doxycycline hyclate 150 MG Oral Tablet [Acticlate]

DRUG INTERACTIONS

7 Patients who are on anticoagulant therapy may require downward adjustment of their anticoagulant dosage. (7.1) Avoid co-administration of tetracyclines with penicillin. (7.2) Absorption of tetracyclines, including ACTICLATE and ACTICLATE CAP is impaired by antacids containing aluminum, calcium, or magnesium, bismuth subsalicylate and iron-containing preparations. (7.3) Concurrent use of tetracyclines, including ACTICLATE and ACTICLATE CAP may render oral contraceptives less effective. (7.4) Barbiturates, carbamazepine and phenytoin decrease the half-life of doxycycline. (7.5) 7.1 Anticoagulant Drugs Because tetracyclines have been shown to depress plasma prothrombin activity, patients who are on anticoagulant therapy may require downward adjustment of their anticoagulant dosage. 7.2 Penicillin Since bacteriostatic drugs may interfere with the bactericidal action of penicillin, it is advisable to avoid giving tetracyclines, including ACTICLATE and ACTICLATE CAP in conjunction with penicillin. 7.3 Antacids and Iron Preparations Absorption of tetracyclines, including ACTICLATE and ACTICLATE CAP is impaired by antacids containing aluminum, calcium, or magnesium, bismuth subsalicylate, and iron-containing preparations. 7.4 Oral Contraceptives Concurrent use of tetracyclines, including ACTICLATE and ACTICLATE CAP may render oral contraceptives less effective. 7.5 Barbiturates and Anti-Epileptics Barbiturates, carbamazepine, and phenytoin decrease the half-life of doxycycline. 7.6 Penthrane® The concurrent use of tetracycline and Penthrane® (methoxyflurane) has been reported to result in fatal renal toxicity. 7.7 Drug and Laboratory Test Interactions False elevations of urinary catecholamines may occur due to interference with the fluorescence test.

OVERDOSAGE

10 In case of overdosage, discontinue medication, treat symptomatically and institute supportive measures. Dialysis does not alter serum half-life and thus would not be of benefit in treating cases of overdosage.

DESCRIPTION

11 ACTICLATE (doxycycline hyclate) Tablets and ACTICLATE CAP (doxycycline hyclate) Capsules contain doxycycline hyclate, a tetracycline class drug synthetically derived from oxytetracycline, in an immediate release formulation for oral administration. The molecular formula of doxycycline hyclate is (C22H24N2O8 • HCl)2• C2H6O• H2O and the molecular weight of doxycycline hyclate is 1025.87. The chemical name for doxycycline hyclate is: 4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide monohydrochloride, compound with ethyl alcohol (2:1), monohydrate. The structural formula for doxycycline hyclate is: Figure 1: Structure of Doxycycline Hyclate Doxycycline hyclate is a yellow crystalline powder soluble in water and in solutions of alkali hydroxides and carbonates. ACTICLATE Tablet: ACTICLATE is available as 75 mg and 150 mg tablets. Each 75 mg tablet contains 86.6 mg of doxycycline hyclate equivalent to 75 mg of doxycycline. Each 150 mg tablet contains 173.2 mg of doxycycline hyclate equivalent to 150 mg of doxycycline. Inactive ingredients in the tablet formulation are: microcrystalline cellulose, sodium lauryl sulfate, croscarmellose sodium and magnesium stearate. Film-coating contains: polyvinyl alcohol, titanium dioxide, polyethylene glycol, talc, FD&C Blue #1 (75 mg Tablet), FD&C Blue #2 (150 mg Tablet) and yellow iron oxide (150 mg Tablet). ACTICLATE Tablets, 75 mg contain 0.34 mg (0.0146 mEq) of sodium. ACTICLATE Tablets, 150 mg contain 0.68 mg (0.0295 mEq) of sodium. ACTICLATE CAP Capsule: ACTICLATE CAP is available as 75 mg capsules. Each 75 mg capsule contains 86.6 mg of doxycycline hyclate equivalent to 75 mg of doxycycline. Inactive ingredients in the capsule formulation are: microcrystalline cellulose, magnesium stearate, and a hard gelatin capsule which contains titanium dioxide, FD&C Red #40 and FD&C Blue #1. The capsules are printed with edible ink containing ammonium hydroxide, propylene glycol, isopropyl alcohol, N-butyl alcohol, black iron oxide, and shellac glaze in ethanol. structural formula

HOW SUPPLIED

16 /STORAGE AND HANDLING How Supplied ACTICLATE (doxycycline hyclate) Tablets, 75 mg are round, convex, light-teal, film-coated, tablets with “75” debossed on one side of the tablet and “AQ101” debossed on the other. Each 75 mg tablet contains 86.6 mg of doxycycline hyclate equivalent to 75 mg of doxycycline. Bottles of 60 tablets: NDC 16110-501-01 ACTICLATE (doxycycline hyclate) Tablets, 150 mg are oval-shaped, convex, mossy-green, film-coated tablets. Each side of the functionally scored tablet has two parallel score lines for splitting into 3 equal portions with “A” debossed on each portion of one side of the tablet, and no debossing on the other. Each 150 mg tablet contains 173.2 mg of doxycycline hyclate equivalent to 150 mg of doxycycline. Bottles of 60 tablets: NDC 16110-502-01 ACTICLATE CAP (doxycycline hyclate) Capsules, 75 mg, have a navy blue opaque body and cap with the inscription “AQUA 101C75” in black. Each 75 mg capsule contains 86.6 mg of doxycycline hyclate equivalent to 75 mg of doxycycline. Bottles of 60 capsules: NDC 16110-601-01 Storage Store at 20° to 25°C (68° to 77°F) excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature]. Protect from light and moisture. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure.

GERIATRIC USE

8.5 Geriatric Use Clinical studies of doxycycline hyclate tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. ACTICLATE Tablets each contains less than 1 mg of sodium.

DOSAGE FORMS AND STRENGTHS

3 ACTICLATE Tablets: ACTICLATE (doxycycline hyclate) Tablets, 75 mg are round, convex, light-teal, film-coated, tablets with “75” debossed on one side of the tablet and “AQ101” debossed on the other (each tablet contains 75 mg doxycycline as 86.6 mg doxycycline hyclate). ACTICLATE (doxycycline hyclate) Tablets, 150 mg are oval-shaped, convex, mossy-green, film-coated tablets. Each side of the functionally scored tablet has two parallel score lines for splitting into 3 equal portions with “A” debossed on each portion of one side of the tablet, and no debossing on the other (each tablet contains 150 mg doxycycline as 173.2 mg doxycycline hyclate). ACTICLATE CAP Capsules: ACTICLATE CAP (doxycycline hyclate) Capsules, 75 mg have a navy blue opaque body and cap with the inscription “AQUA 101C75” in black (each capsule contains 75 mg doxycycline as 86.6 mg doxycycline hyclate). ACTICLATE Tablets: 75 mg and 150 mg (functionally scored) (3) ACTICLATE CAP Capsules: 75 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Doxycycline is a tetracycline-class antimicrobial drug [see Microbiology (12.4)].

INDICATIONS AND USAGE

1 ACTICLATE® and ACTICLATE® CAP are tetracycline class drugs indicated for: Rickettsial infections (1.1) Sexually transmitted infections (1.2) Respiratory tract infections (1.3) Specific bacterial infections (1.4) Ophthalmic infections (1.5) Anthrax, including inhalational anthrax (post-exposure) (1.6) Alternative treatment for selected infections when penicillin is contraindicated (1.7) Adjunctive therapy for acute intestinal amebiasis and severe acne (1.8) Prophylaxis of malaria (1.9) To reduce the development of drug-resistant bacteria and maintain the effectiveness of ACTICLATE and ACTICLATE CAP and other antibacterial drugs, ACTICLATE and ACTICLATE CAP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (1.10) 1.1 Rickettsial Infections ACTICLATE® and ACTICLATE® CAP are indicated for treatment of Rocky Mountain spotted fever, typhus fever and the typhus group, Q fever, rickettsial pox, and tick fevers caused by Rickettsiae. 1.2 Sexually Transmitted Infections ACTICLATE and ACTICLATE CAP are indicated for treatment of the following sexually transmitted infections: Uncomplicated urethral, endocervical or rectal infections caused by Chlamydia trachomatis. Nongonococcal urethritis caused by Ureaplasma urealyticum. Lymphogranuloma venereum caused by Chlamydia trachomatis. Granuloma inguinale caused by Klebsiella granulomatis. Uncomplicated gonorrhea caused by Neisseria gonorrhoeae. Chancroid caused by Haemophilus ducreyi. 1.3 Respiratory Tract Infections ACTICLATE and ACTICLATE CAP are indicated for treatment of the following respiratory tract infections: Respiratory tract infections caused by Mycoplasma pneumoniae. Psittacosis (ornithosis) caused by Chlamydophila psittaci. Because many strains of the following groups of microorganisms have been shown to be resistant to doxycycline, culture and susceptibility testing are recommended. Doxycycline is indicated for treatment of infections caused by the following microorganisms, when bacteriological testing indicates appropriate susceptibility to the drug: Respiratory tract infections caused by Haemophilus influenzae. Respiratory tract infections caused by Klebsiella species. Upper respiratory infections caused by Streptococcus pneumoniae. 1.4 Specific Bacterial Infections ACTICLATE and ACTICLATE CAP are indicated for treatment of the following specific bacterial infections: Relapsing fever due to Borrelia recurrentis. Plague due to Yersinia pestis. Tularemia due to Francisella tularensis. Cholera caused by Vibrio cholerae. Campylobacter fetus infections caused by Campylobacter fetus. Brucellosis due to Brucella species (in conjunction with streptomycin). Bartonellosis due to Bartonella bacilliformis. Because many strains of the following groups of microorganisms have been shown to be resistant to doxycycline, culture and susceptibility testing are recommended. ACTICLATE and ACTICLATE CAP are indicated for treatment of infections caused by the following gram-negative microorganisms, when bacteriological testing indicates appropriate susceptibility to the drug: Escherichia coli Enterobacter aerogenes Shigella species Acinetobacter species Urinary tract infections caused by Klebsiella species. 1.5 Ophthalmic Infections ACTICLATE and ACTICLATE CAP are indicated for treatment of the following ophthalmic infections: Trachoma caused by Chlamydia trachomatis, although the infectious agent is not always eliminated as judged by immunofluorescence. Inclusion conjunctivitis caused by Chlamydia trachomatis. 1.6 Anthrax Including Inhalational Anthrax (Post-Exposure) ACTICLATE and ACTICLATE CAP are indicated for the treatment of Anthrax due to Bacillus anthracis, including inhalational anthrax (post-exposure); to reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis. 1.7 Alternative Treatment for Selected Infections when Penicillin is Contraindicated ACTICLATE and ACTICLATE CAP are indicted as an alternative treatment for the following selected infections when penicillin is contraindicated: Syphilis caused by Treponema pallidum. Yaws caused by Treponema pallidum subspecies pertenue. Listeriosis due to Listeria monocytogenes. Vincent’s infection caused by Fusobacterium fusiforme. Actinomycosis caused by Actinomyces israelii. Infections caused by Clostridium species. 1.8 Adjunctive Therapy for Acute Intestinal Amebiasis and Severe Acne In acute intestinal amebiasis, ACTICLATE and ACTICLATE CAP may be a useful adjunct to amebicides. In severe acne, ACTICLATE and ACTICLATE CAP may be useful adjunctive therapy. 1.9 Prophylaxis of Malaria ACTICLATE and ACTICLATE CAP are indicated for the prophylaxis of malaria due to Plasmodium falciparum in short-term travelers (less than 4 months) to areas with chloroquine and/or pyrimethamine-sulfadoxine resistant strains [see Dosage and Administration (2.4) and Patient Counseling Information (17)]. 1.10 Usage To reduce the development of drug-resistant bacteria and maintain the effectiveness of ACTICLATE and ACTICLATE CAP and other antibacterial drugs, ACTICLATE and ACTICLATE CAP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

PEDIATRIC USE

8.4 Pediatric Use Because of the effects of drugs of the tetracycline-class on tooth development and growth, use ACTICLATE and ACTICLATE CAP in pediatric patients 8 years of age or less only when the potential benefits are expected to outweigh the risks in severe or life-threatening conditions (e.g., anthrax, Rocky Mountain spotted fever), particularly when there are no alternative therapies [see Warnings and Precautions (5.1, 5.6) and Dosage and Administration (2.1, 2.5)].

