 month to 16 years for the treatment of duodenal and gastric ulcers, gastroesophageal reflux disease and erosive esophagitis, and the maintenance of healed duodenal and gastric ulcer. Use of ZANTAC in this age-group is supported by adequate and well-controlled trials in adults, as well as additional pharmacokinetic data in pediatric patients and an analysis of the published literature (see CLINICAL PHARMACOLOGY: Pediatrics and DOSAGE AND ADMINISTRATION: Pediatric Use). Safety and effectiveness in pediatric patients for the treatment of pathological hypersecretory conditions or the maintenance of healing of erosive esophagitis have not been established. Safety and effectiveness in neonates (aged younger than 1 month) have not been established (see CLINICAL PHARMACOLOGY: Pediatrics).

PREGNANCY

Pregnancy: Teratogenic Effects: Pregnancy Category B. Reproduction studies have been performed in rats and rabbits at doses up to 160 times the human dose and have revealed no evidence of impaired fertility or harm to the fetus due to ZANTAC. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

NUSRING MOTHERS

Nursing Mothers: Ranitidine is secreted in human milk. Caution should be exercised when ZANTAC is administered to a nursing mother.

DOSAGE AND ADMINISTRATION

Active Duodenal Ulcer: The current recommended adult oral dosage of ZANTAC for duodenal ulcer is 150 mg twice daily. An alternative dosage of 300 mg once daily after the evening meal or at bedtime can be used for patients in whom dosing convenience is important. The advantages of one treatment regimen compared with the other in a particular patient population have yet to be demonstrated (see Clinical Trials: Active Duodenal Ulcer). Smaller doses have been shown to be equally effective in inhibiting gastric acid secretion in US trials, and several foreign trials have shown that 100 mg twice daily is as effective as the 150-mg dose. Antacid should be given as needed for relief of pain (see CLINICAL PHARMACOLOGY: Pharmacokinetics). Maintenance of Healing of Duodenal Ulcers: The current recommended adult oral dosage is 150 mg at bedtime. Pathological Hypersecretory Conditions (such as Zollinger-Ellison syndrome): The current recommended adult oral dosage is 150 mg twice daily. In some patients it may be necessary to administer ZANTAC 150-mg doses more frequently. Dosages should be adjusted to individual patient needs, and should continue as long as clinically indicated. Dosages up to 6 g/day have been employed in patients with severe disease. Benign Gastric Ulcer: The current recommended adult oral dosage is 150 mg twice daily. Maintenance of Healing of Gastric Ulcers: The current recommended adult oral dosage is 150 mg at bedtime. GERD: The current recommended adult oral dosage is 150 mg twice daily. Erosive Esophagitis: The current recommended adult oral dosage is 150 mg 4 times daily. Maintenance of Healing of Erosive Esophagitis: The current recommended adult oral dosage is 150 mg twice daily. Pediatric Use: The safety and effectiveness of ZANTAC have been established in the age-group of 1 month to 16 years. There is insufficient information about the pharmacokinetics of ZANTAC in neonatal patients (aged younger than 1 month) to make dosing recommendations. The following 3 subsections provide dosing information for each of the pediatric indications. Treatment of Duodenal and Gastric Ulcers: The recommended oral dose for the treatment of active duodenal and gastric ulcers is 2 to 4 mg/kg twice daily to a maximum of 300 mg/day. This recommendation is derived from adult clinical trials and pharmacokinetic data in pediatric patients. Maintenance of Healing of Duodenal and Gastric Ulcers: The recommended oral dose for the maintenance of healing of duodenal and gastric ulcers is 2 to 4 mg/kg once daily to a maximum of 150 mg/day. This recommendation is derived from adult clinical trials and pharmacokinetic data in pediatric patients. Treatment of GERD and Erosive Esophagitis: Although limited data exist for these conditions in pediatric patients, published literature supports a dosage of 5 to 10 mg/kg/day, usually given as 2 divided doses. Dosage Adjustment for Patients with Impaired Renal Function: On the basis of experience with a group of subjects with severely impaired renal function treated with ZANTAC, the recommended dosage in patients with a creatinine clearance <50 mL/min is 150 mg every 24 hours. Should the patient's condition require, the frequency of dosing may be increased to every 12 hours or even further with caution. Hemodialysis reduces the level of circulating ranitidine. Ideally, the dosing schedule should be adjusted so that the timing of a scheduled dose coincides with the end of hemodialysis. Elderly patients are more likely to have decreased renal function, therefore caution should be exercised in dose selection, and it may be useful to monitor renal function (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Geriatrics and PRECAUTIONS: Geriatric Use).

tramadol hydrochloride 200 MG 24 HR Extended Release Oral Tablet

Generic Name: TRAMADOL HYDROCHLORIDE
Brand Name: TRAMADOL HYDROCHLORIDE
  • Substance Name(s):
  • TRAMADOL HYDROCHLORIDE

DRUG INTERACTIONS

7 Table 2 includes clinically significant drug interactions with tramadol hydrochloride extended-release tablets. Table 2: Clinically Significant Drug Interactions with Tramadol Hydrochloride Extended-Release Tablets Inhibitors of CYP2D6 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP2D6 inhibitors may result in an increase in the plasma concentration of tramadol and a decrease in the plasma concentration of M1, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. Since M1 is a more potent µ-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. After stopping a CYP2D6 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease and the M1 plasma concentration will increase which could increase or prolong therapeutic effects but also increase adverse reactions related to opioid toxicity, and may cause potentially fatal respiratory depression [see Clinical Pharmacology (12.3)]. Intervention: If concomitant use of a CYP2D6 inhibitor is necessary, follow patients closely for adverse reactions including opioid withdrawal, seizures, and serotonin syndrome. If a CYP2D6 inhibitor is discontinued, consider lowering tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients closely for adverse events including respiratory depression and sedation. Examples Quinidine, fluoxetine, paroxetine and bupropion Inhibitors of CYP3A4 Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inhibitors can increase the plasma concentration of tramadol and may result in a greater amount of metabolism via CYP2D6 and greater levels of M1. Follow patients closely for increased risk of serious adverse events including seizures and serotonin syndrome, and adverse reactions related to opioid toxicity including potentially fatal respiratory depression, particularly when an inhibitor is added after a stable dose of tramadol hydrochloride extended-release tablets is achieved. After stopping a CYP3A4 inhibitor, as the effects of the inhibitor decline, the tramadol plasma concentration will decrease [see Clinical Pharmacology (12.3)], resulting in decreased opioid efficacy and possibly signs and symptoms of opioid withdrawal in patients who had developed physical dependence to tramadol. Intervention: If concomitant use is necessary, consider dosage reduction of tramadol hydrochloride extended-release tablets until stable drug effects are achieved. Follow patients closely for seizures and serotonin syndrome, and signs of respiratory depression and sedation at frequent intervals. If a CYP3A4 inhibitor is discontinued, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved and follow patients for signs and symptoms of opioid withdrawal. Examples Macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g. ketoconazole), protease inhibitors (e.g., ritonavir) CYP3A4 Inducers Clinical Impact: The concomitant use of tramadol hydrochloride extended-release tablets and CYP3A4 inducers can decrease the plasma concentration of tramadol [see Clinical Pharmacology (12.3)], resulting in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence to tramadol, [see Warnings and Precautions (5.4)]. After stopping a CYP3A4 inducer, as the effects of the inducer decline, the tramadol plasma concentration will increase [see Clinical Pharmacology (12.3)], which could increase or prolong both the therapeutic effects and adverse reactions, and may cause seizures and serotonin syndrome, and potentially fatal respiratory depression. Intervention: If concomitant use is necessary, consider increasing the tramadol hydrochloride extended-release tablets dosage until stable drug effects are achieved. Follow patients for signs of opioid withdrawal. If a CYP3A4 inducer is discontinued, consider tramadol hydrochloride extended-release tablets dosage reduction and monitor for seizures and serotonin syndrome, and signs of sedation and respiratory depression. Patients taking carbamazepine, a CYP3A4 inducer, may have a significantly reduced analgesic effect of tramadol. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of tramadol hydrochloride extended-release tablets and carbamazepine is not recommended. Examples: Rifampin, carbamazepine, phenytoin Benzodiazepines and Other Central Nervous System (CNS) Depressants Clinical Impact: Due to additive pharmacologic effect, the concomitant use of benzodiazepines or other CNS depressants, including alcohol, can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death. Intervention: Reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients closely for signs of respiratory depression and sedation [see Warnings and Precautions (5.5)]. Examples: Benzodiazepines and other sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol. Serotonergic Drugs Clinical Impact: The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Intervention: If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. Examples: Selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonin neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), monoamine oxidase (MAO) inhibitors (those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Monoamine Oxidase Inhibitors (MAOIs) Clinical Impact: MAOI interactions with opioids may manifest as serotonin syndrome [see Warnings and Precautions (5.6)] or opioid toxicity (e.g., respiratory depression, coma) [see Warnings and Precautions (5.2)]. Intervention: Do not use tramadol hydrochloride extended-release tablets in patients taking MAOIs or within 14 days of stopping such treatment. Examples: phenelzine, tranylcypromine, linezolid Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics Clinical Impact: May reduce the analgesic effect of tramadol hydrochloride extended-release tablets and/or precipitate withdrawal symptoms. Intervention: Avoid concomitant use. Examples: butorphanol, nalbuphine, pentazocine, buprenorphine Muscle Relaxants Clinical Impact: Tramadol may enhance the neuromuscular blocking action of skeletal muscle relaxants and produce an increased degree of respiratory depression. Intervention: Monitor patients for signs of respiratory depression that may be greater than otherwise expected and decrease the dosage of tramadol hydrochloride extended-release tablets and/or the muscle relaxant as necessary. Diuretics Clinical Impact: Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Intervention: Monitor patients for signs of diminished diuresis and/or effects on blood pressure and increase the dosage of the diuretic as needed. Anticholinergic Drugs Clinical Impact: The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Intervention: Monitor patients for signs of urinary retention or reduced gastric motility when tramadol hydrochloride extended-release tablets are used concomitantly with anticholinergic drugs. Digoxin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of digoxin toxicity. Intervention: Follow patients for signs of digoxin toxicity and adjust the dosage of digoxin as needed. Warfarin Clinical Impact: Post-marketing surveillance of tramadol has revealed rare reports of alteration of warfarin effect, including elevation of prothrombin times. Intervention: Monitor the prothrombin time of patients on warfarin for signs of an interaction and adjust the dosage of warfarin as needed. Mixed Agonist/Antagonist and Partial Agonist Opioid Analgesics: Avoid use with tramadol hydrochloride extended-release tablets because they may reduce analgesic effect of tramadol hydrochloride extended-release tablets or precipitate withdrawal symptoms. (5.15, 7)

