Benadryl 2.5 MG/ML Oral Solution

Generic Name: DIPHENHYDRAMINE HYDROCHLORIDE
Brand Name: Childrens Benadryl DYE-FREE ALLERGY
  • Substance Name(s):
  • DIPHENHYDRAMINE HYDROCHLORIDE

WARNINGS

Warnings Do not use to make a child sleepy with any other product containing diphenhydramine, even one used on skin Ask a doctor before use if the child has a breathing problem such as chronic bronchitis glaucoma Ask a doctor or pharmacist before use if the child is taking sedatives or tranquilizers When using this product marked drowsiness may occur sedatives and tranquilizers may increase drowsiness excitability may occur, especially in children Keep out of reach of children. In case of overdose, getmedical help or contact a Poison Control Center right away. (1-800-222-1222)

INDICATIONS AND USAGE

Uses temporarily relieves these symptoms due to hay fever or other upper respiratory allergies: runny nose sneezing itchy, watery eyes itching of the nose or throat

INACTIVE INGREDIENTS

Inactive ingredients anhydrous citric acid, carboxymethylcellulose sodium, flavors, glycerin, purified water, saccharin sodium, sodium benzoate, sodium citrate, sorbitol solution

PURPOSE

Purpose Antihistamine

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of overdose, getmedical help or contact a Poison Control Center right away. (1-800-222-1222)

ASK DOCTOR

Ask a doctor before use if the child has a breathing problem such as chronic bronchitis glaucoma

DOSAGE AND ADMINISTRATION

Directions find right dose on chart below mL = milliliter take every 4 to 6 hours, or as directed by a doctor do not takemore than 6 doses in 24 hours Age (yr) Dose (mL) children under 2 years do not use children 2 to 5 years do not use unless directed by a doctor children 6 to 11 years 5 mL to 10 mL Attention: use only enclosed dosing cup specifically designed for use with this product. Do not use any other dosing device.

DO NOT USE

Do not use to make a child sleepy with any other product containing diphenhydramine, even one used on skin

ACTIVE INGREDIENTS

Active ingredient (in each 5 mL) Diphenhydramine HCl 12.5 mg

ASK DOCTOR OR PHARMACIST

Ask a doctor or pharmacist before use if the child is taking sedatives or tranquilizers

Flovent Diskus 0.05 MG/ACTUAT Dry Powder Inhaler, 60 ACTUAT

Generic Name: FLUTICASONE PROPIONATE
Brand Name: FLOVENT DISKUS
  • Substance Name(s):
  • FLUTICASONE PROPIONATE

DRUG INTERACTIONS

7 Strong cytochrome P450 3A4 inhibitors (e.g., ritonavir, ketoconazole): Use not recommended. May increase risk of systemic corticosteroid effects (7.1) 7.1 Inhibitors of Cytochrome P450 3A4 Fluticasone propionate is a substrate of CYP3A4. The use of strong CYP3A4 inhibitors (e.g., ritonavir, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, saquinavir, ketoconazole, telithromycin) with FLOVENT DISKUS is not recommended because increased systemic corticosteroid adverse effects may occur. Ritonavir A drug interaction trial with fluticasone propionate aqueous nasal spray in healthy subjects has shown that ritonavir (a strong CYP3A4 inhibitor) can significantly increase plasma fluticasone propionate exposure, resulting in significantly reduced serum cortisol concentrations [see Clinical Pharmacology (12.3)]. During postmarketing use, there have been reports of clinically significant drug interactions in patients receiving fluticasone propionate and ritonavir, resulting in systemic corticosteroid effects including Cushing’s syndrome and adrenal suppression. Ketoconazole Coadministration of orally inhaled fluticasone propionate (1,000 mcg) and ketoconazole (200 mg once daily) resulted in a 1.9-fold increase in plasma fluticasone propionate exposure and a 45% decrease in plasma cortisol area under the curve (AUC), but had no effect on urinary excretion of cortisol.

OVERDOSAGE

10 Chronic overdosage may result in signs/symptoms of hypercorticism [see Warnings and Precautions (5.5)]. Inhalation by healthy volunteers of a single dose of 4,000 mcg of fluticasone propionate inhalation powder or single doses of 1,760 or 3,520 mcg of fluticasone propionate CFC inhalation aerosol was well tolerated. Fluticasone propionate given by inhalation aerosol at dosages of 1,320 mcg twice daily for 7 to 15 days to healthy human volunteers was also well tolerated. Repeat oral doses up to 80 mg daily for 10 days in healthy volunteers and repeat oral doses up to 20 mg daily for 42 days in subjects were well tolerated. Adverse reactions were of mild or moderate severity, and incidences were similar in active and placebo treatment groups.

DESCRIPTION

11 The active component of FLOVENT DISKUS 50 mcg, FLOVENT DISKUS 100 mcg, and FLOVENT DISKUS 250 mcg is fluticasone propionate, a corticosteroid having the chemical name S-(fluoromethyl) 6α,9-difluoro-11β,17-dihydroxy-16α-methyl-3-oxoandrosta-1,4-diene-17β-carbothioate, 17-propionate and the following chemical structure: Fluticasone propionate is a white powder with a molecular weight of 500.6, and the empirical formula is C25H31F3O5S. It is practically insoluble in water, freely soluble in dimethyl sulfoxide and dimethylformamide, and slightly soluble in methanol and 95% ethanol. FLOVENT DISKUS is an orange plastic inhaler containing a foil blister strip. Each blister on the strip contains a white powder mix of micronized fluticasone propionate (50, 100, or 250 mcg) in 12.5 mg of formulation containing lactose monohydrate (which contains milk proteins). After the inhaler is activated, the powder is dispersed into the airstream created by the patient inhaling through the mouthpiece. Under standardized in vitro test conditions, FLOVENT DISKUS delivers 46, 94, and 229 mcg of fluticasone propionate from FLOVENT DISKUS 50 mcg, FLOVENT DISKUS 100 mcg, and FLOVENT DISKUS 250 mcg, respectively, when tested at a flow rate of 60 L/min for 2 seconds. In adult subjects with obstructive lung disease and severely compromised lung function (mean FEV1 20% to 30% of predicted), mean peak inspiratory flow (PIF) through the DISKUS® inhaler was 82.4 L/min (range: 46.1 to 115.3 L/min). In children with asthma aged 4 and 8 years, mean PIF through FLOVENT DISKUS was 70 and 104 L/min, respectively (range: 48 to 123 L/min). The actual amount of drug delivered to the lung will depend on patient factors, such as inspiratory flow profile. Chemical structure

CLINICAL STUDIES

14 14.1 Adult and Adolescent Subjects Aged 12 Years and Older Four randomized, double-blind, parallel-group, placebo-controlled, U.S. clinical trials were conducted in 1,036 adult and adolescent subjects (aged 12 years and older) with asthma to assess the efficacy and safety of FLOVENT DISKUS in the treatment of asthma. Fixed dosages of 100, 250, and 500 mcg twice daily were compared with placebo to provide information about appropriate dosing to cover a range of asthma severity. Subjects in these trials included those inadequately controlled with bronchodilators alone and those already maintained on daily inhaled corticosteroids. All doses were delivered by inhalation of the contents of 1 or 2 blisters from FLOVENT DISKUS twice daily. Figures 1 through 4 display results of pulmonary function tests (mean percent change from baseline in FEV1 prior to AM dose) for 3 recommended dosages of FLOVENT DISKUS (100, 250, and 500 mcg twice daily) and placebo from the four 12-week trials in adolescents and adults. These trials used predetermined criteria for lack of efficacy (indicators of worsening asthma), resulting in withdrawal of more patients in the placebo group. Therefore, pulmonary function results at Endpoint (the last evaluable FEV1 result, including most patients’ lung function data) are also displayed. Pulmonary function, as determined by percent change from baseline in FEV1 at recommended dosages of FLOVENT DISKUS improved significantly compared with placebo by the first week of treatment, and improvement was maintained for up to 1 year or more. Figure 1. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 100 mcg Twice Daily in Adults and Adolescents Receiving Bronchodilators Alone Figure 2. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 100 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids Figure 3. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 250 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids or Bronchodilators Alone Figure 4. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 500 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids or Bronchodilators Alone In all 4 efficacy trials, measures of pulmonary function (FEV1) were statistically significantly improved as compared with placebo at all twice-daily doses. Subjects on all dosages of FLOVENT DISKUS were also less likely to discontinue study participation due to asthma deterioration (as defined by predetermined criteria for lack of efficacy including lung function and subject-recorded variables such as AM PEF, albuterol use, and nighttime awakenings due to asthma) compared with placebo. In a clinical trial of 111 subjects with severe asthma requiring chronic oral prednisone therapy (average baseline daily prednisone dose was 14 mg), fluticasone propionate given by inhalation powder at doses of 500 and 1,000 mcg twice daily was evaluated. Both doses enabled a statistically significantly larger percentage of subjects to wean from oral prednisone as compared with placebo (75% of the subjects on 500 mcg twice daily and 89% of the subjects on 1,000 mcg twice daily as compared with 9% of subjects on placebo). Accompanying the reduction in oral corticosteroid use, subjects treated with fluticasone propionate had significantly improved lung function and fewer asthma symptoms as compared with the placebo group. Figure 1. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 100 mcg Twice Daily in Adults and Adolescents Receiving Bronchodilators Alone Figure 2. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 100 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids Figure 3. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 250 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids or Bronchodilators Alone Figure 4. A 12-Week Clinical Trial Evaluating FLOVENT DISKUS 500 mcg Twice Daily in Adults and Adolescents Receiving Inhaled Corticosteroids or Bronchodilators Alone 14.2 Pediatric Subjects Aged 4 to 11 Years A 12-week, placebo-controlled clinical trial was conducted in 437 pediatric subjects (177 received FLOVENT DISKUS), approximately half of whom were receiving inhaled corticosteroids at baseline. In this trial, doses of fluticasone propionate inhalation powder 50 and 100 mcg twice daily significantly improved FEV1 (15% and 18% change from baseline at Endpoint, respectively) compared with placebo (7% change). AM PEF was also significantly improved with doses of fluticasone propionate 50 and 100 mcg twice daily (26% and 27% change from baseline at Endpoint, respectively) compared with placebo (14% change). In this trial, subjects on active treatment were significantly less likely to discontinue treatment due to asthma deterioration (as defined by predetermined criteria for lack of efficacy including lung function and subject-recorded variables such as AM PEF, albuterol use, and nighttime awakenings due to asthma). Two other 12-week placebo-controlled clinical trials were conducted in 504 pediatric subjects with asthma, approximately half of whom were receiving inhaled corticosteroids at baseline. In these trials, FLOVENT DISKUS was efficacious at doses of 50 and 100 mcg twice daily when compared with placebo on major endpoints including lung function and symptom scores. Pulmonary function improved significantly compared with placebo by the first week of treatment, and subjects treated with FLOVENT DISKUS were also less likely to discontinue trial participation due to asthma deterioration. One hundred ninety-two (192) subjects received FLOVENT DISKUS for up to 1 year during an open-label extension. Data from this open-label extension suggested that lung function improvements could be maintained up to 1 year.

HOW SUPPLIED

16 /STORAGE AND HANDLING FLOVENT DISKUS 50 mcg is supplied as a disposable orange plastic inhaler containing a foil blister strip with 60 blisters. The inhaler is packaged in a plastic-coated, moisture-protective foil pouch (NDC 0173-0600-02). FLOVENT DISKUS 100 mcg is supplied as a disposable orange plastic inhaler containing a foil blister strip with 60 blisters. The inhaler is packaged in a plastic-coated, moisture-protective foil pouch (NDC 0173-0602-02). FLOVENT DISKUS 100 mcg is also supplied in an institutional pack containing 28 blisters (NDC 0173-0602-00). FLOVENT DISKUS 250 mcg is supplied as a disposable orange plastic inhaler containing a foil blister strip with 60 blisters. The inhaler is packaged in a plastic-coated, moisture-protective foil pouch (NDC 0173-0601-02). FLOVENT DISKUS 250 mcg is also supplied in an institutional pack containing 28 blisters (NDC 0173-0601-00). Store at room temperature between 68°F and 77°F (20°C and 25°C); excursions permitted from 59°F to 86°F (15°C to 30°C) [See USP Controlled Room Temperature]. Store in a dry place away from direct heat or sunlight. Keep out of reach of children. FLOVENT DISKUS should be stored inside the unopened moisture-protective foil pouch and only removed from the pouch immediately before initial use. Discard FLOVENT DISKUS 6 weeks (50-mcg strength) or 2 months (100- and 250-mcg strengths) after opening the foil pouch or when the counter reads “0” (after all blisters have been used), whichever comes first. The inhaler is not reusable. Do not attempt to take the inhaler apart.

GERIATRIC USE

8.5 Geriatric Use Safety data have been collected on 280 subjects (FLOVENT DISKUS n = 83, FLOVENT Rotadisk n = 197) aged 65 years and older and 33 subjects (FLOVENT DISKUS n = 14, FLOVENT ROTADISK n = 19) aged 75 years and older who have been treated with fluticasone propionate inhalation powder in U.S. and non-U.S. clinical trials. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3 Inhalation Powder. Inhaler containing a foil blister strip of powder formulation for oral inhalation. The strip contains fluticasone propionate 50, 100, or 250 mcg per blister. Inhalation Powder. Inhaler containing fluticasone propionate (50, 100, or 250 mcg) as a powder formulation for oral inhalation. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Fluticasone propionate is a synthetic trifluorinated corticosteroid with anti-inflammatory activity. Fluticasone propionate has been shown in vitro to exhibit a binding affinity for the human glucocorticoid receptor that is 18 times that of dexamethasone, almost twice that of beclomethasone-17-monopropionate (BMP), the active metabolite of beclomethasone dipropionate, and over 3 times that of budesonide. Data from the McKenzie vasoconstrictor assay in man are consistent with these results. The clinical significance of these findings is unknown. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of actions on multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, cytokines) involved in inflammation. These anti‑inflammatory actions of corticosteroids contribute to their efficacy in asthma. Though effective for the treatment of asthma, corticosteroids do not affect asthma symptoms immediately. Individual patients will experience a variable time to onset and degree of symptom relief. Maximum benefit may not be achieved for 1 to 2 weeks or longer after starting treatment. When corticosteroids are discontinued, asthma stability may persist for several days or longer. Trials in subjects with asthma have shown a favorable ratio between topical anti-inflammatory activity and systemic corticosteroid effects with recommended doses of orally inhaled fluticasone propionate. This is explained by a combination of a relatively high local anti-inflammatory effect, negligible oral systemic bioavailability (less than 1%), and the minimal pharmacological activity of the only metabolite detected in man.

INDICATIONS AND USAGE

1 FLOVENT® DISKUS® is indicated for the maintenance treatment of asthma as prophylactic therapy in patients aged 4 years and older. It is also indicated for patients requiring oral corticosteroid therapy for asthma. Many of these patients may be able to reduce or eliminate their requirement for oral corticosteroids over time. Important Limitation of Use FLOVENT DISKUS is NOT indicated for the relief of acute bronchospasm. FLOVENT DISKUS is an inhaled corticosteroid indicated for: •Maintenance treatment of asthma as prophylactic therapy in patients aged 4 years and older. (1) •Treatment of asthma in patients requiring oral corticosteroid therapy. (1) Important limitation: •Not indicated for relief of acute bronchospasm. (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of FLOVENT DISKUS in children aged 4 years and older have been established [see Adverse Reactions (6.1), Clinical Pharmacology (12.3), Clinical Studies (14.2)]. The safety and effectiveness of FLOVENT DISKUS in children younger than 4 years have not been established. Effects on Growth Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to pediatric patients. A reduction of growth velocity in children or teenagers may occur as a result of poorly controlled asthma or from use of corticosteroids, including inhaled corticosteroids. The effects of long-term treatment of children and adolescents with inhaled corticosteroids, including fluticasone propionate, on final adult height are not known. Controlled clinical trials have shown that inhaled corticosteroids may cause a reduction in growth in pediatric patients. In these trials, the mean reduction in growth velocity was approximately 1 cm/year (range: 0.3 to 1.8 cm/year) and appeared to depend upon dose and duration of exposure. This effect was observed in the absence of laboratory evidence of HPA axis suppression, suggesting that growth velocity is a more sensitive indicator of systemic corticosteroid exposure in pediatric patients than some commonly used tests of HPA axis function. The long‑term effects of this reduction in growth velocity associated with orally inhaled corticosteroids, including the impact on final adult height, are unknown. The potential for “catch-up” growth following discontinuation of treatment with orally inhaled corticosteroids has not been adequately studied. The effects on growth velocity of treatment with orally inhaled corticosteroids for over 1 year, including the impact on final adult height, are unknown. The growth of children and adolescents receiving orally inhaled corticosteroids, including FLOVENT DISKUS, should be monitored routinely (e.g., via stadiometry). The potential growth effects of prolonged treatment should be weighed against the clinical benefits obtained and the risks associated with alternative therapies. To minimize the systemic effects of orally inhaled corticosteroids, including FLOVENT DISKUS, each patient should be titrated to the lowest dose that effectively controls his/her symptoms. A 52-week placebo-controlled trial to assess the potential growth effects of fluticasone propionate inhalation powder (FLOVENT ROTADISK) at 50 and 100 mcg twice daily was conducted in the U.S. in 325 prepubescent children (244 males and 81 females) aged 4 to 11 years. The mean growth velocities at 52 weeks observed in the intent-to-treat population were 6.32 cm/year in the placebo group (n = 76), 6.07 cm/year in the 50-mcg group (n = 98), and 5.66 cm/year in the 100‑mcg group (n = 89). An imbalance in the proportion of children entering puberty between groups and a higher dropout rate in the placebo group due to poorly controlled asthma may be confounding factors in interpreting these data. A separate subset analysis of children who remained prepubertal during the trial revealed growth rates at 52 weeks of 6.10 cm/year in the placebo group (n = 57), 5.91 cm/year in the 50-mcg group (n = 74), and 5.67 cm/year in the 100‑mcg group (n = 79). In children aged 8.5 years, the mean age of children in this trial, the range for expected growth velocity is: boys – 3rd percentile = 3.8 cm/year, 50th percentile = 5.4 cm/year, and 97th percentile = 7.0 cm/year; girls – 3rd percentile = 4.2 cm/year, 50th percentile = 5.7 cm/year, and 97th percentile = 7.3 cm/year. The clinical relevance of these growth data is not certain.

PREGNANCY

8.1 Pregnancy Risk Summary There are no randomized clinical studies of FLOVENT DISKUS in pregnant women. There are clinical considerations with the use of FLOVENT DISKUS in pregnant women [see Clinical Considerations]. In animals, teratogenicity characteristic of corticosteroids, decreased fetal body weight, and/or skeletal variations in rats, mice, and rabbits were observed with subcutaneously administered maternal toxic doses of fluticasone propionate less than the maximum recommended human daily inhaled dose (MRHDID) on a mg/m2 basis [see Animal Data]. However, fluticasone propionate administered via inhalation to rats decreased fetal body weight, but did not induce teratogenicity at a maternal toxic dose less than the MRHDID on a mg/m2 basis [see Animal Data]. Experience with oral corticosteroids suggests that rodents are more prone to teratogenic effects from corticosteroids than humans. The estimated risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. Clinical Considerations Disease-Associated Maternal and/or Embryofetal Risk: In women with poorly or moderately controlled asthma, there is an increased risk of several perinatal adverse outcomes such as pre-eclampsia in the mother and prematurity, low birth weight, and small for gestational age in the neonate. Pregnant women with asthma should be closely monitored and medication adjusted as necessary to maintain optimal asthma control. Data Animal Data: In embryofetal development studies with pregnant rats and mice dosed by the subcutaneous route throughout the period of organogenesis, fluticasone propionate was teratogenic in both species. Omphalocele, decreased body weight, and skeletal variations were observed in rat fetuses, in the presence of maternal toxicity, at a dose approximately 0.5 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 100 mcg/kg/day). The rat no observed adverse effect level (NOAEL) was observed at approximately 0.15 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 30 mcg/kg/day). Cleft palate and fetal skeletal variations were observed in mouse fetuses at a dose approximately 0.1 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 45 mcg/kg/day). The mouse NOAEL was observed with a dose approximately 0.04 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 15 mcg/kg/day). In an embryofetal development study with pregnant rats dosed by the inhalation route throughout the period of organogenesis, fluticasone propionate produced decreased fetal body weights and skeletal variations, in the presence of maternal toxicity, at a dose approximately 0.13 times the MRHDID (on a mg/m2 basis with a maternal inhalation dose of 25.7 mcg/kg/day); however, there was no evidence of teratogenicity. The NOAEL was observed with a dose approximately 0.03 times the MRHDID (on a mg/m2 basis with a maternal inhalation dose of 5.5 mcg/kg/day). In an embryofetal development study in pregnant rabbits that were dosed by the subcutaneous route throughout organogenesis, fluticasone propionate produced reductions of fetal body weights, in the presence of maternal toxicity, at doses approximately 0.006 times the MRHDID and higher (on a mg/m2 basis with a maternal subcutaneous dose of 0.57 mcg/kg/day). Teratogenicity was evident based upon a finding of cleft palate for 1 fetus at dose approximately 0.04 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 4 mcg/kg/day). The NOAEL was observed in rabbit fetuses with a dose approximately 0.001 times the MRHDID (on a mg/m2 basis with a maternal subcutaneous dose of 0.08 mcg/kg/day). Fluticasone propionate crossed the placenta following subcutaneous administration to mice and rats and oral administration to rabbits. In a pre- and post-natal development study in pregnant rats dosed from late gestation through delivery and lactation (Gestation Day 17 to Postpartum Day 22), fluticasone propionate was not associated with decreases in pup body weight, and had no effects on developmental landmarks, learning, memory, reflexes, or fertility at doses up to 0.2 times the MRHDID (on a mg/m2 basis with maternal subcutaneous doses up to 50 mcg/kg/day).

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS • Candida albicans infection of the mouth and pharynx may occur. Monitor patients periodically. Advise the patient to rinse his/her mouth with water without swallowing after inhalation to help reduce the risk. (5.1) •Potential worsening of infections (e.g., existing tuberculosis; fungal, bacterial, viral, or parasitic infection; ocular herpes simplex). Use with caution in patients with these infections. More serious or even fatal course of chickenpox or measles can occur in susceptible patients. (5.3) •Risk of impaired adrenal function when transferring from systemic corticosteroids. Taper patients slowly from systemic corticosteroids if transferring to FLOVENT DISKUS. (5.4) •Hypercorticism and adrenal suppression may occur with very high dosages or at the regular dosage in susceptible individuals. If such changes occur, discontinue FLOVENT DISKUS slowly. (5.5) •Assess for decrease in bone mineral density initially and periodically thereafter. (5.7) •Monitor growth of pediatric patients. (5.8) •Close monitoring for glaucoma and cataracts is warranted. (5.9) 5.1 Local Effects of Inhaled Corticosteroids In clinical trials, the development of localized infections of the mouth and pharynx with Candida albicans has occurred in subjects treated with FLOVENT DISKUS. When such an infection develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while treatment with FLOVENT DISKUS continues, but at times therapy with FLOVENT DISKUS may need to be interrupted. Advise the patient to rinse his/her mouth with water without swallowing following inhalation to help reduce the risk of oropharyngeal candidiasis. 5.2 Acute Asthma Episodes FLOVENT DISKUS is not to be regarded as a bronchodilator and is not indicated for rapid relief of bronchospasm. Patients should be instructed to contact their physicians immediately when episodes of asthma that are not responsive to bronchodilators occur during the course of treatment with FLOVENT DISKUS. During such episodes, patients may require therapy with oral corticosteroids. 5.3 Immunosuppression Persons who are using drugs that suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in susceptible children or adults using corticosteroids. In such children or adults who have not had these diseases or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If a patient is exposed to measles, prophylaxis with pooled intramuscular immunoglobulin (IG) may be indicated. (See the respective package inserts for complete VZIG and IG prescribing information.) If chickenpox develops, treatment with antiviral agents may be considered. Inhaled corticosteroids should be used with caution, if at all, in patients with active or quiescent tuberculosis infections of the respiratory tract; systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex. 5.4 Transferring Patients from Systemic Corticosteroid Therapy Particular care is needed for patients who have been transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in patients with asthma during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function. Patients who have been previously maintained on 20 mg or more of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn. During this period of HPA suppression, patients may exhibit signs and symptoms of adrenal insufficiency when exposed to trauma, surgery, or infection (particularly gastroenteritis) or other conditions associated with severe electrolyte loss. Although FLOVENT DISKUS may control asthma symptoms during these episodes, in recommended doses it supplies less than normal physiological amounts of glucocorticoid systemically and does NOT provide the mineralocorticoid activity that is necessary for coping with these emergencies. During periods of stress or a severe asthma attack, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids (in large doses) immediately and to contact their physicians for further instruction. These patients should also be instructed to carry a warning card indicating that they may need supplementary systemic corticosteroids during periods of stress or a severe asthma attack. Patients requiring oral corticosteroids should be weaned slowly from systemic corticosteroid use after transferring to FLOVENT DISKUS. Prednisone reduction can be accomplished by reducing the daily prednisone dose by 2.5 mg on a weekly basis during therapy with FLOVENT DISKUS. Lung function (mean forced expiratory volume in 1 second [FEV1] or morning peak expiratory flow [AM PEF]), beta-agonist use, and asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition, patients should be observed for signs and symptoms of adrenal insufficiency, such as fatigue, lassitude, weakness, nausea and vomiting, and hypotension. Transfer of patients from systemic corticosteroid therapy to FLOVENT DISKUS may unmask allergic conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, arthritis, eosinophilic conditions). During withdrawal from oral corticosteroids, some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function. 5.5 Hypercorticism and Adrenal Suppression Fluticasone propionate will often help control asthma symptoms with less suppression of HPA function than therapeutically equivalent oral doses of prednisone. Since fluticasone propionate is absorbed into the circulation and can be systemically active at higher doses, the beneficial effects of FLOVENT DISKUS in minimizing HPA dysfunction may be expected only when recommended dosages are not exceeded and individual patients are titrated to the lowest effective dose. A relationship between plasma levels of fluticasone propionate and inhibitory effects on stimulated cortisol production has been shown after 4 weeks of treatment with fluticasone propionate inhalation aerosol. Since individual sensitivity to effects on cortisol production exists, physicians should consider this information when prescribing FLOVENT DISKUS. Because of the possibility of significant systemic absorption of inhaled corticosteroids in sensitive patients, patients treated with FLOVENT DISKUS should be observed carefully for any evidence of systemic corticosteroid effects. Particular care should be taken in observing patients postoperatively or during periods of stress for evidence of inadequate adrenal response. It is possible that systemic corticosteroid effects such as hypercorticism and adrenal suppression (including adrenal crisis) may appear in a small number of patients who are sensitive to these effects. If such effects occur, FLOVENT DISKUS should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids, and other treatments for management of asthma symptoms should be considered. 5.6 Immediate Hypersensitivity Reactions Immediate hypersensitivity reactions (e.g., urticaria, angioedema, rash, bronchospasm, hypotension), including anaphylaxis, may occur after administration of FLOVENT DISKUS. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of powder products containing lactose; therefore, patients with severe milk protein allergy should not use FLOVENT DISKUS [see Contraindications (4)]. 5.7 Reduction in Bone Mineral Density Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. The clinical significance of small changes in BMD with regard to long-term consequences such as fracture is unknown. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids), should be monitored and treated with established standards of care. A 2-year trial in 160 subjects (females aged 18 to 40 years, males 18 to 50) with asthma receiving chlorofluorocarbon (CFC)-propelled fluticasone propionate inhalation aerosol 88 or 440 mcg twice daily demonstrated no statistically significant changes in BMD at any time point (24, 52, 76, and 104 weeks of double-blind treatment) as assessed by dual-energy x-ray absorptiometry at lumbar regions L1 through L4. 5.8 Effect on Growth Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to pediatric patients. Monitor the growth of pediatric patients receiving FLOVENT DISKUS routinely (e.g., via stadiometry). To minimize the systemic effects of orally inhaled corticosteroids, including FLOVENT DISKUS, titrate each patient’s dosage to the lowest dosage that effectively controls his/her symptoms [see Dosage and Administration (2), Use in Specific Populations (8.4)]. 5.9 Glaucoma and Cataracts Glaucoma, increased intraocular pressure, and cataracts have been reported in patients following the long-term administration of inhaled corticosteroids, including fluticasone propionate. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts. 5.10 Paradoxical Bronchospasm As with other inhaled medicines, bronchospasm may occur with an immediate increase in wheezing after dosing. If bronchospasm occurs following dosing with FLOVENT DISKUS, it should be treated immediately with an inhaled, short-acting bronchodilator; FLOVENT DISKUS should be discontinued immediately; and alternative therapy should be instituted. 5.11 Drug Interactions with Strong Cytochrome P450 3A4 Inhibitors The use of strong cytochrome P450 3A4 (CYP3A4) inhibitors (e.g., ritonavir, atazanavir, clarithromycin, indinavir, itraconazole, nefazodone, nelfinavir, saquinavir, ketoconazole, telithromycin) with FLOVENT DISKUS is not recommended because increased systemic corticosteroid adverse effects may occur [see Drug Interactions (7.1), Clinical Pharmacology (12.3)]. 5.12 Eosinophilic Conditions and Churg-Strauss Syndrome In rare cases, patients on inhaled fluticasone propionate may present with systemic eosinophilic conditions. Some of these patients have clinical features of vasculitis consistent with Churg-Strauss syndrome, a condition that is often treated with systemic corticosteroid therapy. These events usually, but not always, have been associated with the reduction and/or withdrawal of oral corticosteroid therapy following the introduction of fluticasone propionate. Cases of serious eosinophilic conditions have also been reported with other inhaled corticosteroids in this clinical setting. Physicians should be alert to eosinophilia, vasculitic rash, worsening pulmonary symptoms, cardiac complications, and/or neuropathy presenting in their patients. A causal relationship between fluticasone propionate and these underlying conditions has not been established.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Patient Information and Instructions for Use). Local Effects Inform patients that localized infections with Candida albicans occurred in the mouth and pharynx in some patients. If oropharyngeal candidiasis develops, treat it with appropriate local or systemic (i.e., oral) antifungal therapy while still continuing therapy with FLOVENT DISKUS, but at times therapy with FLOVENT DISKUS may need to be temporarily interrupted under close medical supervision. Advise patients to rinse the mouth with water without swallowing after inhalation to help reduce the risk of thrush. Status Asthmaticus and Acute Asthma Symptoms Inform patients that FLOVENT DISKUS is not a bronchodilator and is not intended for use as rescue medicine for acute asthma exacerbations. Advise patients to treat acute asthma symptoms with an inhaled, short-acting beta2-agonist such as albuterol. Instruct patients to contact their physicians immediately if there is deterioration of their asthma. Immunosuppression Warn patients who are on immunosuppressant doses of corticosteroids to avoid exposure to chickenpox or measles and, if exposed, to consult their physicians without delay. Inform patients of potential worsening of existing tuberculosis; fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex. Hypercorticism and Adrenal Suppression Advise patients that FLOVENT DISKUS may cause systemic corticosteroid effects of hypercorticism and adrenal suppression. Additionally, inform patients that deaths due to adrenal insufficiency have occurred during and after transfer from systemic corticosteroids. Patients should taper slowly from systemic corticosteroids if transferring to FLOVENT DISKUS. Immediate Hypersensitivity Reactions Advise patients that immediate hypersensitivity reactions (e.g., urticaria, angioedema, rash, bronchospasm, hypotension), including anaphylaxis, may occur after administration of FLOVENT DISKUS. Patients should discontinue FLOVENT DISKUS if such reactions occur. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of powder products containing lactose; therefore, patients with severe milk protein allergy should not take FLOVENT DISKUS. Reduction in Bone Mineral Density Advise patients who are at an increased risk for decreased BMD that the use of corticosteroids may pose an additional risk. Reduced Growth Velocity Inform patients that orally inhaled corticosteroids, including FLOVENT DISKUS, may cause a reduction in growth velocity when administered to pediatric patients. Physicians should closely follow the growth of children and adolescents taking corticosteroids by any route. Ocular Effects Inform patients that long-term use of inhaled corticosteroids may increase the risk of some eye problems (cataracts or glaucoma); consider regular eye examinations. Use Daily for Best Effect Patients should use Flovent DISKUS at regular intervals as directed. Individual patients will experience a variable time to onset and degree of symptom relief and the full benefit may not be achieved until treatment has been administered for 1 to 2 weeks or longer. Patients should not increase the prescribed dosage but should contact their physicians if symptoms do not improve or if the condition worsens. Instruct patients not to stop use of FLOVENT DISKUS abruptly. Patients should contact their physicians immediately if they discontinue use of FLOVENT DISKUS. DISKHALER, DISKUS, FLOVENT, and ROTADISK are registered trademarks of the GSK group of companies. GlaxoSmithKline Research Triangle Park, NC 27709 ©2016 the GSK group of companies. All rights reserved. FLD:10PI