PREGNANCY

8.1 Pregnancy Teratogenic Effects. Pregnancy Category D: [see Warnings and Precautions (5.6)] There are no adequate and well-controlled studies on the use of doxycycline in pregnant women. The vast majority of reported experience with doxycycline during human pregnancy is short-term, first trimester exposure. There are no human data available to assess the effects of long-term therapy of doxycycline in pregnant women such as that proposed for the treatment of anthrax exposure. An expert review of published data on experiences with doxycycline use during pregnancy by TERIS – the Teratogen Information System – concluded that therapeutic doses during pregnancy are unlikely to pose a substantial teratogenic risk (the quantity and quality of data were assessed as limited to fair), but the data are insufficient to state that there is no risk.1 A case-control study (18,515 mothers of infants with congenital anomalies and 32,804 mothers of infants with no congenital anomalies) shows a weak but marginally statistically significant association with total malformations and use of doxycycline anytime during pregnancy. Sixty-three (0.19%) of the controls and 56 (0.30%) of the cases were treated with doxycycline. This association was not seen when the analysis was confined to maternal treatment during the period of organogenesis (that is, in the second and third months of gestation), with the exception of a marginal relationship with neural tube defect based on only two-exposed cases.2 A small prospective study of 81 pregnancies describes 43 pregnant women treated for 10 days with doxycycline during early first trimester. All mothers reported their exposed infants were normal at 1 year of age.3 Nonteratogenic effects: [see Warnings and Precautions (5.1, 5.6)].

NUSRING MOTHERS

8.3 Nursing Mothers Tetracyclines are excreted in human milk, however, the extent of absorption of tetracyclines including doxycycline, by the breastfed infant is not known. Short-term use by lactating women is not necessarily contraindicated. The effects of prolonged exposure to doxycycline in breast milk are unknown4. Because of the potential for serious adverse reactions in nursing infants from doxycycline, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother [see Warnings and Precautions (5.1, 5.6)].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS The use of drugs of the tetracycline-class during tooth development (last half of pregnancy, infancy and childhood to the age of 8 years) may cause permanent discoloration of the teeth (yellow-gray-brown). (2.2, 5.1) Clostridium difficile-associated diarrhea (CDAD) has been reported. Evaluate patients if diarrhea occurs. (5.2) Photosensitivity manifested by an exaggerated sunburn reaction has been observed in some individuals taking tetracyclines. Limit sun exposure. (5.3) Overgrowth of non-susceptible organisms, including fungi, may occur. If such infections occur, discontinue use and institute appropriate therapy. (5.4) 5.1 Tooth Development The use of drugs of the tetracycline-class during tooth development (last half of pregnancy, infancy and childhood to the age of 8 years) may cause permanent discoloration of the teeth (yellow-gray-brown). This adverse reaction is more common during long-term use of the drugs but it has been observed following repeated short-term courses. Enamel hypoplasia has also been reported. Use ACTICLATE and ACTICLATE CAP in pediatric patients 8 years of age or less only when the potential benefits are expected to outweigh the risks in severe or life-threatening conditions (e.g., anthrax, Rocky Mountain spotted fever), particularly when there are no alternative therapies. 5.2 Clostridium difficile Associated Diarrhea Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including ACTICLATE and ACTICLATE CAP, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antibacterial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibacterial use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. 5.3 Photosensitivity Photosensitivity manifested by an exaggerated sunburn reaction has been observed in some individuals taking tetracyclines. Patients apt to be exposed to direct sunlight or ultraviolet light should be advised that this reaction can occur with tetracycline drugs, and treatment should be discontinued at the first evidence of skin erythema. 5.4 Potentaial for Microbial Overgrowth ACTICLATE and ACTICLATE CAP may result in overgrowth of non-susceptible organisms, including fungi. If such infections occur, discontinue use and institute appropriate therapy. 5.5 Intracranial Hypertension Intracranial hypertension (IH, pseudotumor cerebri) has been associated with the use of tetracyclines including ACTICLATE and ACTICLATE CAP. Clinical manifestations of IH include headache, blurred vision, diplopia, and vision loss; papilledema can be found on fundoscopy. Women of childbearing age who are overweight or have a history of IH are at greater risk for developing tetracycline associated IH. Concomitant use of isotretinoin and ACTICLATE and ACTICLATE CAP should be avoided because isotretinoin is also known to cause pseudotumor cerebri. Although IH typically resolves after discontinuation of treatment, the possibility for permanent visual loss exists. If visual disturbance occurs during treatment, prompt ophthalmologic evaluation is warranted. Since intracranial pressure can remain elevated for weeks after drug cessation patients should be monitored until they stabilize. 5.6 Delayed Skeletal Development All tetracyclines form a stable calcium complex in any bone-forming tissue. A decrease in fibula growth rate has been observed in prematures given oral tetracycline in doses of 25 mg per kg every six hours. This reaction was shown to be reversible when the drug was discontinued. Results of animal studies indicate that tetracyclines cross the placenta, are found in fetal tissues, and can have toxic effects on the developing fetus (often related to retardation of skeletal development). Evidence of embryotoxicity also has been noted in animals treated early in pregnancy. Tetracycline-class drugs can cause fetal harm when administered to a pregnant woman, but data for doxycycline are limited. If any tetracycline is used during pregnancy or if the patient becomes pregnant while taking these drugs, the patient should be apprised of the potential hazard to the fetus. 5.7 Antianabolic Action The antianabolic action of the tetracyclines may cause an increase in BUN. Studies to date indicate that this does not occur with the use of doxycycline in patients with impaired renal function. 5.8 Incomplete Suppression of Malaria Doxycycline offers substantial but not complete suppression of the asexual blood stages of Plasmodium strains. Doxycycline does not suppress P. falciparum’s sexual blood stage gametocytes. Subjects completing this prophylactic regimen may still transmit the infection to mosquitoes outside endemic areas. 5.9 Development of Drug-Resistant Bacteria Prescribing ACTICLATE and ACTICLATE CAP in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria. 5.10 Laboratory Monitoring for Long-Term Therapy In long-term therapy, periodic laboratory evaluation of organ systems, including hematopoietic, renal and hepatic studies should be performed.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Instructions for Use). Advise patients taking ACTICLATE and ACTICLATE CAP for malaria prophylaxis: that no present-day antimalarial agent, including doxycycline, guarantees protection against malaria. to avoid being bitten by mosquitoes by using personal protective measures that help avoid contact with mosquitoes, especially from dusk to dawn (for example, staying in well-screened areas, using mosquito nets, covering the body with clothing, and using an effective insect repellent). that doxycycline prophylaxis: – should begin 1 day to 2 days before travel to the malarious area, – should be continued daily while in the malarious area and after leaving the malarious area, – should be continued for 4 further weeks to avoid development of malaria after returning from an endemic area, – should not exceed 4 months. Advise all patients taking ACTICLATE and ACTICLATE CAP: that ACTICLATE Tablets (150 mg) can be broken into two-thirds or one-third at the scored lines to provide 100 mg or 50 mg strength doses, respectively. that they must swallow ACTICLATE CAP whole. They must not break, open, crush, dissolve or chew the capsule [see Dosage and Administration (2.2)]. to avoid excessive sunlight or artificial ultraviolet light while receiving doxycycline and to discontinue therapy if phototoxicity (for example, skin eruptions, etc.) occurs. Sunscreen or sunblock should be considered [see Warnings and Precautions (5.3)]. to drink fluids liberally along with ACTICLATE and ACTICLATE CAP to reduce the risk of esophageal irritation and ulceration [see Adverse Reactions (6)]. that the absorption of tetracyclines is reduced when taken with foods, especially those that contain calcium [see Drug Interactions (7.3)]. However, the absorption of doxycycline is not markedly influenced by simultaneous ingestion of food or milk [see Clinical Pharmacology (12.3)]. that if gastric irritation occurs, ACTICLATE and ACTICLATE CAP may be given with food or milk [see Clinical Pharmacology (12.3)]. that the absorption of tetracyclines is reduced when taken with antacids containing aluminum, calcium or magnesium, bismuth subsalicylate, and iron-containing preparations [see Drug Interactions (7.3)]. that the use of doxycycline might increase the incidence of vaginal candidiasis. Advise patients that diarrhea is a common problem caused by antibacterial drugs which usually ends when the antibacterial is discontinued. Sometimes after starting treatment with antibacterial drugs, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of antibacterial. If this occurs, patients should contact their physician as soon as possible. Counsel patients that antibacterial drugs including ACTICLATE and ACTICLATE CAP should only be used to treat bacterial infections. They do not treat viral infections (for example, the common cold). When ACTICLATE and ACTICLATE CAP are prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ACTICLATE and ACTICLATE CAP or other antibacterial drugs in the future. Manufactured by Catalent Pharma Solutions, Winchester, KY 40391 For Aqua Pharmaceuticals, an Almirall Company Exton, PA 19341 AQUA PHARMACEUTICALS an Almirall company

DOSAGE AND ADMINISTRATION

2 Important Administration Instructions for ACTICLATE and ACTICLATE CAP ACTICLATE Tablets (150 mg) can be broken into two-thirds or one-third to provide a 50 mg and 100 mg strength, respectively. (2.1) Swallow ACTICLATE CAP Capsule whole. Do not break, open, crush, dissolve or chew the capsule. (2.1) Dosage in Adults for ACTICLATE or ACTICLATE CAP: The usual dosage is 200 mg on the first day of treatment (administered 100 mg every 12 hours) followed by a maintenance dose of 100 mg daily. (2.1) In the management of more severe infections (particularly chronic infections of the urinary tract), 100 mg every 12 hours is recommended. (2.1) Dosage in Pediatric Patients for ACTICLATE or ACTICLATE CAP: For all pediatric patients weighing less than 45 kg with severe or life-threatening infections (e.g., anthrax, Rocky Mountain spotted fever), the recommended dose is 2.2 mg per kg of body weight administered every 12 hours. Pediatric patients weighing 45 kg or more should receive the adult dose. (2.3) For pediatric patients with less severe disease (greater than 8 years of age and weighing less than 45 kg), the recommended dose is 4.4 mg per kg of body weight divided into two doses on the first day of treatment, followed by a maintenance dose of 2.2 mg per kg of body weight (given as a single daily dose or divided into two doses. For pediatric patients weighing over 45 kg, the usual adult dose should be used. (2.3) See Full Prescribing Information for additional indication specific dosage information and important administration instructions for ACTICLATE and ACTICLATE CAP. (2.1, 2.4, 2.5) 2.1 Important Administration Instructions The usual dosage and frequency of administration of ACTICLATE and ACTICLATE CAP differs from that of the other tetracyclines. Exceeding the recommended dosage may result in an increased incidence of adverse reactions. Administer ACTICLATE and ACTICLATE CAP with adequate amounts of fluid to wash down the drugs and reduce the risk of esophageal irritation and ulceration [see Adverse Reactions (6)]. If gastric irritation occurs, ACTICLATE and ACTICLATE CAP may be given with food or milk [see Clinical Pharmacology (12.3)] Swallow ACTICLATE CAP whole. Do not break, open, crush, dissolve or chew the capsule. ACTICLATE tablets (150 mg) can be broken into two-thirds or one-third to provide a 100 mg and 50 mg strength, respectively [see FDA-approved patient labeling]. 2.2 Dosage in Adult Patients The usual dosage of ACTICLATE is 200 mg on the first day of treatment (administered 100 mg every 12 hours) followed by a maintenance dose of 100 mg daily. The maintenance dose may be administered as a single dose or as 50 mg every 12 hours. In the management of more severe infections (particularly chronic infections of the urinary tract), 100 mg every 12 hours is recommended. For certain selected specific indications, the recommended duration or dosage and duration of ACTICLATE or ACTICLATE CAP in adult patients are as follows: Streptococcal infections, therapy should be continued for 10 days. Uncomplicated urethral, endocervical, or rectal infection caused by Chlamydia trachomatis: 100 mg by mouth twice-a-day for 7 days. Uncomplicated gonococcal infections in adults (except anorectal infections in men): 100 mg, by mouth, twice-a-day for 7 days. As an alternate single visit dose, administer 300 mg stat followed in one hour by a second 300 mg dose. Nongonococcal urethritis (NGU) caused by C. trachomatis and U. urealyticum: 100 mg by mouth twice a day for 7 days. Syphilis – early: Patients who are allergic to penicillin should be treated with doxycycline 100 mg by mouth twice-a-day for 2 weeks. Syphilis of more than one year’s duration: Patients who are allergic to penicillin should be treated with doxycycline 100 mg by mouth twice-a-day for 4 weeks. Acute epididymo-orchitis caused by N. gonorrhoeae: 100 mg by mouth, twice-a-day for at least 10 days. Acute epididymo-orchitis caused by C. trachomatis: 100 mg, by mouth, twice-a-day for at least 10 days. 2.3 Dosage in Pediatric Patients For all pediatric patients weighing less than 45 kg with severe or life threatening infections (e.g., anthrax, Rocky Mountain spotted fever), the recommended dosage of ACTICLATE and ACTICLATE CAP is 2.2 mg per kg of body weight administered every 12 hours. Pediatric patients weighing 45 kg or more should receive the adult dose [see Warnings and Precautions (5.1)]. For pediatric patients with less severe disease (greater than 8 years of age and weighing less than 45 kg), the recommended dosage schedule of ACTICLATE and ACTICLATE CAP is 4.4 mg per kg of body weight divided into two doses on the first day of treatment, followed by a maintenance dose of 2.2 mg per kg of body weight (given as a single daily dose or divided into twice daily doses). For pediatric patients weighing over 45 kg, the usual adult dose should be used. 2.4 Dosage for Prophylaxis of Malaria For adults, the recommended dose of ACTICLATE is 100 mg daily. For pediatric patients 8 years of age and older, the recommended dosage of ACTICLATE and ACTICLATE CAP is 2 mg per kg of body weight administered once daily. Pediatric patients weighing 45 kg or more should receive the adult dose. Prophylaxis should begin 1 or 2 days before travel to the malarious area. Prophylaxis should be continued daily during travel in the malarious area and for 4 weeks after the traveler leaves the malarious area. 2.5 Dosage for Inhalational Anthrax (Post-Exposure) For adults, the recommended dosage is 100 mg, of ACTICLATE, by mouth, twice-a-day for 60 days. For pediatric patients weighing less than 45 kg, the recommended dosage of ACTICLATE and ACTICLATE CAP is 2.2 mg per kg of body weight, by mouth, twice-a-day for 60 days. Pediatric patients weighing 45 kg or more should receive the adult dose.