OVERDOSAGE

10 Clinical Presentation Acute overdosage with tramadol hydrochloride extended-release tablets can be manifested by respiratory depression, somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, and, in some cases, pulmonary edema, bradycardia, hypotension, partial or complete airway obstruction, atypical snoring, and death. Marked mydriasis rather than miosis may be seen with hypoxia in overdose situations [see Clinical Pharmacology (12.2)]. Treatment of Overdose In case of overdose, priorities are the reestablishment of a patent and protected airway and institution of assisted or controlled ventilation, if needed. Employ other supportive measures (including oxygen and vasopressors) in the management of circulatory shock and pulmonary edema as indicated. Cardiac arrest or arrhythmias will require advanced life-support techniques. The opioid antagonists, naloxone or nalmefene, are specific antidotes to respiratory depression resulting from opioid overdose. For clinically significant respiratory or circulatory depression secondary to tramadol overdose, administer an opioid antagonist. Opioid antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to tramadol overdose. While naloxone will reverse some, but not all, symptoms caused by overdosage with tramadol, the risk of seizures is also increased with naloxone administration. In animals, convulsions following the administration of toxic doses of tramadol hydrochloride extended-release tablets could be suppressed with barbiturates or benzodiazepines but were increased with naloxone. Naloxone administration did not change the lethality of an overdose in mice. Hemodialysis is not expected to be helpful in an overdose because it removes less than 7% of the administered dose in a 4-hour dialysis period. Because the duration of opioid reversal is expected to be less than the duration of action of tramadol in tramadol hydrochloride extended-release tablets, carefully monitor the patient until spontaneous respiration is reliably reestablished. Tramadol hydrochloride extended-release tablets will continue to release tramadol and add to the tramadol load for 24 to 48 hours or longer following ingestion, necessitating prolonged monitoring. If the response to an opioid antagonist is suboptimal or only brief in nature, administer additional antagonist as directed by the product’s prescribing information. In an individual physically dependent on opioids, administration of the recommended usual dosage of the antagonist will precipitate an acute withdrawal syndrome. The severity of the withdrawal symptoms experienced will depend on the degree of physical dependence and the dose of the antagonist administered. If a decision is made to treat serious respiratory depression in the physically dependent patient, administration of the antagonist should be initiated with care and by titration with smaller than usual doses of the antagonist.

DESCRIPTION

11 Tramadol hydrochloride is an opioid agonist in an extended-release tablet formulation for oral use. The chemical name is (±)cis-2-[(dimethylamino) methyl]-1-(3-methoxyphenyl) cyclohexanol hydrochloride. Its structural formula is: The molecular weight of tramadol hydrochloride is 299.84. It is a white, crystalline powder that is freely soluble in water and methanol, very slightly soluble in acetone and has a pKa of 9.41. The n-octanol/water log partition coefficient (logP) is 1.35 at pH 7. Tramadol hydrochloride extended-release tablets contain 100 mg, 200 mg or 300 mg of tramadol hydrochloride, USP in an extended-release formulation. The tablets are white in color and contain the inactive ingredients pregelatinized maize starch, hypromellose, mannitol, magnesium stearate, cellulose acetate and polyethylene glycol. Imprinting ink contains, shellac glaze, iron oxide black, N-butyl alcohol, ammonium hydroxide and propylene glycol. tramadol-structure

CLINICAL STUDIES

14 Clinical Trial Experience Tramadol hydrochloride extended-release tablets were studied in patients with chronic, moderate to moderately severe pain due to osteoarthritis and/or low back pain in four 12-week, randomized, double-blind, placebocontrolled trials. To qualify for inclusion into these studies, patients were required to have moderate to moderately severe pain as defined by a pain intensity score of ≥40 mm, off previous medications, on a 0 to 100 mm visual analog scale (VAS). Adequate evidence of efficacy was demonstrated in the following two studies: Study 1 : Osteoarthritis of the Knee and/or Hip In one 12-week randomized, double-blind, placebo-controlled study, patients with moderate to moderately severe pain due to osteoarthritis of the knee and/or hip were administered doses from 100 mg to 400 mg daily. Treatment was initiated at 100 mg QD for four days then increased by 100 mg per day increments every five days to the randomized fixed dose. Between 51% and 59% of patients in the tramadol hydrochloride extended-release tablets treatment groups completed the study and 56% of patients in the placebo group completed the study. Discontinuations due to adverse events were more common in the tramadol hydrochloride extended-release tablets 200 mg, 300 mg and 400 mg treatment groups (20%, 27%, and 30% of discontinuations, respectively) compared to 14% of the patients treated with tramadol hydrochloride extended-release tablets 100 mg and 10% of patients treated with placebo. Pain, as assessed by the WOMAC Pain subscale, was measured at 1, 2, 3, 6, 9, and 12 weeks and change from baseline assessed. A responder analysis based on the percent change in WOMAC Pain subscale demonstrated a statistically significant improvement in pain for the 100 mg and 200 mg treatment groups compared to placebo (see Figure 3). Study 2: Osteoarthritis of the Knee In one 12-week randomized, double-blind, placebo-controlled flexible-dosing trial of tramadol hydrochloride extended-release tablets in patients with osteoarthritis of the knee, patients titrated to an average daily tramadol hydrochloride extended-release tablets dose of approximately 270 mg/day. Forty-nine percent of patients randomized to tramadol hydrochloride extended-release tablets completed the study, while 52% of patients randomized to placebo completed the study. Most of the early discontinuations in the tramadol hydrochloride extended-release tablets treatment group were due to adverse events, accounting for 27% of the early discontinuations in contrast to 7% of the discontinuations from the placebo group. Thirty-seven percent of the placebo-treated patients discontinued the study due to lack of efficacy compared to 15% of tramadol hydrochloride extended-release tablets-treated patients. The tramadol hydrochloride extended-release tablets group demonstrated a statistically significant decrease in the mean VAS score, and a statistically significant difference in the responder rate, based on the percent change from baseline in the VAS score, measured at 1, 2, 4, 8, and 12 weeks, between patients receiving tramadol hydrochloride extended-release tablets and placebo (see Figure 4). tramadol-figure3 tramadol-figure4

HOW SUPPLIED

16 /STORAGE AND HANDLING Tramadol hydrochloride extended-release tablets are supplied in the following package and dose strength forms: 100 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-859-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-859-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-859-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-859-18 200 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-860-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-860-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-860-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-860-18 300 mg: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Bottles of 30’s with Child Resistant Cap ……………… NDC 47335-861-83 Bottles of 100’s with Child Resistant Cap ……………. NDC 47335-861-88 Bottles of 100’s with Non Child Resistant Cap ……… NDC 47335-861-08 Bottles of 1000’s with Non Child Resistant Cap …….. NDC 47335-861-18 Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° and 30°C (59° and 86°F) [see USP Controlled Room Temperature]. Dispense in a tight, light resistant container. Warning: keep out of reach of children.

RECENT MAJOR CHANGES

Boxed Warning 12/2016 Indication and Usage (1) 12/2016 Dosage and Administration (2) 12/2016 Contraindications (4) 12/2016 Warnings and Precautions (5) 12/2016

GERIATRIC USE

8.5 Geriatric Use Nine-hundred-one elderly (65 years of age or older) subjects were exposed to tramadol hydrochloride extended-release tablets in clinical trials. Of those subjects, 156 were 75 years of age and older. In general, higher incidence rates of adverse events were observed for patients older than 65 years of age compared with patients 65 years and younger, particularly for the following adverse events: constipation, fatigue, weakness, postural hypotension and dyspepsia. For this reason, tramadol hydrochloride extended-release tablets should be used with caution in patients over 65 years of age, and with even greater caution in patients older than 75 years of age [see Dosage and Administration (2.4), Clinical Pharmacology (12.3)]. Respiratory depression is the chief risk for elderly patients treated with opioids, and has occurred after large initial doses were administered to patients who were not opioidtolerant or when opioids were co-administered with other agents that depress respiration. Titrate the dosage of tramadol hydrochloride extended-release tablets slowly in geriatric patients and monitor closely for signs of central nervous system and respiratory depression [see Warnings and Precautions (5.10)]. Tramadol is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 DOSAGE FORMS & STRENGTHS Extended-release tablets are available as: 100 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “531” with black ink on one side and plain on other side. 200 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “533” with black ink on one side and plain on other side. 300 mg tablets: White, round shape, biconvex, beveled edge, coated tablet with release portal on the center of the tablet on any one side, imprinted “537” with black ink on one side and plain on other side. Extended-release tablets 100 mg, 200 mg, and 300 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Tramadol hydrochloride extended-release tablets contain tramadol, an opioid agonist and an inhibitor of reuptake of norepinephrine and serotonin. Although the mode of action of tramadol is not completely understood, the analgesic effect of tramadol is believed to be due to both binding to μ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin. Opioid activity of tramadol is due to both low affinity binding of the parent compound and higher affinity binding of the O-desmethyl metabolite M1 to μ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opioid antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound. Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin in vitro, as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol. Apart from analgesia, tramadol administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of other opioids. In contrast to morphine, tramadol has not been shown to cause histamine release. At therapeutic doses, tramadol has no effect on heart rate, left-ventricular function, or cardiac index. Orthostatic hypotension has been observed.

INDICATIONS AND USAGE

1 INDICATIONS & USAGE Tramadol hydrochloride extended-release tablets are indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations [see Warnings and Precautions (5.1)], reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. Tramadol hydrochloride is an opioid agonist indicated for the management of pain severe enough to require daily around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate. (1) Limitations of Use Because of the risks of addiction, abuse, and misuse with opioids, even at recommended doses, and because of the greater risks of overdose and death with extended-release opioid formulations, reserve tramadol hydrochloride extended-release tablets for use in patients for whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain. (1) Tramadol hydrochloride extended-release tablets are not indicated as an as-needed (prn) analgesic. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of tramadol hydrochloride extended-release tablets in patients under 18 years of age have not been established. The use of tramadol hydrochloride extended-release tablets in the pediatric population is not recommended.