DOSAGE AND ADMINISTRATION

2 Flovent DISKUS should be administered by the orally inhaled route only in patients aged 4 years and older. After inhalation, the patient should rinse his/her mouth with water without swallowing to help reduce the risk of oropharyngeal candidiasis. Individual patients will experience a variable time to onset and degree of symptom relief. Maximum benefit may not be achieved for 1 to 2 weeks or longer after starting treatment. After asthma stability has been achieved, it is always desirable to titrate to the lowest effective dosage to reduce the possibility of side effects. For patients who do not respond adequately to the starting dosage after 2 weeks of therapy, higher dosages may provide additional asthma control. The safety and efficacy of FLOVENT DISKUS when administered in excess of recommended dosages have not been established. The recommended starting dosage and the highest recommended dosage of FLOVENT DISKUS, based on prior asthma therapy, are listed in Table 1. Table 1. Recommended Dosages of FLOVENT DISKUS NOTE: In all patients, it is desirable to titrate to the lowest effective dosage once asthma stability is achieved. Previous Therapy Recommended Starting Dosage Highest Recommended Dosage Adult and adolescent patients (aged 12 years and older) Bronchodilators alone 100 mcg twice daily 500 mcg twice daily Inhaled corticosteroids 100-250 mcg twice dailya 500 mcg twice daily Oral corticosteroidsb 500-1,000 mcg twice dailyc 1,000 mcg twice daily Pediatric patients (aged 4-11 years) d 50 mcg twice dailya 100 mcg twice daily a Starting dosages above 100 mcg twice daily for adult and adolescent patients and 50 mcg twice daily for pediatric patients aged 4 to 11 years may be considered for patients with poorer asthma control or those who have previously required doses of inhaled corticosteroids that are in the higher range for the specific agent. b For patients currently receiving chronic oral corticosteroid therapy, prednisone should be reduced no faster than 2.5 to 5 mg/day on a weekly basis beginning after at least 1 week of therapy with FLOVENT DISKUS. Patients should be carefully monitored for signs of asthma instability, including serial objective measures of airflow, and for signs of adrenal insufficiency [see Warnings and Precautions (5.4)]. Once prednisone reduction is complete, the dosage of FLOVENT DISKUS should be reduced to the lowest effective dosage. c The choice of starting dosage should be made on the basis of individual patient assessment. A controlled clinical trial of 111 oral corticosteroid-dependent subjects with asthma showed few significant differences between the 2 doses of FLOVENT DISKUS on safety and efficacy endpoints. However, inability to decrease the dose of oral corticosteroids further during corticosteroid reduction may be indicative of the need to increase the dose of fluticasone propionate up to the maximum of 1,000 mcg twice daily. d Because individual responses may vary, pediatric patients previously maintained on other inhaled corticosteroids may require dosage adjustments upon transfer to FLOVENT DISKUS. For oral inhalation only. Dosing is based on prior asthma therapy. (2) Previous Therapy Recommended Starting Dosage Highest Recommended Dosage Patients aged 12 years and older Bronchodilators alone 100 mcg twice daily 500 mcg twice daily Inhaled corticosteroids 100-250 mcg twice daily 500 mcg twice daily Oral corticosteroids 500-1,000 mcg twice daily 1,000 mcg twice daily Patients aged 4-11 years 50 mcg twice daily 100 mcg twice daily

codeine phosphate 10 MG / promethazine hydrochloride 6.25 MG per 5 ML Oral Syrup

Generic Name: PROMETHAZINE HYDROCHLORIDE AND CODEINE PHOSPHATE
Brand Name: promethazine hydrochloride and codeine phosphate
  • Substance Name(s):
  • CODEINE PHOSPHATE
  • PROMETHAZINE HYDROCHLORIDE

WARNINGS

Respiratory Depression in Children The combination of promethazine hydrochloride and codeine phosphate is contraindicated in pediatric patients less than 6 years of age. Concomitant administration of promethazine products with other respiratory depressants has an association with respiratory depression, and sometimes death, in pediatric patients. Postmarketing cases of respiratory depression, including fatalities, have been reported with use of promethazine hydrochloride in pediatric patients less than 2 years of age. A wide range of weight-based doses of promethazine hydrochloride have resulted in respiratory depression in these patients. Respiratory depression leading to arrest, coma, and death has occurred with the use of codeine antitussives in young children, particularly in the under-one-year infants whose ability to deactivate the drug is not fully developed. Codeine: Death Related to Ultra-Rapid Metabolism of Codeine to Morphine Respiratory depression and death have occurred in children who received codeine in the postoperative period following tonsillectomy and/or adenoidectomy and had evidence of being ultrarapid metabolizers of codeine (i.e., multiple copies of the gene for cytochrome P450 isoenzyme 2D6 or high morphine concentrations). Deaths have also occurred in nursing infants who were exposed to high levels of morphine in breast milk because their mothers were ultra-rapid metabolizers of codeine. (See PRECAUTIONS -Nursing Mothers). Some individuals may be ultra-rapid metabolizers because of a specific CYP2D6 genotype (gene duplications denoted as *1/*1xN or *1/*2xN). The prevalence of this CYP2D6 phenotype varies widely and has been estimated at 0.5 to 1% in Chinese and Japanese, 0.5 to 1% in Hispanics, 1 to 10% in Caucasians, 3% in African Americans, and 16 to 28% in North Africans, Ethiopians, and Arabs. Data are not available for other ethnic groups. These individuals convert codeine into its active metabolite, morphine, more rapidly and completely than other people. This rapid conversion results in higher than expected serum morphine levels. Even at labeled dosage regimens, individuals who are ultra-rapid metabolizers may have life-threatening or fatal respiratory depression or experience signs of overdose (such as extreme sleepiness, confusion, or shallow breathing). (See OVERDOSAGE). Children with obstructive sleep apnea who are treated with codeine for post-tonsillectomy and/or adenoidectomy pain may be particularly sensitive to the respiratory depressant effects of codeine that has been rapidly metabolized to morphine. Codeine is contraindicated for post-operative pain management in all pediatric patients undergoing tonsillectomy and/or adenoidectomy. (See CONTRAINDICATIONS). When prescribing codeine-containing drugs, healthcare providers should choose the lowest effective dose for the shortest period of time and inform patients and caregivers about these risks and the signs of morphine overdose. Dosage of codeine SHOULD NOT BE INCREASED if cough fails to respond; an unresponsive cough should be reevaluated in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease. Codeine may cause or aggravate constipation. Administration of codeine may be accompanied by histamine release and should be used with caution in atopic children. Head Injury and Increased Intracranial Pressure: The respiratory-depressant effects of narcotic analgesics and their capacity to elevate cerebrospinal fluid pressure may be markedly exaggerated in the presence of head injury, intracranial lesions or a preexisting increase in intracranial pressure. Narcotics may produce adverse reactions which may obscure the clinical course of patients with head injuries. Asthma and Other Respiratory Conditions: Narcotic analgesics or cough suppressants, including codeine, should not be used in asthmatic patients (see CONTRAINDICATIONS ). Nor should they be used in acute febrile illness associated with productive cough or in chronic respiratory disease where interference with ability to clear the tracheobronchial tree of secretions would have a deleterious effect on the patient’s respiratory function. Hypotensive Effect: Codeine may produce orthostatic hypotension in ambulatory patients. Promethazine: CNS Depression — Promethazine may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks, such as driving a vehicle or operating machinery. The impairment may be amplified by concomitant use of other central-nervous-system depressants such as alcohol, sedatives/hypnotics (including barbiturates), narcotics, narcotic analgesics, general anesthetics, tricyclic antidepressants, and tranquilizers; therefore such agents should either be eliminated or given in reduced dosage in the presence of promethazine HCl (see PRECAUTIONS-Information for Patients and Drug Interactions ). Respiratory Depression —Promethazine may lead to potentially fatal respiratory depression. Use of Promethazine in patients with compromised respiratory function (e.g., COPD, sleep apnea) should be avoided. Lower Seizure Threshold —Promethazine may lower seizure threshold. It should be used with caution in persons with seizure disorders or in persons who are using concomitant medications, such as narcotics or local anesthetics, which may also affect seizure threshold. Bone-Marrow Depression —Promethazine should be used with caution in patients with bone-marrow depression. Leukopenia and agranulocytosis have been reported, usually when promethazine HCl has been used in association with other known marrow-toxic agents. Neuroleptic Malignant Syndrome —A potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) has been reported in association with promethazine HCl alone or in combination with antipsychotic drugs. Clinical manifestations of NMS are hyperpyrexia, muscle rigidity, altered mental status and evidence of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis and cardiac dysrhythmias). The diagnostic evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases where the clinical presentation includes both serious medical illness (e.g. pneumonia, systemic infection, etc.) and untreated or inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis include central anticholinergic toxicity, heat stroke, drug fever and primary central nervous system (CNS) pathology. The management of NMS should include 1) immediate discontinuation of promethazine HCl, antipsychotic drugs, if any, and other drugs not essential to concurrent therapy, 2) intensive symptomatic treatment and medical monitoring, and 3) treatment of any concomitant serious medical problems for which specific treatments are available. There is no general agreement about specific pharmacological treatment regimens for uncomplicated NMS. Since recurrences of NMS have been reported with phenothiazines, the reintroduction of promethazine HCl should be carefully considered. Use in Pediatric Patients The combination of promethazine hydrochloride and codeine phosphate is contraindicated in pediatric patients less than 6 years of age. Concomitant administration of promethazine products with other respiratory depressants has an association with respiratory depression, and sometimes death, in pediatric patients. The association does not directly relate to individualized weight-based dosing, which might otherwise permit safe administration. Respiratory depression and death have occurred in children with obstructive sleep apnea who received codeine in the post-operative period following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine (i.e., multiple copies of the gene for cytochrome P450 isoenzyme CYP2D6 or high morphine concentrations). These children may be particularly sensitive to the respiratory depressant effects of codeine that has been rapidly metabolized to morphine. Codeine is contraindicated for post-operative pain management in these patients (see – Death Related to Ultra-Rapid Metabolism of Codeine to Morphine and CONTRAINDICATIONS). Excessively large dosages of antihistamines, including promethazine hydrochloride, in pediatric patients may cause sudden death (see OVERDOSAGE ). Hallucinations and convulsions have occurred with therapeutic doses and overdoses of promethazine hydrochloride in pediatric patients. In pediatric patients who are acutely ill associated with dehydration, there is an increased susceptibility to dystonias with the use of promethazine HCl. Other Considerations Administration of promethazine has been associated with reported cholestatic jaundice.

DRUG INTERACTIONS

Drug Interactions: Codeine: In patients receiving MAO inhibitors, an initial small test dose is advisable to allow observation of any excessive narcotic effects or MAOI interaction. Promethazine CNS Depressants —Promethazine may increase, prolong, or intensify the sedative action of other central-nervous system depressants, such as alcohol, sedatives/hypnotics (including barbiturates), narcotics, narcotic analgesics, general anesthetics, tricylic antidepressants, and tranquilizers; therefore, such agents should be avoided or administered in reduced dosage to patients receiving promethazine HCl. When given concomitantly with promethazine, the dose of barbiturates should be reduced by at least one-half, and the dose of narcotics should be reduced by one-quarter to one-half. Dosage must be individualized. Excessive amounts of promethazine HCl relative to a narcotic may lead to restlessness and motor hyperactivity in the patient with pain; these symptoms usually disappear with adequate control of the pain. Epinephrine —Because of the potential for promethazine to reverse epinephrine’s vasopressor effect, epinephrine should NOT be used to treat hypotension associated with promethazine overdose. Anticholinergics —Concomitant use of other agents with anticholinergic properties should be undertaken with caution. Monoamine Oxidase Inhibitors (MAOI) —Drug interactions, including an increased incidence of extrapyramidal effects, have been reported when some MAOI and phenothiazines are used concomitantly.

OVERDOSAGE

Codeine: Serious overdose with codeine is characterized by respiratory depression (a decrease in respiratory rate and/or tidal volume, Cheyne-Stokes respiration, cyanosis), extreme somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, and sometimes bradycardia and hypotension. The triad of coma, pinpoint pupils, and respiratory depression is strongly suggestive of opiate poisoning. In severe overdosage, particularly by the intravenous route, apnea, circulatory collapse, cardiac arrest, and death may occur. Promethazine is additive to the depressant effects of codeine. It is difficult to determine what constitutes a standard toxic or lethal dose. However, the lethal oral dose of codeine in an adult is reported to be in the range of 0.5 to 1.0 gram. Infants and children are believed to be relatively more sensitive to opiates on a body-weight basis. Elderly patients are also comparatively intolerant to opiates. Promethazine: Signs and symptoms of overdosage with promethazine HCl range from mild depression of the central nervous system and cardiovascular system to profound hypotension, respiratory depression, unconsciousness, and sudden death. Other reported reactions include hyperreflexia, hypertonia, ataxia, athetosis, and extensor-plantar reflexes (Babinski reflex). Stimulation may be evident, especially in children and geriatric patients. Convulsions may rarely occur. A paradoxical-type reaction has been reported in children receiving single doses of 75 mg to 125 mg orally, characterized by hyperexcitability and nightmares. Atropine-like signs and symptoms – dry mouth, fixed dilated pupils, flushing, as well as gastrointestinal symptoms may occur. Treatment: The treatment of overdosage with promethazine and codeine is essentially symptomatic and supportive. Only in cases of extreme overdosage or individual sensitivity do vital signs including respiration, pulse, blood pressure, temperature, and EKG need to be monitored. Activated charcoal orally or by lavage may be given, or sodium or magnesium sulfate orally as a cathartic. Attention should be given to the reestablishment of adequate respiratory exchange through provision of a patent airway and institution of assisted or controlled ventilation. The narcotic antagonist, naloxone hydrochloride, may be administered when significant respiratory depression occurs with promethazine and codeine; any depressant effects of promethazine are not reversed with naloxone. Diazepam may be used to control convulsions. Avoid analeptics, which may cause convulsions. Acidosis and electrolyte losses should be corrected. A rise in temperature or pulmonary complications may signal the need for institution of antibiotic therapy. Severe hypotension usually responds to the administration of norepinephrine or phenylephrine. EPINEPHRINE SHOULD NOT BE USED, since its use in a patient with partial adrenergic blockade may further lower the blood pressure. Limited experience with dialysis indicates that it is not helpful.

DESCRIPTION

Each 5 mL (one teaspoonful), for oral administration contains: Promethazine hydrochloride 6.25 mg; codeine phosphate 10 mg. Alcohol 7%. Inactive Ingredients: ascorbic acid, citric acid, D & C yellow #10, edetate disodium, ethyl alcohol, FD&C Blue #1, FD&C Red #40, glycerin, methylparaben, pineapple flavor, purified water, sodium benzoate, sodium citrate, sucralose, and sucrose. Codeine is one of the naturally occurring phenanthrene alkaloids of opium derived from the opium poppy; it is classified pharmacologically as a narcotic analgesic. Codeine phosphate may be chemically designated as 7,8- Didehydro-4,5α-epoxy-3-methoxy-17-methylmorphinan- 6α-ol phosphate (1:1) (salt) hemihydrate. The phosphate salt of codeine occurs as white, needle-shaped crystals or white crystalline powder. Codeine phosphate is freely soluble in water and slightly soluble in alcohol. It has a molecular weight of 406.37, a molecular formula of C18H21NO3 • H3PO4 • 1/2H2O, and the following structural formula: Promethazine hydrochloride, a phenothiazine derivative, is chemically designated as (±) -10-[2-(Dimethylamino) propyl] phenothiazine monohydrochloride. Promethazine hydrochloride occurs as a white to faint yellow, practically odorless, crystalline powder which slowly oxidizes and turns blue on prolonged exposure to air. It is soluble in water and freely soluble in alcohol. It has a molecular weight of 320.88, a molecular formula of C17H20N2S • HCl, and the following structural formula: structure.jpg Strut2.jpg

HOW SUPPLIED

Promethazine Hydrochloride and Codeine Phosphate Syrup contains promethazine hydrochloride, USP 6.25 mg/5 mL, codeine phosphate, USP 10 mg/5 mL and alcohol 7 percent. It is supplied in a clear green, pineapple flavored syrup and is available as follows: NDC 63187-595-04 4 fl. oz. (118 mL) Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP. Distributed by: Sun Pharmaceutical Industries, Inc. Cranbury, NJ 08512 Manufactured by: Sun Pharmaceutical Industries, Inc. Bryan, OH 43506 Relabeled By: Proficient Rx LP Thousand Oaks, CA 91320 5981T05 Iss: 03/15

GERIATRIC USE

Geriatric Use: Clinical studies of promethazine hydrochloride and codeine phosphate syrup did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy. Sedating drugs may cause confusion and over-sedation in the elderly; elderly patients generally should be started on low doses of promethazine hydrochloride and codeine phosphate syrup and observed closely.

INDICATIONS AND USAGE

Promethazine hydrochloride and codeine phosphate syrup is indicated for the temporary relief of coughs and upper respiratory symptoms associated with allergy or the common cold.

PEDIATRIC USE

Pediatric Use: The combination of promethazine hydrochloride and codeine phosphate is contraindicated in pediatric patients less than 6 years of age, because the combination may cause fatal respiratory depression in this age population (see WARNINGS – Boxed Warning and Use in Pediatric Patients). Respiratory depression and death have occurred in children with obstructive sleep apnea who received codeine in the post-operative period following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine (i.e., multiple copies of the gene for cytochrome P450 isoenzyme CYP2D6 or high morphine concentrations). These children may be particularly sensitive to the respiratory depressant effects of codeine that has been rapidly metabolized to morphine. Codeine is contraindicated for post-operative pain management in these patients (see WARNINGS – Death Related to Ultra-Rapid Metabolism of Codeine to Morphine and CONTRAINDICATIONS). The combination of promethazine hydrochloride and codeine phosphate should be used with caution in pediatric patient 6 years and older (see WARNINGS – Use in Pediatric Patients).

PREGNANCY

Pregnancy: Teratogenic Effects-Pregnancy Category C. Codeine: A study in rats and rabbits reported no teratogenic effect of codeine administered during the period of organogenesis in doses ranging from 5 to 120 mg/kg. In the rat, doses at the 120-mg/kg level, in the toxic range for the adult animal, were associated with an increase in embryo resorption at the time of implantation. In another study a single 100-mg/kg dose of codeine administered to pregnant mice reportedly resulted in delayed ossification in the offspring. There are no studies in humans, and the significance of these findings to humans, if any, is not known. Promethazine: Teratogenic effects have not been demonstrated in rat-feeding studies at doses of 6.25 and 12.5 mg/kg of promethazine HCl. These doses are from approximately 2.1 to 4.2 times the maximum recommended total daily dose of promethazine for a 50-kg subject, depending upon the indication for which the drug is prescribed. Daily doses of 25 mg/kg intraperitoneally have been found to produce fetal mortality in rats. Specific studies to test the action of the drug on parturition, lactation, and development of the animal neonate were not done, but a general preliminary study in rats indicated no effect on these parameters. Although antihistamines have been found to produce fetal mortality in rodents, the pharmacological effects of histamine in the rodent do not parallel those in man. There are no adequate and well-controlled studies of promethazine in pregnant women. Promethazine and codeine should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonteratogenic Effects: Dependence has been reported in newborns whose mothers took opiates regularly during pregnancy. Withdrawal signs include irritability, excessive crying, tremors, hyperreflexia, fever, vomiting, and diarrhea. Signs usually appear during the first few days of life. Promethazine administered to a pregnant woman within two weeks of delivery may inhibit platelet aggregation in the newborn.

NUSRING MOTHERS

Nursing Mothers: It is not known whether promethazine is excreted in human milk. Codeine is secreted into human milk. In women with normal codeine metabolism (normal CYP2D6 activity), the amount of codeine secreted into human milk is low and dose-dependent. Despite the common use of codeine products to manage postpartum pain, reports of adverse events in infants are rare. However, some women are ultra-rapid metabolizers of codeine. These women achieve higher-than-expected serum levels of codeine’s active metabolite, morphine, leading to higher-than-expected levels of morphine in breast milk and potentially dangerously high serum morphine levels in their breastfed infants. Therefore, maternal use of codeine can potentially lead to serious adverse reactions, including death, in nursing infants. The risk of infant exposure to codeine and morphine through breast milk should be weighed against the benefits of breastfeeding for both the mother and baby. Caution should be exercised when codeine is administered to a nursing woman. If a codeine containing product is selected, the lowest dose should be prescribed for the shortest period of time to achieve the desired clinical effect. Mothers using codeine should be informed about when to seek immediate medical care and how to identify the signs and symptoms of neonatal toxicity, such as drowsiness or sedation, difficulty breastfeeding, breathing difficulties, and decreased tone, in their baby. Nursing mothers who are ultrarapid metabolizers may also experience overdose symptoms such as extreme sleepiness, confusion or shallow breathing. Prescribers should closely monitor mother-infant pairs and notify treating pediatricians about the use of codeine during breastfeeding. (See Warnings- Death Related to Ultra-Rapid Metabolism of Codeine to Morphine.) Caution should be exercised when promethazine hydrochloride and codeine phosphate syrup is administered to a nursing woman.

BOXED WARNING

WARNING: Respiratory Depression in Children and Death Related to Ultra-Rapid Metabolism of Codeine to Morphine Respiratory Depression in Children The combination of promethazine hydrochloride and codeine phosphate is contraindicated in pediatric patients less than 6 years of age. Concomitant administration of promethazine products with other respiratory depressants has an association with respiratory depression, and sometimes death, in pediatric patients. Postmarketing cases of respiratory depression, including fatalities, have been reported with use of promethazine hydrochloride in pediatric patients less than 2 years of age. A wide range of weight-based doses of promethazine hydrochloride have resulted in respiratory depression in these patients. Death Related to Ultra-Rapid Metabolism of Codeine to Morphine Respiratory depression and death have occurred in children who received codeine following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine due to a CYP2D6 polymorphism.

INFORMATION FOR PATIENTS

Information for Patients: Patients should be advised to measure Promethazine Hydrochloride and Codeine Phosphate Syrup with an accurate measuring device. A household teaspoon is not an accurate measuring device and could lead to overdosage, especially when a half a teaspoon is measured. A pharmacist can recommend an appropriate measuring device and can provide instructions for measuring the correct dose. Promethazine and codeine may cause marked drowsiness or may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks, such as driving a vehicle or operating machinery. Ambulatory patients should be told to avoid engaging in such activities until it is known that they do not become drowsy or dizzy from promethazine and codeine therapy. Pediatric patients should be supervised to avoid potential harm in bike riding or in other hazardous activities. The concomitant use of alcohol or other central-nervous-system depressants, such as sedatives/hypnotics (including barbiturates), narcotics, narcotic analgesics, general anesthetics, tricyclic antidepressants, and tranquilizers may enhance impairment and should be avoided or their dosage reduced (see WARNINGS-CNS Depression and PRECAUTIONS-Drug Interactions ). Patients should be advised to report any involuntary muscle movements. Avoid prolonged exposure to the sun. Codeine, like other narcotic analgesics, may produce orthostatic hypotension in some ambulatory patients. Patients should be cautioned accordingly. Advise patients that some people have a genetic variation that results in codeine changing into morphine more rapidly and completely than other people. Most people are unaware of whether they are an ultra-rapid codeine metabolizer or not. These higher-than-normal levels of morphine in the blood may lead to life-threatening or fatal respiratory depression or signs of overdose such as extreme sleepiness, confusion, or shallow breathing. Children with this genetic variation who were prescribed codeine after tonsillectomy and/or adenoidectomy for obstructive sleep apnea may be at greatest risk based on reports of several deaths in this population due to respiratory depression. As a result, codeine is contraindicated in all children who undergo tonsillectomy and/or adenoidectomy. Advise caregivers of children receiving codeine for other reasons to monitor for signs of respiratory depression. Nursing mothers taking codeine can also have higher morphine levels in their breast milk if they are ultra-rapid metabolizers. These higher levels of morphine in breast milk may lead to life-threatening or fatal side effects in nursing babies. Instruct nursing mothers to watch for signs of morphine toxicity in their infants including increased sleepiness (more than usual), difficulty breastfeeding, breathing difficulties, or limpness. Instruct nursing mother to talk to the baby’s doctor immediately if they notice these signs and, if they cannot reach the doctor right away, to take the baby to an emergency room or call 911 (or local emergency services).

DOSAGE AND ADMINISTRATION

The combination of promethazine hydrochloride and codeine phosphate is contraindicated in pediatric patients less than 6 years of age, because the combination may cause fatal respiratory depression in this age population. It is important that promethazine hydrochloride and codeine phosphate syrup is measured with an accurate measuring device (see PRECAUTIONS-Information for Patients ). A household teaspoon is not an accurate measuring device and could lead to overdosage, especially when half a teaspoon is to be measured. It is strongly recommended that an accurate measuring device be use. A pharmacist can provide an appropriate device and can provide instruction for measuring the correct dose. The average effective dose for adults and children 12 years of age and over is: 1 teaspoonful (5 mL) every 4 to 6 hours, not to exceed 30 mL in 24 hours. The average effective dose for children 6 years and under 12 years of age is ½ to 1 teaspoonful (2.5 mL to 5 mL) every 4 to 6 hours, not to exceed 30 mL in 24 hours.

Lyrica 100 MG Oral Capsule

Generic Name: PREGABALIN
Brand Name: Lyrica
  • Substance Name(s):
  • PREGABALIN

DRUG INTERACTIONS

7 Since LYRICA is predominantly excreted unchanged in the urine, undergoes negligible metabolism in humans (<2% of a dose recovered in urine as metabolites), and does not bind to plasma proteins, its pharmacokinetics are unlikely to be affected by other agents through metabolic interactions or protein binding displacement. In vitro and in vivo studies showed that LYRICA is unlikely to be involved in significant pharmacokinetic drug interactions. Specifically, there are no pharmacokinetic interactions between pregabalin and the following antiepileptic drugs: carbamazepine, valproic acid, lamotrigine, phenytoin, phenobarbital, and topiramate. Important pharmacokinetic interactions would also not be expected to occur between LYRICA and commonly used antiepileptic drugs [see Clinical Pharmacology (12)]. Pharmacodynamics Multiple oral doses of LYRICA were co-administered with oxycodone, lorazepam, or ethanol. Although no pharmacokinetic interactions were seen, additive effects on cognitive and gross motor functioning were seen when LYRICA was co-administered with these drugs. No clinically important effects on respiration were seen.

OVERDOSAGE

10 Signs, Symptoms and Laboratory Findings of Acute Overdosage in Humans There is limited experience with overdose of LYRICA. The highest reported accidental overdose of LYRICA during the clinical development program was 8000 mg, and there were no notable clinical consequences. Treatment or Management of Overdose There is no specific antidote for overdose with LYRICA. If indicated, elimination of unabsorbed drug may be attempted by emesis or gastric lavage; observe usual precautions to maintain the airway. General supportive care of the patient is indicated including monitoring of vital signs and observation of the clinical status of the patient. Contact a Certified Poison Control Center for up-to-date information on the management of overdose with LYRICA. Although hemodialysis has not been performed in the few known cases of overdose, it may be indicated by the patient’s clinical state or in patients with significant renal impairment. Standard hemodialysis procedures result in significant clearance of pregabalin (approximately 50% in 4 hours).