Levofloxacin 500 MG Oral Tablet

Generic Name: LEVOFLOXACIN
Brand Name: Levofloxacin
  • Substance Name(s):
  • LEVOFLOXACIN

DRUG INTERACTIONS

7 Interacting Drug Interaction Multivalent cation-containing products including antacids, metal cations or didanosine Absorption of levofloxacin is decreased when the tablet formulation is taken within 2 hours of these products. (2.4, 7.1) Warfarin Effect may be enhanced. Monitor prothrombin time, INR, watch for bleeding (7.2) Antidiabetic agents Carefully monitor blood glucose (5.11, 7.3) 7.1 Chelation Agents: Antacids, Sucralfate, Metal Cations, Multivitamins While the chelation by divalent cations is less marked than with other fluoroquinolones, concurrent administration of levofloxacin tablets with antacids containing magnesium, or aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc may interfere with the gastrointestinal absorption of levofloxacin, resulting in systemic levels considerably lower than desired. Tablets with antacids containing magnesium, aluminum, as well as sucralfate, metal cations such as iron, and multivitamins preparations with zinc or didanosine may substantially interfere with the gastrointestinal absorption of levofloxacin, resulting in systemic levels considerably lower than desired. These agents should be taken at least two hours before or two hours after oral levofloxacin administration. 7.2 Warfarin No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for R- and S- warfarin was detected in a clinical study involving healthy volunteers. Similarly, no apparent effect of warfarin on levofloxacin absorption and disposition was observed. However, there have been reports during the postmarketing experience in patients that levofloxacin enhances the effects of warfarin. Elevations of the prothrombin time in the setting of concurrent warfarin and levofloxacin use have been associated with episodes of bleeding. Prothrombin time, International Normalized Ratio (INR), or other suitable anticoagulation tests should be closely monitored if levofloxacin is administered concomitantly with warfarin. Patients should also be monitored for evidence of bleeding [see Adverse Reactions (6.3 ); Patient Counseling Information (17.4)]. 7.3 Antidiabetic Agents Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with fluoroquinolones and an antidiabetic agent. Therefore, careful monitoring of blood glucose is recommended when these agents are co-administered [see Warnings and Precautions (5.11); Adverse Reactions (6.2), Patient Counseling Information (17.4)]. 7.4 Non-Steroidal Anti-Inflammatory Drugs The concomitant administration of a non-steroidal anti-inflammatory drug with a fluoroquinolone, including levofloxacin, may increase the risk of CNS stimulation and convulsive seizures [see Warnings and Precautions (5.6) ]. 7.5 Theophylline No significant effect of levofloxacin on the plasma concentrations, AUC, and other disposition parameters for theophylline was detected in a clinical study involving healthy volunteers. Similarly, no apparent effect of theophylline on levofloxacin absorption and disposition was observed. However, concomitant administration of other fluoroquinolones with theophylline has resulted in prolonged elimination half-life, elevated serum theophylline levels, and a subsequent increase in the risk of theophylline-related adverse reactions in the patient population. Therefore, theophylline levels should be closely monitored and appropriate dosage adjustments made when levofloxacin is coadministered. Adverse reactions, including seizures, may occur with or without an elevation in serum theophylline levels [see Warnings and Precautions (5.6) ]. 7.6 Cyclosporine No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for cyclosporine was detected in a clinical study involving healthy volunteers. However, elevated serum levels of cyclosporine have been reported in the patient population when co-administered with some other fluoroquinolones. Levofloxacin Cmax and ke were slightly lower while Tmax and t½ were slightly longer in the presence of cyclosporine than those observed in other studies without concomitant medication. The differences, however, are not considered to be clinically significant. Therefore, no dosage adjustment is required for levofloxacin or cyclosporine when administered concomitantly. 7.7 Digoxin No significant effect of levofloxacin on the peak plasma concentrations, AUC, and other disposition parameters for digoxin was detected in a clinical study involving healthy volunteers. Levofloxacin absorption and disposition kinetics were similar in the presence or absence of digoxin. Therefore, no dosage adjustment for levofloxacin or digoxin is required when administered concomitantly. 7.8 Probenecid and Cimetidine No significant effect of probenecid or cimetidine on the Cmax of levofloxacin was observed in a clinical study involving healthy volunteers. The AUC and t½ of levofloxacin were higher while CL/F and CLR were lower during concomitant treatment of levofloxacin with probenecid or cimetidine compared to levofloxacin alone. However, these changes do not warrant dosage adjustment for levofloxacinwhen probenecid or cimetidine is co-administered. 7.9 Interactions with Laboratory or Diagnostic Testing Some fluoroquinolones, including levofloxacin, may produce false-positive urine screening results for opiates using commercially available immunoassay kits. Confirmation of positive opiate screens by more specific methods may be necessary.

OVERDOSAGE

10 In the event of an acute overdosage, the stomach should be emptied. The patient should be observed and appropriate hydration maintained. Levofloxacin is not efficiently removed by hemodialysis or peritoneal dialysis. Levofloxacin exhibits a low potential for acute toxicity. Mice, rats, dogs and monkeys exhibited the following clinical signs after receiving a single high dose of levofloxacin: ataxia, ptosis, decreased locomotor activity, dyspnea, prostration, tremors, and convulsions. Doses in excess of 1500 mg/kg orally and 250 mg/kg IV produced significant mortality in rodents.

DESCRIPTION

11 Levofloxacin is a synthetic broad-spectrum antibacterial agent for oral and intravenous administration. Chemically, levofloxacin, a chiral fluorinated carboxyquinolone, is the pure (-)-(S)-enantiomer of the racemic drug substance ofloxacin. The chemical name is (-)-(S)-9fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4benzoxazine-6-carboxylic acid hemihydrate. Figure 1: The Chemical Structure of Levofloxacin The molecular formula is C18H20FN3O4 • ½ H2O and the molecular weight is 370.38. Levofloxacin USP is a light yellowish-white to yellow-white crystal or crystalline powder. The molecule exists as a zwitterion at the pH conditions in the small intestine. The data demonstrate that from pH 0.6 to 5.8, the solubility of levofloxacin is essentially constant (approximately 100 mg/mL). Levofloxacin is considered soluble to freely soluble in this pH range, as defined by USP nomenclature. Above pH 5.8, the solubility increases rapidly to its maximum at pH 6.7 (272 mg/mL) and is considered freely soluble in this range. Above pH 6.7, the solubility decreases and reaches a minimum value (about 50 mg/mL) at a pH of approximately 6.9. Levofloxacin has the potential to form stable coordination compounds with many metal ions. This in vitro chelation potential has the following formation order: Al+3>Cu+2>Zn+2>Mg+2>Ca+2. Excipients and Description of Dosage Forms Levofloxacin tablets are available as film-coated tablets and contain the following inactive ingredients: 250 mg (as expressed in the anhydrous form): colloidal silicon dioxide, corn starch, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol and titanium dioxide. 500 mg (as expressed in the anhydrous form): colloidal silicon dioxide, corn starch, crospovidone, FD&C yellow no. 5 aluminum lake, FD&C yellow no. 6 aluminum lake, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol and titanium dioxide. 750 mg (as expressed in the anhydrous form): colloidal silicon dioxide, corn starch, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, synthetic yellow iron oxide and titanium dioxide. figure1