PREGNANCY

8.1 Pregnancy Risk Summary Prolonged use of opioid analgesics during pregnancy may cause neonatal opioid withdrawal syndrome [see Warnings and Precautions (5.3)]. Available data with tramadol hydrochloride extended-release tablets in pregnant women are insufficient to inform a drug-associated risk for major birth defects and miscarriage. In animal reproduction studies, tramadol administration during organogenesis decreased fetal weights and reduced ossification in mice, rats, and rabbits at 1.4, 0.6, and 3.6 times the maximum recommended human daily dosage (MRHD). Tramadol decreased pup body weight and increased pup mortality at 1.2 and 1.9 times the MRHD [see Data]. Based on animal data, advise pregnant women of the potential risk to a fetus. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. Clinical Considerations Fetal/Neonatal Adverse Reactions Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth. Neonatal opioid withdrawal syndrome presents as irritability, hyperactivity and abnormal sleep pattern, high pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. The onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of the drug by the newborn. Observe newborns for symptoms and signs of neonatal opioid withdrawal syndrome and manage accordingly [see Warnings and Precautions (5.3)]. Neonatal seizures, neonatal withdrawal syndrome, fetal death and stillbirth have been reported with tramadol during post-approval use of tramadol immediate-release products. Labor or Delivery Opioids cross the placenta and may produce respiratory depression and psychophysiologic effects in neonates. An opioid antagonist, such as naloxone, must be available for reversal of opioid-induced respiratory depression in the neonate. Tramadol hydrochloride extended-release tablets are not recommended for use in pregnant women during or immediately prior to labor, when use of shorter-acting analgesics or other analgesic techniques are more appropriate. Opioid analgesics, including tramadol hydrochloride extended-release tablets, can prolong labor through actions which temporarily reduce the strength, duration, and frequency of uterine contractions. However, this effect is not consistent and may be offset by an increased rate of cervical dilation, which tends to shorten labor. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor. The effect of tramadol hydrochloride extended-release tablets, if any, on the later growth, development, and functional maturation of the child is unknown. Data Animal Data Tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg), rats (25 mg/kg) and rabbits (75 mg/kg) at maternally toxic dosages, but was not teratogenic at these dose levels. These doses on a mg/m2 basis are 1.9, 0.8, and 4.9 times the maximum recommended human daily dosage (MRHD) for mouse, rat and rabbit, respectively. No drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg), rats (up to 80 mg/kg) or rabbits (up to 300 mg/kg) treated with tramadol by various routes. Embryo and fetal toxicity consisted primarily of decreased fetal weights, decreased skeletal ossification, and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. Embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg, a dose that would cause extreme maternal toxicity in the rabbit. The dosages listed for mouse, rat, and rabbit are 2.3, 2.6, and 19 times the MRHD, respectively. Tramadol was evaluated in pre- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (1.6 times the MRHD) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (2.6 times the MRHD).

NUSRING MOTHERS

8.3 Females and Males of Reproductive Potential Infertility Chronic use of opioids may cause reduced fertility in females and males of reproductive potential. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Clinical Pharmacology (12.2), Nonclinical Toxicology (13.1)].