DESCRIPTION

11 Pregabalin is described chemically as (S)-3-(aminomethyl)-5-methylhexanoic acid. The molecular formula is C8H17NO2 and the molecular weight is 159.23. The chemical structure of pregabalin is: Pregabalin is a white to off-white, crystalline solid with a pKa1 of 4.2 and a pKa2 of 10.6. It is freely soluble in water and both basic and acidic aqueous solutions. The log of the partition coefficient (n-octanol/0.05M phosphate buffer) at pH 7.4 is – 1.35. LYRICA (pregabalin) Capsules are administered orally and are supplied as imprinted hard-shell capsules containing 25, 50, 75, 100, 150, 200, 225, and 300 mg of pregabalin, along with lactose monohydrate, cornstarch, and talc as inactive ingredients. The capsule shells contain gelatin and titanium dioxide. In addition, the orange capsule shells contain red iron oxide and the white capsule shells contain sodium lauryl sulfate and colloidal silicon dioxide. Colloidal silicon dioxide is a manufacturing aid that may or may not be present in the capsule shells. The imprinting ink contains shellac, black iron oxide, propylene glycol, and potassium hydroxide. LYRICA (pregabalin) oral solution, 20 mg/mL, is administered orally and is supplied as a clear, colorless solution contained in a 16 fluid ounce white HDPE bottle with a polyethylene-lined closure. The oral solution contains 20 mg/mL of pregabalin, along with methylparaben, propylparaben, monobasic sodium phosphate anhydrous, dibasic sodium phosphate anhydrous, sucralose, artificial strawberry #11545 and purified water as inactive ingredients. Chemical Structure

CLINICAL STUDIES

14 14.1 Neuropathic Pain Associated with Diabetic Peripheral Neuropathy The efficacy of the maximum recommended dose of LYRICA for the management of neuropathic pain associated with diabetic peripheral neuropathy was established in three double-blind, placebo-controlled, multicenter studies with three times a day dosing, two of which studied the maximum recommended dose. Patients were enrolled with either Type 1 or Type 2 diabetes mellitus and a diagnosis of painful distal symmetrical sensorimotor polyneuropathy for 1 to 5 years. A total of 89% of patients completed Studies DPN 1 and DPN 2. The patients had a minimum mean baseline pain score of ≥4 on an 11-point numerical pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). The baseline mean pain scores across the two studies ranged from 6.1 to 6.7. Patients were permitted up to 4 grams of acetaminophen per day as needed for pain, in addition to pregabalin. Patients recorded their pain daily in a diary. Study DPN 1: This 5-week study compared LYRICA 25, 100, or 200 mg three times a day with placebo. Treatment with LYRICA 100 and 200 mg three times a day statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline. There was no evidence of a greater effect on pain scores of the 200 mg three times a day dose than the 100 mg three times a day dose, but there was evidence of dose dependent adverse reactions [see Adverse Reactions (6.1)]. For a range of levels of improvement in pain intensity from baseline to study endpoint, Figure 1 shows the fraction of patients achieving that level of improvement. The figure is cumulative, so that patients whose change from baseline is, for example, 50%, are also included at every level of improvement below 50%. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 1: Patients Achieving Various Levels of Improvement in Pain Intensity – Study DPN 1 Study DPN 2: This 8-week study compared LYRICA 100 mg three times a day with placebo. Treatment with LYRICA 100 mg three times a day statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline. For various levels of improvement in pain intensity from baseline to study endpoint, Figure 2 shows the fraction of patients achieving that level of improvement. The figure is cumulative, so that patients whose change from baseline is, for example, 50%, are also included at every level of improvement below 50%. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 2: Patients Achieving Various Levels of Improvement in Pain Intensity– Study DPN 2 Figure 1 Figure 2 14.2 Postherpetic Neuralgia The efficacy of LYRICA for the management of postherpetic neuralgia was established in three double-blind, placebo-controlled, multicenter studies. These studies enrolled patients with neuralgia persisting for at least 3 months following healing of herpes zoster rash and a minimum baseline score of ≥4 on an 11-point numerical pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). Seventy-three percent of patients completed the studies. The baseline mean pain scores across the 3 studies ranged from 6 to 7. Patients were permitted up to 4 grams of acetaminophen per day as needed for pain, in addition to pregabalin. Patients recorded their pain daily in a diary. Study PHN 1: This 13-week study compared LYRICA 75, 150, and 300 mg twice daily with placebo. Patients with creatinine clearance (CLcr) between 30 to 60 mL/min were randomized to 75 mg, 150 mg, or placebo twice daily. Patients with creatinine clearance greater than 60 mL/min were randomized to 75 mg, 150 mg, 300 mg or placebo twice daily. In patients with creatinine clearance greater than 60 mL/min treatment with all doses of LYRICA statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline. Despite differences in dosing based on renal function, patients with creatinine clearance between 30 to 60 mL/min tolerated LYRICA less well than patients with creatinine clearance greater than 60 mL/min as evidenced by higher rates of discontinuation due to adverse reactions. For various levels of improvement in pain intensity from baseline to study endpoint, Figure 3 shows the fraction of patients achieving that level of improvement. The figure is cumulative, so that patients whose change from baseline is, for example, 50%, are also included at every level of improvement below 50%. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 3: Patients Achieving Various Levels of Improvement in Pain Intensity– Study PHN 1 Study PHN 2: This 8-week study compared LYRICA 100 or 200 mg three times a day with placebo, with doses assigned based on creatinine clearance. Patients with creatinine clearance between 30 to 60 mL/min were treated with 100 mg three times a day, and patients with creatinine clearance greater than 60 mL/min were treated with 200 mg three times daily. Treatment with LYRICA statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline. For various levels of improvement in pain intensity from baseline to study endpoint, Figure 4 shows the fraction of patients achieving those levels of improvement. The figure is cumulative, so that patients whose change from baseline is, for example, 50%, are also included at every level of improvement below 50%. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 4: Patients Achieving Various Levels of Improvement in Pain Intensity – Study PHN 2 Study PHN 3: This 8-week study compared LYRICA 50 or 100 mg three times a day with placebo with doses assigned regardless of creatinine clearance. Treatment with LYRICA 50 and 100 mg three times a day statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline. Patients with creatinine clearance between 30 to 60 mL/min tolerated LYRICA less well than patients with creatinine clearance greater than 60 mL/min as evidenced by markedly higher rates of discontinuation due to adverse reactions. For various levels of improvement in pain intensity from baseline to study endpoint, Figure 5 shows the fraction of patients achieving that level of improvement. The figure is cumulative, so that patients whose change from baseline is, for example, 50%, are also included at every level of improvement below 50%. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 5: Patients Achieving Various Levels of Improvement in Pain Intensity– Study PHN 3 Figure 3 Figure 4 Figure 5 14.3 Adjunctive Therapy for Adult Patients with Partial Onset Seizures The efficacy of LYRICA as adjunctive therapy in partial onset seizures was established in three 12-week, randomized, double-blind, placebo-controlled, multicenter studies in adult patients. Patients were enrolled who had partial onset seizures with or without secondary generalization and were not adequately controlled with 1 to 3 concomitant antiepileptic drugs (AEDs). Patients taking gabapentin were required to discontinue gabapentin treatment 1 week prior to entering baseline. During an 8-week baseline period, patients had to experience at least 6 partial onset seizures with no seizure-free period exceeding 4 weeks. The mean duration of epilepsy was 25 years in these 3 studies and the mean and median baseline seizure frequencies were 22.5 and 10 seizures per month, respectively. Approximately half of the patients were taking 2 concurrent AEDs at baseline. Among the LYRICA-treated patients, 80% completed the double-blind phase of the studies. Table 8 shows median baseline seizure rates and median percent reduction in seizure frequency by dose. Table 8. Seizure Response in Controlled, Add-On Epilepsy Studies Daily Dose of Pregabalin Dosing Regimen N Baseline Seizure Frequency/mo Median % Change from Baseline p-value, vs. placebo Study E1 Placebo BID 100 9.5 0 50 mg/day BID 88 10.3 -9 0.4230 150 mg/day BID 86 8.8 -35 0.0001 300 mg/day BID 90 9.8 -37 0.0001 600 mg/day BID 89 9.0 -51 0.0001 Study E2 Placebo TID 96 9.3 1 150 mg/day TID 99 11.5 -17 0.0007 600 mg/day TID 92 12.3 -43 0.0001 Study E3 Placebo BID/TID 98 11 -1 600 mg/day BID 103 9.5 -36 0.0001 600 mg/day TID 111 10 -48 0.0001 In the first study (E1), there was evidence of a dose-response relationship for total daily doses of Lyrica between 150 and 600 mg/day; a dose of 50 mg/day was not effective. In the first study (E1), each daily dose was divided into two equal doses (twice a day dosing). In the second study (E2), each daily dose was divided into three equal doses (three times a day dosing). In the third study (E3), the same total daily dose was divided into two equal doses for one group (twice a day dosing) and three equal doses for another group (three times a day dosing). While the three times a day dosing group in Study E3 performed numerically better than the twice a day dosing group, this difference was small and not statistically significant. A secondary outcome measure included the responder rate (proportion of patients with ≥50% reduction from baseline in partial seizure frequency). The following figure displays responder rate by dose for two of the studies. Figure 6: Responder rate by add-on epilepsy study Figure 7: Seizure Reduction by Dose (All Partial Onset Seizures) for Studies E1, E2, and E3 Subset evaluations of the antiseizure efficacy of LYRICA showed no clinically important differences as a function of age, gender, or race. Figure 6 Figure 7 14.4 Management of Fibromyalgia The efficacy of LYRICA for management of fibromyalgia was established in one 14-week, double-blind, placebo-controlled, multicenter study (F1) and one six-month, randomized withdrawal study (F2). Studies F1 and F2 enrolled patients with a diagnosis of fibromyalgia using the American College of Rheumatology (ACR) criteria (history of widespread pain for 3 months, and pain present at 11 or more of the 18 specific tender point sites). The studies showed a reduction in pain by visual analog scale. In addition, improvement was demonstrated based on a patient global assessment (PGIC), and on the Fibromyalgia Impact Questionnaire (FIQ). Study F1: This 14-week study compared LYRICA total daily doses of 300 mg, 450 mg and 600 mg with placebo. Patients were enrolled with a minimum mean baseline pain score of greater than or equal to 4 on an 11-point numeric pain rating scale and a score of greater than or equal to 40 mm on the 100 mm pain visual analog scale (VAS). The baseline mean pain score in this trial was 6.7. Responders to placebo in an initial one-week run-in phase were not randomized into subsequent phases of the study. A total of 64% of patients randomized to LYRICA completed the study. There was no evidence of a greater effect on pain scores of the 600 mg daily dose than the 450 mg daily dose, but there was evidence of dose-dependent adverse reactions [see Adverse Reactions (6.1) ]. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. The results are summarized in Figure 8 and Table 9. For various levels of improvement in pain intensity from baseline to study endpoint, Figure 8 shows the fraction of patients achieving that level of improvement. The figure is cumulative. Patients who did not complete the study were assigned 0% improvement. Some patients experienced a decrease in pain as early as Week 1, which persisted throughout the study. Figure 8: Patients Achieving Various Levels of Improvement in Pain Intensity – Fibromyalgia Study F1 Table 9. Patient Global Response in Fibromyalgia Study F1 Patient Global Impression of Change Treatment Group (mg/day) % Any Improvement 95% CI PGB = Pregabalin Placebo 47.6 (40.0,55.2) PGB 300 68.1 (60.9, 75.3) PGB 450 77.8 (71.5, 84.0) PGB 600 66.1 (59.1, 73.1) Study F2: This randomized withdrawal study compared LYRICA with placebo. Patients were titrated during a 6-week open-label dose optimization phase to a total daily dose of 300 mg, 450 mg, or 600 mg. Patients were considered to be responders if they had both: 1) at least a 50% reduction in pain (VAS) and, 2) rated their overall improvement on the PGIC as “much improved” or “very much improved.” Those who responded to treatment were then randomized in the double-blind treatment phase to either the dose achieved in the open-label phase or to placebo. Patients were treated for up to 6 months following randomization. Efficacy was assessed by time to loss of therapeutic response, defined as 1) less than 30% reduction in pain (VAS) from open-label baseline during two consecutive visits of the double-blind phase, or 2) worsening of FM symptoms necessitating an alternative treatment. Fifty-four percent of patients were able to titrate to an effective and tolerable dose of LYRICA during the 6-week open-label phase. Of the patients entering the randomized treatment phase assigned to remain on LYRICA, 38% of patients completed 26 weeks of treatment versus 19% of placebo-treated patients. When considering return of pain or withdrawal due to adverse events as loss of response (LTR), treatment with LYRICA resulted in a longer time to loss of therapeutic response than treatment with placebo. Fifty-three percent of the pregabalin-treated subjects compared to 33% of placebo patients remained on study drug and maintained a therapeutic response to Week 26 of the study. Treatment with LYRICA also resulted in a longer time to loss of response based on the FIQTime to worsening of the FIQ was defined as the time to a 1-point increase from double-blind baseline in each of the subscales, and a 5-point increase from double-blind baseline evaluation for the FIQ total score., and longer time to loss of overall assessment of patient status, as measured by the PGICTime to PGIC lack of improvement was defined as time to PGIC assessments indicating less improvement than “much improvement.”. Figure 9: Time to Loss of Therapeutic Response, Fibromyalgia Study F2 (Kaplan-Meier Analysis) Figure 8 Figure 9 14.5 Management of Neuropathic Pain Associated with Spinal Cord Injury The efficacy of LYRICA for the management of neuropathic pain associated with spinal cord injury was established in two double-blind, placebo-controlled, multicenter studies. Patients were enrolled with neuropathic pain associated with spinal cord injury that persisted continuously for at least three months or with relapses and remissions for at least six months. A total of 63% of patients completed study 1 and 84% completed study 2. The patients had a minimum mean baseline pain score of ≥4 on an 11-point numerical pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). The baseline mean pain scores across the two studies ranged from 6.5 to 6.7. Patients were allowed to take opioids, non-opioid analgesics, antiepileptic drugs, muscle relaxants, and antidepressant drugs if the dose was stable for 30 days prior to screening. Patients were allowed to take acetaminophen and nonsteroidal anti-inflammatory drugs during the studies. Study SCI 1: This 12-week, randomized, double-blind, parallel-group, multicenter, flexible dose (150–600 mg/day) study compared pregabalin with placebo. The 12-week study consisted of a 3-week dose adjustment phase and a 9-week dose maintenance phase. Treatment with LYRICA 150–600 mg/day statistically significantly improved the endpoint weekly mean pain score, and increased the proportion of patients with at least a 30% and 50% reduction in pain score from baseline. The fraction of patients achieving various levels of improvement in pain intensity from baseline to Week 12 is presented in Figure 10. Some patients experienced a decrease in pain as early as week 1, which persisted throughout the study. Figure 10: Patients Achieving Various Levels of Improvement in Pain Intensity – Study SCI 1 Study SCI 2: This 16-week, randomized, double-blind, placebo-controlled, parallel-group, multicenter, flexible dose (150–600 mg/day, in increments of 150 mg) study compared the efficacy, safety and tolerability of pregabalin with placebo. The 16-week study consisted of a 4-week dose adjustment phase and a 12-week dose maintenance phase. Treatment with LYRICA statistically significantly improved the endpoint weekly mean pain score, and increased the proportion of patients with at least a 30% and 50% reduction in pain score from baseline. The fraction of patients achieving various levels of improvement in pain intensity from baseline to Week 16 is presented in Figure 11. Some patients experienced a decrease in pain as early as week 1, which persisted throughout the study. Figure 11: Patients Achieving Various Levels of Improvement in Pain Intensity – Study SCI 2 Figure 10 Figure 11

HOW SUPPLIED

Repackaged by A-S Medication Solutions – Libertyville, IL See REPACKAGING INFORMATION for available configurations. 25 mg capsules: White, hard-gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 25” on the body; available in: Bottles of 90: NDC 0071-1012-68 50 mg capsules: White, hard-gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 50” and an ink band on the body, available in: Bottles of 90: NDC 0071-1013-68 Unit-Dose Blister Packages of 100: NDC 0071-1013-41 75 mg capsules: White/orange hard gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 75” on the body; available in: Bottles of 90: NDC 0071-1014-68 Unit-Dose Blister Packages of 100: NDC 0071-1014-41 100 mg capsules: Orange, hard-gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 100” on the body, available in: Bottles of 90: NDC 0071-1015-68 Unit-Dose Blister Packages of 100: NDC 0071-1015-41 150 mg capsules: White hard gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 150” on the body, available in: Bottles of 90: NDC 0071-1016-68 Unit-Dose Blister Packages of 100: NDC 0071-1016-41 200 mg capsules: Light orange hard gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 200” on the body, available in: Bottles of 90: NDC 0071-1017-68 225 mg capsules: White/light orange hard gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 225” on the body; available in: Bottles of 90: NDC 0071-1019-68 300 mg capsules: White/orange hard gelatin capsule printed with black ink “Pfizer” on the cap, “PGN 300” on the body, available in: Bottles of 90: NDC 0071-1018-68 20 mg/mL oral solution: 16 fluid ounce white high density polyethylene (HDPE) bottle with a polyethylene-lined closure: 16 fluid ounce bottle NDC 0071-1020-01 Storage and Handling Store at 25°C (77°F); excursions permitted to 15°C to 30°C (59°F to 86°F) (see USP Controlled Room Temperature). See FDA-Approved Medication Guide

GERIATRIC USE

8.5 Geriatric Use In controlled clinical studies of LYRICA in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. In controlled clinical studies of LYRICA in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. In controlled clinical studies of LYRICA in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older. No overall differences in safety and efficacy were observed between these patients and younger patients. In controlled clinical studies of LYRICA in fibromyalgia, 106 patients were 65 years of age or older. Although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. LYRICA is known to be substantially excreted by the kidney, and the risk of toxic reactions to LYRICA may be greater in patients with impaired renal function. Because LYRICA is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see Dosage and Administration (2.6)].

DOSAGE FORMS AND STRENGTHS

3 Capsules: 25 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 225 mg, and 300 mg Oral Solution: 20 mg/mL [see Description (11) and How Supplied/Storage and Handling (16)]. Capsules: 25mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 225 mg, and 300 mg. (3) Oral Solution: 20 mg/ mL. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action LYRICA (pregabalin) binds with high affinity to the alpha2-delta site (an auxiliary subunit of voltage-gated calcium channels) in central nervous system tissues. Although the mechanism of action of pregabalin has not been fully elucidated, results with genetically modified mice and with compounds structurally related to pregabalin (such as gabapentin) suggest that binding to the alpha2-delta subunit may be involved in pregabalin’s anti-nociceptive and antiseizure effects in animals. In animal models of nerve damage, pregabalin has been shown to reduce calcium-dependent release of pro-nociceptive neurotransmitters in the spinal cord, possibly by disrupting alpha2-delta containing-calcium channel trafficking and/or reducing calcium currents. Evidence from other animal models of nerve damage and persistent pain suggest the anti-nociceptive activities of pregabalin may also be mediated through interactions with descending noradrenergic and serotonergic pathways originating from the brainstem that modulate pain transmission in the spinal cord. While pregabalin is a structural derivative of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), it does not bind directly to GABAA, GABAB, or benzodiazepine receptors, does not augment GABAA responses in cultured neurons, does not alter rat brain GABA concentration or have acute effects on GABA uptake or degradation. However, in cultured neurons prolonged application of pregabalin increases the density of GABA transporter protein and increases the rate of functional GABA transport. Pregabalin does not block sodium channels, is not active at opiate receptors, and does not alter cyclooxygenase enzyme activity. It is inactive at serotonin and dopamine receptors and does not inhibit dopamine, serotonin, or noradrenaline reuptake.

INDICATIONS AND USAGE

1 LYRICA is indicated for: Management of neuropathic pain associated with diabetic peripheral neuropathy Management of postherpetic neuralgia Adjunctive therapy for adult patients with partial onset seizures Management of fibromyalgia Management of neuropathic pain associated with spinal cord injury LYRICA is indicated for: Neuropathic pain associated with diabetic peripheral neuropathy (DPN) (1) Postherpetic neuralgia (PHN) (1) Adjunctive therapy for adult patients with partial onset seizures (1) Fibromyalgia (1) Neuropathic pain associated with spinal cord injury (1)

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of pregabalin in pediatric patients have not been established. In studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (Postnatal Day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses ≥50 mg/kg. The neurobehavioral changes of acoustic startle persisted at ≥250 mg/kg and locomotor activity and water maze performance at ≥500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. The low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (AUC) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. A no-effect dose was not established.

PREGNANCY

8.1 Pregnancy Pregnancy Category C. Increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including lethality, growth retardation, and nervous and reproductive system functional impairment, were observed in the offspring of rats and rabbits given pregabalin during pregnancy, at doses that produced plasma pregabalin exposures (AUC) ≥5 times human exposure at the maximum recommended dose (MRD) of 600 mg/day. When pregnant rats were given pregabalin (500, 1250, or 2500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at ≥1250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. Fetal body weights were decreased at the highest dose. The low dose in this study was associated with a plasma exposure (AUC) approximately 17 times human exposure at the MRD of 600 mg/day. A no-effect dose for rat embryo-fetal developmental toxicity was not established. When pregnant rabbits were given LYRICA (250, 500, or 1250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. The no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the MRD. In a study in which female rats were dosed with LYRICA (50, 100, 250, 1250, or 2500 mg/kg) throughout gestation and lactation, offspring growth was reduced at ≥ 100 mg/kg and offspring survival was decreased at ≥250 mg/kg. The effect on offspring survival was pronounced at doses ≥1250 mg/kg, with 100% mortality in high-dose litters. When offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at ≥250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1250 mg/kg. The no-effect dose for pre- and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the MRD. There are no adequate and well-controlled studies in pregnant women. Use LYRICA during pregnancy only if the potential benefit justifies the potential risk to the fetus. To provide information regarding the effects of in utero exposure to LYRICA, physicians are advised to recommend that pregnant patients taking LYRICA enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known if pregabalin is excreted in human milk; it is, however, present in the milk of rats. Because many drugs are excreted in human milk, and because of the potential for tumorigenicity shown for pregabalin in animal studies, decide whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Angioedema (e.g. swelling of the throat, head and neck) can occur, and may be associated with life-threatening respiratory compromise requiring emergency treatment. Discontinue LYRICA immediately in these cases. (5.1) Hypersensitivity reactions (e.g. hives, dyspnea, and wheezing) can occur. Discontinue LYRICA immediately in these patients. (5.2) Increased seizure frequency may occur in patients with seizure disorders if LYRICA is rapidly discontinued. Withdraw LYRICA gradually over a minimum of 1 week. (5.3) Antiepileptic drugs, including LYRICA, increase the risk of suicidal thoughts or behavior. (5.4) LYRICA may cause peripheral edema. Exercise caution when co-administering LYRICA and thiazolidinedione antidiabetic agents. (5.5) LYRICA may cause dizziness and somnolence and impair patients’ ability to drive or operate machinery.(5.6) 5.1 Angioedema There have been postmarketing reports of angioedema in patients during initial and chronic treatment with LYRICA. Specific symptoms included swelling of the face, mouth (tongue, lips, and gums), and neck (throat and larynx). There were reports of life-threatening angioedema with respiratory compromise requiring emergency treatment. Discontinue LYRICA immediately in patients with these symptoms. Exercise caution when prescribing LYRICA to patients who have had a previous episode of angioedema. In addition, patients who are taking other drugs associated with angioedema (e.g., angiotensin converting enzyme inhibitors [ACE-inhibitors]) may be at increased risk of developing angioedema. 5.2 Hypersensitivity There have been postmarketing reports of hypersensitivity in patients shortly after initiation of treatment with LYRICA. Adverse reactions included skin redness, blisters, hives, rash, dyspnea, and wheezing. Discontinue LYRICA immediately in patients with these symptoms. 5.3 Withdrawal of Antiepileptic Drugs (AEDs) As with all AEDs, withdraw LYRICA gradually to minimize the potential of increased seizure frequency in patients with seizure disorders. If LYRICA is discontinued, taper the drug gradually over a minimum of 1 week. 5.4 Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including LYRICA, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Monitor patients treated with any AED for any indication for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5–100 years) in the clinical trials analyzed. Table 2 shows absolute and relative risk by indication for all evaluated AEDs. Table 2. Risk by indication for antiepileptic drugs in the pooled analysis Indication Placebo Patients with Events Per 1000 Patients Drug Patients with Events Per 1000 Patients Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients Risk Difference: Additional Drug Patients with Events Per 1000 Patients Epilepsy 1.0 3.4 3.5 2.4 Psychiatric 5.7 8.5 1.5 2.9 Other 1.0 1.8 1.9 0.9 Total 2.4 4.3 1.8 1.9 The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing LYRICA or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Inform patients, their caregivers, and families that LYRICA and other AEDs increase the risk of suicidal thoughts and behavior and advise them of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Report behaviors of concern immediately to healthcare providers. 5.5 Peripheral Edema LYRICA treatment may cause peripheral edema. In short-term trials of patients without clinically significant heart or peripheral vascular disease, there was no apparent association between peripheral edema and cardiovascular complications such as hypertension or congestive heart failure. Peripheral edema was not associated with laboratory changes suggestive of deterioration in renal or hepatic function. In controlled clinical trials the incidence of peripheral edema was 6% in the LYRICA group compared with 2% in the placebo group. In controlled clinical trials, 0.5% of LYRICA patients and 0.2% placebo patients withdrew due to peripheral edema. Higher frequencies of weight gain and peripheral edema were observed in patients taking both LYRICA and a thiazolidinedione antidiabetic agent compared to patients taking either drug alone. The majority of patients using thiazolidinedione antidiabetic agents in the overall safety database were participants in studies of pain associated with diabetic peripheral neuropathy. In this population, peripheral edema was reported in 3% (2/60) of patients who were using thiazolidinedione antidiabetic agents only, 8% (69/859) of patients who were treated with LYRICA only, and 19% (23/120) of patients who were on both LYRICA and thiazolidinedione antidiabetic agents. Similarly, weight gain was reported in 0% (0/60) of patients on thiazolidinediones only; 4% (35/859) of patients on LYRICA only; and 7.5% (9/120) of patients on both drugs. As the thiazolidinedione class of antidiabetic drugs can cause weight gain and/or fluid retention, possibly exacerbating or leading to heart failure, exercise caution when co-administering LYRICA and these agents. Because there are limited data on congestive heart failure patients with New York Heart Association (NYHA) Class III or IV cardiac status, exercise caution when using LYRICA in these patients. 5.6 Dizziness and Somnolence LYRICA may cause dizziness and somnolence. Inform patients that LYRICA-related dizziness and somnolence may impair their ability to perform tasks such as driving or operating machinery [see Patient Counseling Information (17.5)]. In the LYRICA controlled trials, dizziness was experienced by 30% of LYRICA-treated patients compared to 8% of placebo-treated patients; somnolence was experienced by 23% of LYRICA-treated patients compared to 8% of placebo-treated patients. Dizziness and somnolence generally began shortly after the initiation of LYRICA therapy and occurred more frequently at higher doses. Dizziness and somnolence were the adverse reactions most frequently leading to withdrawal (4% each) from controlled studies. In LYRICA-treated patients reporting these adverse reactions in short-term, controlled studies, dizziness persisted until the last dose in 30% and somnolence persisted until the last dose in 42% of patients [see Drug Interactions (7)]. 5.7 Weight Gain LYRICA treatment may cause weight gain. In LYRICA controlled clinical trials of up to 14 weeks, a gain of 7% or more over baseline weight was observed in 9% of LYRICA-treated patients and 2% of placebo-treated patients. Few patients treated with LYRICA (0.3%) withdrew from controlled trials due to weight gain. LYRICA associated weight gain was related to dose and duration of exposure, but did not appear to be associated with baseline BMI, gender, or age. Weight gain was not limited to patients with edema [see Warnings and Precautions (5.5)]. Although weight gain was not associated with clinically important changes in blood pressure in short-term controlled studies, the long-term cardiovascular effects of LYRICA-associated weight gain are unknown. Among diabetic patients, LYRICA-treated patients gained an average of 1.6 kg (range: -16 to 16 kg), compared to an average 0.3 kg (range: -10 to 9 kg) weight gain in placebo patients. In a cohort of 333 diabetic patients who received LYRICA for at least 2 years, the average weight gain was 5.2 kg. While the effects of LYRICA-associated weight gain on glycemic control have not been systematically assessed, in controlled and longer-term open label clinical trials with diabetic patients, LYRICA treatment did not appear to be associated with loss of glycemic control (as measured by HbA1C). 5.8 Abrupt or Rapid Discontinuation Following abrupt or rapid discontinuation of LYRICA, some patients reported symptoms including insomnia, nausea, headache, anxiety, hyperhidrosis, and diarrhea. Taper LYRICA gradually over a minimum of 1 week rather than discontinuing the drug abruptly. 5.9 Tumorigenic Potential In standard preclinical in vivo lifetime carcinogenicity studies of LYRICA, an unexpectedly high incidence of hemangiosarcoma was identified in two different strains of mice [see Nonclinical Toxicology (13.1)]. The clinical significance of this finding is unknown. Clinical experience during LYRICA’s premarketing development provides no direct means to assess its potential for inducing tumors in humans. In clinical studies across various patient populations, comprising 6396 patient-years of exposure in patients >12 years of age, new or worsening-preexisting tumors were reported in 57 patients. Without knowledge of the background incidence and recurrence in similar populations not treated with LYRICA, it is impossible to know whether the incidence seen in these cohorts is or is not affected by treatment. 5.10 Ophthalmological Effects In controlled studies, a higher proportion of patients treated with LYRICA reported blurred vision (7%) than did patients treated with placebo (2%), which resolved in a majority of cases with continued dosing. Less than 1% of patients discontinued LYRICA treatment due to vision-related events (primarily blurred vision). Prospectively planned ophthalmologic testing, including visual acuity testing, formal visual field testing and dilated funduscopic examination, was performed in over 3600 patients. In these patients, visual acuity was reduced in 7% of patients treated with LYRICA, and 5% of placebo-treated patients. Visual field changes were detected in 13% of LYRICA-treated, and 12% of placebo-treated patients. Funduscopic changes were observed in 2% of LYRICA-treated and 2% of placebo-treated patients. Although the clinical significance of the ophthalmologic findings is unknown, inform patients to notify their physician if changes in vision occur. If visual disturbance persists, consider further assessment. Consider more frequent assessment for patients who are already routinely monitored for ocular conditions [see Patient Counseling Information (17.8)]. 5.11 Creatine Kinase Elevations LYRICA treatment was associated with creatine kinase elevations. Mean changes in creatine kinase from baseline to the maximum value were 60 U/L for LYRICA-treated patients and 28 U/L for the placebo patients. In all controlled trials across multiple patient populations, 1.5% of patients on LYRICA and 0.7% of placebo patients had a value of creatine kinase at least three times the upper limit of normal. Three LYRICA treated subjects had events reported as rhabdomyolysis in premarketing clinical trials. The relationship between these myopathy events and LYRICA is not completely understood because the cases had documented factors that may have caused or contributed to these events. Instruct patients to promptly report unexplained muscle pain, tenderness, or weakness, particularly if these muscle symptoms are accompanied by malaise or fever. Discontinue treatment with LYRICA if myopathy is diagnosed or suspected or if markedly elevated creatine kinase levels occur. 5.12 Decreased Platelet Count LYRICA treatment was associated with a decrease in platelet count. LYRICA-treated subjects experienced a mean maximal decrease in platelet count of 20 × 103/µL, compared to 11 × 103/µL in placebo patients. In the overall database of controlled trials, 2% of placebo patients and 3% of LYRICA patients experienced a potentially clinically significant decrease in platelets, defined as 20% below baseline value and 200 msec, or an increased risk of adverse reactions of second or third degree AV block. Subgroup analyses did not identify an increased risk of PR prolongation in patients with baseline PR prolongation or in patients taking other PR prolonging medications. However, these analyses cannot be considered definitive because of the limited number of patients in these categories.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION 17.1 Medication Guide Inform patients of the availability of a Medication Guide, and instruct them to read the Medication Guide prior to taking LYRICA. Instruct patients to take LYRICA only as prescribed. 17.2 Angioedema Advise patients that LYRICA may cause angioedema, with swelling of the face, mouth (lip, gum, tongue) and neck (larynx and pharynx) that can lead to life-threatening respiratory compromise. Instruct patients to discontinue LYRICA and immediately seek medical care if they experience these symptoms [see Warnings and Precautions (5.1) ]. 17.3 Hypersensitivity Advise patients that LYRICA has been associated with hypersensitivity reactions such as wheezing, dyspnea, rash, hives, and blisters. Instruct patients to discontinue LYRICA and immediately seek medical care if they experience these symptoms [see Warnings and Precautions (5.2) ]. 17.4 Suicidal Thinking and Behavior Patients, their caregivers, and families should be counseled that AEDs, including LYRICA, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Report behaviors of concern immediately to healthcare providers [see Warnings and Precautions (5.4)]. 17.5 Dizziness and Somnolence Counsel patients that LYRICA may cause dizziness, somnolence, blurred vision and other CNS signs and symptoms. Accordingly, advise patients not to drive, operate complex machinery, or engage in other hazardous activities until they have gained sufficient experience on LYRICA to gauge whether or not it affects their mental, visual, and/or motor performance adversely. [see Warnings and Precautions (5.6)]. 17.6 Weight Gain and Edema Counsel patients that LYRICA may cause edema and weight gain. Advise patients that concomitant treatment with LYRICA and a thiazolidinedione antidiabetic agent may lead to an additive effect on edema and weight gain. For patients with preexisting cardiac conditions, this may increase the risk of heart failure. [see Warnings and Precautions (5.5 and 5.7)]. 17.7 Abrupt or Rapid Discontinuation Advise patients to take LYRICA as prescribed. Abrupt or rapid discontinuation may result in insomnia, nausea, headache, anxiety, hyperhidrosis, or diarrhea. [see Warnings and Precautions (5.8)]. 17.8 Ophthalmological Effects Counsel patients that LYRICA may cause visual disturbances. Inform patients that if changes in vision occur, they should notify their physician [see Warnings and Precautions (5.10)]. 17.9 Creatine Kinase Elevations Instruct patients to promptly report unexplained muscle pain, tenderness, or weakness, particularly if accompanied by malaise or fever. [see Warnings and Precautions (5.11)]. 17.10 CNS Depressants Inform patients who require concomitant treatment with central nervous system depressants such as opiates or benzodiazepines that they may experience additive CNS side effects, such as somnolence [see Warnings and Precautions (5.6) and Drug Interactions (7)]. 17.11 Alcohol Tell patients to avoid consuming alcohol while taking LYRICA, as LYRICA may potentiate the impairment of motor skills and sedating effects of alcohol. 17.12 Use in Pregnancy Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breast feeding or intend to breast feed during therapy [see Use In Specific Populations (8.1) and (8.3)]. Encourage patients to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 [see Use In Specific Populations (8.1)]. 17.13 Male Fertility Inform men being treated with LYRICA who plan to father a child of the potential risk of male-mediated teratogenicity. In preclinical studies in rats, pregabalin was associated with an increased risk of male-mediated teratogenicity. The clinical significance of this finding is uncertain [see Nonclinical Toxicology (13.1)]. 17.14 Dermatopathy Instruct diabetic patients to pay particular attention to skin integrity while being treated with LYRICA. Some animals treated with pregabalin developed skin ulcerations, although no increased incidence of skin lesions associated with LYRICA was observed in clinical trials [see Nonclinical Toxicology (13.2)].