CLINICAL STUDIES

14 14.1 Nosocomial Pneumonia Adult patients with clinically and radiologically documented nosocomial pneumonia were enrolled in a multicenter, randomized, open-label study comparing intravenous levofloxacin (750 mg once daily) followed by oral levofloxacin (750 mg once daily) for a total of 7 to 15 days to intravenous imipenem/cilastatin (500 to 1000 mg every 6 to 8 hours daily) followed by oral ciprofloxacin (750 mg every 12 hours daily) for a total of 7 to 15 days. Levofloxacin-treated patients received an average of 7 days of intravenous therapy (range: 1 to 16 days); comparator-treated patients received an average of 8 days of intravenous therapy (range: 1 to 19 days). Overall, in the clinically and microbiologically evaluable population, adjunctive therapy was empirically initiated at study entry in 56 of 93 (60.2%) patients in the levofloxacin arm and 53 of 94 (56.4%) patients in the comparator arm. The average duration of adjunctive therapy was 7 days in the levofloxacin arm and 7 days in the comparator. In clinically and microbiologically evaluable patients with documented Pseudomonas aeruginosa infection, 15 of 17 (88.2%) received ceftazidime (N=11) or piperacillin/tazobactam (N=4) in the levofloxacin arm and 16 of 17 (94.1%) received an aminoglycoside in the comparator arm. Overall, in clinically and microbiologically evaluable patients, vancomycin was added to the treatment regimen of 37 of 93 (39.8%) patients in the levofloxacin arm and 28 of 94 (29.8%) patients in the comparator arm for suspected methicillin-resistant S. aureus infection. Clinical success rates in clinically and microbiologically evaluable patients at the posttherapy visit (primary study endpoint assessed on day 3 to 15 after completing therapy) were 58.1% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-17.2, 12]. The microbiological eradication rates at the posttherapy visit were 66.7% for levofloxacin and 60.6% for comparator. The 95% CI for the difference of eradication rates (levofloxacin minus comparator) was [-8.3, 20.3]. Clinical success and microbiological eradication rates by pathogen are detailed in Table 13. Table 13: Clinical Success Rates and Bacteriological Eradication Rates (Nosocomial Pneumonia) Pathogen N Levofloxacin No. (%) of Patients Microbiologic/ Clinical Outcomes N Imipenem/Cilastatin No. (%) of Patients Microbiologic/ Clinical Outcomes MSSA* 21 14 (66.7)/13 (61.9) 19 13 (68.4)/15 (78.9) P. aeruginosa† 17 10 (58.8)/11 (64.7) 17 5 (29.4)/7 (41.2) S. marcescens 11 9 (81.8)/7 (63.6) 7 2 (28.6)/3 (42.9) E. coli 12 10 (83.3)/7 (58.3) 11 7 (63.6)/8 (72.7) K. pneumoniae‡ 11 9 (81.8)/5 (45.5) 7 6 (85.7)/3 (42.9) H. influenzae 16 13 (81.3)/10 (62.5) 15 14 (93.3)/11 (73.3) S. pneumoniae 4 3 (75.0)/3 (75.0) 7 5 (71.4)/4 (57.1) * Methicillin-susceptible S. aureus †See above text for use of combination therapy ‡The observed differences in rates for the clinical and microbiological outcomes may reflect other factors that were not accounted for in the study 14.2 Community-Acquired Pneumonia: 7 to 14 day Treatment Regimen Adult inpatients and outpatients with a diagnosis of community-acquired bacterial pneumonia were evaluated in 2 pivotal clinical studies. In the first study, 590 patients were enrolled in a prospective, multi-center, unblinded randomized trial comparing levofloxacin 500 mg once daily orally or intravenously for 7 to 14 days to ceftriaxone 1 to 2 grams intravenously once or in equally divided doses twice daily followed by cefuroxime axetil 500 mg orally twice daily for a total of 7 to 14 days. Patients assigned to treatment with the control regimen were allowed to receive erythromycin (or doxycycline if intolerant of erythromycin) if an infection due to atypical pathogens was suspected or proven. Clinical and microbiologic evaluations were performed during treatment, 5 to 7 days posttherapy, and 3 to 4 weeks posttherapy. Clinical success (cure plus improvement) with levofloxacin at 5 to 7 days posttherapy, the primary efficacy variable in this study, was superior (95%) to the control group (83%). The 95% CI for the difference of response rates (levofloxacin minus comparator) was [-6, 19]. In the second study, 264 patients were enrolled in a prospective, multi-center, non-comparative trial of 500 mg levofloxacin administered orally or intravenously once daily for 7 to 14 days. Clinical success for clinically evaluable patients was 93%. For both studies, the clinical success rate in patients with atypical pneumonia due to Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila were 96%, 96%, and 70%, respectively. Microbiologic eradication rates across both studies are presented in Table 14. Table 14: Bacteriological Eradication Rates Across 2 Community Acquired Pneumonia Clinical Studies Pathogen No. Pathogens Bacteriological Eradication Rate (%) H. influenzae 55 98 S. pneumoniae 83 95 S. aureus 17 88 M. catarrhalis 18 94 H. parainfluenzae 19 95 K. pneumoniae 10 100 Community-Acquired Pneumonia Due to Multi-Drug Resistant Streptococcus pneumoniae Levofloxacin was effective for the treatment of community-acquired pneumonia caused by multi-drug resistant Streptococcus pneumoniae (MDRSP). MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins (e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole). Of 40 microbiologically evaluable patients with MDRSP isolates, 38 patients (95%) achieved clinical and bacteriologic success at post-therapy. The clinical and bacterial success rates are shown in Table 15. Table 15: Clinical and Bacterial Success Rates for levofloxacin-Treated MDRSP in Community Acquired Pneumonia Patients (Population Valid for Efficacy) Screening Susceptibility Clinical Success Bacteriological Success‡ n/N* % n/N† % Penicillin-resistant 16/17 94.1 16/17 94.1 2nd generation Cephalosporin resistant 31/32 96.9 31/32 96.9 Macrolide-resistant 28/29 96.6 28/29 96.6 Trimethoprim/ Sulfamethoxazole resistant 17/19 89.5 17/19 89.5 Tetracycline-resistant 12/12 100 12/12 100 * One patient had a respiratory isolate that was resistant to tetracycline, cefuroxime, macrolides and TMP/SMX and intermediate to penicillin and a blood isolate that was intermediate to penicillin and cefuroxime and resistant to the other classes. The patient is included in the database based on respiratory isolate. †n=the number of microbiologically evaluable patients who were clinical successes; N=number of microbiologically evaluable patients in the designated resistance group. ‡n=the number of MDRSP isolates eradicated or presumed eradicated in microbiologically evaluable patients; N=number of MDRSP isolates in a designated resistance group. Not all isolates were resistant to all antimicrobial classes tested. Success and eradication rates are summarized in Table 16. Table 16: Clinical Success and Bacteriologic Eradication Rates for Resistant Streptococcus pneumoniae (Community Acquired Pneumonia) Type of Resistance Clinical Success Bacteriologic Eradication Resistant to 2 antibacterials 17/18 (94.4%) 17/18 (94.4%) Resistant to 3 antibacterials 14/15 (93.3%) 14/15 (93.3%) Resistant to 4 antibacterials 7/7 (100%) 7/7 (100%) Resistant to 5 antibacterials 0 0 Bacteremia with MDRSP 8/9 (89%) 8/9 (89%) 14.3 Community-Acquired Pneumonia: 5 Day Treatment Regimen To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 528 outpatient and hospitalized adults with clinically and radiologically determined mild to severe community-acquired pneumonia were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg, IV or orally, every day for five days or levofloxacin 500 mg IV or orally, every day for 10 days. Clinical success rates (cure plus improvement) in the clinically evaluable population were 90.9% in the levofloxacin 750 mg group and 91.1% in the levofloxacin 500 mg group. The 95% CI for the difference of response rates (levofloxacin 750 minus levofloxacin 500) was [-5.9, 5.4]. In the clinically evaluable population (31 to 38 days after enrollment) pneumonia was observed in 7 out of 151 patients in the levofloxacin 750 mg group and 2 out of 147 patients in the levofloxacin 500 mg group. Given the small numbers observed, the significance of this finding cannot be determined statistically. The microbiological efficacy of the 5-day regimen was documented for infections listed in Table 17. Table 17: Bacteriological Eradication Rates (Community-Acquired Pneumonia) S. pneumoniae 19/20 (95%) Haemophilus influenzae 12/12 (100%) Haemophilus parainfluenzae 10/10 (100%) Mycoplasma pneumoniae 26/27 (96%) Chlamydophila pneumoniae 13/15 (87%) 14.4 Acute Bacterial Sinusitis: 5 day and 10 to 14 day Treatment Regimens Levofloxacin is approved for the treatment of acute bacterial sinusitis (ABS) using either 750 mg by mouth x 5 days or 500 mg by mouth once daily x 10 to 14 days. To evaluate the safety and efficacy of a high dose short course of levofloxacin, 780 outpatient adults with clinically and radiologically determined acute bacterial sinusitis were evaluated in a double-blind, randomized, prospective, multicenter study comparing levofloxacin 750 mg by mouth once daily for five days to levofloxacin 500 mg by mouth once daily for 10 days. Clinical success rates (defined as complete or partial resolution of the pre-treatment signs and symptoms of ABS to such an extent that no further antibiotic treatment was deemed necessary) in the microbiologically evaluable population were 91.4% (139/152) in the levofloxacin 750 mg group and 88.6% (132/149) in the levofloxacin 500 mg group at the test-of-cure (TOC) visit (95% CI [-4.2, 10] for levofloxacin 750 mg minus levofloxacin 500 mg). Rates of clinical success by pathogen in the microbiologically evaluable population who had specimens obtained by antral tap at study entry showed comparable results for the five- and ten-day regimens at the test-of-cure visit 22 days post treatment. Table 18: Clinical Success Rate by Pathogen at the TOC in Microbiologically Evaluable Subjects Who Underwent Antral Puncture (Acute Bacterial Sinusitis) Pathogen Levofloxacin 750 mg x 5 days Levofloxacin 500 mg x 10 days Streptococcus pneumoniae* 25/27 (92.6%) 26/27 (96.3%) Haemophilus influenzae* 19/21 (90.5%) 25/27 (92.6%) Moraxella catarrhalis* 10/11 (90.9%) 13/13 (100%) * Note: Forty percent of the subjects in this trial had specimens obtained by sinus endoscopy. The efficacy data for subjects whose specimen was obtained endoscopically were comparable to those presented in the above table 14.5 Complicated Skin and Skin Structure Infections Three hundred ninety-nine patients were enrolled in an open-label, randomized, comparative study for complicated skin and skin structure infections. The patients were randomized to receive either levofloxacin 750 mg once daily (IV followed by oral), or an approved comparator for a median of 10 ± 4.7 days. As is expected in complicated skin and skin structure infections, surgical procedures were performed in the levofloxacin and comparator groups. Surgery (incision and drainage or debridement) was performed on 45% of the levofloxacin-treated patients and 44% of the comparator treated patients, either shortly before or during antibiotic treatment and formed an integral part of therapy for this indication. Among those who could be evaluated clinically 2 to 5 days after completion of study drug, overall success rates (improved or cured) were 116/138 (84.1%) for patients treated with levofloxacin and 106/132 (80.3%) for patients treated with the comparator. Success rates varied with the type of diagnosis ranging from 68% in patients with infected ulcers to 90% in patients with infected wounds and abscesses. These rates were equivalent to those seen with comparator drugs. 14.6 Chronic Bacterial Prostatitis Adult patients with a clinical diagnosis of prostatitis and microbiological culture results from urine sample collected after prostatic massage (VB3) or expressed prostatic secretion (EPS) specimens obtained via the Meares-Stamey procedure were enrolled in a multicenter, randomized, double-blind study comparing oral levofloxacin 500 mg, once daily for a total of 28 days to oral ciprofloxacin 500 mg, twice daily for a total of 28 days. The primary efficacy endpoint was microbiologic efficacy in microbiologically evaluable patients. A total of 136 and 125 microbiologically evaluable patients were enrolled in the levofloxacin and ciprofloxacin groups, respectively. The microbiologic eradication rate by patient infection at 5 to 18 days after completion of therapy was 75% in the levofloxacin group and 76.8% in the ciprofloxacin group (95% CI [-12.58, 8.98] for levofloxacin minus ciprofloxacin). The overall eradication rates for pathogens of interest are presented in Table 19. Table 19: Bacteriological Eradication Rates (Chronic Bacterial Prostatitis) Levofloxacin(N=136) Ciprofloxacin (N=125) Pathogen N Eradication N Eradication E. coli 15 14 (93.3%) 11 9 (81.8%) E. faecalis 54 39 (72.2%) 44 33 (75%) S. epidermidis* 11 9 (81.8%) 14 11 (78.6%) * Eradication rates shown are for patients who had a sole pathogen only; mixed cultures were excluded. Eradication rates for S. epidermidis when found with other co-pathogens are consistent with rates seen in pure isolates. Clinical success (cure + improvement with no need for further antibiotic therapy) rates in microbiologically evaluable population 5 to 18 days after completion of therapy were 75% for levofloxacin-treated patients and 72.8% for ciprofloxacin-treated patients (95% CI [-8.87, 13.27] for levofloxacin minus ciprofloxacin). Clinical long-term success (24 to 45 days after completion of therapy) rates were 66.7% for the levofloxacin-treated patients and 76.9% for the ciprofloxacin-treated patients (95% CI [-23.40, 2.89] for levofloxacin minus ciprofloxacin). 14.7 Complicated Urinary Tract Infections and Acute Pyelonephritis: 5 day Treatment Regimen To evaluate the safety and efficacy of the higher dose and shorter course of levofloxacin, 1109 patients with cUTI and AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from November 2004 to April 2006 comparing levofloxacin 750 mg IV or orally once daily for 5 days (546 patients) with ciprofloxacin 400 mg IV or 500 mg orally twice daily for 10 days (563 patients). Patients with AP complicated by underlying renal diseases or conditions such as complete obstruction, surgery, transplantation, concurrent infection or congenital malformation were excluded. Efficacy was measured by bacteriologic eradication of the baseline organism(s) at the post-therapy visit in patients with a pathogen identified at baseline. The post-therapy (test-of-cure) visit occurred 10 to 14 days after the last active dose of levofloxacin and 5 to 9 days after the last dose of active ciprofloxacin. The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 20. Table 20: Bacteriological Eradication at Test-of-Cure Levofloxacin 750 mg orally orIV once daily for 5 days Ciprofloxacin 400mg IV/500 mg orally twice daily for 10 days Overall Difference [95% CI] n/N % n/N % Levofloxacin-Ciprofloxacin mITT Population * Overall (cUTI or AP) 252/333 75.7 239/318 75.2 0.5 (-6.1, 7.1) cUTI 168/230 73.0 157/213 73.7 AP 84/103 81.6 82/105 78.1 Microbiologically Evaluable Population† Overall (cUTI or AP) 228/265 86.0 215/241 89.2 -3.2 [-8.9, 2.5] cUTI 154/185 83.2 144/165 87.3 AP 74/80 92.5 71/76 93.4 * The mITT population included patients who received study medication and who had a positive (≥105 CFU/mL) urine culture with no more than 2 uropathogens at baseline. Patients with missing response were counted as failures in this analysis. † The Microbiologically Evaluable population included patients with a confirmed diagnosis of cUTI or AP, a causative organism(s) at baseline present at ≥ 105 CFU/mL, a valid test-of-cure urine culture, no pathogen isolated from blood resistant to study drug, no premature discontinuation or loss to follow-up, and compliance with treatment (among other criteria).Microbiologic eradication rates in the Microbiologically Evaluable population at TOC for individual pathogens recovered from patients randomized to levofloxacin treatment are presented in Table 21. Table 21: Bacteriological Eradication Rates for Individual Pathogens Recovered From Patients Randomized to levofloxacin 750 mg QD for 5 Days Treatment Pathogen Bacteriological Eradication Rate (n/N) % Escherichia coli* 155/172 90 Klebsiella pneumoniae 20/23 87 Proteus mirabilis 12/12 100 * The predominant organism isolated from patients with AP was E. coli: 91% (63/69) eradication in AP and 89% (92/103) in patients with cUTI. 14.8 Complicated Urinary Tract Infections and Acute Pyelonephritis: 10 day Treatment Regimen To evaluate the safety and efficacy of the 250 mg dose, 10 day regimen of levofloxacin, 567 patients with uncomplicated UTI, mild-to-moderate cUTI, and mild-to-moderate AP were enrolled in a randomized, double-blind, multicenter clinical trial conducted in the US from June 1993 to January 1995 comparing levofloxacin 250 mg orally once daily for 10 days (285 patients) with ciprofloxacin 500 mg orally twice daily for 10 days (282 patients). Patients with a resistant pathogen, recurrent UTI, women over age 55 years, and with an indwelling catheter were initially excluded, prior to protocol amendment which took place after 30% of enrollment. Microbiological efficacy was measured by bacteriologic eradication of the baseline organism(s) at 1 to 12 days post-therapy in patients with a pathogen identified at baseline. The bacteriologic cure rates overall for levofloxacin and control at the test-of-cure (TOC) visit for the group of all patients with a documented pathogen at baseline (modified intent to treat or mITT) and the group of patients in the mITT population who closely followed the protocol (Microbiologically Evaluable) are summarized in Table 22. Table 22. Bacteriological Eradication Overall (cUTI or AP) at Test-Of-Cure* Levofloxacin 250 mg once daily for 10 days Ciprofloxacin 500 mg twice daily for 10 days n/N % n/N % mITT Population † 174/209 83.3 184/219 84 Microbiologically Evaluable Population‡ 164/177 92.7 159/171 93 * 1 to 9 days posttherapy for 30% of subjects enrolled prior to a protocol amendment; 5 to 12 days posttherapy for 70% of subjects. † The mITT population included patients who had a pathogen isolated at baseline. Patients with missingresponse were counted as failures in this analysis. ‡The Microbiologically Evaluable population included mITT patients who met protocol-specified evaluability criteria. 14.9 Inhalational Anthrax (Post-Exposure) The effectiveness of levofloxacin for this indication is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens [see Indications and Usage (1.13); Dosage and Administration (2.1, 2.2)]. Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily [see Clinical Pharmacology (12.3) ]. In adults, the safety of levofloxacin for treatment durations of up to 28 days is well characterized. However, information pertaining to extended use at 500 mg daily up to 60 days is limited. Prolonged levofloxacin therapy in adults should only be used when the benefit outweighs the risk. In pediatric patients, the safety of levofloxacin for treatment durations of more than 14 days has not been studied. An increased incidence of musculoskeletal adverse events (arthralgia, arthritis, tendinopathy, gait abnormality) compared to controls has been observed in clinical studies with treatment duration of up to 14 days. Long-term safety data, including effects on cartilage, following the administration of levofloxacin to pediatric patients is limited [see Warnings and Precautions (5.10) , Use in Specific Populations (8.4) ]. A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 49 LD50 (~2.7 X 106) spores (range 17 – 118 LD50) of B. anthracis (Ames strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the anthrax strain used in this study was 0.125 mcg/mL. In the animals studied, mean plasma concentrations of levofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady state ranged from 2.79 to 4.87 mcg/mL. Steady state trough concentrations at 24 hours post-dose ranged from 0.107 to 0.164 mcg/mL. Mean (SD) steady state AUC0-24 was 33.4 ± 3.2 mcg.h/mL (range 30.4 to 36 mcg.h/mL). Mortality due to anthrax for animals that received a 30 day regimen of oral levofloxacin beginning 24 hrs post exposure was significantly lower (1/10), compared to the placebo group (9/10) [P=0.0011, 2-sided Fisher’s Exact Test]. The one levofloxacin treated animal that died of anthrax did so following the 30-day drug administration period. 14.10 Plague Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals. The mean plasma concentrations of levofloxacin associated with a statistically significant improvement in survival over placebo in an African green monkey model of pneumonic plague are reached or exceeded in adult and pediatric patients receiving the recommended oral and intravenous dosage regimens [see Indications and Usage (1.14), Dosage and Administration (2.1), (2.2) ]. Levofloxacin pharmacokinetics have been evaluated in adult and pediatric patients. The mean (± SD) steady state peak plasma concentration in human adults receiving 500 mg orally or intravenously once daily is 5.7 ± 1.4 and 6.4 ± 0.8 mcg/mL, respectively; and the corresponding total plasma exposure (AUC0-24) is 47.5 ± 6.7 and 54.6 ± 11.1 mcg.h/mL, respectively. The predicted steady-state pharmacokinetic parameters in pediatric patients ranging in age from 6 months to 17 years receiving 8 mg/kg orally every 12 hours (not to exceed 250 mg per dose) were calculated to be comparable to those observed in adults receiving 500 mg orally once daily [see Clinical Pharmacology (12.3) ]. A placebo-controlled animal study in African green monkeys exposed to an inhaled mean dose of 65 LD50 (range 3 to 145 LD50) of Yersinia pestis (CO92 strain) was conducted. The minimal inhibitory concentration (MIC) of levofloxacin for the Y. pestis strain used in this study was 0.03 mcg/mL. Mean plasma concentrations of levofloxacin achieved at the end of a single 30-min infusion ranged from 2.84 to 3.50 mcg/mL in African green monkeys. Trough concentrations at 24 hours post-dose ranged from <0.03 to 0.06 mcg/mL. Mean (SD) AUC0-24 was 11.9 (3.1) mcg.h/mL (range 9.50 to 16.86 mcg.h/mL). Animals were randomized to receive either a 10-day regimen of i.v. levefloxacin or placebo beginning within 6 hrs of the onset of telemetered fever (≥ 39°C for more than 1 hour). Mortality in the levofloxacin group was significantly lower (1/17) compared to the placebo group (7/7) [p<0.001, Fisher’s Exact Test; exact 95% confidence interval (-99.9%, -55.5%) for the difference in mortality]. One levofloxacin-treated animal was euthanized on Day 9 post-exposure to Y. pestis due to a gastric complication; it had a blood culture positive for Y. pestis on Day 3 and all subsequent daily blood cultures from Day 4 through Day 7 were negative.