BOXED WARNING

WARNING: ADDICTION, ABUSE, AND MISUSE; LIFE-THREATENTING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS Addi ction, Abus e, a nd Misuse Tramadol hydrochloride extended-release tablets expos e pa ti en ts and o th er us ers to the risks of opio id addi ction, abus e, and misus e, w hi ch can l ead to ov erdose and d ea th. Ass ess ea ch pa ti en t’s risk p rior to p res c ribing tramadol hydrochloride extended-release tablets, and moni t or all pa ti en ts regula rly for the d ev elop ment of th ese b ehavio rs and con di tions [s ee Warnings and Pr ecautions (5.1 ) ]. Li f e-Th rea tening Resp i ra to ry D ep ression S erious, li f e-th rea tening, or fa tal respi ra to ry d ep ression may o ccur wi th use of tramadol hydrochloride extended-release tablets. Moni t or for respi ra to ry d ep r e ssion, esp ecially du r ing ini tia tion of tramadol hydrochloride extended-release tablets or follo wing a dose in creas e. Ins tru ct pa ti en ts to s wallow tramadol hydrochloride extended-release tablets in ta ct, and not to cu t, b reak, ch e w, c rush, or dissolve the tabl ets to avoid exposu re to a po ten tially fa tal dose of tra madol [s ee Warnings and Pr e cautions (5.2 ) ]. Accid en tal Ing es tion Accid en tal ing es tion of ev en one dose of tramadol hydrochloride extended-release tablet, esp ecially by child ren, can result in a fa tal ov erdose of tr a madol [s ee War nings and Pr ecautio ns (5.2 ) ]. Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available[ see Warnings and Precautions (5.3)]. Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 [see Warnings and Precautions (5.4), Drug Interactions (7) ]. Risks From Concomitant Use With Benzodiazepines Or Other CNS Depressants Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death [see Warnings and Precautions (5.5), Drug Interactions (7) ]. • Reserve concomitant prescribing of tramadol hydrochloride extended-release injection and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate. • Limit dosages and durations to the minimum required. • Follow patients for signs and symptoms of respiratory depression and sedation. WARNING: ADDICTION, ABUSE, AND MISUSE; LIFETHREATENING RESPIRATORY DEPRESSION; ACCIDENTAL INGESTION; NEONATAL OPIOID WITHDRAWAL SYNDROME; INTERACTIONS WITH DRUGS AFFECTING CYTOCHROME P450 ISOENZYMES; and RISKS FROM CONCOMITANT USE WITH BENZODIAZEPINES AND OTHER CNS DEPRESSANTS See full prescribing information for complete boxed warning . Tramadol hydrochloride extended-release tablets expose users to risks of addiction, abuse, and misuse, which can lead to overdose and death. Assess patient’s risk before prescribing and monitor regularly for these behaviors and conditions. (5.1) Serious, life-threatening, or fatal respiratory depression may occur. Monitor closely, especially upon initiation or following a dose increase. Instruct patients to swallow tramadol hydrochloride extended-release tablets intact, and not to cut, break, chew, crush, or dissolve the tablets to avoid exposure to a potentially fatal dose of tramadol. (5.2) Accidental ingestion of tramadol hydrochloride extended-release tablets, especially by children, can result in a fatal overdose of tramadol. (5.2) Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated. If prolonged opioid use is required in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. (5.3) The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol, and the active metabolite, M1 (5.4, 7) Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing for use in patients for whom alternative treatment options are inadequate; limit dosages and durations to the minimum required; and follow patients for signs and symptoms of respiratory depression and sedation. (5.5, 7)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Serotonin Syndrome: Potentially life-threatening condition could result from concomitant serotonergic drug administration. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. (5.6) Risk of Seizure: Present within recommended dosage range. Risk is increased with higher than recommended doses and concomitant use of SSRIs, SNRIs, anorectics, tricyclic antidepressants and other tricyclic compounds, other opioids, MAOIs, neuroleptics, other drugs that reduce seizure threshold, in patients with epilepsy or at risk for seizures. (5.7, 7) Risk of Suicide: Do not use tramadol hydrochloride extended-release tablets in suicidal or addiction-prone patients. Use with caution in those taking tranquilizers, antidepressants or abuse alcohol. (5.8) Adrenal Insufficiency: If diagnosed, treat with physiologic replacement of corticosteroids, and wean patient off of the opioid. (5.9) Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients: Monitor closely, particularly during initiation and titration. (5.10) Severe Hypotension: Monitor during dosage initiation and titration. Avoid use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. (5.11) Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness: Monitor for sedation and respiratory depression. Avoid use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. (5.12) 5.1 Addiction, Abuse, and Misuse Tramadol hydrochloride extended-release tablet contains tramadol, a Schedule IV controlled substance. As an opioid, tramadol hydrochloride extended-release tablet exposes users to the risks of addiction, abuse, and misuse. Because extended-release products such as tramadol hydrochloride extended-release tablets deliver the opioid over an extended period of time, there is a greater risk for overdose and death due to the larger amount of tramadol present [see Drug Abuse and Dependence (9)]. Although the risk of addiction in any individual is unknown, it can occur in patients appropriately prescribed tramadol hydrochloride extended-release tablets. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each patient’s risk for opioid addiction, abuse, or misuse prior to prescribing tramadol hydrochloride extended-release tablets, and monitor all patients receiving tramadol hydrochloride extended-release tablets for the development of these behaviors and conditions. Risks are increased in patients with a personal or family history of substance abuse (including drug or alcohol abuse or addiction) or mental illness (e.g., major depression). The potential for these risks should not, however, prevent the proper management of pain in any given patient. Patients at increased risk may be prescribed opioids such as tramadol hydrochloride extended-release tablets, but use in such patients necessitates intensive counseling about the risks and proper use of tramadol hydrochloride extended-release tablets along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse or misuse of tramadol hydrochloride extended-release tablets by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of tramadol and can result in overdose and death [see Overdosage (10)]. Opioids are sought by drug abusers and people with addiction disorders and are subject to criminal diversion. Consider these risks when prescribing or dispensing tramadol hydrochloride extended-release tablets. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity and advising the patient on the proper disposal of unused drug [ see Patient Counseling Information (17)]. Contact local state professional licensing board or state controlled substances authority for information on how to prevent and detect abuse or diversion of this product. 5.2 Life-Threatening Respiratory Depression Serious, life-threatening, or fatal respiratory depression has been reported with the use of opioids, even when used as recommended. Respiratory depression, if not immediately recognized and treated, may lead to respiratory arrest and death. Management of respiratory depression may include close observation, supportive measures, and use of opioid antagonists, depending on the patient’s clinical status [see Overdosage (10)]. Carbon dioxide (CO2) retention from opioid- induced respiratory depression can exacerbate the sedating effects of opioids. While serious, life-threatening, or fatal respiratory depression can occur at any time during the use of tramadol hydrochloride extended-release tablets, the risk is greatest during the initiation of therapy or following a dosage increase. Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy with and following dosage increases of tramadol hydrochloride extended-release tablets. To reduce the risk of respiratory depression, proper dosing and titration of tramadol hydrochloride extended-release tablets are essential [see Dosage and Administration (2)]. Overestimating the tramadol hydrochloride extended-release tablets dosage when converting patients from another opioid product can result in a fatal overdose with the first dose. Accidental ingestion of even one dose of tramadol hydrochloride extended-release tablet, especially by children, can result in respiratory depression and death due to an overdose of tramadol. 5.3 Neonatal Opioid Withdrawal Syndrome Prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in withdrawal in the neonate. Neonatal opioid withdrawal syndrome, unlike opioid withdrawal syndrome in adults, may be life- threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. Observe newborns for signs of neonatal opioid withdrawal syndrome and manage accordingly. Advise pregnant women using opioids for a prolonged period of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available [see Use in Specific Populations (8.1), Patient Counseling Information (17)]. 5.4 Risks of Interactions with Drugs Affecting Cytochrome P450 Isoenzymes The effects of concomitant use or discontinuation of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors on levels of tramadol and M1 from tramadol hydrochloride extended-release tablets are complex. Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors with tramadol hydrochloride extended-release tablets requires careful consideration of the effects on the parent drug, tramadol which is a weak serotonin and norepinephrine reuptake inhibitor and µ-opioid agonist, and the active metabolite, M1, which is more potent than tramadol in µ-opioid receptor binding [see Drug Interactions (7)]. Risks of Concomitant Use or Discontinuation of Cytochrome P450 2D6 Inhibitors The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 2D6 inhibitors (e.g., amiodarone, quinidine) may result in an increase in tramadol plasma levels and a decrease in the levels of the active metabolite, M1. A decrease in M1 exposure in patients who have developed physical dependence to tramadol, may result in signs and symptoms of opioid withdrawal and reduced efficacy. The effect of increased tramadol levels may be an increased risk for serious adverse events including seizures and serotonin syndrome. Discontinuation of a concomitantly used cytochrome P450 2D6 inhibitor may result in a decrease in tramadol plasma levels and an increase in active metabolite M1 levels, which could increase or prolong adverse reactions related to opioid toxicity and may cause potentially fatal respiratory depression. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP2D6 inhibitor for the risk of serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity, and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors of CYP2D6 [see Drug Interactions (7)]. Cytochrome P450 3A4 Interaction The concomitant use of tramadol hydrochloride extended-release tablets with cytochrome P450 3A4 inhibitors, such as macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g., ketoconazole), and protease inhibitors (e.g., ritonavir) or discontinuation of a cytochrome P450 3A4 inducer such as rifampin, carbamazepine, and phenytoin, may result in an increase in tramadol plasma concentrations, which could increase or prolong adverse reactions, increase the risk for serious adverse events including seizures and serotonin syndrome, and may cause potentially fatal respiratory depression. The concomitant use of tramadol hydrochloride extended-release tablets with all cytochrome P450 3A4 inducers or discontinuation of a cytochrome P450 3A4 inhibitor may result in lower tramadol levels. This may be associated with a decrease in efficacy, and in some patients, may result in signs and symptoms of opioid withdrawal. Follow patients receiving tramadol hydrochloride extended-release tablets and any CYP3A4 inhibitor or inducer for the risk for serious adverse events including seizures and serotonin syndrome, signs and symptoms that may reflect opioid toxicity and opioid withdrawal when tramadol hydrochloride extended-release tablets are used in conjunction with inhibitors and inducers of CYP3A4 [see Drug Interactions (7)]. 5.5 Risks from Concomitant Use with Benzodiazepines or Other CNS Depressants Profound sedation, respiratory depression, coma, and death may result from the concomitant use of tramadol hydrochloride extended-release tablets with benzodiazepines or other CNS depressants (e.g., non-benzodiazepine sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol). Because of these risks, reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate. Observational studies have demonstrated that concomitant use of opioid analgesics and benzodiazepines increases the risk of drug-related mortality compared to use of opioid analgesics alone. Because of similar pharmacological properties, it is reasonable to expect similar risk with the concomitant use of other CNS depressant drugs with opioid analgesics [see Drug Interactions (7)]. If the decision is made to prescribe a benzodiazepine or other CNS depressant concomitantly with an opioid analgesic, prescribe the lowest effective dosages and minimum durations of concomitant use. In patients already receiving an opioid analgesic, prescribe a lower initial dose of the benzodiazepine or other CNS depressant than indicated in the absence of an opioid, and titrate based on clinical response. If an opioid analgesic is initiated in a patient already taking a benzodiazepine or other CNS depressant, prescribe a lower initial dose of the opioid analgesic, and titrate based on clinical response. Follow patients closely for signs and symptoms of respiratory depression and sedation. Advise both patients and caregivers about the risks of respiratory depression and sedation when tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants (including alcohol and illicit drugs). Advise patients not to drive or operate heavy machinery until the effects of concomitant use of the benzodiazepine or other CNS depressant have been determined.  Screen patients for risk of substance use disorders, including opioid abuse and misuse, and warn them of the risk for overdose and death associated with the use of additional CNS depressants including alcohol and illicit drugs [see Drug Interactions (7), Patient Counseling Information (17)]. 5.6 Serotonin Syndrome Risk Cases of serotonin syndrome, a potentially life-threatening condition, have been reported with the use of tramadol, including tramadol hydrochloride extended-release tablets, particularly during concomitant use with serotonergic drugs. Serotonergic drugs include selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonergic neurotransmitter system (e.g., mirtazapine, trazodone, tramadol), and drugs that impair metabolism of serotonin (including MAO inhibitors, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue) [see Drug Interactions (7)]. This may occur within the recommended dosage range. Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). The onset of symptoms generally occurs within several hours to a few days of concomitant use, but may occur later than that. Discontinue tramadol hydrochloride extended-release tablets if serotonin syndrome is suspected. 5.7 Increased Risk of Seizures Seizures have been reported in patients receiving tramadol within the recommended dosage range. Spontaneous post-marketing reports indicate that seizure risk is increased with doses of tramadol above the recommended range. Concomitant use of tramadol increases the seizure risk in patients taking: [see Drug Interactions (7)]. · Selective serotonin re-uptake inhibitors (SSRIs) and Serotonin-norepinephrine re-uptake inhibitors (SNRIs) antidepressants or anorectics, · Tricyclic antidepressants (TCAs), and other tricyclic compounds (e.g., cyclobenzaprine, promethazine, etc.), · Other opioids, · MAO inhibitors [see Warnings and Precautions (5.9), Drug Interactions (7)] · Neuroleptics, or · Other drugs that reduce the seizure threshold. Risk of seizures may also increase in patients with epilepsy, those with a history of seizures, or in patients with a recognized risk for seizure (such as head trauma, metabolic disorders, alcohol and drug withdrawal, CNS infections). In tramadol overdose, naloxone administration may increase the risk of seizure. 5.8 Suicide Risk Do not prescribe tramadol hydrochloride extended-release tablets for patients who are suicidal or addiction-prone. Consideration should be given to the use of non-narcotic analgesics in patients who are suicidal or depressed. [see Drug Abuse and Dependence (9.2)] Prescribe tramadol hydrochloride extended-release tablets with caution for patients with a history of misuse and/or arecurrently taking CNS-active drugs including tranquilizers, or antidepressant drugs, or alcohol in excess, and patients who suffer from emotional disturbance or depression [see Drug Interactions (7)]. Inform patients not to exceed the recommended dose and to limit their intake of alcohol [see Dosage and Administration (2.1), Warnings and Precautions (5.5, 5.6, 5.12)]. 5.9 Adrenal Insufficiency Cases of adrenal insufficiency have been reported with opioid use, more often following greater than one month of use. Presentation of adrenal insufficiency may include non-specific symptoms and signs including nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. If adrenal insufficiency is suspected, confirm the diagnosis with diagnostic testing as soon as possible. If adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids. Wean the patient off of the opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers. Other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency. The information available does not identify any particular opioids as being more likely to be associated with adrenal insufficiency. 5.10 Life-Threatening Respiratory Depression in Patients with Chronic Pulmonary Disease or in Elderly, Cachectic, or Debilitated Patients The use of tramadol hydrochloride extended-release tablets in patients with acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment is contraindicated. Patients with Chronic Pulmonary Disease: Tramadol hydrochloride extended-release tablets-treated patients with significant chronic obstructive pulmonary disease or cor pulmonale, and those with a substantially decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression are at increased risk of decreased respiratory drive including apnea, even at recommended dosages of tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.2)]. Elderly, Cachectic, or Debilitated Patients: Life-threatening respiratory depression is more likely to occur in elderly, cachectic, or debilitated patients because they may have altered pharmacokinetics or altered clearance compared to younger, healthier patients [see Warnings and Precautions (5.2)]. Monitor such patients closely, particularly when initiating and titrating tramadol hydrochloride extended-release tablets and when tramadol hydrochloride extended-release tablets are given concomitantly with other drugs that depress respiration [see Warnings and Precautions (5.2, 5.5)]. Alternatively, consider the use of non-opioid analgesics in these patients. 5.11 Severe Hypotension Tramadol hydrochloride extended-release tablets may cause severe hypotension including orthostatic hypotension and syncope in ambulatory patients. There is increased risk in patients whose ability to maintain blood pressure has already been compromised by a reduced blood volume or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines or general anesthetics) [see Drug Interactions (7)]. Monitor these patients for signs of hypotension after initiating or titrating the dosage of tramadol hydrochloride extended-release tablets. In patients with circulatory shock, tramadol hydrochloride extended-release tablets may cause vasodilation that can further reduce cardiac output and blood pressure. Avoid the use of tramadol hydrochloride extended-release tablets in patients with circulatory shock. 5.12 Risks of Use in Patients with Increased Intracranial Pressure, Brain Tumors, Head Injury, or Impaired Consciousness In patients who may be susceptible to the intracranial effects of CO2 retention (e.g., those with evidence of increased intracranial pressure or brain tumors), tramadol hydrochloride extended-release tablets may reduce respiratory drive, and the resultant CO2 retention can further increase intracranial pressure. Monitor such patients for signs of sedation and respiratory depression, particularly when initiating therapy with tramadol hydrochloride extended-release tablets. Opioids may also obscure the clinical course in a patient with a head injury. Avoid the use of tramadol hydrochloride extended-release tablets in patients with impaired consciousness or coma. 5.13 Risks of Use in Patients with Gastrointestinal Conditions Tramadol hydrochloride extended-release tablets are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus. The tramadol in tramadol hydrochloride extended-release tablets may cause spasm of the sphincter of Oddi. Opioids may cause increases in serum amylase. Monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms. 5.14 Anaphylaxis and Other Hypersensitivity Reactions Serious and rarely fatal hypersensitive reactions have been reported in patients receiving therapy with tramadol. When these events do occur it is often following the first dose. Other reported hypersensitivity reactions include pruritus, hives, bronchospasm, angioedema, toxic epidermal necrolysis and Stevens-Johnson syndrome. Patients with a history of hypersensitivity reactions to tramadol and other opioids may be at increased risk and therefore should not receive tramadol hydrochloride extended-release tablets. If anaphylaxis or other hypersensitivity occurs, stop administration of tramadol hydrochloride extended-release tablets immediately, discontinue tramadol hydrochloride extended-release tablets permanently, and do not rechallenge with any formulation of tramadol. Advise patients to seek immediate medical attention if they experience any symptoms of a hypersensitivity reaction [see Patient Counseling Information (17)]. 5.15 Withdrawal Avoid the use of mixed agonist/antagonist (e.g., pentazocine, nalbuphine, and butorphanol) or partial agonist (e.g., buprenorphine) analgesics in patients who are receiving a full opioid agonist analgesic, including tramadol hydrochloride extended-release tablets. In these patients, mixed agonist/antagonist and partial agonist analgesics may reduce the analgesic effect and/or may precipitate withdrawal symptoms [see Drug Interactions (7)]. When discontinuing tramadol hydrochloride extended-release tablets, gradually taper the dosage [see Dosage and Administration (2.4)]. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Drug Abuse and Dependence (9.3)]. 5.16 Risks of Driving and Operating Machinery Tramadol hydrochloride extended-release tablets may impair the mental or physical abilities needed to perform potentially hazardous activities such as driving a car or operating machinery. Warn patients not to drive or operate dangerous machinery unless they are tolerant to the effects of tramadol hydrochloride extended-release tablets and know how they will react to the medication [see Patient Counseling Information (17)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Addiction, Abuse, and Misuse Inform patients that the use of tramadol hydrochloride extended-release tablets, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death [see Warnings and Precautions (5.1)]. Instruct patients not to share tramadol hydrochloride extended-release tablets with others and to take steps to protect tramadol hydrochloride extended-release tablets from theft or misuse. Life-Threatening Respiratory Depression Inform patients of the risk of life-threatening respiratory depression, including information that the risk is greatest when starting tramadol hydrochloride extended-release tablets or when the dosage is increased, and that it can occur even at recommended dosages [see Warnings and Precautions (5.2)]. Advise patients how to recognize respiratory depression and to seek medical attention if breathing difficulties develop. Accidental Ingestion Inform patients that accidental ingestion, especially by children, may result in respiratory depression or death [see Warnings and Precautions (5.2)]. Instruct patients to take steps to store tramadol hydrochloride extended-release tablets securely and to dispose of unused tramadol hydrochloride extended-release tablets in accordance with the local state guidelines and/or regulations. Interactions with Benzodiazepines and Other CNS Depressants Inform patients and caregivers that potentially fatal additive effects may occur if tramadol hydrochloride extended-release tablets are used with benzodiazepines or other CNS depressants, including alcohol, and not to use these concomitantly unless supervised by a healthcare provider [see Warnings and Precautions (5.5), Drug Interactions (7)]. Serotonin Syndrome Inform patients that tramadol could cause a rare but potentially life-threatening condition, particularly during concomitant use with serotonergic drugs. Warn patients of the symptoms of serotonin syndrome and to seek medical attention right away if symptoms develop. Instruct patients to inform their healthcare provider if they are taking, or plan to take serotonergic medications [see Warnings and Precautions (5.6), Drug Interactions (7)]. Seizures Inform patients that tramadol hydrochloride extended-release tablets may cause seizures with concomitant use of serotonergic agents (including SSRIs, SNRIs, and triptans) or drugs that significantly reduce the metabolic clearance of tramadol [see Warnings and Precautions (5.7)]. MAOI Interaction Inform patients not to take tramadol hydrochloride extended-release tablets while using any drugs that inhibit monoamine oxidase. Patients should not start MAOIs while taking tramadol hydrochloride extended-release tablets [see Drug Interactions (7)]. Adrenal Insufficiency Inform patients that opioids could cause adrenal insufficiency, a potentially life-threatening condition. Adrenal insufficiency may present with non-specific symptoms and signs such as nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. Advise patients to seek medical attention if they experience a constellation of these symptoms [see Warnings and Precautions (5.9)]. Important Administration Instructions Instruct patients how to properly take tramadol hydrochloride extended-release tablets, including the following: · Tramadol hydrochloride extended-release tablets are designed to work properly only if swallowed intact. Taking cut, broken, chewed, crushed, or dissolved tramadol hydrochloride extended-release tablets can result in a fatal overdose [see Dosage and Administration (2.1)]. · Advise patients not to exceed the single-dose and 24-hour dose limit and the time interval between doses, since exceeding these recommendations can result in respiratory depression, seizures, hepatic toxicity, and death. [see Dosage and Administration (2.1)]. · Do not discontinue tramadol hydrochloride extended-release tablets without first discussing the need for a tapering regimen with the prescriber [see Dosage and Administration (2.4)]. Hypotension Inform patients that tramadol hydrochloride extended-release tablets may cause orthostatic hypotension and syncope. Instruct patients how to recognize symptoms of low blood pressure and how to reduce the risk of serious consequences should hypotension occur (e.g., sit or lie down, carefully rise from a sitting or lying position) [see Warnings and Precautions (5.11)]. Anaphylaxis Inform patients that anaphylaxis has been reported with ingredients contained in tramadol hydrochloride extended-release tablets. Advise patients how to recognize such a reaction and when to seek medical attention [see Contraindications (4), Adverse Reactions (6)]. Pregnancy Neonatal Opioid Withdrawal Syndrome Inform female patients of reproductive potential that prolonged use of tramadol hydrochloride extended-release tablets during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated [see Warnings and Precautions (5.3), Use in Specific Populations (8.1)]. Embryo-Fetal Toxicity Inform female patients of reproductive potential that tramadol hydrochloride extended-release tablets can cause fetal harm and to inform their healthcare provider of a known or suspected pregnancy [see Use in Specific Populations (8.1)]. Lactation Advise patients that breastfeeding is not recommended during treatment with tramadol hydrochloride extended-release tablets [see Use in Specific Populations (8.2)]. Infertility Inform patients that chronic use of opioids may cause reduced fertility. It is not known whether these effects on fertility are reversible [see Adverse Reactions (6.2), Use in Specific Populations (8.3)]. Driving or Operating Heavy Machinery Inform patients that tramadol hydrochloride extended-release tablets may impair the ability to perform potentially hazardous activities such as driving a car or operating heavy machinery. Advise patients not to perform such tasks until they know how they will react to the medication [see Warnings and Precautions (5.5)]. Constipation Advise patients of the potential for severe constipation, including management instructions and when to seek medical attention [see Adverse Reactions (6), Clinical Pharmacology (12.1)]. Disposal of Unused Tramadol Hydrochloride Extended-Release Tablets Advise patients to throw the unused tramadol hydrochloride extended-release tablets in the household trash following these steps. 1) Remove the drugs from their original containers and mix with an undesirable substance, such as used coffee grounds or kitty litter (this makes the drug less appealing to children and pets, and unrecognizable to people who may intentionally go through the trash seeking drugs). 2) Place the mixture in a sealable bag, empty can, or other container to prevent the drug from leaking or breaking out of a garbage bag.