DOSAGE AND ADMINISTRATION

2 LYRICA is given orally with or without food. When discontinuing LYRICA, taper gradually over a minimum of 1 week. For all indications, begin dosing at 150 mg/day. (2.1, 2.2, 2.3, 2.4, 2.5) Dosing recommendations: INDICATION Dosing Regimen Maximum Dose DPN Pain (2.1) 3 divided doses per day 300 mg/day within 1 week PHN (2.2) 2 or 3 divided doses per day 300 mg/day within 1 week. Maximum dose of 600 mg/day. Adjunctive Therapy for Adult Patients with Partial Onset Seizures (2.3) 2 or 3 divided doses per day Maximum dose of 600 mg/day. Fibromyalgia (2.4) 2 divided doses per day 300 mg/day within 1 week. Maximum dose of 450 mg/day. Neuropathic Pain Associated with Spinal Cord Injury (2.5) 2 divided doses per day 300 mg/day within 1 week. Maximum dose of 600 mg/day. Dose should be adjusted in patients with reduced renal function. (2.6) Oral Solution Concentration and Dispensing (2.7) 2.1 Neuropathic Pain Associated with Diabetic Peripheral Neuropathy The maximum recommended dose of LYRICA is 100 mg three times a day (300 mg/day) in patients with creatinine clearance of at least 60 mL/min. Begin dosing at 50 mg three times a day (150 mg/day). The dose may be increased to 300 mg/day within 1 week based on efficacy and tolerability. Because LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function [see Dosage and Administration (2.6)]. Although LYRICA was also studied at 600 mg/day, there is no evidence that this dose confers additional significant benefit and this dose was less well tolerated. In view of the dose-dependent adverse reactions, treatment with doses above 300 mg/day is not recommended [see Adverse Reactions (6.1)]. 2.2 Postherpetic Neuralgia The recommended dose of LYRICA is 75 to 150 mg two times a day, or 50 to 100 mg three times a day (150 to 300 mg/day) in patients with creatinine clearance of at least 60 mL/min. Begin dosing at 75 mg two times a day, or 50 mg three times a day (150 mg/day). The dose may be increased to 300 mg/day within 1 week based on efficacy and tolerability. Because LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function [see Dosage and Administration (2.6)]. Patients who do not experience sufficient pain relief following 2 to 4 weeks of treatment with 300 mg/day, and who are able to tolerate LYRICA, may be treated with up to 300 mg two times a day, or 200 mg three times a day (600 mg/day). In view of the dose-dependent adverse reactions and the higher rate of treatment discontinuation due to adverse reactions, reserve dosing above 300 mg/day for those patients who have on-going pain and are tolerating 300 mg daily [see Adverse Reactions (6.1)]. 2.3 Adjunctive Therapy for Adult Patients with Partial Onset Seizures LYRICA at doses of 150 to 600 mg/day has been shown to be effective as adjunctive therapy in the treatment of partial onset seizures in adults. Both the efficacy and adverse event profiles of LYRICA have been shown to be dose-related. Administer the total daily dose in two or three divided doses. In general, it is recommended that patients be started on a total daily dose no greater than 150 mg/day (75 mg two times a day, or 50 mg three times a day). Based on individual patient response and tolerability, the dose may be increased to a maximum dose of 600 mg/day. Because LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function [see Dosage and Administration (2.6)]. The effect of dose escalation rate on the tolerability of LYRICA has not been formally studied. The efficacy of add-on LYRICA in patients taking gabapentin has not been evaluated in controlled trials. Consequently, dosing recommendations for the use of LYRICA with gabapentin cannot be offered. 2.4 Management of Fibromyalgia The recommended dose of LYRICA for fibromyalgia is 300 to 450 mg/day. Begin dosing at 75 mg two times a day (150 mg/day). The dose may be increased to 150 mg two times a day (300 mg/day) within 1 week based on efficacy and tolerability. Patients who do not experience sufficient benefit with 300 mg/day may be further increased to 225 mg two times a day (450 mg/day). Although LYRICA was also studied at 600 mg/day, there is no evidence that this dose confers additional benefit and this dose was less well tolerated. In view of the dose-dependent adverse reactions, treatment with doses above 450 mg/day is not recommended [see Adverse Reactions (6.1)]. Because LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function [see Dosage and Administration (2.6)]. 2.5 Neuropathic Pain Associated with Spinal Cord Injury The recommended dose range of LYRICA for the treatment of neuropathic pain associated with spinal cord injury is 150 to 600 mg/day. The recommended starting dose is 75 mg two times a day (150 mg/day). The dose may be increased to 150 mg two times a day (300 mg/day) within 1 week based on efficacy and tolerability. Patients who do not experience sufficient pain relief after 2 to 3 weeks of treatment with 150 mg two times a day and who tolerate LYRICA may be treated with up to 300 mg two times a day [see Clinical Studies (14.5)]. Because LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function [see Dosage and Administration (2.6)]. 2.6 Patients with Renal Impairment In view of dose-dependent adverse reactions and since LYRICA is eliminated primarily by renal excretion, adjust the dose in patients with reduced renal function. Base the dose adjustment in patients with renal impairment on creatinine clearance (CLcr), as indicated in Table 1. To use this dosing table, an estimate of the patient’s CLcr in mL/min is needed. CLcr in mL/min may be estimated from serum creatinine (mg/dL) determination using the Cockcroft and Gault equation: Next, refer to the Dosage and Administration section to determine the recommended total daily dose based on indication, for a patient with normal renal function (CLcr ≥60 mL/min). Then refer to Table 1 to determine the corresponding renal adjusted dose. (For example: A patient initiating LYRICA therapy for postherpetic neuralgia with normal renal function (CLcr ≥60 mL/min), receives a total daily dose of 150 mg/day pregabalin. Therefore, a renal impaired patient with a CLcr of 50 mL/min would receive a total daily dose of 75 mg/day pregabalin administered in two or three divided doses.) For patients undergoing hemodialysis, adjust the pregabalin daily dose based on renal function. In addition to the daily dose adjustment, administer a supplemental dose immediately following every 4-hour hemodialysis treatment (see Table 1). Table 1. Pregabalin Dosage Adjustment Based on Renal Function Creatinine Clearance (CLcr) (mL/min) Total Pregabalin Daily Dose (mg/day)Total daily dose (mg/day) should be divided as indicated by dose regimen to provide mg/dose. Dose Regimen TID= Three divided doses; BID = Two divided doses; QD = Single daily dose. ≥60 150 300 450 600 BID or TID 30–60 75 150 225 300 BID or TID 15–30 25–50 75 100–150 150 QD or BID <15 25 25–50 50–75 75 QD Supplementary dosage following hemodialysis (mg)Supplementary dose is a single additional dose. Patients on the 25 mg QD regimen: take one supplemental dose of 25 mg or 50 mg Patients on the 25–50 mg QD regimen: take one supplemental dose of 50 mg or 75 mg Patients on the 50–75 mg QD regimen: take one supplemental dose of 75 mg or 100 mg Patients on the 75 mg QD regimen: take one supplemental dose of 100 mg or 150 mg Figure 2.7 Oral Solution Concentration and Dispensing The oral solution is 20 mg pregabalin per milliliter (mL) and prescriptions should be written in milligrams (mg). The pharmacist will calculate the applicable dose in mL for dispensing (e.g., 150 mg equals 7.5 mL oral solution).

Pseudoephedrine Hydrochloride 1 MG/ML Oral Solution

Generic Name: PSEUDOEPHEDRINE
Brand Name: Ephed 60
  • Substance Name(s):
  • PSEUDOEPHEDRINE HYDROCHLORIDE

WARNINGS

Do not exceed recommended dosage. If dizziness or sleeplessness occur, symptoms do not improve or are accompanied by a fever-consult a doctor. Do not exceed recommended dosage. If dizziness or sleeplessness occur, consult a doctor. Drug interaction Precaution: Do not use this product if you are now taking a prescription monoamine oxidase inhibitor (MAOI) (Certain drugs for depression, psychiatric, or emotional conditions, or Parkinson’s disease), or for 2 weeks after stopping the MAOI drug. If you are uncertain whether your prescription drug contains an MAOI, consult a health professional before using this product.

INDICATIONS AND USAGE

For the temporary relief of nasal decongestiom due to the commomn cold, hay fever or other upper respiratpry allergies. Temporarily relieves nasal stuffiness. Decongests nasal passages: shrinks swollen membranes. Temporarily restores freer breathing through the nose. Helps decongest sinus openings and passages; temporarily relieves sinus congestion and pressure. Promotes nasal and/or sinus drainage. temporarily relieves sinus congestion and pressure.

INACTIVE INGREDIENTS

Inactive Ingredients: Acesulfame Potassium, Citric acid, filtered water, malic acid, natural flavors, potassium citrate, sodium benzoate, sucralose

PURPOSE

Purpose-Nasal Decongestant

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children

DOSAGE AND ADMINISTRATION

Adults and children 12 years of age and older: 1 bottle every 4-6 hours. Do not exceed 4 bottles in 24 hours. Children under 12: Do not use

PREGNANCY AND BREAST FEEDING

if pregnant or breast feeding a baby, consult a health professional before use.

ACTIVE INGREDIENTS

Active Ingredient (In Each Bottle)—Pseudoephedrine HCl 60 mg

Xarelto 20 MG Oral Tablet

Generic Name: RIVAROXABAN
Brand Name: Xarelto
  • Substance Name(s):
  • RIVAROXABAN

DRUG INTERACTIONS

7 Combined P-gp and strong CYP3A4 inhibitors and inducers: Avoid concomitant use (7.2, 7.3) Anticoagulants: Avoid concomitant use (7.4) 7.1 General Inhibition and Induction Properties Rivaroxaban is a substrate of CYP3A4/5, CYP2J2, and the P-gp and ATP-binding cassette G2 (ABCG2) transporters. Inhibitors and inducers of these CYP450 enzymes or transporters (e.g., P-gp) may result in changes in rivaroxaban exposure. 7.2 Drugs that Inhibit Cytochrome P450 3A4 Enzymes and Drug Transport Systems In drug interaction studies, conducted in subjects with normal renal function, evaluating the concomitant use with drugs that are combined P-gp and strong CYP3A4 inhibitors (e.g., ketoconazole, ritonavir), increases in rivaroxaban exposure and pharmacodynamic effects (i.e., factor Xa inhibition and PT prolongation) were observed. Significant increases in rivaroxaban exposure may increase bleeding risk [see Clinical Pharmacology (12.3)]. Avoid concomitant administration of XARELTO with combined P-gp and strong CYP3A4 inhibitors [see Warnings and Precautions (5.6)]. 7.3 Drugs that Induce Cytochrome P450 3A4 Enzymes and Drug Transport Systems Results from drug interaction studies and population PK analyses from clinical studies indicate coadministration of XARELTO with a combined P-gp and strong CYP3A4 inducer (e.g., rifampicin, phenytoin) decreased rivaroxaban exposure by up to 50%. Similar decreases in pharmacodynamic effects were also observed. These decreases in exposure to rivaroxaban may decrease efficacy [see Clinical Pharmacology (12.3)]. Avoid concomitant use of XARELTO with drugs that are combined P-gp and strong CYP3A4 inducers (e.g., carbamazepine, phenytoin, rifampin, St. John’s wort) [see Warnings and Precautions (5.6)]. 7.4 Anticoagulants and NSAIDs/Aspirin Single doses of enoxaparin and XARELTO given concomitantly resulted in an additive effect on anti-factor Xa activity. Single doses of warfarin and XARELTO resulted in an additive effect on factor Xa (FXa) inhibition and PT. Concomitant aspirin use has been identified as an independent risk factor for major bleeding in efficacy trials. NSAIDs are known to increase bleeding, and bleeding risk may be increased when NSAIDs are used concomitantly with XARELTO. Coadministration of the platelet aggregation inhibitor clopidogrel and XARELTO resulted in an increase in bleeding time for some subjects [see Clinical Pharmacology (12.3)]. Avoid concurrent use of XARELTO with other anticoagulants due to increased bleeding risk unless benefit outweighs risk. Promptly evaluate any signs or symptoms of blood loss if patients are treated concomitantly with aspirin, other platelet aggregation inhibitors, or NSAIDs [see Warnings and Precautions (5.2)]. 7.5 Drug-Disease Interactions with Drugs that Inhibit Cytochrome P450 3A4 Enzymes and Drug Transport Systems Results from a pharmacokinetic trial with erythromycin indicated that patients with renal impairment coadministered XARELTO with drugs classified as combined P-gp and moderate CYP3A4 inhibitors (e.g., diltiazem, verapamil, dronedarone, and erythromycin) have increased exposure compared with patients with normal renal function and no inhibitor use. Significant increases in rivaroxaban exposure may increase bleeding risk. While increases in rivaroxaban exposure can be expected under such conditions, results from an analysis in the ROCKET AF trial, which allowed concomitant use with combined P-gp and either weak (e.g., amiodarone) or moderate CYP3A4 inhibitors (e.g., diltiazem, verapamil, and erythromycin), did not show an increase in bleeding in patients with CrCl 30 to <50 mL/min [Hazard Ratio (95% CI): 1.05 (0.77, 1.42)] [see Use in Specific Populations (8.7)]. XARELTO should not be used in patients with CrCl 15 to <80 mL/min who are receiving concomitant combined P-gp and moderate CYP3A4 inhibitors (e.g., diltiazem, verapamil, dronedarone, and erythromycin) unless the potential benefit justifies the potential risk [see Clinical Pharmacology (12.3)].

OVERDOSAGE

10 Overdose of XARELTO may lead to hemorrhage. Discontinue XARELTO and initiate appropriate therapy if bleeding complications associated with overdosage occur. A specific antidote for rivaroxaban is not available. Rivaroxaban systemic exposure is not further increased at single doses >50 mg due to limited absorption. The use of activated charcoal to reduce absorption in case of XARELTO overdose may be considered. Due to the high plasma protein binding, rivaroxaban is not dialyzable [see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3)]. Partial reversal of laboratory anticoagulation parameters may be achieved with use of plasma products.

DESCRIPTION

11 Rivaroxaban, a FXa inhibitor, is the active ingredient in XARELTO Tablets with the chemical name 5-Chloro-N-({(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophenecarboxamide. The molecular formula of rivaroxaban is C19H18ClN3O5S and the molecular weight is 435.89. The structural formula is: Rivaroxaban is a pure (S)-enantiomer. It is an odorless, non-hygroscopic, white to yellowish powder. Rivaroxaban is only slightly soluble in organic solvents (e.g., acetone, polyethylene glycol 400) and is practically insoluble in water and aqueous media. Each XARELTO tablet contains 10 mg, 15 mg, or 20 mg of rivaroxaban. The inactive ingredients of XARELTO are: croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and sodium lauryl sulfate. Additionally, the proprietary film coating mixture used for XARELTO 10 mg tablets is Opadry® Pink and for XARELTO 15 mg tablets is Opadry® Red, both containing ferric oxide red, hypromellose, polyethylene glycol 3350, and titanium dioxide, and for XARELTO 20 mg tablets is Opadry® II Dark Red, containing ferric oxide red, polyethylene glycol 3350, polyvinyl alcohol (partially hydrolyzed), talc, and titanium dioxide. Chemical Structure

CLINICAL STUDIES

14 14.1 Stroke Prevention in Nonvalvular Atrial Fibrillation The evidence for the efficacy and safety of XARELTO was derived from ROCKET AF, a multi-national, double-blind study comparing XARELTO (at a dose of 20 mg once daily with the evening meal in patients with CrCl >50 mL/min and 15 mg once daily with the evening meal in patients with CrCl 30 to 50 mL/min) to warfarin (titrated to INR 2.0 to 3.0) to reduce the risk of stroke and non-central nervous system (CNS) systemic embolism in patients with nonvalvular atrial fibrillation (AF). Patients had to have one or more of the following additional risk factors for stroke: a prior stroke (ischemic or unknown type), transient ischemic attack (TIA) or non‑CNS systemic embolism, or 2 or more of the following risk factors: age ≥75 years, hypertension, heart failure or left ventricular ejection fraction ≤35%, or diabetes mellitus ROCKET AF was a non-inferiority study designed to demonstrate that XARELTO preserved more than 50% of warfarin’s effect on stroke and non-CNS systemic embolism as established by previous placebo-controlled studies of warfarin in atrial fibrillation. A total of 14264 patients were randomized and followed on study treatment for a median of 590 days. The mean age was 71 years and the mean CHADS2 score was 3.5. The population was 60% male, 83% Caucasian, 13% Asian and 1.3% Black. There was a history of stroke, TIA, or non-CNS systemic embolism in 55% of patients, and 38% of patients had not taken a vitamin K antagonist (VKA) within 6 weeks at time of screening. Concomitant diseases of patients in this study included hypertension 91%, diabetes 40%, congestive heart failure 63%, and prior myocardial infarction 17%. At baseline, 37% of patients were on aspirin (almost exclusively at a dose of 100 mg or less) and few patients were on clopidogrel. Patients were enrolled in Eastern Europe (39%); North America (19%); Asia, Australia, and New Zealand (15%); Western Europe (15%); and Latin America (13%). Patients randomized to warfarin had a mean percentage of time in the INR target range of 2.0 to 3.0 of 55%, lower during the first few months of the study. In ROCKET AF, XARELTO was demonstrated non-inferior to warfarin for the primary composite endpoint of time to first occurrence of stroke (any type) or non-CNS systemic embolism [HR (95% CI): 0.88 (0.74, 1.03)], but superiority to warfarin was not demonstrated. There is insufficient experience to determine how XARELTO and warfarin compare when warfarin therapy is well-controlled. Table 8 displays the overall results for the primary composite endpoint and its components. Table 8: Primary Composite Endpoint Results in ROCKET AF Study (Intent-to-Treat Population) XARELTO Warfarin XARELTO vs. Warfarin Event N=7081 n (%) Event Rate (per 100 Pt-yrs) N=7090 n (%) Event Rate (per 100 Pt-yrs) Hazard Ratio (95% CI) Primary Composite EndpointThe primary endpoint was the time to first occurrence of stroke (any type) or non-CNS systemic embolism. Data are shown for all randomized patients followed to site notification that the study would end. 269 (3.8) 2.1 306 (4.3) 2.4 0.88 (0.74, 1.03) Stroke 253 (3.6) 2.0 281 (4.0) 2.2 Hemorrhagic StrokeDefined as primary hemorrhagic strokes confirmed by adjudication in all randomized patients followed up to site notification 33 (0.5) 0.3 57 (0.8) 0.4 Ischemic Stroke 206 (2.9) 1.6 208 (2.9) 1.6 Unknown Stroke Type 19 (0.3) 0.2 18 (0.3) 0.1 Non-CNS Systemic Embolism 20 (0.3) 0.2 27 (0.4) 0.2 Figure 4 is a plot of the time from randomization to the occurrence of the first primary endpoint event in the two treatment arms. Figure 4: Time to First Occurrence of Stroke (any type) or Non-CNS Systemic Embolism by Treatment Group (Intent-to-Treat Population) Figure 5 shows the risk of stroke or non-CNS systemic embolism across major subgroups. Figure 5: Risk of Stroke or Non-CNS Systemic Embolism by Baseline Characteristics in ROCKET AFData are shown for all randomized patients followed to site notification that the study would end. Note: The figure above presents effects in various subgroups all of which are baseline characteristics and all of which were pre-specified (diabetic status was not pre-specified in the subgroup, but was a criterion for the CHADS2 score). The 95% confidence limits that are shown do not take into account how many comparisons were made, nor do they reflect the effect of a particular factor after adjustment for all other factors. Apparent homogeneity or heterogeneity among groups should not be over-interpreted. (Intent-to-Treat Population) The efficacy of XARELTO was generally consistent across major subgroups. The protocol for ROCKET AF did not stipulate anticoagulation after study drug discontinuation, but warfarin patients who completed the study were generally maintained on warfarin. XARELTO patients were generally switched to warfarin without a period of coadministration of warfarin and XARELTO, so that they were not adequately anticoagulated after stopping XARELTO until attaining a therapeutic INR. During the 28 days following the end of the study, there were 22 strokes in the 4637 patients taking XARELTO vs. 6 in the 4691 patients taking warfarin. Few patients in ROCKET AF underwent electrical cardioversion for atrial fibrillation. The utility of XARELTO for preventing post-cardioversion stroke and systemic embolism is unknown. Figure 4 Figure 5 14.2 Treatment of Deep Vein Thrombosis (DVT), Pulmonary Embolism (PE), and Reduction in the Risk of Recurrence of DVT and of PE EINSTEIN Deep Vein Thrombosis and EINSTEIN Pulmonary Embolism Studies XARELTO for the treatment of DVT and/or PE and for the reduction in the risk of recurrence of DVT and of PE was studied in EINSTEIN DVT and EINSTEIN PE, multi-national, open-label, non-inferiority studies comparing XARELTO (at an initial dose of 15 mg twice daily with food for the first three weeks, followed by XARELTO 20 mg once daily with food) to enoxaparin 1 mg/kg twice daily for at least five days with VKA and then continued with VKA only after the target INR (2.0–3.0) was reached. Patients who required thrombectomy, insertion of a caval filter, or use of a fibrinolytic agent and patients with creatinine clearance <30 mL/min, significant liver disease, or active bleeding were excluded from the studies. The intended treatment duration was 3, 6, or 12 months based on investigator's assessment prior to randomization. A total of 8281 (3449 in EINSTEIN DVT and 4832 in EINSTEIN PE) patients were randomized and followed on study treatment for a mean of 208 days in the XARELTO group and 204 days in the enoxaparin/VKA group. The mean age was approximately 57 years. The population was 55% male, 70% Caucasian, 9% Asian and about 3% Black. About 73% and 92% of XARELTO-treated patients in the EINSTEIN DVT and EINSTEIN PE studies, respectively, received initial parenteral anticoagulant treatment for a median duration of 2 days. Enoxaparin/VKA-treated patients in the EINSTEIN DVT and EINSTEIN PE studies received initial parenteral anticoagulant treatment for a median duration of 8 days. Aspirin was taken as on treatment concomitant antithrombotic medication by approximately 12% of patients in both treatment groups. Patients randomized to VKA had an unadjusted mean percentage of time in the INR target range of 2.0 to 3.0 of 58% in EINSTEIN DVT study and 60% in EINSTEIN PE study, with the lower values occurring during the first month of the study. In the EINSTEIN DVT and EINSTEIN PE studies, 49% of patients had an idiopathic DVT/PE at baseline. Other risk factors included previous episode of DVT/PE (19%), recent surgery or trauma (18%), immobilization (16%), use of estrogen-containing drug (8%), known thrombophilic conditions (6%), or active cancer (5%). In the EINSTEIN DVT and EINSTEIN PE studies, XARELTO was demonstrated to be non-inferior to enoxaparin/VKA for the primary composite endpoint of time to first occurrence of recurrent DVT or non-fatal or fatal PE [EINSTEIN DVT HR (95% CI): 0.68 (0.44, 1.04); EINSTEIN PE HR (95% CI): 1.12 (0.75, 1.68)]. In each study the conclusion of non-inferiority was based on the upper limit of the 95% confidence interval for the hazard ratio being less than 2.0. Table 9 displays the overall results for the primary composite endpoint and its components for EINSTEIN DVT and EINSTEIN PE studies. Table 9: Primary Composite Endpoint ResultsFor the primary efficacy analysis, all confirmed events were considered from randomization up to the end of intended treatment duration (3, 6 or 12 months) irrespective of the actual treatment duration. If the same patient had several events, the patient may have been counted for several components. in EINSTEIN DVT and EINSTEIN PE Studies – Intent-to-Treat Population Event XARELTO 20 mgTreatment schedule in EINSTEIN DVT and EINSTEIN PE studies: XARELTO 15 mg twice daily for 3 weeks followed by 20 mg once daily; enoxaparin/VKA [enoxaparin: 1 mg/kg twice daily, VKA: individually titrated doses to achieve a target INR of 2.5 (range: 2.0–3.0)] Enoxaparin/VKA XARELTO vs. Enoxaparin/VKA Hazard Ratio (95% CI) EINSTEIN DVT Study N=1731 n (%) N=1718 n (%) Primary Composite Endpoint 36 (2.1) 51 (3.0) 0.68 (0.44, 1.04) Death (PE) 1 (<0.1) 0 Death (PE cannot be excluded) 3 (0.2) 6 (0.3) Symptomatic PE and DVT 1 (<0.1) 0 Symptomatic recurrent PE only 20 (1.2) 18 (1.0) Symptomatic recurrent DVT only 14 (0.8) 28 (1.6) EINSTEIN PE Study N=2419 n (%) N=2413 n (%) Primary Composite Endpoint 50 (2.1) 44 (1.8) 1.12 (0.75, 1.68) Death (PE) 3 (0.1) 1 (<0.1) Death (PE cannot be excluded) 8 (0.3) 6 (0.2) Symptomatic PE and DVT 0 2 (<0.1) Symptomatic recurrent PE only 23 (1.0) 20 (0.8) Symptomatic recurrent DVT only 18 (0.7) 17 (0.7) Figures 6 and 7 are plots of the time from randomization to the occurrence of the first primary efficacy endpoint event in the two treatment groups in EINSTEIN DVT and EINSTEIN PE studies, respectively. Figure 6: Time to First Occurrence of the Composite of Recurrent DVT or Non-fatal or Fatal PE by Treatment Group (Intent-to-Treat Population) – EINSTEIN DVT Study Figure 7: Time to First Occurrence of the Composite of Recurrent DVT or Non-fatal or Fatal PE by Treatment Group (Intent-to-Treat Population) – EINSTEIN PE Study Figure 6 Figure 7 EINSTEIN Extension Study XARELTO for reduction in the risk of recurrence of DVT and of PE was studied in the EINSTEIN Extension study, a multi-national, double-blind, superiority study comparing XARELTO (20 mg once daily with food) to placebo in patients who had completed 6 to 14 months of treatment for DVT and/or PE following the acute event. The intended treatment duration was 6 or 12 months based on investigator's assessment prior to randomization. A total of 1196 patients were randomized and followed on study treatment for a mean of 190 days for both XARELTO and placebo treatment groups. The mean age was approximately 58 years. The population was 58% male, 78% Caucasian, 8% Asian and about 2% Black. Aspirin was taken as on-treatment concomitant antithrombotic medication by approximately 12% of patients in both treatment groups. In the EINSTEIN Extension study about 60% of patients had a history of proximal index DVT without PE event and 29% of patients had a PE without symptomatic DVT event. About 59% of patients had an idiopathic DVT/PE. Other risk factors included previous episode of DVT/PE (16%), immobilization (14%), known thrombophilic conditions (8%), or active cancer (5%). In the EINSTEIN Extension study XARELTO was demonstrated to be superior to placebo for the primary composite endpoint of time to first occurrence of recurrent DVT or non-fatal or fatal PE [HR (95% CI): 0.18 (0.09, 0.39)]. Table 10 displays the overall results for the primary composite endpoint and its components. Table 10: Primary Composite Endpoint ResultsFor the primary efficacy analysis, all confirmed events were considered from randomization up to the end of intended treatment duration (6 or 12 months) irrespective of the actual treatment duration. in EINSTEIN Extension Study – Intent-to-Treat Population Event XARELTO 20 mg N=602 n (%) Placebo N=594 n (%) XARELTO vs. Placebo Hazard Ratio (95% CI) Primary Composite Endpoint 8 (1.3) 42 (7.1) 0.18 (0.09, 0.39) p-value = <0.0001 Death (PE) 0 1 (0.2) Death (PE cannot be excluded) 1 (0.2) 0 Symptomatic recurrent PE 2 (0.3) 13 (2.2) Symptomatic recurrent DVT 5 (0.8) 31 (5.2) Figure 8 is a plot of the time from randomization to the occurrence of the first primary efficacy endpoint event in the two treatment groups. Figure 8: Time to First Occurrence of the Composite of Recurrent DVT or Non-fatal or Fatal PE by Treatment Group (Intent-to-Treat Population) – EINSTEIN Extension Study Figure 8 14.3 Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery XARELTO was studied in 9011 patients (4487 XARELTO-treated, 4524 enoxaparin-treated patients) in the RECORD 1, 2, and 3 studies. The two randomized, double-blind, clinical studies (RECORD 1 and 2) in patients undergoing elective total hip replacement surgery compared XARELTO 10 mg once daily starting at least 6 to 8 hours (about 90% of patients dosed 6 to 10 hours) after wound closure versus enoxaparin 40 mg once daily started 12 hours preoperatively. In RECORD 1 and 2, a total of 6727 patients were randomized and 6579 received study drug. The mean age [± standard deviation (SD)] was 63 ± 12.2 (range 18 to 93) years with 49% of patients ≥65 years and 55% of patients were female. More than 82% of patients were White, 7% were Asian, and less than 2% were Black. The studies excluded patients undergoing staged bilateral total hip replacement, patients with severe renal impairment defined as an estimated creatinine clearance <30 mL/min, or patients with significant liver disease (hepatitis or cirrhosis). In RECORD 1, the mean exposure duration (± SD) to active XARELTO and enoxaparin was 33.3 ± 7.0 and 33.6 ± 8.3 days, respectively. In RECORD 2, the mean exposure duration to active XARELTO and enoxaparin was 33.5 ± 6.9 and 12.4 ± 2.9 days, respectively. After Day 13, oral placebo was continued in the enoxaparin group for the remainder of the double-blind study duration. The efficacy data for RECORD 1 and 2 are provided in Table 11. Table 11: Summary of Key Efficacy Analysis Results for Patients Undergoing Total Hip Replacement Surgery – Modified Intent-to-Treat Population RECORD 1 RECORD 2 Treatment Dosage and Duration XARELTO 10 mg once daily Enoxaparin 40 mg once daily RRRRelative Risk Reduction; CI = confidence interval, p-value XARELTO 10 mg once daily EnoxaparinIncludes the placebo-controlled period of RECORD 2 40 mg once daily RRR, p-value Number of Patients N=1513 N=1473 N=834 N=835 Total VTE 17 (1.1%) 57 (3.9%) 71% (95% CI: 50, 83), p<0.001 17 (2.0%) 70 (8.4%) 76% (95% CI: 59, 86), p<0.001 Components of Total VTE Proximal DVT 1 (0.1%) 31 (2.1%) 5 (0.6%) 40 (4.8%) Distal DVT 12 (0.8%) 26 (1.8%) 11 (1.3%) 43 (5.2%) Non-fatal PE 3 (0.2%) 1 (0.1%) 1 (0.1%) 4 (0.5%) Death (any cause) 4 (0.3%) 4 (0.3%) 2 (0.2%) 4 (0.5%) Number of Patients N=1600 N=1587 N=928 N=929 Major VTE Proximal DVT, nonfatal PE or VTE-related death 3 (0.2%) 33 (2.1%) 91% (95% CI: 71, 97), p<0.001 6 (0.7%) 45 (4.8%) 87% (95% CI: 69, 94), p<0.001 Number of Patients N=2103 N=2119 N=1178 N=1179 Symptomatic VTE 5 (0.2%) 11 (0.5%) 3 (0.3%) 15 (1.3%) One randomized, double-blind, clinical study (RECORD 3) in patients undergoing elective total knee replacement surgery compared XARELTO 10 mg once daily started at least 6 to 8 hours (about 90% of patients dosed 6 to 10 hours) after wound closure versus enoxaparin. In RECORD 3, the enoxaparin regimen was 40 mg once daily started 12 hours preoperatively. The mean age (± SD) of patients in the study was 68 ± 9.0 (range 28 to 91) years with 66% of patients ≥65 years. Sixty-eight percent (68%) of patients were female. Eighty-one percent (81%) of patients were White, less than 7% were Asian, and less than 2% were Black. The study excluded patients with severe renal impairment defined as an estimated creatinine clearance <30 mL/min or patients with significant liver disease (hepatitis or cirrhosis). The mean exposure duration (± SD) to active XARELTO and enoxaparin was 11.9 ± 2.3 and 12.5 ± 3.0 days, respectively. The efficacy data are provided in Table 12. Table 12: Summary of Key Efficacy Analysis Results for Patients Undergoing Total Knee Replacement Surgery – Modified Intent-to-Treat Population RECORD 3 Treatment Dosage and Duration XARELTO 10 mg once daily Enoxaparin 40 mg once daily RRRRelative Risk Reduction; CI = confidence interval, p-value Number of Patients N=813 N=871 Total VTE 79 (9.7%) 164 (18.8%) 48% (95% CI: 34, 60), p<0.001 Components of events contributing to Total VTE Proximal DVT 9 (1.1%) 19 (2.2%) Distal DVT 74 (9.1%) 154 (17.7%) Non-fatal PE 0 4 (0.5%) Death (any cause) 0 2 (0.2%) Number of Patients N=895 N=917 Major VTE Proximal DVT, nonfatal PE or VTE-related death 9 (1.0%) 23 (2.5%) 60% (95% CI: 14, 81), p = 0.024 Number of Patients N=1206 N=1226 Symptomatic VTE 8 (0.7%) 24 (2.0%)