HOW SUPPLIED

16 /STORAGE AND HANDLING Levofloxacin tablets 250 mg are white colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘279’ on other side and are supplied: Overbagged with 10 tablets per bag, NDC 55154-6898-0 Levofloxacin tablets 500 mg are orange colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘280’ on other side and are supplied : Overbagged with 10 tablets per bag, NDC 55154-5897-0 Levofloxacin tablets 750 mg are yellow colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘281’ on other side and are supplied : Overbagged with 10 tablets per bag, NDC 55154-5898-0 Levofloxacin tablets should be stored at 20° to 25°C (68° to 77°F) (See Controlled Room Temperature) in well-closed containers.

RECENT MAJOR CHANGES

Warnings and Precautions •Peripheral Neuropathy (5.8) 07/2013

DOSAGE FORMS AND STRENGTHS

3 Levofloxacin tablets 250 mg are white colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘279’ on other side. Levofloxacin tablets 500 mg are orange colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘280’ on other side. Levofloxacin tablets 750 mg are yellow colored, modified capsule shaped, biconvex, film coated tablets debossed with ‘RDY’ on one side and ‘281’ on other side. Formulation (3) Strength Tablets 250 mg, 500 mg, and 750 mg

MECHANISM OF ACTION

12.1 Mechanism of Action Levofloxacin is a member of the fluoroquinolone class of antibacterial agents [see Microbiology (12.4)].

INDICATIONS AND USAGE

1 To reduce the development of drug-resistant bacteria and maintain the effectiveness of levofloxacin and other antibacterial drugs, levofloxacin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Levofloxacin tablets are indicated for the treatment of adults (≥18 years of age) with mild, moderate, and severe infections caused by susceptible isolates of the designated microorganisms in the conditions listed in this section. Culture and susceptibility testing Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing the infection and to determine their susceptibility to levofloxacin [see Microbiology (12.4) ]. Therapy with levofloxacin may be initiated before results of these tests are known; once results become available, appropriate therapy should be selected. As with other drugs in this class, some isolates of Pseudomonas aeruginosa may develop resistance fairly rapidly during treatment with levofloxacin. Culture and susceptibility testing performed periodically during therapy will provide information about the continued susceptibility of the pathogens to the antimicrobial agent and also the possible emergence of bacterial resistance. Levofloxacin is a fluoroquinolone antibacterial indicated in adults (≥18 years of age) with infections caused by designated, susceptible bacteria (1, 12.4). •Pneumonia: nosocomial (1.1) and community acquired (1.2, 1.3) •Acute bacterial sinusitis (1.4) •Acute bacterial exacerbation of chronic bronchitis (1.5) •Skin and skin structure infections: complicated (1.6) and uncomplicated (1.7) •Chronic bacterial prostatitis (1.8) •Urinary tract infections: complicated (1.9, 1.10) and uncomplicated (1.12) •Acute pyelonephritis (1.11) •Inhalational anthrax, post-exposure (1.13). •Plague (1.14) 1.1 Nosocomial Pneumonia Levofloxacin tablets are indicated for the treatment of nosocomial pneumonia due to methicillin-susceptible Staphylococcus aureus, Pseudomonas aeruginosa, Serratia marcescens, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, or Streptococcus pneumoniae. Adjunctive therapy should be used as clinically indicated. Where Pseudomonas aeruginosa is a documented or presumptive pathogen, combination therapy with an anti-pseudomonal β-lactam is recommended [see Clinical Studies (14.1 ) ]. 1.2 Community-Acquired Pneumonia: 7 to 14 day Treatment Regimen Levofloxacin tablets are indicated for the treatment of community-acquired pneumonia due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including multi-drug-resistant Streptococcus pneumoniae [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Chlamydophila pneumoniae, Legionella pneumophila, or Mycoplasma pneumoniae [see Dosage and Administration (2.1) and Clinical Studies (14.2) ]. MDRSP isolates are isolates resistant to two or more of the following antibacterials: penicillin (MIC ≥2 mcg/mL), 2nd generation cephalosporins, e.g., cefuroxime, macrolides, tetracyclines and trimethoprim/sulfamethoxazole. 1.3 Community-Acquired Pneumonia: 5 day Treatment Regimen Levofloxacin tablets are indicated for the treatment of community-acquired pneumonia due to Streptococcus pneumoniae (excluding multi-drug-resistant isolates [MDRSP]), Haemophilus influenzae, Haemophilus parainfluenzae, Mycoplasma pneumoniae, or Chlamydophila pneumoniae [see Dosage and Administration (2.1) and Clinical Studies (14.3) ]. 1.4 Acute Bacterial Sinusitis: 5 day and 10 to 14 day Treatment Regimens Levofloxacin tablets are indicated for the treatment of acute bacterial sinusitis due to Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis [see Clinical Studies (14.4)]. 1.5 Acute Bacterial Exacerbation of Chronic Bronchitis Levofloxacin tablets are indicated for the treatment of acute bacterial exacerbation of chronic bronchitis due to methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, or Moraxella catarrhalis. 1.6 Complicated Skin and Skin Structure Infections Levofloxacin tablets are indicated for the treatment of complicated skin and skin structure infections due to methicillin-susceptible Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, or Proteus mirabilis [see Clinical Studies (14.5) ]. 1.7 Uncomplicated Skin and Skin Structure Infections Levofloxacin tablets are indicated for the treatment of uncomplicated skin and skin structure infections (mild to moderate) including abscesses, cellulitis, furuncles, impetigo, pyoderma, wound infections, due to methicillin-susceptible Staphylococcus aureus, or Streptococcus pyogenes. 1.8 Chronic Bacterial Prostatitis Levofloxacin tablets are indicated for the treatment of chronic bacterial prostatitis due to Escherichia coli, Enterococcus faecalis, or methicillin-susceptible Staphylococcus epidermidis [see Clinical Studies (14.6) ]. 1.9 Complicated Urinary Tract Infections: 5 day Treatment Regimen Levofloxacin tablets are indicated for the treatment of complicated urinary tract infections due to Escherichia coli, Klebsiella pneumoniae, or Proteus mirabilis [see Clinical Studies (14.7) ]. 1.10 Complicated Urinary Tract Infections: 10 day Treatment Regimen Levofloxacin tablets are indicated for the treatment of complicated urinary tract infections (mild to moderate) due to Enterococcus faecalis, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, or Pseudomonas aeruginosa [see Clinical Studies (14.8) ]. 1.11 Acute Pyelonephritis: 5 or 10 day Treatment Regimen Levofloxacin tablets are indicated for the treatment of acute pyelonephritis caused by Escherichia coli, including cases with concurrent bacteremia [see Clinical Studies (14.7, 14.8) ]. 1.12 Uncomplicated Urinary Tract Infections Levofloxacin tablets are indicated for the treatment of uncomplicated urinary tract infections (mild to moderate) due to Escherichia coli, Klebsiella pneumoniae, or Staphylococcus saprophyticus. 1.13 Inhalational Anthrax (Post-Exposure) Levofloxacin tablets are indicated for inhalational anthrax (post-exposure) to reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis. The effectiveness of levofloxacin is based on plasma concentrations achieved in humans, a surrogate endpoint reasonably likely to predict clinical benefit. Levofloxacin has not been tested in humans for the post-exposure prevention of inhalation anthrax. The safety of levofloxacin in adults for durations of therapy beyond 28 days or in pediatric patients for durations of therapy beyond 14 days has not been studied. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk [see Dosage and Administration (2.1, 2.2) and Clinical Studies (14.9)]. 1.14 Plague Levofloxacin tablets are indicated for treatment of plague, including pneumonic and septicemic plague, due to Yersinia pestis (Y. pestis) and prophylaxis for plague in adults and pediatric patients, 6 months of age and older. Efficacy studies of levofloxacin tablets could not be conducted in humans with plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals [see Dosage and Administration (2.1, 2.2) and Clinical Studies (14.10)].