DOSAGE AND ADMINISTRATION

2 DOSAGE & ADMINISTRATION To be prescribed only by healthcare providers knowledgeable in use of potent opioids for management of chronic pain. (2.1) Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals (2.1). Individualize dosing based on the severity of pain, patient response, prior analgesic experience, and risk factors for addiction, abuse, and misuse. (2.1) Do not exceed a daily dose of 300 mg tramadol. Do not use with other tramadol products. (2.1) For opioid-naïve and opioid non-tolerant patients, initiate tramadol hydrochloride extended-release tablets at a dose of 100 mg once daily, then titrate up by 100 mg increments every 5 days according to need and tolerance. (2.2) For patients currently on tramadol IR, calculate total 24-hr IR dose, and initiate tramadol hydrochloride extended-release tablets at a dose rounded down to next lower 100 mg increment; then adjust dose according to need and tolerance. See full prescribing information for instructions on conversion, titration, and maintenance of therapy. (2.2, 2.3) Do not abruptly discontinue tramadol hydrochloride extended-release tablets in a physically-dependent patient. (2.4) 2.1 Important Dosage and Administration Instructions Tramadol hydrochloride extended-release tablets should be prescribed only by healthcare professionals who are knowledgeable in the use of potent opioids for the management of chronic pain. Do not use tramadol hydrochloride extended-release tablets concomitantly with other tramadol products [ see Warnings and Precautions (5.4), (5.12)]. Do not administer tramadol hydrochloride extended-release tablets at a dose exceeding 300 mg per day. Use the lowest effective dosage for the shortest duration consistent with individual patient treatment goals [see Warnings and Precautions (5.5)]. Initiate the dosing regimen for each patient individually, taking into account the patient’s severity of pain, patient response, prior analgesic treatment experience, and risk factors for addiction, abuse, and misuse [see Warnings and Precautions (5.1)] Monitor patients closely for respiratory depression, especially within the first 24-72 hours of initiating therapy and following dosage increases with tramadol hydrochloride extended-release tablets and adjust the dosage accordingly [see Warnings and Precautions (5.2)]. Instruct patients to swallow tramadol hydrochloride extended-release tablets whole [see Patient Counseling Information (17)], and to take it with liquid. Crushing, chewing, splitting, or dissolving tramadol hydrochloride extended-release tablets will result in uncontrolled delivery of tramadol and can lead to overdose or death [see Warnings and Precautions (5.1)]. Tramadol hydrochloride extended-release tablets may be taken without regard to food, It is recommended that tramadol hydrochloride extended-release tablets be taken in a consistent manner [ see Clinical Pharmacology (12.3)]. 2.2 Initial Dosage Patients Not Currently on a Tramadol Product The initial dose of tramadol hydrochloride extended-release tablet is 100 mg once daily. Patients Currently on Tramadol Immediate-Release (IR) Products Calculate the 24-hour tramadol IR dose and initiate a total daily dose of tramadol hydrochloride extended-release tablets rounded down to the next lower 100 mg increment. The dose may subsequently be individualized according to patient need. Due to limitations in flexibility of dose selection with tramadol hydrochloride extended-release tablets, some patients maintained on tramadol IR products may not be able to convert to tramadol hydrochloride extended-release tablets. Conversion from Other Opioids to Tramadol Hydrochloride Extended-Release Tablets Discontinue all other around-the-clock opioid drugs when tramadol hydrochloride extended-release tablets therapy is initiated. There are no established conversion ratios for conversion from other opioids to tramadol hydrochloride extended-release tablets defined by clinical trials. Initiate dosing using tramadol hydrochloride extended-release tablet 100 mg once a day. 2.3 Titration and Maintenance of Therapy Individually titrate tramadol hydrochloride extended-release tablets by 100 mg every five days to a dose that provides adequate analgesia and minimizes adverse reactions. The maximum daily dose of tramadol hydrochloride extended-release tablets is 300 mg per day. Continually reevaluate patients receiving tramadol hydrochloride extended-release tablets to assess the maintenance of pain control and the relative incidence of adverse reactions, as well as monitoring for the development of addiction, abuse, or misuse [see Warnings and Precautions (5.1)]. Frequent communication is important among the prescriber, other members of the healthcare team, the patient, and the caregiver/family during periods of changing analgesic requirements, including initial titration. During chronic therapy, periodically reassess the continued need for the use of opioid analgesics. Patients who experience breakthrough pain may require a dosage adjustment of tramadol hydrochloride extended-release tablets, or may need rescue medication with an appropriate dose of an immediate-release analgesic. If the level of pain increases after dosage stabilization, attempt to identify the source of increased pain before increasing the tramadol hydrochloride extended-release tablets dosage. If unacceptable opioid-related adverse reactions are observed, consider reducing the dosage. Adjust the dosage to obtain an appropriate balance between management of pain and opioid- related adverse reactions. 2.4 Discontinuation of Tramadol Hydrochloride Extended-Release Tablets When a patient no longer requires therapy with tramadol hydrochloride extended-release tablets, taper the dose gradually, by 25% to 50% every 2 to 4 days, while monitoring carefully for signs and symptoms of withdrawal. If the patient develops these signs or symptoms, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both. Do not abruptly discontinue tramadol hydrochloride extended-release tablets [see Warnings and Precautions (5.15), Drug Abuse and Dependence (9.3)].