HOW SUPPLIED

16 /STORAGE AND HANDLING XARELTO (rivaroxaban) Tablets are available in the strengths and packages listed below: 10 mg tablets are round, light red, biconvex film-coated tablets marked with a triangle pointing down above a “10” on one side, and “Xa” on the other side. The tablets are supplied in the packages listed: NDC 50458-580-30 Bottle containing 30 tablets NDC 50458-580-10 Blister package containing 100 tablets (10 blister cards containing 10 tablets each) 15 mg tablets are round, red, biconvex film-coated tablets with a triangle pointing down above a “15” marked on one side and “Xa” on the other side. The tablets are supplied in the packages listed: NDC 50458-578-30 Bottle containing 30 tablets NDC 50458-578-90 Bottle containing 90 tablets NDC 50458-578-10 Blister package containing 100 tablets (10 blister cards containing 10 tablets each) 20 mg tablets are triangle-shaped, dark red film-coated tablets with a triangle pointing down above a “20” marked on one side and “Xa” on the other side. The tablets are supplied in the packages listed: NDC 50458-579-30 Bottle containing 30 tablets NDC 50458-579-90 Bottle containing 90 tablets NDC 50458-579-10 Blister package containing 100 tablets (10 blister cards containing 10 tablets each) Starter Pack for treatment of deep vein thrombosis and treatment of pulmonary embolism: NDC 50458-584-51 30-day starter blister pack containing 51 tablets: 42 tablets of 15 mg and 9 tablets of 20 mg Store at 25°C (77°F) or room temperature; excursions permitted to 15°–30°C (59°–86°F) [see USP Controlled Room Temperature]. Keep out of the reach of children.

RECENT MAJOR CHANGES

Warnings and Precautions (5.2, 5.4) 05/2016 Warnings and Precautions (5.3) 08/2016

GERIATRIC USE

8.5 Geriatric Use Of the total number of patients in the RECORD 1–3 clinical studies evaluating XARELTO, about 54% were 65 years and over, while about 15% were >75 years. In ROCKET AF, approximately 77% were 65 years and over and about 38% were >75 years. In the EINSTEIN DVT, PE and Extension clinical studies approximately 37% were 65 years and over and about 16% were >75 years. In clinical trials the efficacy of XARELTO in the elderly (65 years or older) was similar to that seen in patients younger than 65 years. Both thrombotic and bleeding event rates were higher in these older patients, but the risk-benefit profile was favorable in all age groups [see Clinical Pharmacology (12.3) and Clinical Studies (14)].

DOSAGE FORMS AND STRENGTHS

3 10 mg tablets: Round, light red, biconvex and film-coated with a triangle pointing down above a “10” marked on one side and “Xa” on the other side 15 mg tablets: Round, red, biconvex, and film-coated with a triangle pointing down above a “15” marked on one side and “Xa” on the other side 20 mg tablets: Triangle-shaped, dark red, and film-coated with a triangle pointing down above a “20” marked on one side and “Xa” on the other side Tablets: 10 mg, 15 mg, and 20 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action XARELTO is a selective inhibitor of FXa. It does not require a cofactor (such as Anti-thrombin III) for activity. Rivaroxaban inhibits free FXa and prothrombinase activity. Rivaroxaban has no direct effect on platelet aggregation, but indirectly inhibits platelet aggregation induced by thrombin. By inhibiting FXa, rivaroxaban decreases thrombin generation.

INDICATIONS AND USAGE

1 XARELTO is a factor Xa inhibitor indicated: to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation (1.1) for the treatment of deep vein thrombosis (DVT), pulmonary embolism (PE), and for the reduction in the risk of recurrence of DVT and of PE (1.2, 1.3, 1.4) for the prophylaxis of DVT, which may lead to PE in patients undergoing knee or hip replacement surgery (1.5) 1.1 Reduction of Risk of Stroke and Systemic Embolism in Nonvalvular Atrial Fibrillation XARELTO is indicated to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation. There are limited data on the relative effectiveness of XARELTO and warfarin in reducing the risk of stroke and systemic embolism when warfarin therapy is well-controlled [see Clinical Studies (14.1)]. 1.2 Treatment of Deep Vein Thrombosis XARELTO is indicated for the treatment of deep vein thrombosis (DVT). 1.3 Treatment of Pulmonary Embolism XARELTO is indicated for the treatment of pulmonary embolism (PE). 1.4 Reduction in the Risk of Recurrence of Deep Vein Thrombosis and of Pulmonary Embolism XARELTO is indicated for the reduction in the risk of recurrence of deep vein thrombosis and of pulmonary embolism following initial 6 months treatment for DVT and/or PE. 1.5 Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery XARELTO is indicated for the prophylaxis of DVT, which may lead to PE in patients undergoing knee or hip replacement surgery.

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

8.1 Pregnancy Pregnancy Category C There are no adequate or well-controlled studies of XARELTO in pregnant women, and dosing for pregnant women has not been established. Use XARELTO with caution in pregnant patients because of the potential for pregnancy related hemorrhage and/or emergent delivery with an anticoagulant that is not readily reversible. The anticoagulant effect of XARELTO cannot be reliably monitored with standard laboratory testing. Animal reproduction studies showed no increased risk of structural malformations, but increased post-implantation pregnancy loss occurred in rabbits. XARELTO should be used during pregnancy only if the potential benefit justifies the potential risk to mother and fetus [see Warnings and Precautions (5.7)]. Rivaroxaban crosses the placenta in animals. Animal reproduction studies have shown pronounced maternal hemorrhagic complications in rats and an increased incidence of post‑implantation pregnancy loss in rabbits. Rivaroxaban increased fetal toxicity (increased resorptions, decreased number of live fetuses, and decreased fetal body weight) when pregnant rabbits were given oral doses of ≥10 mg/kg rivaroxaban during the period of organogenesis. This dose corresponds to about 4 times the human exposure of unbound drug, based on AUC comparisons at the highest recommended human dose of 20 mg/day. Fetal body weights decreased when pregnant rats were given oral doses of 120 mg/kg. This dose corresponds to about 14 times the human exposure of unbound drug.

NUSRING MOTHERS

8.3 Nursing Mothers It is not known if rivaroxaban is excreted in human milk. Rivaroxaban and/or its metabolites were excreted into the milk of rats. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from rivaroxaban, a decision should be made whether to discontinue nursing or discontinue XARELTO, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: (A) PREMATURE DISCONTINUATION OF XARELTO INCREASES THE RISK OF THROMBOTIC EVENTS, (B) SPINAL/EPIDURAL HEMATOMA WARNING: (A) PREMATURE DISCONTINUATION OF XARELTO INCREASES THE RISK OF THROMBOTIC EVENTS, (B) SPINAL/EPIDURAL HEMATOMA See full prescribing information for complete boxed warning (A) Premature discontinuation of XARELTO increases the risk of thrombotic events Premature discontinuation of any oral anticoagulant, including XARELTO, increases the risk of thrombotic events. To reduce this risk, consider coverage with another anticoagulant if XARELTO is discontinued for a reason other than pathological bleeding or completion of a course of therapy (2.3, 2.7, 5.1, 14.1). (B) Spinal/epidural hematoma Epidural or spinal hematomas have occurred in patients treated with XARELTO who are receiving neuraxial anesthesia or undergoing spinal puncture. These hematomas may result in long-term or permanent paralysis (5.2, 5.3, 6.2). Monitor patients frequently for signs and symptoms of neurological impairment and if observed, treat urgently. Consider the benefits and risks before neuraxial intervention in patients who are or who need to be anticoagulated (5.3). A. Premature discontinuation of XARELTO increases the risk of thrombotic events Premature discontinuation of any oral anticoagulant, including XARELTO, increases the risk of thrombotic events. If anticoagulation with XARELTO is discontinued for a reason other than pathological bleeding or completion of a course of therapy, consider coverage with another anticoagulant [see Dosage and Administration (2.3, 2.7), Warnings and Precautions (5.1), and Clinical Studies (14.1)]. B. Spinal/epidural hematoma Epidural or spinal hematomas have occurred in patients treated with XARELTO who are receiving neuraxial anesthesia or undergoing spinal puncture. These hematomas may result in long-term or permanent paralysis. Consider these risks when scheduling patients for spinal procedures. Factors that can increase the risk of developing epidural or spinal hematomas in these patients include: use of indwelling epidural catheters concomitant use of other drugs that affect hemostasis, such as non-steroidal anti-inflammatory drugs (NSAIDs), platelet inhibitors, other anticoagulants a history of traumatic or repeated epidural or spinal punctures a history of spinal deformity or spinal surgery optimal timing between the administration of XARELTO and neuraxial procedures is not known [see Warnings and Precautions (5.2, 5.3) and Adverse Reactions (6.2)]. Monitor patients frequently for signs and symptoms of neurological impairment. If neurological compromise is noted, urgent treatment is necessary [see Warnings and Precautions (5.3)]. Consider the benefits and risks before neuraxial intervention in patients anticoagulated or to be anticoagulated for thromboprophylaxis [see Warnings and Precautions (5.3)].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Risk of bleeding: XARELTO can cause serious and fatal bleeding. Promptly evaluate signs and symptoms of blood loss. (5.2) Pregnancy-related hemorrhage: Use XARELTO with caution in pregnant women due to the potential for obstetric hemorrhage and/or emergent delivery. Promptly evaluate signs and symptoms of blood loss. (5.7) Prosthetic heart valves: XARELTO use not recommended (5.8) 5.1 Increased Risk of Thrombotic Events after Premature Discontinuation Premature discontinuation of any oral anticoagulant, including XARELTO, in the absence of adequate alternative anticoagulation increases the risk of thrombotic events. An increased rate of stroke was observed during the transition from XARELTO to warfarin in clinical trials in atrial fibrillation patients. If XARELTO is discontinued for a reason other than pathological bleeding or completion of a course of therapy, consider coverage with another anticoagulant [see Dosage and Administration (2.3, 2.7) and Clinical Studies (14.1)]. 5.2 Risk of Bleeding XARELTO increases the risk of bleeding and can cause serious or fatal bleeding. In deciding whether to prescribe XARELTO to patients at increased risk of bleeding, the risk of thrombotic events should be weighed against the risk of bleeding. Promptly evaluate any signs or symptoms of blood loss and consider the need for blood replacement. Discontinue XARELTO in patients with active pathological hemorrhage. The terminal elimination half-life of rivaroxaban is 5 to 9 hours in healthy subjects aged 20 to 45 years. Concomitant use of other drugs that impair hemostasis increases the risk of bleeding. These include aspirin, P2Y12 platelet inhibitors, other antithrombotic agents, fibrinolytic therapy, non-steroidal anti-inflammatory drugs (NSAIDs) [see Drug Interactions (7.4)], selective serotonin reuptake inhibitors, and serotonin norepinephrine reuptake inhibitors. Concomitant use of drugs that are combined P-gp and CYP3A4 inhibitors (e.g., ketoconazole and ritonavir) increases rivaroxaban exposure and may increase bleeding risk [see Drug Interactions (7.2)]. Reversal of Anticoagulant Effect A specific antidote for rivaroxaban is not available. Because of high plasma protein binding, rivaroxaban is not expected to be dialyzable [see Clinical Pharmacology (12.3)]. Protamine sulfate and vitamin K are not expected to affect the anticoagulant activity of rivaroxaban. Partial reversal of prothrombin time prolongation has been seen after administration of prothrombin complex concentrates (PCCs) in healthy volunteers. The use of other procoagulant reversal agents like activated prothrombin complex concentrate (APCC) or recombinant factor VIIa (rFVIIa) has not been evaluated. 5.3 Spinal/Epidural Anesthesia or Puncture When neuraxial anesthesia (spinal/epidural anesthesia) or spinal puncture is employed, patients treated with anticoagulant agents for prevention of thromboembolic complications are at risk of developing an epidural or spinal hematoma which can result in long-term or permanent paralysis [see Boxed Warning]. To reduce the potential risk of bleeding associated with the concurrent use of rivaroxaban and epidural or spinal anesthesia/analgesia or spinal puncture, consider the pharmacokinetic profile of rivaroxaban [see Clinical Pharmacology (12.3)]. Placement or removal of an epidural catheter or lumbar puncture is best performed when the anticoagulant effect of rivaroxaban is low; however, the exact timing to reach a sufficiently low anticoagulant effect in each patient is not known. An indwelling epidural or intrathecal catheter should not be removed before at least 2 half-lifes have elapsed (i.e., 18 hours in young patients aged 20 to 45 years and 26 hours in elderly patients aged 60 to 76 years), after the last administration of XARELTO [see Clinical Pharmacology (12.3)]. The next XARELTO dose should not be administered earlier than 6 hours after the removal of the catheter. If traumatic puncture occurs, delay the administration of XARELTO for 24 hours. Should the physician decide to administer anticoagulation in the context of epidural or spinal anesthesia/analgesia or lumbar puncture, monitor frequently to detect any signs or symptoms of neurological impairment, such as midline back pain, sensory and motor deficits (numbness, tingling, or weakness in lower limbs), bowel and/or bladder dysfunction. Instruct patients to immediately report if they experience any of the above signs or symptoms. If signs or symptoms of spinal hematoma are suspected, initiate urgent diagnosis and treatment including consideration for spinal cord decompression even though such treatment may not prevent or reverse neurological sequelae. 5.4 Use in Patients with Renal Impairment Nonvalvular Atrial Fibrillation Periodically assess renal function as clinically indicated (i.e., more frequently in situations in which renal function may decline) and adjust therapy accordingly [see Dosage and Administration (2.4)]. Consider dose adjustment or discontinuation of XARELTO in patients who develop acute renal failure while on XARELTO [see Use in Specific Populations (8.7)]. Treatment of Deep Vein Thrombosis (DVT), Pulmonary Embolism (PE), and Reduction in the Risk of Recurrence of DVT and of PE Avoid the use of XARELTO in patients with CrCl <30 mL/min due to an expected increase in rivaroxaban exposure and pharmacodynamic effects in this patient population [see Use in Specific Populations (8.7)]. Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery Avoid the use of XARELTO in patients with CrCl <30 mL/min due to an expected increase in rivaroxaban exposure and pharmacodynamic effects in this patient population. Observe closely and promptly evaluate any signs or symptoms of blood loss in patients with CrCl 30 to 50 mL/min. Patients who develop acute renal failure while on XARELTO should discontinue the treatment [see Use in Specific Populations (8.7)]. 5.5 Use in Patients with Hepatic Impairment No clinical data are available for patients with severe hepatic impairment. Avoid use of XARELTO in patients with moderate (Child-Pugh B) and severe (Child-Pugh C) hepatic impairment or with any hepatic disease associated with coagulopathy since drug exposure and bleeding risk may be increased [see Use in Specific Populations (8.8)]. 5.6 Use with P-gp and Strong CYP3A4 Inhibitors or Inducers Avoid concomitant use of XARELTO with combined P-gp and strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, lopinavir/ritonavir, ritonavir, indinavir, and conivaptan) [see Drug Interactions (7.2)]. Avoid concomitant use of XARELTO with drugs that are combined P-gp and strong CYP3A4 inducers (e.g., carbamazepine, phenytoin, rifampin, St. John's wort) [see Drug Interactions (7.3)]. 5.7 Risk of Pregnancy-Related Hemorrhage In pregnant women, XARELTO should be used only if the potential benefit justifies the potential risk to the mother and fetus. XARELTO dosing in pregnancy has not been studied. The anticoagulant effect of XARELTO cannot be monitored with standard laboratory testing nor readily reversed. Promptly evaluate any signs or symptoms suggesting blood loss (e.g., a drop in hemoglobin and/or hematocrit, hypotension, or fetal distress). 5.8 Patients with Prosthetic Heart Valves The safety and efficacy of XARELTO have not been studied in patients with prosthetic heart valves. Therefore, use of XARELTO is not recommended in these patients. 5.9 Acute PE in Hemodynamically Unstable Patients or Patients Who Require Thrombolysis or Pulmonary Embolectomy Initiation of XARELTO is not recommended acutely as an alternative to unfractionated heparin in patients with pulmonary embolism who present with hemodynamic instability or who may receive thrombolysis or pulmonary embolectomy.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved patient labeling (Medication Guide). Instructions for Patient Use Advise patients to take XARELTO only as directed. Remind patients to not discontinue XARELTO without first talking to their healthcare professional. Advise patients with atrial fibrillation to take XARELTO once daily with the evening meal. Advise patients with DVT and/or PE to take XARELTO 15 mg or 20 mg tablets with food at approximately the same time every day [see Dosage and Administration (2.5)]. Advise patients who cannot swallow the tablet whole to crush XARELTO and combine with a small amount of applesauce followed by food [see Dosage and Administration (2.9)]. For patients requiring an NG tube or gastric feeding tube, instruct the patient or caregiver to crush the XARELTO tablet and mix it with a small amount of water before administering via the tube [see Dosage and Administration (2.9)]. If a dose is missed, advise the patient to take XARELTO as soon as possible on the same day and continue on the following day with their recommended daily dose regimen. Bleeding Risks Advise patients to report any unusual bleeding or bruising to their physician. Inform patients that it might take them longer than usual to stop bleeding, and that they may bruise and/or bleed more easily when they are treated with XARELTO [see Warnings and Precautions (5.2)]. If patients have had neuraxial anesthesia or spinal puncture, and particularly, if they are taking concomitant NSAIDs or platelet inhibitors, advise patients to watch for signs and symptoms of spinal or epidural hematoma, such as back pain, tingling, numbness (especially in the lower limbs), muscle weakness, and stool or urine incontinence. If any of these symptoms occur, advise the patient to contact his or her physician immediately [see Boxed Warning]. Invasive or Surgical Procedures Instruct patients to inform their healthcare professional that they are taking XARELTO before any invasive procedure (including dental procedures) is scheduled. Concomitant Medication and Herbals Advise patients to inform their physicians and dentists if they are taking, or plan to take, any prescription or over-the-counter drugs or herbals, so their healthcare professionals can evaluate potential interactions [see Drug Interactions (7)]. Pregnancy and Pregnancy-Related Hemorrhage Advise patients to inform their physician immediately if they become pregnant or intend to become pregnant during treatment with XARELTO [see Use in Specific Populations (8.1)]. Advise pregnant women receiving XARELTO to immediately report to their physician any bleeding or symptoms of blood loss [see Warnings and Precautions (5.7)]. Nursing Advise patients to discuss with their physician if they are nursing or intend to nurse during anticoagulant treatment [see Use in Specific Populations (8.3)]. Females of Reproductive Potential Advise patients who can become pregnant to discuss pregnancy planning with their physician [see Use in Specific Populations (8.6)].

DOSAGE AND ADMINISTRATION

2 Take 15 mg and 20 mg tablets with food; take 10 mg tablets with or without food (2.2) Nonvalvular Atrial Fibrillation: For patients with CrCl >50 mL/min: 20 mg orally, once daily with the evening meal (2.4) For patients with CrCl 15 – 50 mL/min: 15 mg orally, once daily with the evening meal (2.4) Treatment of DVT, PE, and Reduction in the Risk of Recurrence of DVT and of PE: 15 mg orally twice daily with food for the first 21 days for the initial treatment of acute DVT or PE. After the initial treatment period, 20 mg orally once daily with food for the remaining treatment and the long-term reduction in the risk of recurrence of DVT and of PE. (2.5) Prophylaxis of DVT Following Hip or Knee Replacement Surgery: 10 mg orally, once daily with or without food (2.6) 2.1 Recommended Dosage Indication Dosage Reduction in Risk of Stroke in Nonvalvular Atrial Fibrillation (2.4) CrCl >50 mL/min: 20 mg once daily with the evening meal CrCl 15 to 50 mL/min: 15 mg once daily with the evening meal Treatment of DVT (2.5) Treatment of PE (2.5) 15 mg twice daily with food, for first 21 days ▼after 21 days, transition to ▼ 20 mg once daily with food, for remaining treatment Reduction in the Risk of Recurrence of DVT and of PE (2.5) 20 mg once daily with food Prophylaxis of DVT Following Hip or Knee Replacement Surgery (2.6) Hip replacement: 10 mg once daily for 35 days Knee replacement: 10 mg once daily for 12 days 2.2 Important Food Effect Information The 15 mg and 20 mg XARELTO tablets should be taken with food, while the 10 mg tablet can be taken with or without food [see Clinical Pharmacology (12.3)]. In the nonvalvular atrial fibrillation efficacy study XARELTO was taken with the evening meal. 2.3 Switching to and from XARELTO Switching from Warfarin to XARELTO – When switching patients from warfarin to XARELTO, discontinue warfarin and start XARELTO as soon as the International Normalized Ratio (INR) is below 3.0 to avoid periods of inadequate anticoagulation. Switching from XARELTO to Warfarin – No clinical trial data are available to guide converting patients from XARELTO to warfarin. XARELTO affects INR, so INR measurements made during coadministration with warfarin may not be useful for determining the appropriate dose of warfarin. One approach is to discontinue XARELTO and begin both a parenteral anticoagulant and warfarin at the time the next dose of XARELTO would have been taken. Switching from XARELTO to Anticoagulants other than Warfarin – For patients currently taking XARELTO and transitioning to an anticoagulant with rapid onset, discontinue XARELTO and give the first dose of the other anticoagulant (oral or parenteral) at the time that the next XARELTO dose would have been taken [see Drug Interactions (7.4)]. Switching from Anticoagulants other than Warfarin to XARELTO – For patients currently receiving an anticoagulant other than warfarin, start XARELTO 0 to 2 hours prior to the next scheduled evening administration of the drug (e.g., low molecular weight heparin or non-warfarin oral anticoagulant) and omit administration of the other anticoagulant. For unfractionated heparin being administered by continuous infusion, stop the infusion and start XARELTO at the same time. 2.4 Nonvalvular Atrial Fibrillation For patients with creatinine clearance (CrCl) >50 mL/min, the recommended dose of XARELTO is 20 mg taken orally once daily with the evening meal. For patients with CrCl 15 to 50 mL/min, the recommended dose is 15 mg once daily with the evening meal [see Use in Specific Populations (8.7)]. 2.5 Treatment of Deep Vein Thrombosis (DVT), Pulmonary Embolism (PE), and Reduction in the Risk of Recurrence of DVT and of PE The recommended dose of XARELTO for the initial treatment of acute DVT and/or PE is 15 mg taken orally twice daily with food for the first 21 days. After this initial treatment period, the recommended dose of XARELTO is 20 mg taken orally once daily with food, at approximately the same time each day. The recommended dose of XARELTO for reduction in the risk of recurrence of DVT or PE is 20 mg taken orally once daily with food at approximately the same time each day [see Clinical Studies (14.2)]. 2.6 Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery The recommended dose of XARELTO is 10 mg taken orally once daily with or without food. The initial dose should be taken 6 to 10 hours after surgery provided that hemostasis has been established [see Dosage and Administration (2.7)]. For patients undergoing hip replacement surgery, treatment duration of 35 days is recommended. For patients undergoing knee replacement surgery, treatment duration of 12 days is recommended. 2.7 Discontinuation for Surgery and other Interventions If anticoagulation must be discontinued to reduce the risk of bleeding with surgical or other procedures, XARELTO should be stopped at least 24 hours before the procedure to reduce the risk of bleeding [see Warnings and Precautions (5.2)]. In deciding whether a procedure should be delayed until 24 hours after the last dose of XARELTO, the increased risk of bleeding should be weighed against the urgency of intervention. XARELTO should be restarted after the surgical or other procedures as soon as adequate hemostasis has been established, noting that the time to onset of therapeutic effect is short [see Warnings and Precautions (5.1)]. If oral medication cannot be taken during or after surgical intervention, consider administering a parenteral anticoagulant. 2.8 Missed Dose If a dose of XARELTO is not taken at the scheduled time, administer the dose as soon as possible on the same day as follows: For patients receiving 15 mg twice daily: The patient should take XARELTO immediately to ensure intake of 30 mg XARELTO per day. In this particular instance, two 15 mg tablets may be taken at once. The patient should continue with the regular 15 mg twice daily intake as recommended on the following day. For patients receiving 20 mg, 15 mg or 10 mg once daily: The patient should take the missed XARELTO dose immediately. 2.9 Administration Options For patients who are unable to swallow whole tablets, 10 mg, 15 mg or 20 mg XARELTO tablets may be crushed and mixed with applesauce immediately prior to use and administered orally. After the administration of a crushed XARELTO 15 mg or 20 mg tablet, the dose should be immediately followed by food [see Dosage and Administration (2.2, 2.4, 2.5) and Clinical Pharmacology (12.3)]. Administration via nasogastric (NG) tube or gastric feeding tube: After confirming gastric placement of the tube, 10 mg, 15 mg or 20 mg XARELTO tablets may be crushed and suspended in 50 mL of water and administered via an NG tube or gastric feeding tube. Since rivaroxaban absorption is dependent on the site of drug release, avoid administration of XARELTO distal to the stomach which can result in reduced absorption and thereby, reduced drug exposure. After the administration of a crushed XARELTO 15 mg or 20 mg tablet, the dose should then be immediately followed by enteral feeding [see Clinical Pharmacology (12.3)]. Crushed 10 mg, 15 mg or 20 mg XARELTO tablets are stable in water and in applesauce for up to 4 hours. An in vitro compatibility study indicated that there is no adsorption of rivaroxaban from a water suspension of a crushed XARELTO tablet to PVC or silicone nasogastric (NG) tubing.