PEDIATRIC USE

8.4 Pediatric Use Quinolones, including levofloxacin, cause arthropathy and osteochondrosis in juvenile animals of several species. [see Warnings and Precautions (5.10) and Animal Toxicology and/or Pharmacology (13.2)]. Inhalational Anthrax (Post-Exposure) Levofloxacin is indicated in pediatric patients 6 months of age and older, for inhalational anthrax (post-exposure). The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate. The safety of levofloxacin in pediatric patients treated for more than 14 days has not been studied [see Indications and Usage (1.13), Dosage and Administration (2.2) and Clinical Studies (14.9) ]. Plague Levofloxacin is indicated in pediatric patients, 6 months of age and older, for treatment of plague, including pneumonic and septicemic plague due to Yersinia pestis (Y. pestis) and prophylaxis for plague. Efficacy studies of levofloxacin could not be conducted in humans with pneumonic plague for ethical and feasibility reasons. Therefore, approval of this indication was based on an efficacy study conducted in animals. The risk-benefit assessment indicates that administration of levofloxacin to pediatric patients is appropriate [see Indications and Usage (1.14), Dosage and Administration (2.2) and Clinical Studies (14.10)]. Safety and effectiveness in pediatric patients below the age of six months have not been established. Adverse Events In clinical trials, 1534 children (6 months to 16 years of age) were treated with oral and intravenous levofloxacin. Children 6 months to 5 years of age received levofloxacin10 mg/kg twice a day and children greater than 5 years of age received 10 mg/kg once a day (maximum 500 mg per day) for approximately 10 days. A subset of children in the clinical trials (1340 levofloxacin-treated and 893 non-fluoroquinolone-treated) enrolled in a prospective, long-term surveillance study to assess the incidence of protocol-defined musculoskeletal disorders (arthralgia, arthritis, tendinopathy, gait abnormality) during 60 days and 1 year following the first dose of the study drug. Children treated with levofloxacin had a significantly higher incidence of musculoskeletal disorders when compared to the non-fluoroquinolone-treated children as illustrated in Table 9. Table 9: Incidence of Musculoskeletal Disorders in Pediatric Clinical Trial Follow-up Period LevofloxacinN = 1340 Non-Fluoroquinolone*N = 893 p-value† 60 days 28 (2.1%) 8 (0.9%) p = 0.038 1 year‡ 46 (3.4%) 16 (1.8%) p = 0.025 *Non-Fluoroquinolone: ceftriaxone, amoxicillin/ clavulanate, clarithromycin † 2-sided Fisher’s Exact Test ‡There were 1199 levofloxacin-treated and 804 non-fluoroquinolone-treated children who had a one-year evaluation visit. However, the incidence of musculoskeletal disorders was calculated using all reported events during the specified period for all children enrolled regardless of whether they completedthe 1-year evaluation visit. Arthralgia was the most frequently occurring musculoskeletal disorder in both treatment groups. Most of the musculoskeletal disorders in both groups involved multiple weight-bearing joints. Disorders were moderate in 8/46 (17%) children and mild in 35/46 (76%) levofloxacin-treated children and most were treated with analgesics. The median time to resolution was 7 days for levofloxacin-treated children and 9 for non-fluoroquinolone-treated children (approximately 80% resolved within 2 months in both groups). No child had a severe or serious disorder and all musculoskeletal disorders resolved without sequelae. Vomiting and diarrhea were the most frequently reported adverse events, occurring in similar frequency in the levofloxacin-treated and non-fluoroquinolone-treated children. In addition to the events reported in pediatric patients in clinical trials, events reported in adults during clinical trials or post-marketing experience [see Adverse Reactions (6) ] may also be expected to occur in pediatric patients.

PREGNANCY

8.1 Pregnancy Pregnancy Category C. Levofloxacin was not teratogenic in rats at oral doses as high as 810 mg/kg/day which corresponds to 9.4 times the highest recommended human dose based upon relative body surface area, or at intravenous doses as high as 160 mg/kg/day corresponding to 1.9 times the highest recommended human dose based upon relative body surface area. The oral dose of 810 mg/kg/day to rats caused decreased fetal body weight and increased fetal mortality. No teratogenicity was observed when rabbits were dosed orally as high as 50 mg/kg/day which corresponds to 1.1 times the highest recommended human dose based upon relative body surface area, or when dosed intravenously as high as 25 mg/kg/day, corresponding to 0.5 times the highest recommended human dose based upon relative body surface area. There are, however, no adequate and well-controlled studies in pregnant women. Levofloxacin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

NUSRING MOTHERS

8.3 Nursing Mothers Based on data on other fluoroquinolones and very limited data on levofloxacin, it can be presumed that levofloxacin will be excreted in human milk. Because of the potential for serious adverse reactions from levofloxacin in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: Fluoroquinolones, including levofloxacin, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants [See Warnings and Precautions (5.1)]. Fluoroquinolones, including levofloxacin, may exacerbate muscle weakness in persons with myasthenia gravis. Avoid levofloxacin in patients with a known history of myasthenia gravis [SeeWarnings and Precautions (5.2)]. WARNING: See full prescribing information for complete boxed warning. Fluoroquinolones, including levofloxacin, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants [See Warnings and Precautions (5.1)]. Fluoroquinolones, including levofloxacin, may exacerbate muscle weakness in persons with myasthenia gravis. Avoid levofloxacin in patients with a known history of myasthenia gravis [SeeWarnings and Precautions (5.2)].