gabapentin 300 MG Oral Capsule

Generic Name: GABAPENTIN
Brand Name: Gabapentin
  • Substance Name(s):
  • GABAPENTIN

DRUG INTERACTIONS

7 •Morphine increases gabapentin concentrations; dose adjustment may be needed (5.4, 7.2) 7.1 Other Antiepileptic Drugs Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly co-administered antiepileptic drugs [see Clinical Pharmacology (12.3)]. 7.2 Opioids Hydrocodone Co-administration of gabapentin with hydrocodone decreases hydrocodone exposure [see Clinical Pharmacology (12.3)].The potential for alteration in hydrocodone exposure and effect should be considered when gabapentin is started or discontinued in a patient taking hydrocodone. Morphine When gabapentin is administered with morphine, patients should be observed for signs of central nervous system (CNS) depression, such as somnolence, sedation and respiratory depression [see Clinical Pharmacology (12.3)]. 7.3 MAALOX® (aluminum hydroxide, magnesium hydroxide) The mean bioavailability of gabapentin was reduced by about 20% with concomitant use of an antacid (Maalox®) containing magnesium and aluminum hydroxides. It is recommended that gabapentin be taken at least 2 hours following Maalox administration [see Clinical Pharmacology (12.3)]. 7.4 Drug/Laboratory Test Interactions Because false positive readings were reported with the Ames N-Multistix SG® dipstick test for urinary protein when gabapentin was added to other antiepileptic drugs, the more specific sulfosalicylic acid precipitation procedure is recommended to determine the presence of urine protein.

OVERDOSAGE

10 A lethal dose of gabapentin was not identified in mice and rats receiving single oral doses as high as 8000 mg/kg. Signs of acute toxicity in animals included ataxia, labored breathing, ptosis, sedation, hypoactivity, or excitation. Acute oral overdoses of gabapentin up to 49 grams have been reported. In these cases, double vision, slurred speech, drowsiness, lethargy, and diarrhea were observed. All patients recovered with supportive care. Coma, resolving with dialysis, has been reported in patients with chronic renal failure who were treated with gabapentin. Gabapentin can be removed by hemodialysis. Although hemodialysis has not been performed in the few overdose cases reported, it may be indicated by the patient’s clinical state or in patients with significant renal impairment. If overexposure occurs, call your poison control center at 1-800-222-1222.

DESCRIPTION

11 The active ingredient in gabapentin capsules, USP is gabapentin, USP which has the chemical name 1-(aminomethyl)cyclohexaneacetic acid. The molecular formula of gabapentin is C9H17NO2 and the molecular weight is 171.24. The structural formula of gabapentin is: Gabapentin, USP is a white to off-white crystalline solid with a pKa1 of 3.7 and a pKa2 of 10.7. It is freely soluble in water and both basic and acidic aqueous solutions. The log of the partition coefficient (n-octanol/0.05M phosphate buffer) at pH 7.4 is –1.25. Each gabapentin, USP capsule contains 100 mg, 300 mg, or 400 mg of gabapentin and the following inactive ingredients: magnesium stearate, pregelatinized starch (corn), starch (corn) and talc. The 100 mg capsule shell contains gelatin, sodium lauryl sulfate and titanium dioxide. The 300 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, and iron oxide yellow. The 400 mg capsule shell contains gelatin, sodium lauryl sulfate, titanium dioxide, FD&C Yellow No.6 and FD&C Blue No.1. chem structure

CLINICAL STUDIES

14 14.1 Postherpetic Neuralgia Gabapentin was evaluated for the management of postherpetic neuralgia (PHN) in two randomized, double-blind, placebo-controlled, multicenter studies. The intent-to-treat (ITT) population consisted of a total of 563 patients with pain for more than 3 months after healing of the herpes zoster skin rash (Table 6). TABLE 6. Controlled PHN Studies: Duration, Dosages, and Number of Patients Study Study Duration Gabapentin (mg/day)a Target Dose Patients Receiving Gabapentin Patients Receiving Placebo 1 8 weeks 3600 113 116 2 7 weeks 1800, 2400 223 111 Total 336 227 a Given in 3 divided doses (TID) Each study included a 7 -or 8-week double-blind phase (3 or 4 weeks of titration and 4 weeks of fixed dose). Patients initiated treatment with titration to a maximum of 900 mg/day gabapentin over 3 days. Dosages were then to be titrated in 600 to 1200 mg/day increments at 3-to 7-day intervals to the target dose over 3 to 4 weeks. Patients recorded their pain in a daily diary using an 11-point numeric pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). A mean pain score during baseline of at least 4 was required for randomization. Analyses were conducted using the ITT population (all randomized patients who received at least one dose of study medication). Both studies demonstrated efficacy compared to placebo at all doses tested. The reduction in weekly mean pain scores was seen by Week 1 in both studies, and were maintained to the end of treatment. Comparable treatment effects were observed in all active treatment arms.Pharmacokinetic/pharmacodynamic modeling provided confirmatory evidence of efficacy across all doses. Figures 1 and 2 show pain intensity scores over time for Studies 1 and 2. Figure 1. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 1 Figure 2. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 2 The proportion of responders (those patients reporting at least 50% improvement in endpoint pain score compared with baseline) was calculated for each study (Figure 3). Figure 3. Proportion of Responders (patients with ≥50% reduction in pain score) at Endpoint: Controlled PHN Studies figure 1 figure 2 figure 3 14.2 Epilepsy for Partial Onset Seizures (Adjunctive Therapy) The effectiveness of gabapentin as adjunctive therapy (added to other antiepileptic drugs) was established in multicenter placebo-controlled, double-blind, parallel-group clinical trials in adult and pediatric patients (3 years and older) with refractory partial seizures. Evidence of effectiveness was obtained in three trials conducted in 705 patients (age 12 years and above) and one trial conducted in 247 pediatric patients (3 to 12 years of age). The patients enrolled had a history of at least 4 partial seizures per month in spite of receiving one or more antiepileptic drugs at therapeutic levels and were observed on their established antiepileptic drug regimen during a 12-week baseline period (6 weeks in the study of pediatric patients). In patients continuing to have at least 2 (or 4 in some studies) seizures per month, gabapentin or placebo was then added on to the existing therapy during a 12-week treatment period. Effectiveness was assessed primarily on the basis of the percent of patients with a 50% or greater reduction in seizure frequency from baseline to treatment (the “responder rate”) and a derived measure called response ratio, a measure of change defined as (T -B)/(T + B), in which B is the patient’s baseline seizure frequency and T is the patient’s seizure frequency during treatment. Response ratio is distributed within the range -1 to +1. A zero value indicates no change while complete elimination of seizures would give a value of -1; increased seizure rates would give positive values. A response ratio of -0.33 corresponds to a 50% reduction in seizure frequency. The results given below are for all partial seizures in the intent-to-treat (all patients who received any doses of treatment) population in each study, unless otherwise indicated. One study compared gabapentin 1200 mg/day, in three divided doses, with placebo. Responder rate was 23% (14/61) in the gabapentin group and 9% (6/66) in the placebo group; the difference between groups was statistically significant. Response ratio was also better in the gabapentin group (-0.199) than in the placebo group (-0.044), a difference that also achieved statistical significance. A second study compared primarily gabapentin 1200 mg/day, in three divided doses (N=101), with placebo (N=98). Additional smaller gabapentin dosage groups (600 mg/day, N=53; 1800 mg/day, N=54) were also studied for information regarding dose response. Responder rate was higher in the gabapentin 1200 mg/day group (16%) than in the placebo group (8%), but the difference was not statistically significant. The responder rate at 600 mg (17%) was also not significantly higher than in the placebo, but the responder rate in the 1800 mg group (26%) was statistically significantly superior to the placebo rate. Response ratio was better in the gabapentin 1200 mg/day group (-0.103) than in the placebo group (-0.022); but this difference was also not statistically significant (p = 0.224). A better response was seen in the gabapentin 600 mg/day group (-0.105) and 1800 mg/day group (-0.222) than in the 1200 mg/day group, with the 1800 mg/day group achieving statistical significance compared to the placebo group. A third study compared gabapentin 900 mg/day, in three divided doses (N=111), and placebo (N=109). An additional gabapentin 1200 mg/day dosage group (N=52) provided dose-response data. A statistically significant difference in responder rate was seen in the gabapentin 900 mg/day group (22%) compared to that in the placebo group (10%). Response ratio was also statistically significantly superior in the gabapentin 900 mg/day group (-0.119) compared to that in the placebo group (-0.027), as was response ratio in 1200 mg/day gabapentin (-0.184) compared to placebo. Analyses were also performed in each study to examine the effect of gabapentin on preventing secondarily generalized tonic-clonic seizures. Patients who experienced a secondarily generalized tonic-clonic seizure in either the baseline or in the treatment period in all three placebo-controlled studies were included in these analyses. There were several response ratio comparisons that showed a statistically significant advantage for gabapentin compared to placebo and favorable trends for almost all comparisons. Analysis of responder rate using combined data from all three studies and all doses (N=162, gabapentin; N=89, placebo) also showed a significant advantage for gabapentin over placebo in reducing the frequency of secondarily generalized tonic-clonic seizures. In two of the three controlled studies, more than one dose of gabapentin was used. Within each study, the results did not show a consistently increased response to dose. However, looking across studies, a trend toward increasing efficacy with increasing dose is evident (see Figure 4). Figure 4. Responder Rate in Patients Receiving Gabapentin Expressed as a Difference from Placebo by Dose and Study: Adjunctive Therapy Studies in Patients ≥12 Years of Age with Partial Seizures In the figure, treatment effect magnitude, measured on the Y axis in terms of the difference in the proportion of gabapentin and placebo-assigned patients attaining a 50% or greater reduction in seizure frequency from baseline, is plotted against the daily dose of gabapentin administered (X axis). Although no formal analysis by gender has been performed, estimates of response (Response Ratio) derived from clinical trials (398 men, 307 women) indicate no important gender differences exist. There was no consistent pattern indicating that age had any effect on the response to gabapentin. There were insufficient numbers of patients of races other than Caucasian to permit a comparison of efficacy among racial groups. A fourth study in pediatric patients age 3 to 12 years compared 25 to 35 mg/kg/day gabapentin (N=118) with placebo (N=127). For all partial seizures in the intent-to-treat population, the response ratio was statistically significantly better for the gabapentin group (-0.146) than for the placebo group (-0.079). For the same population, the responder rate for gabapentin (21%) was not significantly different from placebo (18%). A study in pediatric patients age 1 month to 3 years compared 40 mg/kg/day gabapentin (N=38) with placebo (N=38) in patients who were receiving at least one marketed antiepileptic drug and had at least one partial seizure during the screening period (within 2 weeks prior to baseline). Patients had up to 48 hours of baseline and up to 72 hours of double-blind video EEG monitoring to record and count the occurrence of seizures. There were no statistically significant differences between treatments in either the response ratio or responder rate. figure 4