Primidone 50 MG Oral Tablet

Generic Name: PRIMIDONE
Brand Name: Primidone
  • Substance Name(s):
  • PRIMIDONE

WARNINGS

The abrupt withdrawal of antiepileptic medication may precipitate status epilepticus. The therapeutic efficacy of a dosage regimen takes several weeks before it can be assessed. Suicidal Behavior and Ideation Antiepileptic drugs (AEDs), including Primidone Tablets, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior. Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% Cl:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide. The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analyzed. Table 1 shows absolute and relative risk by indication for all evaluated AEDs. Table 1 Risk by indication for antiepileptic drugs in the pooled analysis The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications. Anyone considering prescribing Primidone Tablets or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated. Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. Table 1 Risk by indication for antiepileptic drugs in the pooled analysis Usage in Pregnancy To provide information regarding the effects of in utero exposure to Primidone Tablets, physicians are advised to recommend that pregnant patients taking Primidone Tablets enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. Information on the registry can also be found at the website http://www.aedpregnancyregistry.org/. The effects of primidone in human pregnancy and nursing infants are unknown. Recent reports suggest an association between the use of anticonvulsant drugs by women with epilepsy and an elevated incidence of birth defects in children born to these women. Data are more extensive with respect to diphenylhydantoin and phenobarbital, but these are also the most commonly prescribed anticonvulsants; less systematic or anecdotal reports suggest a possible similar association with the use of all known anticonvulsant drugs. The reports suggesting an elevated incidence of birth defects in children of drug treated epileptic women cannot be regarded as adequate to prove a definite cause-and-effect relationship. There are intrinsic methodologic problems in obtaining adequate data on drug teratogenicity in humans; the possibility also exists that other factors leading to birth defects, e.g., genetic factors or the epileptic condition itself, may be more important than drug therapy. The great majority of mothers on anticonvulsant medication deliver normal infants. It is important to note that anticonvulsant drugs should not be discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In individual cases where the severity and frequency of the seizure disorders are such that the removal of medication does not pose a serious threat to the patient, discontinuation of the drug may be considered prior to and during pregnancy, although it cannot be said with any confidence that even minor seizures do not pose some hazard to the developing embryo or fetus. The prescribing physician will wish to weigh these considerations in treating or counseling epileptic women of childbearing potential. Neonatal hemorrhage, with a coagulation defect resembling vitamin K deficiency, has been described in newborns whose mothers were taking primidone and other anticonvulsants. Pregnant women under anticonvulsant therapy should receive prophylactic vitamin K1 therapy for one month prior to, and during, delivery.

DESCRIPTION

Chemical name: 5-ethyldihydro-5-phenyl-4,6 (1H, 5H) pyrimidinedione. Structural formula: Primidone is a white, crystalline, highly stable substance, M.P. 279-284°C. It is poorly soluble in water (60 mg per 100 mL at 37°C) and in most organic solvents. It possesses no acidic properties, in contrast to its barbiturate analog. Each tablet, for oral administration, contains 50 mg or 250 mg primidone, and the following inactive ingredients: lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, sodium lauryl sulfate, sodium starch glycolate, and stearic acid. Structural formula

HOW SUPPLIED

Primidone Tablets, USP 50 mg are supplied as: white, round, scored tablets; debossed “W” on one side of the tablet, and “8” on one side of the score and “2” on the other side of the score on the other side of the tablet, and are available in: Bottles of 100 tablets. Bottles of 500 tablets. Bottles of 1000 tablets. Primidone Tablets, USP 250 mg are supplied as: white, round, scored tablets; debossed “WW 484” on one side of the tablet, and scored on the other side of the tablet, and are available in: Bottles of 100 tablets. Bottles of 1000 tablets. Store at 20-25°C (68-77°F) [See USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Manufactured by West-ward Pharmaceutical Corp. Eatontown, NJ 07724 Revised December 2011

INDICATIONS AND USAGE

Primidone Tablets, USP used alone or concomitantly with other anticonvulsants, are indicated in the control of grand mal, psychomotor, and focal epileptic seizures. It may control grand mal seizures refractory to other anticonvulsant therapy.

INFORMATION FOR PATIENTS

Information for Patients Suicidal Thinking and Behavior Patients, their caregivers, and families should be counseled that AEDs, including Primidone Tablets, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers. Patients should be encouraged to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 (see Usage in Pregnancy section). Please refer to the Primidone Tablets,USP Medication Guide for more information.

DOSAGE AND ADMINISTRATION

Adult dosage Patients 8 years of age and older who have received no previous treatment may be started on Primidone Tabletsaccording to the following regimen using either 50 mg or 250 mg Primidone Tablets. Days 1 to 3: 100 to 125 mg at bedtime Days 4 to 6: 100 to 125 mg b.i.d. Days 7 to 9: 100 to 125 mg t.i.d. Day 10 to maintenance: 250 mg t.i.d. For most adults and children 8 years of age and over, the usual maintenance dosage is three to four 250 mg Primidone Tablets daily in divided doses (250 mg t.i.d. or q.i.d.). If required, an increase to five or six 250 mg tablets daily may be made but daily doses should not exceed 500 mg q.i.d. Dosage should be individualized to provide maximum benefit. In some cases, serum blood level determinations of primidone may be necessary for optimal dosage adjustment. The clinically effective serum level for primidone is between 5-12 μg/mL. Dosage Chart In Patients Already Receiving Other Anticonvulsants Primidone Tablets should be started at 100 to 125 mg at bedtime and gradually increased to maintenance level as the other drug is gradually decreased. This regimen should be continued until satisfactory dosage level is achieved for the combination, or the other medication is completely withdrawn. When therapy with Primidone Tablets alone is the objective, the transition from concomitant therapy should not be completed in less than two weeks. Pediatric dosage For children under 8 years of age, the following regimen may be used: Days 1 to 3: 50 mg at bedtime Days 4 to 6: 50 mg b.i.d. Days 7 to 9: 100 mg b.i.d. Day 10 to maintenance: 125 mg t.i.d. to 250 mg t.i.d. For children under 8 years of age, the usual maintenance dosage is 125 to 250 mg three times daily or, 10 to 25 mg/kg/day in divided doses.

Losartan Potassium 25 MG Oral Tablet

Generic Name: LOSARTAN POTASSIUM
Brand Name: Losartan Potassium
  • Substance Name(s):
  • LOSARTAN POTASSIUM

WARNINGS

Fetal Toxicity Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue losartan potassium as soon as possible. These adverse outcomes are usually associated with the use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue losartan potassium, unless it is considered life-saving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to losartan potassium for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use ). Losartan potassium has been shown to produce adverse effects in rat fetuses and neonates, including decreased body weight, delayed physical and behavioral development, mortality and renal toxicity. With the exception of neonatal weight gain (which was affected at doses as low as 10 mg/kg/day), doses associated with these effects exceeded 25 mg/kg/day (approximately three times the maximum recommended human dose of 100 mg on a mg/m2 basis). These findings are attributed to drug exposure in late gestation and during lactation. Significant levels of losartan and its active metabolite were shown to be present in rat fetal plasma during late gestation and in rat milk. Hypotension — Volume-Depleted Patients: In patients who are intravascularly volume-depleted (e.g., those treated with diuretics), symptomatic hypotension may occur after initiation of therapy with losartan potassium tablets. These conditions should be corrected prior to administration of losartan potassium tablets, or a lower starting dose should be used (see DOSAGE AND ADMINISTRATION ).

OVERDOSAGE

Significant lethality was observed in mice and rats after oral administration of 1000 mg/kg and 2000 mg/kg, respectively, about 44 and 170 times the maximum recommended human dose on a mg/m2 basis. Limited data are available in regard to overdosage in humans. The most likely manifestation of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. If symptomatic hypotension should occur, supportive treatment should be instituted. Neither losartan nor its active metabolite can be removed by hemodialysis.

DESCRIPTION

Losartan potassium is an angiotensin II receptor (type AT1) antagonist. Losartan potassium, a non-peptide molecule, is chemically described as 2-butyl-4-chloro-1-[p-(o-1H-tetrazol-5-ylphenyl)benzyl]imidazole-5-methanol monopotassium salt. Its molecular formula is C22H22ClKN6O, and its structural formula is: Losartan potassium, USP is white to off-white powder with a molecular weight of 461.01. It is freely soluble in water; soluble in isopropyl alcohol; slightly soluble in acetonitrile. Oxidation of the 5-hydroxymethyl group on the imidazole ring results in the active metabolite of losartan. Each losartan potassium tablet, USP intended for oral administration contains 25 mg or 50 mg or 100 mg of losartan potassium. In addition, each tablet contains the following inactive ingredients: colloidal silica anhydrous, hydroxypropyl cellulose (low substituted), hypromellose, lactose monohydrate, magnesium stearate, maize starch (corn starch), microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, talc and titanium dioxide. Losartan potassium tablets, USP 25 mg, 50 mg and 100 mg contain potassium in the following amounts: 2.12 mg (0.054 mEq), 4.24 mg (0.108 mEq) and 8.48 mg (0.216 mEq), respectively. losartan potassium structural formula

HOW SUPPLIED

Losartan Potassium Tablets USP, 25 mg are white to off-white, capsule-shaped, film-coated tablets debossed with the logo of “Z” on one side and “2”on other side and are supplied as follows: Overbagged with 10 tablets per bag, NDC 55154-4783-0 Losartan Potassium Tablets USP, 50 mg are white to off-white, capsule-shaped, film-coated tablets debossed with the logo of “Z16” on one side and lip type breakline on other side and are supplied as follows: Overbagged with 10 tablets per bag, NDC 55154-2089-0 Losartan Potassium Tablets USP, 100 mg are white to off-white, capsule-shaped, film-coated tablets debossed with the logo of “Z18” on one side and plain on other side and are supplied as follows: Overbagged with 10 tablets per bag, NDC 55154-6643-0 Storage: Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Protect from light. The trademarks depicted herein are owned by their respective companies Packaged and Distributed by: American Health Packaging Columbus, OH 43217 Repackaged By: Cardinal Health Zanesville, OH 43701 8234601/1214

INDICATIONS AND USAGE

Hypertension: Losartan potassium tablets, USP are indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents, including diuretics. Hypertensive Patients with Left Ventricular Hypertrophy: Losartan potassium tablets, USP are indicated to reduce the risk of stroke in patients with hypertension and left ventricular hypertrophy, but there is evidence that this benefit does not apply to Black patients (see PRECAUTIONS, Race and CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Reduction in the Risk of Stroke, Race ). Nephropathy in Type 2 Diabetic Patients Losartan potassium tablets, USP are indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria (urinary albumin to creatinine ratio ≥ 300 mg/g) in patients with type 2 diabetes and a history of hypertension. In this population, losartan potassium reduces the rate of progression of nephropathy as measured by the occurrence of doubling of serum creatinine or end stage renal disease (need for dialysis or renal transplantation) (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects ).

BOXED WARNING

WARNING: FETAL TOXICITY •When pregnancy is detected, discontinue losartan potassium as soon as possible. •Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. See WARNINGS, Fetal Toxicity.

DOSAGE AND ADMINISTRATION

Adult Hypertensive Patients: Losartan potassium tablets may be administered with other antihypertensive agents, and with or without food. Dosing must be individualized. The usual starting dose of losartan potassium tablets is 50 mg once daily, with 25 mg used in patients with possible depletion of intravascular volume (e.g., patients treated with diuretics) (see WARNINGS, Hypotension — Volume-Depleted Patients ) and patients with a history of hepatic impairment (see PRECAUTIONS, General ). Losartan potassium tablets can be administered once or twice daily with total daily doses ranging from 25 mg to 100 mg. If the antihypertensive effect measured at trough using once-a-day dosing is inadequate, a twice-a-day regimen at the same total daily dose or an increase in dose may give a more satisfactory response. The effect of losartan is substantially present within one week but in some studies the maximal effect occurred in 3 to 6 weeks (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Hypertension ). If blood pressure is not controlled by losartan potassium tablets alone, a low dose of a diuretic may be added. Hydrochlorothiazide has been shown to have an additive effect (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Hypertension ). No initial dosage adjustment is necessary for elderly patients or for patients with renal impairment, including patients on dialysis. Pediatric Hypertensive Patients greater than or equal to 6 years of age: The usual recommended starting dose is 0.7 mg/kg once daily (up to 50 mg total) administered as a tablet or a suspension (see Preparation of Suspension ). Dosage should be adjusted according to blood pressure response. Doses above 1.4 mg/kg (or in excess of 100 mg) daily have not been studied in pediatric patients (see CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations and Pharmacodynamics and Clinical Effects and WARNINGS, Hypotension — Volume-Depleted Patients ). Losartan potassium tablets are not recommended in pediatric patients <6 years of age or in pediatric patients with glomerular filtration rate <30 mL/min/1.73 m2 (see CLINICAL PHARMACOLOGY, Pharmacokinetics, Special Populations , Pharmacodynamics and Clinical Effects , and PRECAUTIONS ). Preparation of Suspension (for 200 mL of a 2.5 mg/mL suspension): Add 10 mL of Purified Water USP to an 8 ounce (240 mL) amber polyethylene terephthalate (PET) bottle containing ten 50 mg losartan potassium tablets. Immediately shake for at least 2 minutes. Let the concentrate stand for 1 hour and then shake for 1 minute to disperse the tablet contents. Separately prepare a 50/50 volumetric mixture of Ora-Plus™ and Ora-Sweet SF™. Add 190 mL of the 50/50 Ora-Plus™ /Ora-Sweet SF™ mixture to the tablet and water slurry in the PET bottle and shake for 1 minute to disperse the ingredients. The suspension should be refrigerated at 2 to 8°C (36 to 46°F) and can be stored for up to 4 weeks. Shake the suspension prior to each use and return promptly to the refrigerator. Hypertensive Patients with Left Ventricular Hypertrophy: The usual starting dose is 50 mg of losartan potassium tablets once daily. Hydrochlorothiazide 12.5 mg daily should be added and/or the dose of losartan potassium tablets should be increased to 100 mg once daily followed by an increase in hydrochlorothiazide to 25 mg once daily based on blood pressure response (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Reduction in the Risk of Stroke ). Nephropathy in Type 2 Diabetic Patients The usual starting dose is 50 mg once daily. The dose should be increased to 100 mg once daily based on blood pressure response (see CLINICAL PHARMACOLOGY, Pharmacodynamics and Clinical Effects, Nephropathy in Type 2 Diabetic Patients ). Losartan potassium may be administered with insulin and other commonly used hypoglycemic agents (e.g., sulfonylureas, glitazones and glucosidase inhibitors).

VALTREX 500 MG Oral Tablet

Generic Name: VALACYCLOVIR HYDROCHLORIDE
Brand Name: VALTREX
  • Substance Name(s):
  • VALACYCLOVIR HYDROCHLORIDE

DRUG INTERACTIONS

7 No clinically significant drug-drug or drug-food interactions with VALTREX are known [see Clinical Pharmacology (12.3)].

OVERDOSAGE

10 Caution should be exercised to prevent inadvertent overdose [see Use in Specific Populations (8.5), (8.6)]. Precipitation of acyclovir in renal tubules may occur when the solubility (2.5 mg/mL) is exceeded in the intratubular fluid. In the event of acute renal failure and anuria, the patient may benefit from hemodialysis until renal function is restored [see Dosage and Administration (2.4)].

DESCRIPTION

11 VALTREX (valacyclovir hydrochloride) is the hydrochloride salt of the L-valyl ester of the antiviral drug acyclovir. VALTREX Caplets are for oral administration. Each caplet contains valacyclovir hydrochloride equivalent to 500 mg or 1 gram valacyclovir and the inactive ingredients carnauba wax, colloidal silicon dioxide, crospovidone, FD&C Blue No. 2 Lake, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate 80, povidone, and titanium dioxide. The blue, film-coated caplets are printed with edible white ink. The chemical name of valacyclovir hydrochloride is L-valine, 2-[(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methoxy]ethyl ester, monohydrochloride. It has the following structural formula: Valacyclovir hydrochloride is a white to off-white powder with the molecular formula C13H20N6O4•HCl and a molecular weight of 360.80. The maximum solubility in water at 25°C is 174 mg/mL. The pkas for valacyclovir hydrochloride are 1.90, 7.47, and 9.43.

CLINICAL STUDIES

14 14.1 Cold Sores (Herpes Labialis) Two double‑blind, placebo‑controlled clinical trials were conducted in 1,856 healthy adults and adolescents (aged greater than or equal to 12 years) with a history of recurrent cold sores. Subjects self‑initiated therapy at the earliest symptoms and prior to any signs of a cold sore. The majority of subjects initiated treatment within 2 hours of onset of symptoms. Subjects were randomized to VALTREX 2 grams twice daily on Day 1 followed by placebo on Day 2, VALTREX 2 grams twice daily on Day 1 followed by 1 gram twice daily on Day 2, or placebo on Days 1 and 2. The mean duration of cold sore episodes was about 1 day shorter in treated subjects as compared with placebo. The 2-day regimen did not offer additional benefit over the 1-day regimen. No significant difference was observed between subjects receiving VALTREX or placebo in the prevention of progression of cold sore lesions beyond the papular stage. 14.2 Genital Herpes Infections Initial Episode: Six hundred forty-three immunocompetent adults with first-episode genital herpes who presented within 72 hours of symptom onset were randomized in a double-blind trial to receive 10 days of VALTREX 1 gram twice daily (n = 323) or oral acyclovir 200 mg 5 times a day (n = 320). For both treatment groups the median time to lesion healing was 9 days, the median time to cessation of pain was 5 days, and the median time to cessation of viral shedding was 3 days. Recurrent Episodes: Three double-blind trials (2 of them placebo-controlled) in immunocompetent adults with recurrent genital herpes were conducted. Subjects self-initiated therapy within 24 hours of the first sign or symptom of a recurrent genital herpes episode. In 1 trial, subjects were randomized to receive 5 days of treatment with either VALTREX 500 mg twice daily (n = 360) or placebo (n = 259). The median time to lesion healing was 4 days in the group receiving VALTREX 500 mg versus 6 days in the placebo group, and the median time to cessation of viral shedding in subjects with at least 1 positive culture (42% of the overall trial population) was 2 days in the group receiving VALTREX 500 mg versus 4 days in the placebo group. The median time to cessation of pain was 3 days in the group receiving VALTREX 500 mg versus 4 days in the placebo group. Results supporting efficacy were replicated in a second trial. In a third trial, subjects were randomized to receive VALTREX 500 mg twice daily for 5 days (n = 398) or VALTREX 500 mg twice daily for 3 days (and matching placebo twice daily for 2 additional days) (n = 402). The median time to lesion healing was about 4½ days in both treatment groups. The median time to cessation of pain was about 3 days in both treatment groups. Suppressive Therapy: Two clinical trials were conducted, one in immunocompetent adults and one in HIV-1-infected adults. A double‑blind, 12‑month, placebo‑ and active‑controlled trial enrolled immunocompetent adults with a history of 6 or more recurrences per year. Outcomes for the overall trial population are shown in Table 5. Table 5. Recurrence Rates in Immunocompetent Adults at 6 and 12 Months a Includes lost to follow-up, discontinuations due to adverse events, and consent withdrawn. Outcome 6 Months 12 Months VALTREX 1 gram once daily (n = 269) Oral acyclovir 400 mg twice daily (n = 267) Placebo (n = 134) VALTREX 1 gram once daily (n = 269) Oral acyclovir 400 mg twice daily (n = 267) Placebo (n = 134) Recurrence free 55% 54% 7% 34% 34% 4% Recurrences 35% 36% 83% 46% 46% 85% Unknowna 10% 10% 10% 19% 19% 10% Subjects with 9 or fewer recurrences per year showed comparable results with VALTREX 500 mg once daily. In a second trial, 293 HIV‑1-infected adults on stable antiretroviral therapy with a history of 4 or more recurrences of ano‑genital herpes per year were randomized to receive either VALTREX 500 mg twice daily (n = 194) or matching placebo (n = 99) for 6 months. The median duration of recurrent genital herpes in enrolled subjects was 8 years, and the median number of recurrences in the year prior to enrollment was 5. Overall, the median pretrial HIV‑1 RNA was 2.6 log10 copies/mL. Among subjects who received VALTREX, the pretrial median CD4+ cell count was 336 cells/mm3; 11% had less than 100 cells/mm3, 16% had 100 to 199 cells/mm3, 42% had 200 to 499 cells/mm3, and 31% had greater than or equal to 500 cells/mm3. Outcomes for the overall trial population are shown in Table 6. Table 6. Recurrence Rates in HIV-1-Infected Adults at 6 Months a Includes lost to follow-up, discontinuations due to adverse events, and consent withdrawn. Outcome VALTREX 500 mg twice daily (n = 194) Placebo (n = 99) Recurrence free 65% 26% Recurrences 17% 57% Unknowna 18% 17% Reduction of Transmission of Genital Herpes: A double-blind, placebo-controlled trial to assess transmission of genital herpes was conducted in 1,484 monogamous, heterosexual, immunocompetent adult couples. The couples were discordant for HSV-2 infection. The source partner had a history of 9 or fewer genital herpes episodes per year. Both partners were counseled on safer sex practices and were advised to use condoms throughout the trial period. Source partners were randomized to treatment with either VALTREX 500 mg once daily or placebo once daily for 8 months. The primary efficacy endpoint was symptomatic acquisition of HSV-2 in susceptible partners. Overall HSV-2 acquisition was defined as symptomatic HSV-2 acquisition and/or HSV-2 seroconversion in susceptible partners. The efficacy results are summarized in Table 7. Table 7. Percentage of Susceptible Partners Who Acquired HSV-2 Defined by the Primary and Selected Secondary Endpoints a Results show reductions in risk of 75% (symptomatic HSV-2 acquisition), 50% (HSV-2 seroconversion), and 48% (overall HSV-2 acquisition) with VALTREX versus placebo. Individual results may vary based on consistency of safer sex practices. Endpoint VALTREXa (n = 743) Placebo (n = 741) Symptomatic HSV-2 acquisition 4 (0.5%) 16 (2.2%) HSV-2 seroconversion 12 (1.6%) 24 (3.2%) Overall HSV-2 acquisition 14 (1.9%) 27 (3.6%) 14.3 Herpes Zoster Two randomized double‑blind clinical trials in immunocompetent adults with localized herpes zoster were conducted. VALTREX was compared with placebo in subjects aged less than 50 years, and with oral acyclovir in subjects aged greater than 50 years. All subjects were treated within 72 hours of appearance of zoster rash. In subjects aged less than 50 years, the median time to cessation of new lesion formation was 2 days for those treated with VALTREX compared with 3 days for those treated with placebo. In subjects aged greater than 50 years, the median time to cessation of new lesions was 3 days in subjects treated with either VALTREX or oral acyclovir. In subjects aged less than 50 years, no difference was found with respect to the duration of pain after healing (post‑herpetic neuralgia) between the recipients of VALTREX and placebo. In subjects aged greater than 50 years, among the 83% who reported pain after healing (post‑herpetic neuralgia), the median duration of pain after healing [95% confidence interval] in days was: 40 [31, 51], 43 [36, 55], and 59 [41, 77] for 7‑day VALTREX, 14‑day VALTREX, and 7‑day oral acyclovir, respectively. 14.4 Chickenpox The use of VALTREX for treatment of chickenpox in pediatric subjects aged 2 to less than 18 years is based on single‑dose pharmacokinetic and multiple‑dose safety data from an open‑label trial with valacyclovir and supported by safety and extrapolated efficacy data from 3 randomized, double‑blind, placebo‑controlled trials evaluating oral acyclovir in pediatric subjects. The single‑dose pharmacokinetic and multiple‑dose safety trial enrolled 27 pediatric subjects aged 1 to less than 12 years with clinically suspected VZV infection. Each subject was dosed with valacyclovir oral suspension, 20 mg/kg 3 times daily for 5 days. Acyclovir systemic exposures in pediatric subjects following valacyclovir oral suspension were compared with historical acyclovir systemic exposures in immunocompetent adults receiving the solid oral dosage form of valacyclovir or acyclovir for the treatment of herpes zoster. The mean projected daily acyclovir exposures in pediatric subjects across all age‑groups (1 to less than 12 years) were lower (Cmax: ↓13%, AUC: ↓30%) than the mean daily historical exposures in adults receiving valacyclovir 1 gram 3 times daily, but were higher (daily AUC: ↑50%) than the mean daily historical exposures in adults receiving acyclovir 800 mg 5 times daily. The projected daily exposures in pediatric subjects were greater (daily AUC approximately 100% greater) than the exposures seen in immunocompetent pediatric subjects receiving acyclovir 20 mg/kg 4 times daily for the treatment of chickenpox. Based on the pharmacokinetic and safety data from this trial and the safety and extrapolated efficacy data from the acyclovir trials, oral valacyclovir 20 mg/kg 3 times a day for 5 days (not to exceed 1 gram 3 times daily) is recommended for the treatment of chickenpox in pediatric patients aged 2 to less than 18 years. Because the efficacy and safety of acyclovir for the treatment of chickenpox in children aged less than 2 years have not been established, efficacy data cannot be extrapolated to support valacyclovir treatment in children aged less than 2 years with chickenpox. Valacyclovir is also not recommended for the treatment of herpes zoster in children because safety data up to 7 days’ duration are not available [see Use in Specific Populations (8.4)].

HOW SUPPLIED

16 /STORAGE AND HANDLING VALTREX Caplets (blue, film-coated, capsule-shaped tablets) containing valacyclovir hydrochloride equivalent to 500 mg valacyclovir and printed with “VALTREX 500 mg.” Bottle of 30 (NDC 0173-0933-08). Bottle of 90 (NDC 0173-0933-10). Unit dose pack of 100 (NDC 0173-0933-56). VALTREX Caplets (blue, film-coated, capsule-shaped tablets, with a partial scorebar on both sides) containing valacyclovir hydrochloride equivalent to 1 gram valacyclovir and printed with “VALTREX 1 gram.” Bottle of 30 (NDC 0173-0565-04). Bottle of 90 (NDC 0173-0565-10). Storage: Store at 15° to 25°C (59° to 77°F). Dispense in a well-closed container as defined in the USP.

GERIATRIC USE

8.5 Geriatric Use [Of the total number of subjects in clinical trials of VALTREX, 906 were 65 and over, and 352 were 75 and over. In a clinical trial of herpes zoster, the duration of pain after healing (post-herpetic neuralgia) was longer in subjects 65 and older compared with younger adults. Elderly patients are more likely to have reduced renal function and require dose reduction. Elderly patients are also more likely to have renal or CNS adverse events [see Dosage and Administration (2.4), Warnings and Precautions (5.2, 5.3), Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 Caplets: 500-mg: blue, film-coated, capsule-shaped tablets printed with “VALTREX 500 mg.” 1-gram: blue, film-coated, capsule-shaped tablets, with a partial scorebar on both sides, printed with “VALTREX 1 gram.” Caplets: 500 mg (unscored), 1 gram (partially scored) (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Valacyclovir is an antiviral drug [see Clinical Pharmacology (12.4)].