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Risk of tendinitis and tendon rupture is increased. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroids, and in patients with kidney, heart or lung transplants. Discontinue if pain or inflammation in a tendon occurs (5.1, 8.5) •May exacerbate muscle weakness in persons with myasthenia gravis. Avoid use in patients with a known history of myasthenia gravis (5.2). •Anaphylactic reactions and allergic skin reactions, serious, occasionally fatal, may occur after first dose (4, 5.3) •Hematologic (including agranulocytosis, thrombocytopenia), and renal toxicities may occur after multiple doses (5.4) •Hepatotoxicity: Severe, and sometimes fatal, hepatoxicity has been reported. Discontinue immediately if signs and symptoms of hepatitis occur (5.5) •Central nervous system effects, including convulsions, anxiety, confusion, depression, and insomnia may occur after the first dose. Use with caution in patients with known or suspected disorders that may predispose them to seizures or lower the seizure threshold. Increased intracranial pressure (pseudotumorcerebri) has been reported (5.6) • Clostridium difficile-associated colitis: evaluate if diarrhea occurs (5.7) •Peripheral neuropathy: discontinue immediately if symptoms occur in order to prevent irreversibility (5.8) •Prolongation of the QT interval and isolated cases of torsade de pointes have been reported. Avoid use in patients with known prolongation, those with hypokalemia, and with other drugs that prolong the QT interval (5.9, 8.5) 5.1 Tendinopathy and Tendon Rupture Fluoroquinolones, including levofloxacin, are associated with an increased risk of tendinitis and tendon rupture in all ages. This adverse reaction most frequently involves the Achilles tendon, and rupture of the Achilles tendon may require surgical repair. Tendinitis and tendon rupture in the rotator cuff (the shoulder), the hand, the biceps, the thumb, and other tendon sites have also been reported. The risk of developing fluoroquinolone-associated tendinitis and tendon rupture is further increased in older patients usually over 60 years of age, in those taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. Factors, in addition to age and corticosteroid use, that may independently increase the risk of tendon rupture include strenuous physical activity, renal failure, and previous tendon disorders such as rheumatoid arthritis. Tendinitis and tendon rupture have been reported in patients taking fluoroquinolones who do not have the above risk factors. Tendon rupture can occur during or after completion of therapy; cases occurring up to several months after completion of therapy have been reported. Levofloxacin should be discontinued if the patient experiences pain, swelling, inflammation or rupture of a tendon. Patients should be advised to rest at the first sign of tendinitis or tendon rupture, and to contact their healthcare provider regarding changing to a non-quinolone antimicrobial drug. [see Adverse Reactions (6.3); Patient Counseling Information (17.3)]. 5.2 Exacerbation of Myasthenia Gravis Fluoroquinolones, including levofloxacin, have neuromuscular blocking activity and may exacerbate muscle weakness in persons with myasthenia gravis. Postmarketing serious adverse events, including deaths and requirement for ventilatory support, have been associated with fluoroquinolone use in persons with myasthenia gravis. Avoid levofloxacinin patients with a known history of myasthenia gravis [see Adverse Reactions (6.3); Patient Counseling Information (17.3)]. 5.3 Hypersensitivity Reactions Serious and occasionally fatal hypersensitivity and/or anaphylactic reactions have been reported in patients receiving therapy with fluoroquinolones, including levofloxacin. These reactions often occur following the first dose. Some reactions have been accompanied by cardiovascular collapse, hypotension/shock, seizure, loss of consciousness, tingling, angioedema (including tongue, laryngeal, throat, or facial edema/swelling), airway obstruction (including bronchospasm, shortness of breath, and acute respiratory distress), dyspnea, urticaria, itching, and other serious skin reactions. Levofloxacin should be discontinued immediately at the first appearance of a skin rash or any other sign of hypersensitivity. Serious acute hypersensitivity reactions may require treatment with epinephrine and other resuscitative measures, including oxygen, intravenous fluids, antihistamines, corticosteroids, pressor amines, and airway management, as clinically indicated [see Adverse Reactions (6); Patient Counseling Information (17.3)]. 5.4 Other Serious and Sometimes Fatal Reactions Other serious and sometimes fatal events, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with fluoroquinolones, including levofloxacin. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following: •fever, rash, or severe dermatologic reactions (e.g., toxic epidermal necrolysis, Stevens-Johnson Syndrome); •vasculitis; arthralgia; myalgia; serum sickness; •allergic pneumonitis; •interstitial nephritis; acute renal insufficiency or failure; •hepatitis; jaundice; acute hepatic necrosis or failure; •anemia, including hemolytic and aplastic; thrombocytopenia, including thrombotic thrombocytopenic purpura; leukopenia; agranulocytosis; pancytopenia; and/or other hematologic abnormalities. The drug should be discontinued immediately at the first appearance of skin rash, jaundice, or any other sign of hypersensitivity and supportive measures instituted [see Adverse Reactions (6); Patient Counseling Information (17.3)]. 5.5 Hepatotoxicity Post-marketing reports of severe hepatotoxicity (including acute hepatitis and fatal events) have been received for patients treated with levofloxacin. No evidence of serious drug-associated hepatotoxicity was detected in clinical trials of over 7,000 patients. Severe hepatotoxicity generally occurred within 14 days of initiation of therapy and most cases occurred within 6 days. Most cases of severe hepatotoxicity were not associated with hypersensitivity [see Warnings and Precautions (5.4) ]. The majority of fatal hepatotoxicity reports occurred in patients 65 years of age or older and most were not associated with hypersensitivity. Levofloxacin should be discontinued immediately if the patient develops signs and symptoms of hepatitis [see Adverse Reactions (6); Patient Counseling Information (17.3)]. 5.6 Central Nervous System Effects Convulsions and toxic psychoses,increased intracranial pressure (including pseudotumor cerebri) have been reported in patients receiving fluoroquinolones, including levofloxacin. Fluoroquinolones may also cause central nervous system stimulation which may lead to tremors, restlessness, anxiety, lightheadedness, confusion, hallucinations, paranoia, depression, nightmares, insomnia, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving levofloxacin, the drug should be discontinued and appropriate measures instituted. As with other fluoroquinolones, levofloxacin should be used with caution in patients with a known or suspected central nervous system (CNS) disorder that may predispose them to seizures or lower the seizure threshold (e.g., severe cerebral arteriosclerosis, epilepsy) or in the presence of other risk factors that may predispose them to seizures or lower the seizure threshold (e.g., certain drug therapy, renal dysfunction.). [see Adverse Reactions (6); Drug Interactions (7.4, 7.5); Patient Counseling Information (17.3)]. 5.7 Clostridium difficile-Associated Diarrhea Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including levofloxacin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated [see Adverse Reactions (6); Patient Counseling Information (17.3)]. 5.8 Peripheral Neuropathy Cases of sensory or sensorimotor axonal polyneuropathy affecting small and/or large axons resulting in paresthesias, hypoesthesias, dysesthesias and weakness have been reported in patients receiving fluoroquinolones, including levofloxacin. Symptoms may occur soon after initiation of levofloxacinand may be irreversible. Levofloxacinshould be discontinued immediately if the patient experiences symptoms of neuropathy including pain, burning, tingling, numbness, and/or weakness or other alterations of sensation including light touch, pain, temperature, position sense, and vibratory sensation [see Adverse Reactions (6); Patient Counseling Information (17.3)]. 5.9 Prolongation of the QT Interval Some fluoroquinolones, including levofloxacin, have been associated with prolongation of the QT interval on the electrocardiogram and infrequent cases of arrhythmia. Rare cases of torsade de pointes have been spontaneously reported during postmarketing surveillance in patients receiving fluoroquinolones, including levofloxacin. Levofloxacin should be avoided in patients with known prolongation of the QT interval, patients with uncorrected hypokalemia, and patients receiving Class IA (quinidine, procainamide), or Class III (amiodarone, sotalol) antiarrhythmic agents. Elderly patients may be more susceptible to drug-associated effects on the QT interval [see Adverse Reactions (6.3), Use in Specific Populations (8.5), and Patient Counseling Information (17.3)]. 5.10 Musculoskeletal Disorders in Pediatric Patients and Arthropathic Effects in Animals Levofloxacin is indicated in pediatric patients (6 months of age and older) only for the prevention of inhalational anthrax (post-exposure) and for plague [see Indications and Usage (1.13, 1.14)]. An increased incidence of musculoskeletal disorders (arthralgia, arthritis, tendinopathy, and gait abnormality) compared to controls has been observed in pediatric patients receiving levofloxacin[see Use in Specific Populations (8.4) ]. In immature rats and dogs, the oral and intravenous administration of levofloxacin resulted in increased osteochondrosis. Histopathological examination of the weight-bearing joints of immature dogs dosed with levofloxacin revealed persistent lesions of the cartilage. Other fluoroquinolones also produce similar erosions in the weight-bearing joints and other signs of arthropathy in immature animals of various species [see Animal Toxicology and/or Pharmacology (13.2) ]. 5.11 Blood Glucose Disturbances As with other fluoroquinolones, disturbances of blood glucose, including symptomatic hyper- and hypoglycemia, have been reported with levofloxacin, usually in diabetic patients receiving concomitant treatment with an oral hypoglycemic agent (e.g., glyburide) or with insulin. In these patients, careful monitoring of blood glucose is recommended. If a hypoglycemic reaction occurs in a patient being treated with levofloxacin, levofloxacinshould be discontinued and appropriate therapy should be initiated immediately [see Adverse Reactions (6.2); Drug Interactions (7.3); Patient Counseling Information (17.4)]. 5.12 Photosensitivity/Phototoxicity Moderate to severe photosensitivity/phototoxicity reactions, the latter of which may manifest as exaggerated sunburn reactions (e.g., burning, erythema, exudation, vesicles, blistering, edema) involving areas exposed to light (typically the face, “V” area of the neck, extensor surfaces of the forearms, dorsa of the hands), can be associated with the use of fluoroquinolones after sun or UV light exposure. Therefore, excessive exposure to these sources of light should be avoided. Drug therapy should be discontinued if photosensitivity/phototoxicity occurs [see Adverse Reactions (6.3); Patient Counseling Information (17.3)]. 5.13 Development of Drug Resistant Bacteria Prescribing levofloxacin in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria [see Patient Counseling Information (17.1) ].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Medication Guide (17.6) 17.1 Antibacterial Resistance Antibacterial drugs including levofloxacin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When levofloxacin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by levofloxacin or other antibacterial drugs in the future. 17.2 Administration with Food, Fluids, and Concomitant Medications Patients should be informed that levofloxacin tablets may be taken with or without food. The tablet should be taken at the same time each day. Patients should drink fluids liberally while taking levofloxacin to avoid formation of a highly concentrated urine and crystal formation in the urine. Antacids containing magnesium, or aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc or didanosine should be taken at least two hours before or two hours after oral levofloxacin administration. 17.3 Serious and Potentially Serious Adverse Reactions Patients should be informed of the following serious adverse reactions that have been associated with levofloxacin or other fluoroquinolone use: • Tendon Disorders: Patients should contact their healthcare provider if they experience pain, swelling, or inflammation of a tendon, or weakness or inability to use one of their joints; rest and refrain from exercise; and discontinue levofloxacin treatment. The risk of severe tendon disorders with fluoroquinolones is higher in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. • Exacerbation of Myasthenia Gravis: Patients should inform their physician of any history of myasthenia gravis. Patients should notify their physician if they experience any symptoms of muscle weakness, including respiratory difficulties. • Hypersensitivity Reactions: Patients should be informed that levofloxacin can cause hypersensitivity reactions, even following the first dose. Patients should discontinue the drug at the first sign of a skin rash, hives or other skin reactions, a rapid heartbeat, difficulty in swallowing or breathing, any swelling suggesting angioedema (e.g., swelling of the lips, tongue, face, tightness of the throat, hoarseness), or other symptoms of an allergic reaction. • Hepatotoxicity: Severe hepatotoxicity (including acute hepatitis and fatal events) has been reported in patients taking levofloxacin. Patients should inform their physician and be instructed to discontinue levofloxacintreatment immediately if they experience any signs or symptoms of liver injury including: loss of appetite, nausea, vomiting, fever, weakness, tiredness, right upper quadrant tenderness, itching, yellowing of the skin and eyes, light colored bowel movements or dark colored urine. • Convulsions: Convulsions have been reported in patients taking fluoroquinolones, including levofloxacin. Patients should notify their physician before taking this drug if they have a history of convulsions. • Neurologic Adverse Effects (e.g., dizziness, lightheadedness , increased intracranial pressure): Patients should know how they react to levofloxacinbefore they operate an automobile or machinery or engage in other activities requiring mental alertness and coordination. Patients should notify their physician if persistent headache with or without blurred vision occurs. • Diarrhea: Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible. • Peripheral Neuropathies: Patients should be informed that peripheral neuropathy has been associated with levofloxacin use. Symptoms may occur soon after initiation of therapy and may be irreversible. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness, and/or weakness develop, patients should immediately discontinue treatment and contact their physician. • Prolongation of the QT Interval: Patients should inform their physician of any personal or family history of QT prolongation or proarrhythmic conditions such as hypokalemia, bradycardia, or recent myocardial ischemia; if they are taking any Class IA (quinidine, procainamide), or Class III (amiodarone, sotalol) antiarrhythmic agents. Patients should notify their physicians if they have any symptoms of prolongation of the QT interval, including prolonged heart palpitations or a loss of consciousness. • Musculoskeletal Disorders in Pediatric Patients: Parents should inform their child’s physician if their child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child’s physician of any tendon or joint-related problems that occur during or following levofloxacin therapy [see Warnings and Precautions (5.10) and Use in Specific Populations (8.4)]. • Photosensitivity/Phototoxicity: Patients should be advised that photosensitivity/phototoxicity has been reported in patients receiving fluoroquinolone antibiotics. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking fluoroquinolones. If patients need to be outdoors when taking fluoroquinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn like reaction or skin eruption occurs, patients should contact their physician. 17.4 Drug Interactions with Insulin, Oral Hypoglycemic Agents, and Warfarin Patients should be informed that if they are diabetic and are being treated with insulin or an oral hypoglycemic agent and a hypoglycemic reaction occurs, they should discontinue levofloxacin and consult a physician. Patients should be informed that concurrent administration of warfarin and levofloxacin has been associated with increases of the International Normalized Ratio (INR) or prothrombin time and clinical episodes of bleeding. Patients should notify their physician if they are taking warfarin, be monitored for evidence of bleeding, and also have their anticoagulation tests closely monitored while taking warfarin concomitantly. 17.5 Plague and Anthrax Studies Patients given levofloxacin for these conditions should be informed that efficacy studies could not be conducted in humans for ethical and feasibility reasons. Therefore, approval for these conditions was based on efficacy studies conducted in animals. 17.6 FDA-Approved Medication Guide