HOW SUPPLIED

16 /STORAGE AND HANDLING Gabapentin capsules, USP are supplied as follows: 100 mg capsules: White-White, opaque hard gelatin capsules printed with “IP 101” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-591-10 300 mg capsules: Buff-Buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-236-10 400 mg capsules: Light caramel-Light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. They are available as follows: Boxes of 10×10 UD 100 NDC 63739-984-10 Store gabapentin capsules at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Dispense in tight (USP), child-resistant containers.

RECENT MAJOR CHANGES

•Warnings and Precautions: Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) 9/2015

GERIATRIC USE

8.5 Geriatric Use The total number of patients treated with gabapentin in controlled clinical trials in patients with postherpetic neuralgia was 336, of which 102 (30%) were 65 to 74 years of age, and 168 (50%) were 75 years of age and older. There was a larger treatment effect in patients 75 years of age and older compared with younger patients who received the same dosage. Since gabapentin is almost exclusively eliminated by renal excretion, the larger treatment effect observed in patients ≥75 years may be a consequence of increased gabapentin exposure for a given dose that results from an age-related decrease in renal function. However, other factors cannot be excluded. The types and incidence of adverse reactions were similar across age groups except for peripheral edema and ataxia, which tended to increase in incidence with age. Clinical studies of gabapentin in epilepsy did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients [see Dosage and Administration (2.4), Adverse Reactions (6), and Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: •100 mg: white-white, opaque hard gelatin capsules printed with “IP 101” on both cap and body. •300 mg: buff-buff, opaque hard gelatin capsules printed with “IP 102” on both cap and body. •400 mg: light caramel-light caramel, opaque hard gelatin capsules printed with “IP 103” on both cap and body. •Capsules: 100 mg, 300 mg, and 400 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action The precise mechanisms by which gabapentin produces its analgesic and antiepileptic actions are unknown. Gabapentin is structurally related to the neurotransmitter gamma-aminobutyric acid (GABA) but has no effect on GABA binding, uptake, or degradation. In vitro studies have shown that gabapentin binds with high-affinity to the α2δ subunit of voltage-activated calcium channels; however, the relationship of this binding to the therapeutic effects of gabapentin is unknown.

INDICATIONS AND USAGE

1 Gabapentin capsules, USP are indicated for: •Management of postherpetic neuralgia in adults •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy Gabapentin capsules are indicated for: •Postherpetic neuralgia in adults (1) •Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and older with epilepsy (1)

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness of gabapentin in the management of postherpetic neuralgia in pediatric patients have not been established. Effectiveness as adjunctive therapy in the treatment of partial seizures in pediatric patients below the age of 3 years has not been established [see Clinical Studies (14.2)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C: There are no adequate and well-controlled studies in pregnant women. In nonclinical studies in mice, rats, and rabbits, gabapentin was developmentally toxic when administered to pregnant animals at doses similar to or lower than those used clinically. Gabapentin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. When pregnant mice received oral doses of gabapentin (500, 1000, or 3000 mg/kg/day) during the period of organogenesis, embryo-fetal toxicity (increased incidences of skeletal variations) was observed at the two highest doses. The no-effect dose for embryo-fetal developmental toxicity in mice was 500 mg/kg/day or approximately ½ of the maximum recommended human dose (MRHD) of 3600 mg/kg on a body surface area (mg/m2) basis. In studies in which rats received oral doses of gabapentin (500 to 2000 mg/kg/day), during pregnancy, adverse effect on offspring development (increased incidences of hydroureter and/or hydronephrosis) were observed at all doses. The lowest effect dose for developmental toxicity in rats is approximately equal to the MRHD on a mg/m2 basis. When pregnant rabbits were treated with gabapentin during the period of organogenesis, an increase in embryo-fetal mortality was observed at all doses tested (60, 300, or 1500 mg/kg). The lowest effect dose for embryo-fetal developmental toxicity in rabbits is less than the MRHD on a mg/m2 basis. In a published study, gabapentin (400 mg/kg/day) was administered by intraperitoneal injection to neonatal mice during the first postnatal week, a period of synaptogenesis in rodents (corresponding to the last trimester of pregnancy in humans). Gabapentin caused a marked decrease in neuronal synapse formation in brains of intact mice and abnormal neuronal synapse formation in a mouse model of synaptic repair. Gabapentin has been shown in vitro to interfere with activity of the α2δ subunit of voltage-activated calcium channels, a receptor involved in neuronal synaptogenesis. The clinical significance of these findings is unknown. To provide information regarding the effects of in utero exposure to gabapentin, physicians are advised to recommend that pregnant patients taking gabapentin enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