INDICATIONS AND USAGE

1 VALTREX is a nucleoside analogue DNA polymerase inhibitor indicated for: Adult Patients (1.1) Cold Sores (Herpes Labialis) Genital Herpes Treatment in immunocompetent patients (initial or recurrent episode) Suppression in immunocompetent or HIV-1 infected patients Reduction of transmission Herpes Zoster Pediatric Patients (1.2) Cold Sores (Herpes Labialis) Chickenpox Limitations of Use (1.3) The efficacy and safety of VALTREX have not been established in immunocompromised patients other than for the suppression of genital herpes in HIV-1 infected patients. 1.1 Adult Patients Cold Sores (Herpes Labialis): VALTREX® (valacyclovir hydrochloride) Caplets are indicated for treatment of cold sores (herpes labialis). The efficacy of VALTREX initiated after the development of clinical signs of a cold sore (e.g., papule, vesicle, or ulcer) has not been established. Genital Herpes: Initial Episode: VALTREX is indicated for treatment of the initial episode of genital herpes in immunocompetent adults. The efficacy of treatment with VALTREX when initiated more than 72 hours after the onset of signs and symptoms has not been established. Recurrent Episodes: VALTREX is indicated for treatment of recurrent episodes of genital herpes in immunocompetent adults. The efficacy of treatment with VALTREX when initiated more than 24 hours after the onset of signs and symptoms has not been established. Suppressive Therapy: VALTREX is indicated for chronic suppressive therapy of recurrent episodes of genital herpes in immunocompetent and in HIV-1 infected adults. The efficacy and safety of VALTREX for the suppression of genital herpes beyond 1 year in immunocompetent patients and beyond 6 months in HIV-1 infected patients have not been established. Reduction of Transmission: VALTREX is indicated for the reduction of transmission of genital herpes in immunocompetent adults. The efficacy of VALTREX for the reduction of transmission of genital herpes beyond 8 months in discordant couples has not been established. The efficacy of VALTREX for the reduction of transmission of genital herpes in individuals with multiple partners and non-heterosexual couples has not been established. Safer sex practices should be used with suppressive therapy (see current Centers for Disease Control and Prevention [CDC] Sexually Transmitted Diseases Treatment Guidelines). Herpes Zoster: VALTREX is indicated for the treatment of herpes zoster (shingles) in immunocompetent adults. The efficacy of VALTREX when initiated more than 72 hours after the onset of rash and the efficacy and safety of VALTREX for treatment of disseminated herpes zoster have not been established. 1.2 Pediatric Patients Cold Sores (Herpes Labialis): VALTREX is indicated for the treatment of cold sores (herpes labialis) in pediatric patients aged greater than or equal to 12 years. The efficacy of VALTREX initiated after the development of clinical signs of a cold sore (e.g., papule, vesicle, or ulcer) has not been established. Chickenpox: VALTREX is indicated for the treatment of chickenpox in immunocompetent pediatric patients aged 2 to less than 18 years. Based on efficacy data from clinical trials with oral acyclovir, treatment with VALTREX should be initiated within 24 hours after the onset of rash [see Clinical Studies (14.4)]. 1.3 Limitations of Use The efficacy and safety of VALTREX have not been established in: Immunocompromised patients other than for the suppression of genital herpes in HIV-1 infected patients with a CD4+ cell count greater than or equal to 100 cells/mm3. Patients aged less than 12 years with cold sores (herpes labialis). Patients aged less than 2 years or greater than or equal to 18 years with chickenpox. Patients aged less than 18 years with genital herpes. Patients aged less than 18 years with herpes zoster. Neonates and infants as suppressive therapy following neonatal herpes simplex virus (HSV) infection.

PEDIATRIC USE

8.4 Pediatric Use VALTREX is indicated for treatment of cold sores in pediatric patients aged greater than or equal to 12 years and for treatment of chickenpox in pediatric patients aged 2 to less than 18 years [see Indications and Usage (1.2), Dosage and Administration (2.2)]. The use of VALTREX for treatment of cold sores is based on 2 double-blind, placebo-controlled clinical trials in healthy adults and adolescents (aged greater than or equal to 12 years) with a history of recurrent cold sores [see Clinical Studies (14.1)]. The use of VALTREX for treatment of chickenpox in pediatric patients aged 2 to less than 18 years is based on single-dose pharmacokinetic and multiple-dose safety data from an open-label trial with valacyclovir and supported by efficacy and safety data from 3 randomized, double-blind, placebo-controlled trials evaluating oral acyclovir in pediatric subjects with chickenpox [see Dosage and Administration (2.2), Adverse Reactions (6.2), Clinical Pharmacology (12.3), Clinical Studies (14.4)]. The efficacy and safety of valacyclovir have not been established in pediatric patients: aged less than 12 years with cold sores aged less than 18 years with genital herpes aged less than 18 years with herpes zoster aged less than 2 years with chickenpox for suppressive therapy following neonatal HSV infection. The pharmacokinetic profile and safety of valacyclovir oral suspension in children aged less than 12 years were studied in 3 open‑label trials. No efficacy evaluations were conducted in any of the 3 trials. Trial 1 was a single‑dose pharmacokinetic, multiple‑dose safety trial in 27 pediatric subjects aged 1 to less than 12 years with clinically suspected varicella-zoster virus (VZV) infection [see Dosage and Administration (2.2), Adverse Reactions (6.2), Clinical Pharmacology (12.3), Clinical Studies (14.4)]. Trial 2 was a single‑dose pharmacokinetic and safety trial in pediatric subjects aged 1 month to less than 6 years who had an active herpes virus infection or who were at risk for herpes virus infection. Fifty-seven subjects were enrolled and received a single dose of 25 mg/kg valacyclovir oral suspension. In infants and children aged 3 months to less than 6 years, this dose provided comparable systemic acyclovir exposures to that from a 1-gram dose of valacyclovir in adults (historical data). In infants aged 1 month to less than 3 months, mean acyclovir exposures resulting from a 25-mg/kg dose were higher (Cmax: ↑30%, AUC: ↑60%) than acyclovir exposures following a 1-gram dose of valacyclovir in adults. Acyclovir is not approved for suppressive therapy in infants and children following neonatal HSV infections; therefore valacyclovir is not recommended for this indication because efficacy cannot be extrapolated from acyclovir. Trial 3 was a single‑dose pharmacokinetic, multiple‑dose safety trial in 28 pediatric subjects aged 1 to less than 12 years with clinically suspected HSV infection. None of the subjects enrolled in this trial had genital herpes. Each subject was dosed with valacyclovir oral suspension, 10 mg/kg twice daily for 3 to 5 days. Acyclovir systemic exposures in pediatric subjects following valacyclovir oral suspension were compared with historical acyclovir systemic exposures in immunocompetent adults receiving the solid oral dosage form of valacyclovir or acyclovir for the treatment of recurrent genital herpes. The mean projected daily acyclovir systemic exposures in pediatric subjects across all age‑groups (1 to less than 12 years) were lower (Cmax: ↓20%, AUC: ↓33%) compared with the acyclovir systemic exposures in adults receiving valacyclovir 500 mg twice daily, but were higher (daily AUC: ↑16%) than systemic exposures in adults receiving acyclovir 200 mg 5 times daily. Insufficient data are available to support valacyclovir for the treatment of recurrent genital herpes in this age‑group because clinical information on recurrent genital herpes in young children is limited; therefore, extrapolating efficacy data from adults to this population is not possible. Moreover, valacyclovir has not been studied in children aged 1 to less than 12 years with recurrent genital herpes.

PREGNANCY

8.1 Pregnancy Pregnancy Category B. There are no adequate and well-controlled trials of VALTREX or acyclovir in pregnant women. Based on prospective pregnancy registry data on 749 pregnancies, the overall rate of birth defects in infants exposed to acyclovir in-utero appears similar to the rate for infants in the general population. VALTREX should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. A prospective epidemiologic registry of acyclovir use during pregnancy was established in 1984 and completed in April 1999. There were 749 pregnancies followed in women exposed to systemic acyclovir during the first trimester of pregnancy resulting in 756 outcomes. The occurrence rate of birth defects approximates that found in the general population. However, the small size of the registry is insufficient to evaluate the risk for less common defects or to permit reliable or definitive conclusions regarding the safety of acyclovir in pregnant women and their developing fetuses. Animal reproduction studies performed at oral doses that provided up to 10 and 7 times the human plasma levels during the period of major organogenesis in rats and rabbits, respectively, revealed no evidence of teratogenicity.

NUSRING MOTHERS

8.3 Nursing Mothers Following oral administration of a 500 mg dose of VALTREX to 5 nursing mothers, peak acyclovir concentrations (Cmax) in breast milk ranged from 0.5 to 2.3 times (median 1.4) the corresponding maternal acyclovir serum concentrations. The acyclovir breast milk AUC ranged from 1.4 to 2.6 times (median 2.2) maternal serum AUC. A 500 mg maternal dosage of VALTREX twice daily would provide a nursing infant with an oral acyclovir dosage of approximately 0.6 mg/kg/day. This would result in less than 2% of the exposure obtained after administration of a standard neonatal dose of 30 mg/kg/day of intravenous acyclovir to the nursing infant. Unchanged valacyclovir was not detected in maternal serum, breast milk, or infant urine. Caution should be exercised when VALTREX is administered to a nursing woman.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS): Has occurred in patients with advanced HIV-1 disease and in allogenic bone marrow transplant and renal transplant patients receiving 8 grams per day of VALTREX in clinical trials. Discontinue treatment if clinical symptoms and laboratory findings consistent with TTP/HUS occur. (5.1) Acute renal failure: May occur in elderly patients (with or without reduced renal function), patients with underlying renal disease who receive higher than recommended doses of VALTREX for their level of renal function, patients who receive concomitant nephrotoxic drugs, or inadequately hydrated patients. Use with caution in elderly patients and reduce dosage in patients with renal impairment. (2.4, 5.2) Central nervous system adverse reactions (e.g., agitation, hallucinations, confusion, and encephalopathy): May occur in both adult and pediatric patients (with or without reduced renal function) and in patients with underlying renal disease who receive higher than recommended doses of VALTREX for their level of renal function. Elderly patients are more likely to have central nervous system adverse reactions. Use with caution in elderly patients and reduce dosage in patients with renal impairment. (2.4, 5.3) 5.1 Thrombotic Thrombocytopenic Purpura/Hemolytic Uremic Syndrome (TTP/HUS) TTP/HUS, in some cases resulting in death, has occurred in patients with advanced HIV-1 disease and also in allogeneic bone marrow transplant and renal transplant recipients participating in clinical trials of VALTREX at doses of 8 grams per day. Treatment with VALTREX should be stopped immediately if clinical signs, symptoms, and laboratory abnormalities consistent with TTP/HUS occur. 5.2 Acute Renal Failure Cases of acute renal failure have been reported in: Elderly patients with or without reduced renal function. Caution should be exercised when administering VALTREX to geriatric patients, and dosage reduction is recommended for those with impaired renal function [see Dosage and Administration (2.4), Use in Specific Populations (8.5)]. Patients with underlying renal disease who received higher-than-recommended doses of VALTREX for their level of renal function. Dosage reduction is recommended when administering VALTREX to patients with renal impairment [see Dosage and Administration (2.4), Use in Specific Populations (8.6)]. Patients receiving other nephrotoxic drugs. Caution should be exercised when administering VALTREX to patients receiving potentially nephrotoxic drugs. Patients without adequate hydration. Precipitation of acyclovir in renal tubules may occur when the solubility (2.5 mg/mL) is exceeded in the intratubular fluid. Adequate hydration should be maintained for all patients. In the event of acute renal failure and anuria, the patient may benefit from hemodialysis until renal function is restored [see Dosage and Administration (2.4), Adverse Reactions (6.3)]. 5.3 Central Nervous System Effects Central nervous system adverse reactions, including agitation, hallucinations, confusion, delirium, seizures, and encephalopathy, have been reported in both adult and pediatric patients with or without reduced renal function and in patients with underlying renal disease who received higher-than-recommended doses of VALTREX for their level of renal function. Elderly patients are more likely to have central nervous system adverse reactions. VALTREX should be discontinued if central nervous system adverse reactions occur [see Adverse Reactions (6.3), Use in Specific Populations (8.5, 8.6)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Patient Labeling 17.1 Importance of Adequate Hydration Patients should be advised to maintain adequate hydration. 17.2 Cold Sores (Herpes Labialis) Patients should be advised to initiate treatment at the earliest symptom of a cold sore (e.g., tingling, itching, or burning). There are no data on the effectiveness of treatment initiated after the development of clinical signs of a cold sore (e.g., papule, vesicle, or ulcer). Patients should be instructed that treatment for cold sores should not exceed 1 day (2 doses) and that their doses should be taken about 12 hours apart. Patients should be informed that VALTREX is not a cure for cold sores. 17.3 Genital Herpes Patients should be informed that VALTREX is not a cure for genital herpes. Because genital herpes is a sexually transmitted disease, patients should avoid contact with lesions or intercourse when lesions and/or symptoms are present to avoid infecting partners. Genital herpes is frequently transmitted in the absence of symptoms through asymptomatic viral shedding. Therefore, patients should be counseled to use safer sex practices in combination with suppressive therapy with VALTREX. Sex partners of infected persons should be advised that they might be infected even if they have no symptoms. Type-specific serologic testing of asymptomatic partners of persons with genital herpes can determine whether risk for HSV-2 acquisition exists. VALTREX has not been shown to reduce transmission of sexually transmitted infections other than HSV-2. If medical management of a genital herpes recurrence is indicated, patients should be advised to initiate therapy at the first sign or symptom of an episode. There are no data on the effectiveness of treatment initiated more than 72 hours after the onset of signs and symptoms of a first episode of genital herpes or more than 24 hours after the onset of signs and symptoms of a recurrent episode. There are no data on the safety or effectiveness of chronic suppressive therapy of more than 1 year’s duration in otherwise healthy patients. There are no data on the safety or effectiveness of chronic suppressive therapy of more than 6 months’ duration in HIV-1 infected patients. 17.4 Herpes Zoster There are no data on treatment initiated more than 72 hours after onset of the zoster rash. Patients should be advised to initiate treatment as soon as possible after a diagnosis of herpes zoster. 17.5 Chickenpox Patients should be advised to initiate treatment at the earliest sign or symptom of chickenpox. Distributed by: GlaxoSmithKline Research Triangle Park, NC 27709 Manufactured by: GlaxoSmithKline Research Triangle Park, NC 27709 or DSM Pharmaceuticals, Inc. Greenville, NC 27834 ©2013, GlaxoSmithKline. All rights reserved. VTX:5PI PHARMACIST-DETACH HERE AND GIVE INSTRUCTIONS TO PATIENT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

DOSAGE AND ADMINISTRATION

2 VALTREX may be given without regard to meals. Valacyclovir oral suspension (25 mg/mL or 50 mg/mL) may be prepared extemporaneously from 500-mg VALTREX Caplets for use in pediatric patients for whom a solid dosage form is not appropriate [see Dosage and Administration (2.3)]. Adult Dosage (2.1) Cold Sores 2 grams every 12 hours for 1 day Genital Herpes Initial episode 1 gram twice daily for 10 days Recurrent episodes 500 mg twice daily for 3 days Suppressive therapy Immunocompetent patients 1 gram once daily Alternate dose in patients with less than or equal to 9 recurrences/year 500 mg once daily HIV-1 infected patients 500 mg twice daily Reduction of transmission 500 mg once daily Herpes Zoster 1 gram 3 times daily for 7 days Pediatric Dosage (2.2) Cold Sores (aged greater than or equal to 12 years) 2 grams every 12 hours for 1 day Chickenpox (aged 2 to less than 18 years) 20 mg/kg 3 times daily for 5 days; not to exceed 1 gram 3 times daily Valacyclovir oral suspension (25 mg/mL or 50 mg/mL) can be prepared from the 500 mg VALTREX Caplets. (2.3) 2.1 Adult Dosing Recommendations Cold Sores (Herpes Labialis): The recommended dosage of VALTREX for treatment of cold sores is 2 grams twice daily for 1 day taken 12 hours apart. Therapy should be initiated at the earliest symptom of a cold sore (e.g., tingling, itching, or burning). Genital Herpes: Initial Episode: The recommended dosage of VALTREX for treatment of initial genital herpes is 1 gram twice daily for 10 days. Therapy was most effective when administered within 48 hours of the onset of signs and symptoms. Recurrent Episodes: The recommended dosage of VALTREX for treatment of recurrent genital herpes is 500 mg twice daily for 3 days. Initiate treatment at the first sign or symptom of an episode. Suppressive Therapy: The recommended dosage of VALTREX for chronic suppressive therapy of recurrent genital herpes is 1 gram once daily in patients with normal immune function. In patients with a history of 9 or fewer recurrences per year, an alternative dose is 500 mg once daily. In HIV-1 infected patients with a CD4+ cell count greater than or equal to 100 cells/mm3, the recommended dosage of VALTREX for chronic suppressive therapy of recurrent genital herpes is 500 mg twice daily. Reduction of Transmission: The recommended dosage of VALTREX for reduction of transmission of genital herpes in patients with a history of 9 or fewer recurrences per year is 500 mg once daily for the source partner. Herpes Zoster: The recommended dosage of VALTREX for treatment of herpes zoster is 1 gram 3 times daily for 7 days. Therapy should be initiated at the earliest sign or symptom of herpes zoster and is most effective when started within 48 hours of the onset of rash. 2.2 Pediatric Dosing Recommendations Cold Sores (Herpes Labialis): The recommended dosage of VALTREX for the treatment of cold sores in pediatric patients aged greater than or equal to 12 years is 2 grams twice daily for 1 day taken 12 hours apart. Therapy should be initiated at the earliest symptom of a cold sore (e.g., tingling, itching, or burning). Chickenpox: The recommended dosage of VALTREX for treatment of chickenpox in immunocompetent pediatric patients aged 2 to less than 18 years is 20 mg/kg administered 3 times daily for 5 days. The total dose should not exceed 1 gram 3 times daily. Therapy should be initiated at the earliest sign or symptom [see Use in Specific Populations (8.4), Clinical Pharmacology (12.3), Clinical Studies (14.4)]. 2.3 Extemporaneous Preparation of Oral Suspension Ingredients and Preparation per USP-NF: VALTREX Caplets 500 mg, cherry flavor, and Suspension Structured Vehicle USP-NF (SSV). Valacyclovir oral suspension (25 mg/mL or 50 mg/mL) should be prepared in lots of 100 mL. Prepare Suspension at Time of Dispensing as Follows: Prepare SSV according to the USP-NF. Using a pestle and mortar, grind the required number of VALTREX 500 mg Caplets until a fine powder is produced (5 VALTREX Caplets for 25 mg/mL suspension; 10 VALTREX Caplets for 50 mg/mL suspension). Gradually add approximately 5-mL aliquots of SSV to the mortar and triturate the powder until a paste has been produced. Ensure that the powder has been adequately wetted. Continue to add approximately 5-mL aliquots of SSV to the mortar, mixing thoroughly between additions, until a concentrated suspension is produced, to a minimum total quantity of 20 mL SSV and a maximum total quantity of 40 mL SSV for both the 25-mg/mL and 50-mg/mL suspensions. Transfer the mixture to a suitable 100-mL measuring flask. Transfer the cherry flavor* to the mortar and dissolve in approximately 5 mL of SSV. Once dissolved, add to the measuring flask. Rinse the mortar at least 3 times with approximately 5-mL aliquots of SSV, transferring the rinsing to the measuring flask between additions. Make the suspension to volume (100 mL) with SSV and shake thoroughly to mix. Transfer the suspension to an amber glass medicine bottle with a child-resistant closure. The prepared suspension should be labeled with the following information “Shake well before using. Store suspension between 2° to 8°C (36° to 46°F) in a refrigerator. Discard after 28 days.” * The amount of cherry flavor added is as instructed by the suppliers of the cherry flavor. 2.4 Patients With Renal Impairment Dosage recommendations for adult patients with reduced renal function are provided in Table 1 [see Use in Specific Populations (8.5, 8.6), Clinical Pharmacology (12.3)]. Data are not available for the use of VALTREX in pediatric patients with a creatinine clearance less than 50 mL/min/1.73 m2. Table 1. VALTREX Dosage Recommendations for Adults With Renal Impairment Indications Normal Dosage Regimen (Creatinine Clearance ≥50 mL/min) Creatinine Clearance (mL/min) 30-49 10-29 <10 Cold sores (Herpes labialis) Do not exceed 1 day of treatment. Two 2 gram doses taken 12 hours apart Two 1 gram doses taken 12 hours apart Two 500 mg doses taken 12 hours apart 500 mg single dose Genital herpes: Initial episode 1 gram every 12 hours no reduction 1 gram every 24 hours 500 mg every 24 hours Genital herpes: Recurrent episode 500 mg every 12 hours no reduction 500 mg every 24 hours 500 mg every 24 hours Genital herpes: Suppressive therapy Immunocompetent patients 1 gram every 24 hours no reduction 500 mg every 24 hours 500 mg every 24 hours Alternate dose for immunocompetent patients with less than or equal to 9 recurrences/year 500 mg every 24 hours no reduction 500 mg every 48 hours 500 mg every 48 hours HIV-1 infected patients 500 mg every 12 hours no reduction 500 mg every 24 hours 500 mg every 24 hours Herpes zoster 1 gram every 8 hours 1 gram every 12 hours 1 gram every 24 hours 500 mg every 24 hours Hemodialysis: Patients requiring hemodialysis should receive the recommended dose of VALTREX after hemodialysis. During hemodialysis, the half-life of acyclovir after administration of VALTREX is approximately 4 hours. About one-third of acyclovir in the body is removed by dialysis during a 4-hour hemodialysis session. Peritoneal Dialysis: There is no information specific to administration of VALTREX in patients receiving peritoneal dialysis. The effect of chronic ambulatory peritoneal dialysis (CAPD) and continuous arteriovenous hemofiltration/dialysis (CAVHD) on acyclovir pharmacokinetics has been studied. The removal of acyclovir after CAPD and CAVHD is less pronounced than with hemodialysis, and the pharmacokinetic parameters closely resemble those observed in patients with end-stage renal disease (ESRD) not receiving hemodialysis. Therefore, supplemental doses of VALTREX should not be required following CAPD or CAVHD.

Wellbutrin XL 300 MG 24 HR Extended Release Oral Tablet

Generic Name: BUPROPION HYDROCHLORIDE
Brand Name: WELLBUTRIN XL
  • Substance Name(s):
  • BUPROPION HYDROCHLORIDE

DRUG INTERACTIONS

7 CYP2B6 inducers: Dose increase may be necessary if coadministered with CYP2B6 inducers (e.g., ritonavir, lopinavir, efavirenz, carbamazepine, phenobarbital, and phenytoin) based on clinical exposure, but should not exceed the maximum recommended dose. ( 7.1) Drugs metabolized by CYP2D6: Bupropion inhibits CYP2D6 and can increase concentrations of: antidepressants (e.g., venlafaxine, nortriptyline, imipramine, desipramine, paroxetine, fluoxetine, sertraline), antipsychotics (e.g., haloperidol, risperidone, thioridazine), beta-blockers (e.g., metoprolol), and Type 1C antiarrhythmics (e.g., propafenone, flecainide). Consider dose reduction when using with bupropion. ( 7.2) Drugs that lower seizure threshold: Dose WELLBUTRIN XL with caution. ( 5.3, 7.3) Dopaminergic Drugs (levodopa and amantadine): CNS toxicity can occur when used concomitantly with WELLBUTRIN XL. ( 7.4) MAOIs: Increased risk of hypertensive reactions can occur when used concomitantly with WELLBUTRIN XL. ( 7.6) Drug laboratory test interactions: WELLBUTRIN XL can cause false-positive urine test results for amphetamines. ( 7.7) 7.1 Potential for Other Drugs to Affect WELLBUTRIN XL Bupropion is primarily metabolized to hydroxybupropion by CYP2B6. Therefore, the potential exists for drug interactions between WELLBUTRIN XL and drugs that are inhibitors or inducers of CYP2B6. Inhibitors of CYP2B6 Ticlopidine and Clopidogrel: Concomitant treatment with these drugs can increase bupropion exposures but decrease hydroxybupropion exposure. Based on clinical response, dosage adjustment of WELLBUTRIN XL may be necessary when coadministered with CYP2B6 inhibitors (e.g., ticlopidine or clopidogrel) [see Clinical Pharmacology (12.3)]. Inducers of CYP2B6 Ritonavir, Lopinavir, and Efavirenz: Concomitant treatment with these drugs can decrease bupropion and hydroxybupropion exposure. Dosage increase of WELLBUTRIN XL may be necessary when coadministered with ritonavir, lopinavir, or efavirenz but should not exceed the maximum recommended dose [see Clinical Pharmacology (12.3)]. Carbamazepine, Phenobarbital, Phenytoin: While not systemically studied, these drugs may induce metabolism of bupropion and may decrease bupropion exposure [see Clinical Pharmacology ( 12.3)]. If bupropion is used concomitantly with a CYP inducer, it may be necessary to increase the dose of bupropion, but the maximum recommended dose should not be exceeded. 7.2 Potential for WELLBUTRIN XL to Affect Other Drugs Drugs Metabolized by CYP2D6 Bupropion and its metabolites (erythrohydrobupropion, threohydrobupropion, hydroxybupropion) are CYP2D6 inhibitors. Therefore, coadministration of WELLBUTRIN XL with drugs that are metabolized by CYP2D6 can increase the exposures of drugs that are substrates of CYP2D6. Such drugs include certain antidepressants (e.g., venlafaxine, nortriptyline, imipramine, desipramine, paroxetine, fluoxetine, and sertraline), antipsychotics (e.g., haloperidol, risperidone, and thioridazine), beta-blockers (e.g., metoprolol), and Type 1C antiarrhythmics (e.g., propafenone, and flecainide). When used concomitantly with WELLBUTRIN XL, it may be necessary to decrease the dose of these CYP2D6 substrates, particularly for drugs with a narrow therapeutic index. Drugs that require metabolic activation by CYP2D6 to be effective (e.g., tamoxifen), theoretically could have reduced efficacy when administered concomitantly with inhibitors of CYP2D6 such as bupropion. Patients treated concomitantly with WELLBUTRIN XL and such drugs may require increased doses of the drug [see Clinical Pharmacology (12.3)]. 7.3 Drugs That Lower Seizure Threshold Use extreme caution when coadministering WELLBUTRIN XL with other drugs that lower the seizure threshold (e.g., other bupropion products, antipsychotics, antidepressants, theophylline, or systemic corticosteroids). Use low initial doses of WELLBUTRIN XL and increase the dose gradually [see Warnings and Precautions (5.3)]. 7.4 Dopaminergic Drugs (Levodopa and Amantadine) Bupropion, levodopa, and amantadine have dopamine agonist effects. CNS toxicity has been reported when bupropion was coadministered with levodopa or amantadine. Adverse reactions have included restlessness, agitation, tremor, ataxia, gait disturbance, vertigo, and dizziness. It is presumed that the toxicity results from cumulative dopamine agonist effects. Use caution when administering WELLBUTRIN XL concomitantly with these drugs. 7.5 Use with Alcohol In postmarketing experience, there have been rare reports of adverse neuropsychiatric events or reduced alcohol tolerance in patients who were drinking alcohol during treatment with WELLBUTRIN XL. The consumption of alcohol during treatment with WELLBUTRIN XL should be minimized or avoided. 7.6 MAO Inhibitors Bupropion inhibits the reuptake of dopamine and norepinephrine. Concomitant use of MAOIs and bupropion is contraindicated because there is an increased risk of hypertensive reactions if bupropion is used concomitantly with MAOIs. Studies in animals demonstrate that the acute toxicity of bupropion is enhanced by the MAO inhibitor phenelzine. At least 14 days should elapse between discontinuation of an MAOI intended to treat depression and initiation of treatment with WELLBUTRIN XL. Conversely, at least 14 days should be allowed after stopping WELLBUTRIN XL before starting an MAOI antidepressant [see Dosage and Administration ( 2.8, 2.9) and Contraindications (4)]. 7.7 Drug-Laboratory Test Interactions False-positive urine immunoassay screening tests for amphetamines have been reported in patients taking bupropion. This is due to lack of specificity of some screening tests. False-positive test results may result even following discontinuation of bupropion therapy. Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish bupropion from amphetamines.

OVERDOSAGE

10 10.1 Human Overdose Experience Overdoses of up to 30 grams or more of bupropion have been reported. Seizure was reported in approximately one third of all cases. Other serious reactions reported with overdoses of bupropion alone included hallucinations, loss of consciousness, sinus tachycardia, and ECG changes such as conduction disturbances or arrhythmias. Fever, muscle rigidity, rhabdomyolysis, hypotension, stupor, coma, and respiratory failure have been reported mainly when bupropion was part of multiple drug overdoses. Although most patients recovered without sequelae, deaths associated with overdoses of bupropion alone have been reported in patients ingesting large doses of the drug. Multiple uncontrolled seizures, bradycardia, cardiac failure, and cardiac arrest prior to death were reported in these patients. 10.2 Overdosage Management Consult a Certified Poison Control Center for up-to-date guidance and advice. Telephone numbers for certified poison control centers are listed in the Physicians’ Desk Reference (PDR). Call 1-800-222-1222 or refer to www.poison.org. There are no known antidotes for bupropion. In case of an overdose, provide supportive care, including close medical supervision and monitoring. Consider the possibility of multiple drug overdose.

DESCRIPTION

11 WELLBUTRIN XL ® (bupropion hydrochloride), an antidepressant of the aminoketone class, is chemically unrelated to tricyclic, tetracyclic, selective serotonin reuptake inhibitor, or other known antidepressant agents. Its structure closely resembles that of diethylpropion; it is related to phenylethylamines. It is designated as (±)-1-(3-chorophenyl)-2-[(1,1-dimethylethyl)amino]-1-propanone hydrochloride. The molecular weight is 276.2. The molecular formula is C 13H 18ClNO•HCl. Bupropion hydrochloride powder is white, crystalline, and highly soluble in water. It has a bitter taste and produces the sensation of local anesthesia on the oral mucosa. The structural formula is: WELLBUTRIN XL tablets are supplied for oral administration as 150 mg and 300 mg creamy-white to pale yellow extended-release tablets. Each tablet contains the labeled amount of bupropion hydrochloride and the inactive ingredients: ethylcellulose, glyceryl behenate, methacrylic acid copolymer dispersion, polyvinyl alcohol, polyethylene glycol, povidone, silicon dioxide, and triethyl citrate. The tablets are printed with edible black ink. The insoluble shell of the extended-release tablet may remain intact during gastrointestinal transit and is eliminated in the feces. Wellbutrin Chemical Structure

CLINICAL STUDIES

14 14.1 Major Depressive Disorder The efficacy of bupropion in the treatment of major depressive disorder was established with the immediate-release formulation of bupropion hydrochloride in two 4-week, placebo-controlled trials in adult inpatients with MDD and in one 6-week, placebo-controlled trial in adult outpatients with MDD. In the first study, the bupropion dose range was 300 mg to 600 mg per day administered in 3 divided doses; 78% of patients were treated with doses of 300 mg to 450 mg per day. The trial demonstrated the efficacy of bupropion as measured by the Hamilton Depression Rating Scale (HAMD) total score, the HAMD depressed mood item (item 1), and the Clinical Global Impressions-Severity Scale (CGI-S). The second study included 2 fixed doses of bupropion (300 mg and 450 mg per day) and placebo. This trial demonstrated the efficacy of bupropion for only the 450 mg dose. The efficacy results were significant for the HAMD total score and the CGI-S severity score, but not for HAMD item 1. In the third study, outpatients were treated with bupropion 300 mg per day. This study demonstrated the efficacy of bupropion as measured by the HAMD total score, the HAMD item 1, the Montgomery-Asberg Depression Rating Scale (MADRS), the CGI-S score, and the CGI-Improvement Scale (CGI-I) score. A longer-term, placebo-controlled, randomized withdrawal trial demonstrated the efficacy of bupropion HCl sustained-release in the maintenance treatment of MDD. The trial included adult outpatients meeting DSM-IV criteria for MDD, recurrent type, who had responded during an 8-week open-label trial of bupropion 300 mg per day. Responders were randomized to continuation of bupropion 300 mg per day or placebo for up to 44 weeks of observation for relapse. Response during the open-label phase was defined as a CGI-Improvement Scale score of 1 (very much improved) or 2 (much improved) for each of the final 3 weeks. Relapse during the double-blind phase was defined as the investigator’s judgment that drug treatment was needed for worsening depressive symptoms. Patients in the bupropion group experienced significantly lower relapse rates over the subsequent 44 weeks compared to those in the placebo group. Although there are no independent trials demonstrating the efficacy of WELLBUTRIN XL in the acute treatment of MDD, studies have demonstrated similar bioavailability between the immediate-, sustained-, and extended-release formulations of bupropion HCl under steady-state conditions (i.e., the exposures [C max and AUC] for bupropion and its metabolites are similar among the 3 formulations). 14.2 Seasonal Affective Disorder The efficacy of WELLBUTRIN XL in the prevention of seasonal major depressive episodes associated with SAD was established in 3 randomized, double-blind, placebo-controlled trials in adult outpatients with a history of MDD with an autumn-winter seasonal pattern (as defined by DSM-IV criteria). Bupropion treatment was initiated prior to the onset of symptoms in the autumn (September to November). Treatment was discontinued following a 2 week taper that began during the first week of spring (fourth week of March), resulting in a treatment duration of approximately 4 to 6 months for the majority of patients. Patients were randomized to treatment with WELLBUTRIN XL or placebo. The initial bupropion dose was 150 mg once daily for 1 week, followed by up-titration to 300 mg once daily. Patients who were deemed by the investigator to be unlikely or unable to tolerate 300 mg once daily were allowed to remain on, or had their dose reduced to, 150 mg once daily. The mean bupropion doses in the 3 trials ranged from 257 mg to 280 mg per day. Approximately 59% of patients continued in the study for 3 to 6 months; 26% continued for 6 months. To enter the trials, patients must have had a low level of depressive symptoms, as demonstrated by a score of <7 on the Hamilton Depression Rating Scale-17 (HAMD17) and a HAMD24 score of 20 on 2 consecutive weeks. The primary analysis was a comparison of depression-free rates between the bupropion and placebo groups. In these 3 trials, the percentage of patients who were depression-free (did not have an episode of MDD) at the end of treatment was significantly higher in the bupropion group than in the placebo group: 81.4% vs. 69.7%, 87.2% vs. 78.7%, and 84.0% vs. 69.0% for Trials 1, 2 and 3, respectively. For the 3 trials combined, the depression-free rate was 84.3% versus 72.0% in the bupropion and placebo group, respectively.

HOW SUPPLIED

16 /STORAGE AND HANDLING WELLBUTRIN XL ® Extended-Release Tablets, 150 mg of bupropion hydrochloride, are creamy-white to pale yellow, round tablets printed with “WELLBUTRIN XL 150” in bottles of 30 tablets (NDC 0187-0730-30) and 90 tablets (NDC 0187-0730-90). WELLBUTRIN XL ® Extended-Release Tablets, 300 mg of bupropion hydrochloride, are creamy-white to pale yellow, round tablets printed with “WELLBUTRIN XL 300” in bottles of 30 (NDC 0187-0731-30). Store at 25°C (77°F); excursions permitted to 15°-30°C (59°-86°F) [see USP Controlled Room Temperature]. WELLBUTRIN XL Tablets may have an odor.

GERIATRIC USE

8.5 Geriatric Use Of the approximately 6000 patients who participated in clinical trials with bupropion hydrochloride sustained-release tablets (depression and smoking cessation studies), 275 were ≥65 years old and 47 were ≥75 years old. In addition, several hundred patients ≥65 years of age participated in clinical trials using the immediate-release formulation of bupropion hydrochloride (depression studies). No overall differences in safety or effectiveness were observed between these subjects and younger subjects. Reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Bupropion is extensively metabolized in the liver to active metabolites, which are further metabolized and excreted by the kidneys. The risk of adverse reactions may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, it may be necessary to consider this factor in dose selection; it may be useful to monitor renal function [see Dosage and Administration (2.7), Use in Specific Populations (8.6), and Clinical Pharmacology (12.3)].

DOSAGE FORMS AND STRENGTHS

3 WELLBUTRIN XL Extended-Release Tablets, 150 mg of bupropion hydrochloride, are creamy-white to pale yellow, round tablets printed with “WELLBUTRIN XL 150”. WELLBUTRIN XL Extended-Release Tablets, 300 mg of bupropion hydrochloride, are creamy-white to pale yellow, round tablets printed with “WELLBUTRIN XL 300”. Extended-release tablets: 150 mg, 300 mg ( 3)

MECHANISM OF ACTION

12.1 Mechanism of Action The mechanism of action of bupropion is unknown, as is the case with other antidepressants. However, it is presumed that this action is mediated by noradrenergic and/or dopaminergic mechanisms. Bupropion is a relatively weak inhibitor of the neuronal uptake of norepinephrine and dopamine and does not inhibit monoamine oxidase or the reuptake of serotonin.

INDICATIONS AND USAGE

1 WELLBUTRIN XL is an aminoketone antidepressant, indicated for the treatment of major depressive disorder (MDD) and prevention of seasonal affective disorder (SAD). Periodically reevaluate long-term usefulness for the individual patient. ( 1) 1.1 Major Depressive Disorder WELLBUTRIN XL ® (bupropion hydrochloride extended-release tablets) is indicated for the treatment of major depressive disorder (MDD), as defined by the Diagnostic and Statistical Manual (DSM). The efficacy of the immediate-release formulation of bupropion was established in two 4-week controlled inpatient trials and one 6-week controlled outpatient trial of adult patients with MDD. The efficacy of the sustained-release formulation of bupropion in the maintenance treatment of MDD was established in a long-term (up to 44 weeks), placebo-controlled trial in patients who had responded to bupropion in an 8-week study of acute treatment [see Clinical Studies (14.1)]. 1.2 Seasonal Affective Disorder WELLBUTRIN XL is indicated for the prevention of seasonal major depressive episodes in patients with a diagnosis of seasonal affective disorder (SAD). The efficacy of bupropion hydrochloride extended-release tablets in the prevention of seasonal major depressive episodes was established in 3 placebo-controlled trials in adult outpatients with a history of MDD with an autumn-winter seasonal pattern as defined in the DSM [see Clinical Studies (14.2)].

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in the pediatric population have not been established. When considering the use of WELLBUTRIN XL in a child or adolescent, balance the potential risks with the clinical need [see Boxed Warning and Warnings and Precautions (5.1)].

PREGNANCY

8.1 Pregnancy Pregnancy Category C Risk Summary Data from epidemiological studies including pregnant women exposed to bupropion in the first trimester indicate no increased risk of congenital malformations overall. All pregnancies regardless of drug exposure have a background rate of 2% to 4% for major malformations and 15% to 20% for pregnancy loss. No clear evidence of teratogenic activity was found in reproductive developmental studies conducted in rats and rabbits. However, in rabbits, slightly increased incidences of fetal malformations and skeletal variations were observed at doses approximately equal to the maximum recommended human dose (MRHD) and greater and decreased fetal weights were seen at doses twice the MRHD and greater. WELLBUTRIN XL should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Clinical Considerations Consider the risk of untreated depression when discontinuing or changing treatment with antidepressant medications during pregnancy and postpartum. Human Data Data from an international bupropion Pregnancy registry (675 first trimester exposures) and a retrospective cohort study using the United Healthcare database (1,213 first trimester exposures) did not show an increased risk for malformations overall. No increased risk for cardiovascular malformations overall has been observed after bupropion exposure during the first trimester. The prospectively observed rate of cardiovascular malformations in pregnancies with exposure to bupropion in the first trimester from the international Pregnancy Registry was 1.3% (9 cardiovascular malformations/675 first-trimester maternal bupropion exposures), which is similar to the background rate of cardiovascular malformations (approximately 1%). Data from the United Healthcare database and a case-controlled study (6,853 infants with cardiovascular malformations and 5,753 with non-cardiovascular malformations) from the National Birth Defects Prevention Study (NBDPS) did not show an increased risk for cardiovascular malformations overall after bupropion exposure during the first trimester. Study findings on bupropion exposure during the first trimester and risk left ventricular outflow tract obstruction (LVOTO) are inconsistent and do not allow conclusions regarding possible association. The United Healthcare database lacked sufficient power to evaluate this association; the NBDPS found increased risk for LVOTO (n = 10; adjusted OR = 2.6; 95% CI 1.2, 5.7) and the Slone Epidemiology case control study did not find increased risk for LVOTO. Study findings on bupropion exposure during the first trimester and risk for ventricular septal defect (VSD) are inconsistent and do not allow conclusions regarding a possible association. The Slone Epidemiology Study found an increased risk for VSD following first trimester maternal bupropion exposure (n = 17; adjusted OR = 2.5; 95% CI: 1.3, 5.0) but did not find an increased risk for any other cardiovascular malformations studied (including LVOTO as above). The NBDPS and United Healthcare database study did not find an association between first trimester maternal bupropion exposure and VSD. For the findings of LVOTO and VSD, the studies were limited by the small number of exposed cases, inconsistent findings among studies, and the potential for chance findings from multiple comparisons in case control studies. Animal Data In studies conducted in rats and rabbits, bupropion was administered orally at doses of up to 450 and 150 mg/kg/day, respectively (approximately 11 and 7 times the MRHD, respectively, on a mg/m 2 basis), during the period of organogenesis. No clear evidence of teratogenic activity was found in either species; however, in rabbits, slightly increased incidences of fetal malformations and skeletal variations were observed at the lowest dose tested (25 mg/kg/day, approximately equal to the MRHD on a mg/m 2 basis) and greater. Decreased fetal weights were observed at 50 mg/kg and greater. When rats were administered bupropion at oral doses of up to 300 mg/kg/day (approximately 7 times the MRHD on a mg/m 2 basis) prior to mating and throughout pregnancy and lactation, there were no apparent adverse effects on offspring development.

NUSRING MOTHERS

8.3 Nursing Mothers Bupropion and its metabolites are present in human milk. In a lactation study of ten women, levels of orally dosed bupropion and its active metabolites were measured in expressed milk. The average daily infant exposure (assuming 150 mL/kg daily consumption) to bupropion and its active metabolites was 2% of the maternal weight-adjusted dose. Exercise caution when WELLBUTRIN XL is administered to a nursing woman.

BOXED WARNING

WARNING: SUICIDAL THOUGHTS AND BEHAVIORS and NEUROPSYCHIATRIC REACTIONS SUICIDALITY AND ANTIDEPRESSANT DRUGS Antidepressants increased the risk of suicidal thoughts and behavior in children, adolescents, and young adults in short-term trials. These trials did not show an increase in the risk of suicidal thoughts and behavior with antidepressants use in subjects aged 65 and older [see Warnings and Precautions (5.1)]. In patients of all ages who are started on antidepressant therapy, monitor closely for worsening, and for emergence of suicidal thoughts and behaviors. Advise families and caregivers of the need for close observation and communication with the prescriber [see Warnings and Precautions (5.1)]. NEUROPSYCHIATRIC REACTIONS IN PATIENTS TAKING BUPROPION FOR SMOKING CESSATION Serious neuropsychiatric reactions have occurred in patients taking bupropion for smoking cessation [see Warnings and Precautions (5.2)]. The majority of these reactions occurred during bupropion treatment, but some occurred in the context of discontinuing treatment. In many cases, a causal relationship to bupropion treatment is not certain, because depressed mood may be a symptom of nicotine withdrawal. However, some of the cases occurred in patients taking bupropion who continued to smoke. Although WELLBUTRIN XL is not approved for smoking cessation, observe all patients for neuropsychiatric reactions. Instruct the patient to contact a healthcare provider if such reactions occur [see Warnings and Precautions (5.2)]. WARNING: SUICIDAL THOUGHTS AND BEHAVIORS and NEUROPSYCHIATRIC REACTIONS See full prescribing information for complete boxed warning. Increased risk of suicidal thinking and behavior in children, adolescents, and young adults taking antidepressants. ( 5.1) Monitor for worsening and emergence of suicidal thoughts and behaviors. ( 5.1) Serious neuropsychiatric events have been reported in patients taking bupropion for smoking cessation. ( 5.2)

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Seizure risk: The risk is dose-related. Can minimize risk by limiting daily dose to 450 mg and gradually increasing the dose. Discontinue if seizure occurs. ( 4, 5.3, 7.3) Hypertension: WELLBUTRIN XL can increase blood pressure. Monitor blood pressure before initiating treatment and periodically during treatment. ( 5.4) Activation of mania/hypomania: Screen patients for bipolar disorder and monitor for these symptoms. ( 5.5) Psychosis and other neuropsychiatric reactions: Instruct patients to contact a healthcare professional if such reactions occur. ( 5.6) Angle-Closure Glaucoma: Angle-closure glaucoma has occurred in patients with untreated anatomically narrow angles treated with antidepressants. ( 5.7) 5.1 Suicidal Thoughts and Behaviors in Children, Adolescents, and Young Adults Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (Selective Serotonin Reuptake Inhibitors [SSRIs] and others) show that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. Table 1: Risk Differences in the Number of Suicidality Cases by Age Group in the Pooled Placebo-Controlled Trials of Antidepressants in Pediatric and Adult Patients Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 years 14 additional cases 18-24 years 5 additional cases Decreases Compared to Placebo 25-64 years 1 fewer case ≥65 years 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases [see Boxed Warning and Use in Specific Populations (8.4)]. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to healthcare providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for WELLBUTRIN XL should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose. 5.2 Neuropsychiatric Symptoms and Suicide Risk in Smoking Cessation Treatment WELLBUTRIN XL is not approved for smoking cessation treatment; however, bupropion HCl sustained-release is approved for this use. Serious neuropsychiatric symptoms have been reported in patients taking bupropion for smoking cessation. These have included changes in mood (including depression and mania), psychosis, hallucinations, paranoia, delusions, homicidal ideation, hostility, agitation, aggression, anxiety, and panic, as well as suicidal ideation, suicide attempt, and completed suicide [see Boxed Warning and Adverse Reactions (6.2)]. Observe patients for the occurrence of neuropsychiatric reactions. Instruct patients to contact a healthcare professional if such reactions occur. In many of these cases, a causal relationship to bupropion treatment is not certain, because depressed mood can be a symptom of nicotine withdrawal. However, some of the cases occurred in patients taking bupropion who continued to smoke. 5.3 Seizure WELLBUTRIN XL can cause seizure. The risk of seizure is dose-related. The dose should not exceed 300 mg once daily. Increase the dose gradually. Discontinue WELLBUTRIN XL and do not restart treatment if the patient experiences a seizure. The risk of seizures is also related to patient factors, clinical situations, and concomitant medications that lower the seizure threshold. Consider these risks before initiating treatment with WELLBUTRIN XL. WELLBUTRIN XL is contraindicated in patients with a seizure disorder or conditions that increase the risk of seizure (e.g., severe head injury, arteriovenous malformation, CNS tumor or CNS infection, severe stroke, anorexia nervosa or bulimia, or abrupt discontinuation of alcohol, benzodiazepines, barbiturates, and antiepileptic drugs [see Contraindications (4)]. The following conditions can also increase the risk of seizure: concomitant use of other medications that lower the seizure threshold (e.g., other bupropion products, antipsychotics, tricyclic antidepressants, theophylline, and systemic corticosteroids), metabolic disorders (e.g., hypoglycemia, hyponatremia, severe hepatic impairment, and hypoxia), or use of illicit drugs (e.g., cocaine) or abuse or misuse of prescription drugs such as CNS stimulants. Additional predisposing conditions include diabetes mellitus treated with oral hypoglycemic drugs or insulin, use of anorectic drugs, excessive use of alcohol, benzodiazepines, sedative/hypnotics, or opiates. Incidence of Seizure with Bupropion Use The incidence of seizure with WELLBUTRIN XL has not been formally evaluated in clinical trials. In studies using bupropion HCl sustained-release up to 300 mg per day the incidence of seizure was approximately 0.1% (1/1000 patients). In a large prospective, follow-up study, the seizure incidence was approximately 0.4% (13/3200) with bupropion HCl immediate-release in the range of 300 mg to 450 mg per day. Additional data accumulated for bupropion immediate-release suggests that the estimated seizure incidence increases almost tenfold between 450 and 600 mg/day. The risk of seizure can be reduced if the WELLBUTRIN XL dose does not exceed 450 mg once daily and the titration rate is gradual. 5.4 Hypertension Treatment with WELLBUTRIN XL can result in elevated blood pressure and hypertension. Assess blood pressure before initiating treatment with WELLBUTRIN XL, and monitor periodically during treatment. The risk of hypertension is increased if WELLBUTRIN XL is used concomitantly with MAOIs or other drugs that increase dopaminergic or noradrenergic activity [see Contraindications (4)]. Data from a comparative trial of the sustained-release formulation of bupropion HCl, nicotine transdermal system (NTS), the combination of sustained-release bupropion plus NTS, and placebo as an aid to smoking cessation suggest a higher incidence of treatment-emergent hypertension in patients treated with the combination of sustained-release bupropion and NTS. In this trial, 6.1% of subjects treated with the combination of sustained-release bupropion and NTS had treatment-emergent hypertension compared to 2.5%, 1.6%, and 3.1% of subjects treated with sustained-release bupropion, NTS, and placebo, respectively. The majority of these subjects had evidence of pre-existing hypertension. Three subjects (1.2%) treated with the combination of sustained-release bupropion and NTS and 1 subject (0.4%) treated with NTS had study medication discontinued due to hypertension compared with none of the subjects treated with sustained-release bupropion or placebo. Monitoring of blood pressure is recommended in patients who receive the combination of bupropion and nicotine replacement. In the 3 trials of bupropion HCl extended-release in seasonal affective disorder, there were significant elevations in blood pressure. Hypertension was reported as an adverse reaction for 2% of the bupropion group (11/537) and none in the placebo group (0/511). In the SAD trials, 2 patients treated with bupropion discontinued from the study because they developed hypertension. None of the placebo group discontinued because of hypertension. The mean increase in systolic blood pressure was 1.3 mmHg in the bupropion group and 0.1 mmHg in the placebo group. The difference was statistically significant (p=0.013). The mean increase in diastolic blood pressure was 0.8 mmHg in the bupropion group and 0.1 mmHg in the placebo group. The difference was not statistically significant (p=0.075). In the SAD trials, 82% of patients were treated with 300 mg per day, and 18% were treated with 150 mg per day. The mean daily dose was 270 mg per day. The mean duration of bupropion exposure was 126 days. In a clinical trial of bupropion immediate-release in MDD subjects with stable congestive heart failure (N=36), bupropion was associated with an exacerbation of pre-existing hypertension in 2 subjects, leading to discontinuation of bupropion treatment. There are no controlled studies assessing the safety of bupropion in patients with a recent history of myocardial infarction or unstable cardiac disease. 5.5 Activation of Mania/Hypomania Antidepressant treatment can precipitate a manic, mixed, or hypomanic manic episode. The risk appears to be increased in patients with bipolar disorder or who have risk factors for bipolar disorder. Prior to initiating WELLBUTRIN XL, screen patients for a history of bipolar disorder and the presence of risk factors for bipolar disorder (e.g., family history of bipolar disorder, suicide, or depression). WELLBUTRIN XL is not approved for the treatment of bipolar depression. 5.6 Psychosis and Other Neuropsychiatric Reactions Depressed patients treated with bupropion have had a variety of neuropsychiatric signs and symptoms, including delusions, hallucinations, psychosis, concentration disturbance, paranoia, and confusion. Some of these patients had a diagnosis of bipolar disorder. In some cases, these symptoms abated upon dose reduction and/or withdrawal of treatment. Discontinue WELLBUTRIN XL if these reactions occur. 5.7 Angle-Closure Glaucoma Angle-Closure Glaucoma: The pupillary dilation that occurs following use of many antidepressant drugs including WELLBUTRIN XL may trigger an angle-closure attack in a patient with anatomically narrow angles who does not have a patent iridectomy. 5.8 Hypersensitivity Reactions Anaphylactoid/anaphylactic reactions have occurred during clinical trials with bupropion. Reactions have been characterized by pruritus, urticaria, angioedema, and dyspnea, requiring medical treatment. In addition, there have been rare, spontaneous postmarketing reports of erythema multiforme, Stevens-Johnson Syndrome, and anaphylactic shock associated with bupropion. Instruct patients to discontinue WELLBUTRIN XL and consult a healthcare provider if they develop an allergic or anaphylactoid/anaphylactic reaction (e.g., skin rash, pruritus, hives, chest pain, edema, and shortness of breath) during treatment. There are reports of arthralgia, myalgia, fever with rash and other symptoms of serum sickness suggestive of delayed hypersensitivity.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Inform patients, their families, and their caregivers about the benefits and risks associated with treatment with WELLBUTRIN XL and counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and Other Serious Mental Illnesses, and Suicidal Thoughts or Actions,” “Quitting Smoking, Quit-Smoking Medications, Changes in Thinking and Behavior, Depression, and Suicidal Thoughts or Actions,” and “What Other Important Information Should I Know About WELLBUTRIN XL?” is available for WELLBUTRIN XL. Instruct patients, their families, and their caregivers to read the Medication Guide and assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Advise patients regarding the following issues and to alert their prescriber if these occur while taking WELLBUTRIN XL. Suicidal Thoughts and Behaviors Instruct patients, their families, and/or their caregivers to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Advise families and caregivers of patients to observe for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication. Neuropsychiatric Symptoms and Suicide Risk in Smoking Cessation Treatment Although WELLBUTRIN XL is not indicated for smoking cessation treatment, it contains the same active ingredient as ZYBAN ® which is approved for this use. Advise patients, families and caregivers that quitting smoking, with or without ZYBAN, may trigger nicotine withdrawal symptoms (e.g., including depression or agitation) or worsen pre-existing psychiatric illness. Some patients have experienced changes in mood (including depression and mania), psychosis, hallucinations, paranoia, delusions, homicidal ideation, aggression, anxiety, and panic, as well as suicidal ideation, suicide attempt, and completed suicide when attempting to quit smoking while taking ZYBAN. If patients develop agitation, hostility, depressed mood, or changes in thinking or behavior that are not typical for them, or if patients develop suicidal ideation or behavior, they should be urged to report these symptoms to their healthcare provider immediately. Severe Allergic Reactions Educate patients on the symptoms of hypersensitivity and to discontinue WELLBUTRIN XL if they have a severe allergic reaction. Seizure Instruct patients to discontinue and not restart WELLBUTRIN XL if they experience a seizure while on treatment. Advise patients that the excessive use or the abrupt discontinuation of alcohol, benzodiazepines, antiepileptic drugs, or sedatives/hypnotics can increase the risk of seizure. Advise patients to minimize or avoid the use of alcohol. Angle-Closure Glaucoma Patients should be advised that taking WELLBUTRIN XL can cause mild pupillary dilation, which in susceptible individuals, can lead to an episode of angle-closure glaucoma. Pre-existing glaucoma is almost always open-angle glaucoma because angle-closure glaucoma, when diagnosed, can be treated definitively with iridectomy. Open-angle glaucoma is not a risk factor for angle-closure glaucoma. Patients may wish to be examined to determine whether they are susceptible to angle-closure, and have a prophylactic procedure (e.g., iridectomy), if they are susceptible [see Warnings and Precautions (5.7)]. Bupropion-Containing Products Educate patients that WELLBUTRIN XL contains the same active ingredient (bupropion) found in ZYBAN, which is used as an aid to smoking cessation treatment, and that WELLBUTRIN XL should not be used in combination with ZYBAN or any other medications that contain bupropion hydrochloride (such as WELLBUTRIN SR, the sustained-release formulation, WELLBUTRIN, the immediate-release formulation, and APLENZIN, a bupropion hydrobromide formulation). In addition, there are a number of generic bupropion HCl products for the immediate, sustained, and extended-release formulations. Potential for Cognitive and Motor Impairment Advise patients that any CNS-active drug like WELLBUTRIN XL Tablets may impair their ability to perform tasks requiring judgment or motor and cognitive skills. Advise patients that until they are reasonably certain that WELLBUTRIN XL Tablets do not adversely affect their performance, they should refrain from driving an automobile or operating complex, hazardous machinery. WELLBUTRIN XL treatment may lead to decreased alcohol tolerance. Concomitant Medications Counsel patients to notify their healthcare provider if they are taking or plan to take any prescription or over-the-counter drugs, because WELLBUTRIN XL Tablets and other drugs may affect each other’s metabolism. Pregnancy Advise patients to notify their healthcare provider if they become pregnant or intend to become pregnant during therapy. Precautions for Nursing Mothers Communicate with the patient and pediatric healthcare provider regarding the infant’s exposure to bupropion through human milk. Instruct patients to immediately contact the infant’s healthcare provider if they note any side effect in the infant that concerns them or is persistent. Administration Information Instruct patients to swallow WELLBUTRIN XL Tablets whole so that the release rate is not altered. Instruct patients if they miss a dose, not to take an extra tablet to make up for the missed dose and to take the next tablet at the regular time because of the dose-related risk of seizure. Instruct patients that WELLBUTRIN XL tablets should be swallowed whole and not crushed, divided, or chewed. WELLBUTRIN XL should be administered in the morning and may be taken with or without food. Manufactured for: Valeant Pharmaceuticals North America LLC Bridgewater, NJ 08807 USA By: Valeant Pharmaceuticals International, Inc. Steinbach, MB R5G 1Z7 Canada WELLBUTRIN XL ® is a registered trademark of GlaxoSmithKline LLC used under license. ©Valeant Pharmaceuticals North America LLC. All other product/brand names are the trademarks of their respective owners. 9395602 20001582 Rev. 8/2016

DOSAGE AND ADMINISTRATION

2 General: Increase dose gradually to reduce seizure risk. ( 2.1, 5.3) Periodically reassess the dose and need for maintenance treatment. ( 2.2) Major Depressive Disorder Starting dose: 150 mg once daily. Usual target dose: 300 mg once daily ( 2.2) After 4 days, may increase the dose to 300 mg once daily. ( 2.2) Seasonal Affective Disorder Initiate treatment in the autumn prior to onset of seasonal depressive symptoms. ( 2.3) Starting dose: 150 mg once daily. Usual target dose: 300 mg once daily. ( 2.3) After one week, may increase the dose to 300 mg once daily. ( 2.3) Continue treatment through the winter season. ( 2.3) Hepatic Impairment Moderate to severe hepatic impairment: 150 mg every other day ( 2.6) Mild hepatic impairment: Consider reducing the dose and/or frequency of dosing. ( 2.6, 8.7) Renal Impairment Consider reducing the dose and/or frequency of dosing. ( 2.7, 8.6) 2.1 General Instructions for Use To minimize the risk of seizure, increase the dose gradually [see Warnings and Precautions (5.3)]. WELLBUTRIN XL should be swallowed whole and not crushed, divided, or chewed. WELLBUTRIN XL should be administered in the morning and may be taken with or without food. 2.2 Dosage for Major Depressive Disorder (MDD) The recommended starting dose for MDD is 150 mg once daily in the morning. After 4 days of dosing, the dose may be increased to the target dose of 300 mg once daily in the morning. It is generally agreed that acute episodes of depression require several months or longer of antidepressant treatment beyond the response in the acute episode. It is unknown whether the WELLBUTRIN XL dose needed for maintenance treatment is identical to the dose that provided an initial response. Periodically reassess the need for maintenance treatment and the appropriate dose for such treatment. 2.3 Dosage for Seasonal Affective Disorder (SAD) The recommended starting dose for SAD is 150 mg once daily. After 7 days of dosing, the dose may be increased to the target dose of 300 mg once daily in the morning. Doses above 300 mg of bupropion HCl extended-release were not assessed in the SAD trials. For the prevention of seasonal MDD episodes associated with SAD, initiate WELLBUTRIN XL in the autumn, prior to the onset of depressive symptoms. Continue treatment through the winter season. Taper and discontinue WELLBUTRIN XL in early spring. For patients treated with 300 mg per day, decrease the dose to 150 mg once daily before discontinuing WELLBUTRIN XL. Individualize the timing of initiation, and duration of treatment should be individualized, based on the patient’s historical pattern of seasonal MDD episodes. 2.4 Switching Patients from WELLBUTRIN Tablets or from WELLBUTRIN SR Sustained-Release Tablets When switching patients from WELLBUTRIN Tablets to WELLBUTRIN XL or from WELLBUTRIN SR Sustained-Release Tablets to WELLBUTRIN XL, give the same total daily dose when possible. 2.5 To Discontinue WELLBUTRIN XL, Taper the Dose When discontinuing treatment in patients treated with WELLBUTRIN XL 300 mg once daily, decrease the dose to 150 mg once daily prior to discontinuation. 2.6 Dosage Adjustment in Patients with Hepatic Impairment In patients with moderate to severe hepatic impairment (Child-Pugh score: 7 to 15), the maximum dose is 150 mg every other day. In patients with mild hepatic impairment (Child-Pugh score: 5 to 6), consider reducing the dose and/or frequency of dosing [see Use in Specific Populations (8.7) and Clinical Pharmacology (12.3)]. 2.7 Dose Adjustment in Patients with Renal Impairment Consider reducing the dose and/or frequency of WELLBUTRIN in patients with renal impairment (Glomerular Filtration Rate less than 90 mL/min) [see Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)] . 2.8 Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Antidepressant At least 14 days should elapse between discontinuation of an MAOI intended to treat depression and initiation of therapy with WELLBUTRIN XL. Conversely, at least 14 days should be allowed after stopping WELLBUTRIN XL before starting an MAOI antidepressant [see Contraindications (4) and Drug Interactions (7.6)]. 2.9 Use of WELLBUTRIN XL with Reversible MAOIs such as Linezolid or Methylene Blue Do not start WELLBUTRIN XL in a patient who is being treated with a reversible MAOI such as linezolid or intravenous methylene blue. Drug interactions can increase risk of hypertensive reactions. In a patient who requires more urgent treatment of a psychiatric condition, non-pharmacological interventions, including hospitalization, should be considered [see Contraindications (4)]. In some cases, a patient already receiving therapy with WELLBUTRIN XL may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of hypertensive reactions in a particular patient, WELLBUTRIN XL should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for 2 weeks or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with WELLBUTRIN XL may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue. The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg per kg with WELLBUTRIN XL is unclear. The clinician should, nevertheless, be aware of the possibility of a drug interaction with such use [see Contraindications (4) and Drug Interactions (7.6)].