NUSRING MOTHERS

8.3 Nursing Mothers Gabapentin is secreted into human milk following oral administration. A nursed infant could be exposed to a maximum dose of approximately 1 mg/kg/day of gabapentin. Because the effect on the nursing infant is unknown, gabapentin should be used in women who are nursing only if the benefits clearly outweigh the risks.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Drug Reaction with Eosinophilia and Systemic Symptoms (Multiorgan hypersensitivity): discontinue gabapentin if an alternative etiology cannot be established (5.1) •Anaphylaxis and Angioedema: discontinue gabapentin and evaluate patient immediately (5.2) • Driving impairment: warn patients not to drive until they have gained sufficient experience with gabapentin to assess whether it will impair their ability to drive (5.3) • Somnolence/Sedation and Dizziness: gabapentin may impair the patient’s ability to operate complex machinery (5.4) •Increased seizure frequency may occur in patients with seizure disorders if gabapentin is abruptly discontinued (5.5) • Suicidal Behavior and Ideation: monitor for suicidal thoughts and behavior (5.6) • Neuropsychiatric Adverse Reactions in Children 3 to 12 Years of Age: monitor for such events (5.7) 5.1 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, has occurred with gabapentin. Some of these reactions have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Gabapentin should be discontinued if an alternative etiology for the signs or symptoms cannot be established. 5.2 Anaphylaxis and Angioedema Gabapentin can cause anaphylaxis and angioedema after the first dose or at any time during treatment. Signs and symptoms in reported cases have included difficulty breathing, swelling of the lips, throat, and tongue, and hypotension requiring emergency treatment. Patients should be instructed to discontinue gabapentin and seek immediate medical care should they experience signs or symptoms of anaphylaxis or angioedema. 5.3 Effects on Driving and Operating Heavy Machinery Patients taking gabapentin should not drive until they have gained sufficient experience to assess whether gabapentin impairs their ability to drive. Driving performance studies conducted with a prodrug of gabapentin (gabapentin enacarbil tablet, extended release) indicate that gabapentin may cause significant driving impairment. Prescribers and patients should be aware that patients’ ability to assess their own driving competence, as well as their ability to assess the degree of somnolence caused by gabapentin, can be imperfect. The duration of driving impairment after starting therapy with gabapentin is unknown. Whether the impairment is related to somnolence [see Warnings and Precautions (5.4)] or other effects of gabapentin is unknown. Moreover, because gabapentin causes somnolence and dizziness [see Warnings and Precautions (5.4)], patients should be advised not to operate complex machinery until they have gained sufficient experience on gabapentin to assess whether gabapentin impairs their ability to perform such tasks. 5.4 Somnolence/Sedation and Dizziness During the controlled epilepsy trials in patients older than 12 years of age receiving doses of gabapentin up to 1800 mg daily, somnolence, dizziness, and ataxia were reported at a greater rate in patients receiving gabapentin compared to placebo: i.e., 19% in drug versus 9% in placebo for somnolence, 17% in drug versus 7% in placebo for dizziness, and 13% in drug versus 6% in placebo for ataxia. In these trials somnolence, ataxia and fatigue were common adverse reactions leading to discontinuation of gabapentin in patients older than 12 years of age, with 1.2%, 0.8% and 0.6% discontinuing for these events, respectively. During the controlled trials in patients with post-herpetic neuralgia, somnolence and dizziness were reported at a greater rate compared to placebo in patients receiving gabapentin, in dosages up to 3600 mg per day: i.e., 21% in gabapentin-treated patients versus 5% in placebo-treated patients for somnolence and 28% in gabapentin-treated patients versus 8% in placebo-treated patients for dizziness. Dizziness and somnolence were among the most common adverse reactions leading to discontinuation of gabapentin. Patients should be carefully observed for signs of central nervous system (CNS) depression, such as somnolence and sedation, when gabapentin is used with other drugs with sedative properties because of potential synergy. In addition, patients who require concomitant treatment with morphine may experience increases in gabapentin concentrations and may require dose adjustment [see Drug Interactions (7.2) ]. 5.5 Withdrawal Precipitated Seizure, Status Epilepticus Antiepileptic drugs should not be abruptly discontinued because of the possibility of increasing seizure frequency. In the placebo-controlled epilepsy studies in patients >12 years of age, the incidence of status epilepticus in patients receiving gabapentin was 0.6% (3 of 543) vs. 0.5% in patients receiving placebo (2 of 378). Among the 2074 patients >12 years of age treated with gabapentin across all epilepsy studies (controlled and uncontrolled), 31 (1.5%) had status epilepticus. Of these, 14 patients had no prior history of status epilepticus either before treatment or while on other medications. Because adequate historical data are not available, it is impossible to say whether or not treatment with gabapentin is associated with a higher or lower rate of status epilepticus than would be expected to occur in a similar population not treated with gabapentin. 5.6 Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including gabapentin, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono-and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 2 shows absolute and relative risk by indication for all evaluated AEDs. TABLE 2. Risk by Indication for Antiepileptic Drugs in the Pooled Analysis Indication Placebo Patients with Events Per 1000 Patients Drug Patients with Events Per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1000 Patients Epilepsy 1 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing gabapentin or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. 5.7 Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age) Gabapentin use in pediatric patients with epilepsy 3 to 12 years of age is associated with the occurrence of central nervous system related adverse reactions. The most significant of these can be classified into the following categories: 1) emotional lability (primarily behavioral problems), 2) hostility, including aggressive behaviors, 3) thought disorder, including concentration problems and change in school performance, and 4) hyperkinesia (primarily restlessness and hyperactivity). Among the gabapentin-treated patients, most of the reactions were mild to moderate in intensity. In controlled clinical epilepsy trials in pediatric patients 3 to 12 years of age, the incidence of these adverse reactions was: emotional lability 6% (gabapentin-treated patients) vs. 1.3% (placebo-treated patients); hostility 5.2% vs. 1.3%; hyperkinesia 4.7% vs. 2.9%; and thought disorder 1.7% vs. 0%. One of these reactions, a report of hostility, was considered serious. Discontinuation of gabapentin treatment occurred in 1.3% of patients reporting emotional lability and hyperkinesia and 0.9% of gabapentin-treated patients reporting hostility and thought disorder. One placebo-treated patient (0.4%) withdrew due to emotional lability. 5.8 Tumorigenic Potential In an oral carcinogenicity study, gabapentin increased the incidence of pancreatic acinar cell tumors in rats [see Nonclinical Toxicology (13.1)]. The clinical significance of this finding is unknown. Clinical experience during gabapentin’s premarketing development provides no direct means to assess its potential for inducing tumors in humans. In clinical studies in adjunctive therapy in epilepsy comprising 2085 patient-years of exposure in patients >12 years of age, new tumors were reported in 10 patients (2 breast, 3 brain, 2 lung, 1 adrenal, 1 non-Hodgkin’s lymphoma, 1 endometrial carcinoma in situ), and preexisting tumors worsened in 11 patients (9 brain, 1 breast, 1 prostate) during or up to 2 years following discontinuation of gabapentin. Without knowledge of the background incidence and recurrence in a similar population not treated with gabapentin, it is impossible to know whether the incidence seen in this cohort is or is not affected by treatment. 5.9 Sudden and Unexplained Death in Patients with Epilepsy During the course of premarketing development of gabapentin, 8 sudden and unexplained deaths were recorded among a cohort of 2203 epilepsy patients treated (2103 patient-years of exposure) with gabapentin. Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night. This represents an incidence of 0.0038 deaths per patient-year. Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving gabapentin (ranging from 0.0005 for the general population of epileptics to 0.003 for a clinical trial population similar to that in the gabapentin program, to 0.005 for patients with refractory epilepsy). Consequently, whether these figures are reassuring or raise further concern depends on comparability of the populations reported upon to the gabapentin cohort and the accuracy of the estimates provided.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Administration Information Inform patients that gabapentin is taken orally with or without food. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity Prior to initiation of treatment with gabapentin, instruct patients that a rash or other signs or symptoms of hypersensitivity (such as fever or lymphadenopathy) may herald a serious medical event and that the patient should report any such occurrence to a physician immediately [see Warnings and Precautions (5.1)]. Anaphylaxis and Angioedema Advise patients to discontinue gabapentin and seek medical care if they develop signs or symptoms of anaphylaxis or angioedema [see Warnings and Precautions (5.2)]. Dizziness and Somnolence and Effects on Driving and Operating Heavy Machinery Advise patients that gabapentin may cause dizziness, somnolence, and other symptoms and signs of CNS depression. Other drugs with sedative properties may increase these symptoms. Accordingly, although patients’ ability to determine their level of impairment can be unreliable, advise them neither to drive a car nor to operate other complex machinery until they have gained sufficient experience on gabapentin to gauge whether or not it affects their mental and/or motor performance adversely. Inform patients that it is not known how long this effect lasts [see Warnings and Precautions (5.3) and Warnings and Precautions (5.4)]. Suicidal Thinking and Behavior Counsel the patient, their caregivers, and families that AEDs, including gabapentin, may increase the risk of suicidal thoughts and behavior. Advise patients of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Instruct patients to report behaviors of concern immediately to healthcare providers [see Warnings and Precautions (5.6)]. Use in Pregnancy Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breast feeding or intend to breast feed during therapy [see Use in Specific Populations (8.1) and (8.3)]. Encourage patients to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 [see Use in Specific Populations (8.1)]. This product’s label may have been updated. For full prescribing information, please visit www.amneal.com. *Trademarks are the property of their respective owners. Manufactured by: Amneal Pharmaceuticals 400 Crossing Boulevard, 3rd Floor Bridgewater, NJ 08807 Distributed by: McKesson Packaging Services a business unit of McKesson Corporation 7101 Weddington Rd., Concord, NC 28027 IS-4015283 November 2015

DOSAGE AND ADMINISTRATION

2 •Postherpetic Neuralgia (2.1) •Dose can be titrated up as needed to a dose of 1800 mg/day •Day 1: Single 300 mg dose •Day 2: 600 mg/day (i.e., 300 mg two times a day) •Day 3: 900 mg/day (i.e., 300 mg three times a day) •Epilepsy with Partial Onset Seizures (2.2) •Patients 12 years of age and older: starting dose is 300 mg three times daily; may be titrated up to 600 mg three times daily •Patients 3 to 11 years of age: starting dose range is 10 to 15 mg/kg/day, given in three divided doses; recommended dose in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses; the recommended dose in patients 5 to 11 years of age is 25 to 35 mg/kg/day, given in three divided doses. The recommended dose is reached by upward titration over a period of approximately 3 days • Dose should be adjusted in patients with reduced renal function (2.3, 2.4) 2.1 Dosage for Postherpetic Neuralgia In adults with postherpetic neuralgia, gabapentin capsules, USP may be initiated on Day 1 as a single 300 mg dose, on Day 2 as 600 mg/day (300 mg two times a day), and on Day 3 as 900 mg/day (300 mg three times a day). The dose can subsequently be titrated up as needed for pain relief to a dose of 1800 mg/day (600 mg three times a day). In clinical studies, efficacy was demonstrated over a range of doses from 1800 mg/day to 3600 mg/day with comparable effects across the dose range; however, in these clinical studies, the additional benefit of using doses greater than 1800 mg/day was not demonstrated. 2.2 Dosage for Epilepsy with Partial Onset Seizures Patients 12 years of age and above The starting dose is 300 mg three times a day. The recommended maintenance dose of gabapentin capsules, USP is 300 mg to 600 mg three times a day. Dosages up to 2400 mg/day have been well tolerated in long-term clinical studies. Doses of 3600 mg/day have also been administered to a small number of patients for a relatively short duration, and have been well tolerated. Administer gabapentin capsules, USP three times a day using 300 mg or 400 mg capsules. The maximum time between doses should not exceed 12 hours. Pediatric Patients Age 3 to 11 years The starting dose range is 10 mg/kg/day to 15 mg/kg/day, given in three divided doses, and the recommended maintenance dose reached by upward titration over a period of approximately 3 days. The recommended maintenance dose of gabapentin capsules, USP in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses. The recommended maintenance dose of gabapentin capsules, USP in patients 5 to 11 years of age is 25 mg/kg/day to 35 mg/kg/day, given in three divided doses. Gabapentin capsules, USP may be administered as the oral solution, capsule, or tablet, or using combinations of these formulations. Dosages up to 50 mg/kg/day have been well tolerated in a long-term clinical study. The maximum time interval between doses should not exceed 12 hours. 2.3 Dosage Adjustment in Patients with Renal Impairment Dosage adjustment in patients 12 years of age and older with renal impairment or undergoing hemodialysis is recommended, as follows (see dosing recommendations above for effective doses in each indication): TABLE 1. Gabapentin Capsules, USP Dosage Based on Renal Function Renal Function Creatinine Clearance (mL/min) Total Daily Dose Range (mg/day) Dose Regimen (mg) ≥ 60 900 to 3600 300 TID 400 TID 600 TID 800 TID 1200 TID >30 to 59 400 to 1400 200 BID 300 BID 400 BID 500 BID 700 BID >15 to 29 200 to 700 200 QD 300 QD 400 QD 500 QD 700 QD 15a 100 to 300 100 QD 125 QD 150 QD 200 QD 300 QD Post-Hemodialysis Supplemental Dose (mg)b Hemodialysis 125b 150 b 200 b 250 b 350 b TID = Three times a day; BID = Two times a day; QD = Single daily dose a For patients with creatinine clearance <15 mL/min, reduce daily dose in proportion to creatinine clearance (e.g., patients with a creatinine clearance of 7.5 mL/min should receive one-half the daily dose that patients with a creatinine clearance of 15 mL/min receive). b Patients on hemodialysis should receive maintenance doses based on estimates of creatinine clearance as indicated in the upper portion of the table and a supplemental post-hemodialysis dose administered after each 4 hours of hemodialysis as indicated in the lower portion of the table. Creatinine clearance (CLCr) is difficult to measure in outpatients. In patients with stable renal function, creatinine clearance can be reasonably well estimated using the equation of Cockcroft and Gault: The use of gabapentin capsules, USP in patients less than 12 years of age with compromised renal function has not been studied. formula 2.4 Dosage in Elderly Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients. 2.5 Administration Information Administer gabapentin capsules, USP orally with or without food. Gabapentin capsules, USP should be swallowed whole with water. If the gabapentin capsules, USP dose is reduced, discontinued, or substituted with an alternative medication, this should be done gradually over a minimum of 1 week (a longer period may be needed at the discretion of the prescriber).