DOSAGE AND ADMINISTRATION

2 •Dosage in patients with normal renal function (2.1) Type of Infection Dose Every 24 hours Duration (days) Nosocomial Pneumonia (1.1) 750 mg 7 to 14 Community Acquired Pneumonia (1.2) 500 mg 7 to 14 Community Acquired Pneumonia (1.3) 750 mg 5 Acute Bacterial Sinusitis (1.4) 750 mg 5 500 mg 10 to 14 Acute Bacterial Exacerbation of Chronic Bronchitis (1.5) 500 mg 7 Complicated Skin and Skin Structure Infections (SSSI) (1.6) 750 mg 7 to 14 Uncomplicated SSSI (1.7) 500 mg 7 to 10 Chronic Bacterial Prostatitis (1.8) 500 mg 28 Complicated Urinary Tract Infection (1.9) or Acute Pyelonephritis (1.11) 750 mg 5 Complicated Urinary Tract Infection (1.10) or 250 mg 10 Acute Pyelonephritis (1.11) Uncomplicated Urinary Tract Infection (1.12) 250 mg 3 Inhalational Anthrax (Post-Exposure) (1.13) Adults and Pediatric Patients > 50 kg 500 mg 60 Pediatric Patients 50 kg Pediatric Patients < 50 kg and ≥ 6 months of age 500 mg 8 mg/kg BID (not to exceed 250 mg/dose) 10 to 14 10 to 14 •Adjust dose for creatinine clearance <50 ml/min (2.3, 8.6, 12.3) 2.1 Dosage in Adult Patients with Normal Renal Function The usual dose of levofloxacin tablets are 250 mg, 500 mg, or 750 mg administered orally every 24 hours, as indicated by infection and described in Table 1. These recommendations apply to patients with creatinine clearance ≥ 50 mL/min. For patients with creatinine clearance 50 kg Þ,ß Pediatric patients 50 kgà Pediatric patients 50 kg 500 mg 24 hr 60 days§ Pediatric patients 50 kg 500 mg 24 hr 10 to 14 days Pediatric patients < 50 kg and ≥ 6 months of age 8 mg/kg (not to exceed 250 mg per dose) 12 hr 10 to 14 days *Due to Bacillus anthracis [see Indications and Usage (1.13) ] and Yersinia pestis [see Indications and Usage (1.14) ]. † Sequential therapy (intravenous to oral) may be instituted at the discretion of the physician. ‡Drug administration should begin as soon as possible after suspected or confirmed exposure toaerosolizedB. anthracis. This indication is based on a surrogate endpoint. Levofloxacin plasma concentrationsachieved in humans are reasonably likely to predict clinical benefit [see Clinical Studies (14.9)] §The safety of levofloxacin in pediatric patients for durations of therapy beyond 14 days has not beenstudied. An increased incidence of musculoskeletal adverse events compared to controls has been observed in pediatric patients [see Warnings and Precautions (5.10), Use in Specific Populations (8.4), and Clinical Studies (14.9)]. Prolonged levofloxacin therapy should only be used when the benefit outweighs the risk. ¶Drug administration should begin as soon as possible after suspected or confirmed exposure to Yersinia pestis. 2.3 Dosage Adjustment in Adults with Renal Impairment Administer levofloxacin with caution in the presence of renal insufficiency. Careful clinical observation and appropriate laboratory studies should be performed prior to and during therapy since elimination of levofloxacin may be reduced. No adjustment is necessary for patients with a creatinine clearance ≥ 50 mL/min. In patients with impaired renal function (creatinine clearance <50 mL/min), adjustment of the dosage regimen is necessary to avoid the accumulation of levofloxacin due to decreased clearance [see Use in Specific Populations (8.6) ]. Table 3 shows how to adjust dose based on creatinine clearance. Table 3: Dosage Adjustment in Adult Patients with Renal Impairment (creatinine clearance <50 mL/min) Dosage in Normal Renal Function Every 24 hours Creatinine Clearance 20 to 49 mL/min Creatinine Clearance 10 to 19 mL/min Hemodialysis or Chronic Ambulatory Peritoneal Dialysis (CAPD) 750 mg 750 mg every 48 hours 750 mg initial dose, then 500 mg every 48 hours 750 mg initial dose, then 500 mg every 48 hours 500 mg 500 mg initial dose, then 250 mg every 24 hours 500 mg initial dose, then 250 mg every 48 hours 500 mg initial dose, then 250 mg every 48 hours 250 mg No dosage adjustment required 250 mg every 48 hours. If treating uncomplicated UTI, then no dosage adjustment is required No information on dosing adjustment is available 2.4 Drug Interaction With Chelation Agents: Antacids, Sucralfate, Metal Cations, Multivitamins Levofloxacin tablets should be administered at least two hours before or two hours after antacids containing magnesium, aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc or didanosine chewable/buffered tablets or the pediatric powder for oral solution [see Drug Interactions (7.1) and Patient Counseling Information (17.2)] 2.5 Administration Instructions Food and Levofloxacin Tablets Levofloxacin tablets can be administered without regard to food. Hydration for Patients Receiving Levofloxacin Tablets Adequate hydration of patients receiving oral levofloxacin should be maintained to prevent the formation of highly concentrated urine. Crystalluria and cylindruria have been reported with quinolones [see Adverse Reactions (6.1) and Patient Counseling Information (17.2)].

lisinopril 20 MG / hydrochlorothiazide 12.5 MG Oral Tablet

Generic Name: LISINOPRIL AND HYDROCHLOROTHIAZIDE
Brand Name: LISINOPRIL AND HYDROCHLOROTHIAZIDE
  • Substance Name(s):
  • HYDROCHLOROTHIAZIDE
  • LISINOPRIL

WARNINGS

General Lisinopril Anaphylactoid and Possibly Related Reactions: Presumably because angiotensin-converting enzyme inhibitors affect the metabolism of eicosanoids and polypeptides, including endogenous bradykinin, patients receiving ACE inhibitors (including lisinopril and hydrochlorothiazide) may be subject to a variety of adverse reactions, some of them serious. Head and Neck Angioedema: Angioedema of the face, extremities, lips, tongue, glottis and/or larynx has been reported rarely in patients treated with angiotensin converting enzyme inhibitors, including lisinopril. This may occur at any time during treatment. ACE inhibitors have been associated with a higher rate of angioedema in Black than in non-Black patients. In such cases lisinopril and hydrochlorothiazide should be promptly discontinued and appropriate therapy and monitoring should be provided until complete and sustained resolution of signs and symptoms has occurred. Even in those instances where swelling of only the tongue is involved, without respiratory distress, patients may require prolonged observation since treatment with antihistamines and corticosteroids may not be sufficient. Very rarely, fatalities have been reported due to angioedema associated with laryngeal edema or tongue edema. Patients with involvement of the tongue, glottis or larynx are likely to experience airway obstruction, especially those with a history of airway surgery. Where there is involvement of the tongue, glottis or larynx, likely to cause airway obstruction, subcutaneous epinephrine solution 1:1000 (0.3 mL to 0.5 mL) and/or measures necessary to ensure a patent airway, should be promptly provided. (See ADVERSE REACTIONS .) Patients with a history of angioedema unrelated to ACE-inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see also INDICATIONS AND USAGE and CONTRAINDICATIONS ). Intestinal Angioedema: Intestinal angioedema has been reported in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. The angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor. Intestinal angioedema should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain. Anaphylactoid reactions during desensitization: Two patients undergoing desensitizing treatment with hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions. In the same patients, these reactions were avoided when ACE inhibitors were temporarily withheld, but they reappeared upon inadvertent rechallenge. Anaphylactoid reactions during membrane exposure: Anaphylactoid reactions have been reported in patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption. Hypotension and Related Effects: Excessive hypotension was rarely seen in uncomplicated hypertensive patients but is a possible consequence of lisinopril use in salt/volume-depleted persons, such as those treated vigorously with diuretics or patients on dialysis. (See PRECAUTIONS , Drug Interactions and ADVERSE REACTIONS .) Syncope has been reported in 0.8 percent of patients receiving lisinopril and hydrochlorothiazide. In patients with hypertension receiving lisinopril alone, the incidence of syncope was 0.1 percent. The overall incidence of syncope may be reduced by proper titration of the individual components. (See PRECAUTIONS, Drug Interactions, ADVERSE REACTIONS and DOSAGE AND ADMINISTRATION .) In patients with severe congestive heart failure, with or without associated renal insufficiency, excessive hypotension has been observed and may be associated with oliguria and/or progressive azotemia, and rarely with acute renal failure and/or death. Because of the potential fall in blood pressure in these patients, therapy should be started under very close medical supervision. Such patients should be followed closely for the first two weeks of treatment and whenever the dose of lisinopril and/or diuretic is increased. Similar considerations apply to patients with ischemic heart or cerebrovascular disease in whom an excessive fall in blood pressure could result in a myocardial infarction or cerebrovascular accident. If hypotension occurs, the patient should be placed in supine position and, if necessary, receive an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further doses which usually can be given without difficulty once the blood pressure has increased after volume expansion. Neutropenia/Agranulocytosis: Another angiotensin converting enzyme inhibitor, captopril, has been shown to cause agranulocytosis and bone marrow depression, rarely in uncomplicated patients but more frequently in patients with renal impairment, especially if they also have a collagen vascular disease. Available data from clinical trials of lisinopril are insufficient to show that lisinopril does not cause agranulocytosis at similar rates. Marketing experience has revealed rare cases of neutropenia and bone marrow depression in which a causal relationship to lisinopril cannot be excluded. Periodic monitoring of white blood cell counts in patients with collagen vascular disease and renal disease should be considered. Hepatic Failure: Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice or hepatitis and progresses to fulminant hepatic necrosis, and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical follow-up. Hydrochlorothiazide Thiazides should be used with caution in severe renal disease. In patients with renal disease, thiazides may precipitate azotemia. Cumulative effects of the drug may develop in patients with impaired renal function. Thiazides should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Sensitivity reactions may occur in patients with or without a history of allergy or bronchial asthma. The possibility of exacerbation or activation of systemic lupus erythematosus has been reported. Lithium generally should not be given with thiazides (see PRECAUTIONS, Drug Interactions, Lisinopril and Hydrochlorothiazide ). Acute Myopia and Secondary Angle-Closure Glaucome Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy. Fetal Toxicity Pregnancy Category D Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue lisinopril and hydrochlorothiazide as soon as possible. These adverse outcomes are usually associated with the use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus. In the unusual case that there is no appropriate alternative therapy to drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue lisinopril and hydrochlorothiazide, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to lisinopril and hydrochlorothiazide for hypotension, oliguria, and hyperkalemia (see PRECAUTIONS, Pediatric Use). Lisinopril-Hydrochlorothiazide Teratogenicity studies were conducted in mice and rats with up to 90 mg/kg/day of lisinopril in combination with 10 mg/kg/day of hydrochlorothiazide. This dose of lisinopril is 5 times (in mice) and 10 times (in rats) the maximum recommended human daily dose (MRHDD) when compared on a body surface area basis (mg/m2); the dose of hydrochlorothiazide is 0.9 times (in mice) and 1.8 times (in rats) the MRHDD. Maternal or fetotoxic effects were not seen in mice with the combination. In rats decreased maternal weight gain and decreased fetal weight occurred down to 3/10 mg/kg/day (the lowest dose tested). Associated with the decreased fetal weight was a delay in fetal ossification. The decreased fetal weight and delay in fetal ossification were not seen in saline-supplemented animals given 90/10 mg/kg/day. No teratogenic effects of lisinopril were seen in studies of pregnant mice, rats, and rabbits. On a body surface area basis, the doses used were up 55 times, 33 times, and 0.15 times, respectively, the MRHDD. Hydrochlorothiazide Studies in which hydrochlorothiazide was orally administered to pregnant mice and rats during their respective periods of major organogenesis at doses up to 3000 and 1000 mg/kg/day, respectively, provided no evidence of harm to the fetus. These doses are more than 150 times the MRHDD on a body surface area basis. Thiazides cross the placental barrier and appear in cord blood. There is a risk of fetal or neonatal jaundice, thrombocytopenia and possibly other adverse reactions that have occurred in adults.

DRUG INTERACTIONS

Drug Interactions Lisinopril Hypotension — Patients on Diuretic Therapy: Patients on diuretics, and especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with lisinopril. The possibility of hypotensive effects with lisinopril can be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with lisinopril. If it is necessary to continue the diuretic, initiate therapy with lisinopril at a dose of 5 mg daily, and provide close medical supervision after the initial dose for at least two hours and until blood pressure has stabilized for at least an additional hour. (See WARNINGS and DOSAGE AND ADMINISTRATION.) When a diuretic is added to the therapy of a patient receiving lisinopril, an additional antihypertensive effect is usually observed. (See DOSAGE AND ADMINISTRATION.) Non-steroidal Anti-inflammatory Agents Including Selective Cyclooxygenase-2 (COX-2) Inhibitors: Reports suggest that NSAIDs including selective COX-2 inhibitors may diminish the antihypertensive effect of ACE inhibitors, including lisinopril. This interaction should be given consideration in patients taking NSAIDs or selective COX-2 inhibitors concomitantly with ACE inhibitors. In some patients with compromised renal function (e.g., elderly patients or patients who are volume-depleted, including those on diuretic therapy) who are being treated with non-steroidal anti-inflammatory drugs, including selective COX-2 inhibitors, the co-administration of angiotensin II receptor antagonists or ACE inhibitors, may result in a further deterioration of renal function, including possible acute renal failure. These effects are usually reversible. These interactions should be considered in patients taking NSAIDS including selective COX-2 inhibitors concomitantly with diuretics and angiotensin II antagonists or ACE inhibitors. Therefore, monitor effects on blood pressure and renal function when administering the combination, especially in the elderly. Dual Blockade of the Renin-angiotensin-aldosterone System: Dual blockade of the renin-angiotensin-aldosterone system (RAAS) with angiotensin receptor blockers, ACE inhibitors, or direct renin inhibitors (such as aliskiren) is associated with increased risk of hypotension, syncope, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Closely monitor blood pressure, renal function and electrolytes in patients on lisinopril and hydrochlorothiazide and other agents that affect the RAAS. Do not co-administer aliskiren with lisinopril and hydrochlorothiazide in patients with diabetes. Avoid use of aliskiren with lisinopril and hydrochlorothiazide in patients with renal impairment (GFR <60 mL/min). Other Agents: Lisinopril has been used concomitantly with nitrates and/or digoxin without evidence of clinically significant adverse interactions. No meaningful clinically important pharmacokinetic interactions occurred when lisinopril was used concomitantly with propranolol, digoxin, or hydrochlorothiazide. The presence of food in the stomach does not alter the bioavailability of lisinopril. Agents Increasing Serum Potassium: Lisinopril attenuates potassium loss caused by thiazide-type diuretics. Use of lisinopril with potassium-sparing diuretics (e.g., spironolactone, eplerenone, triamterene, or amiloride), potassium supplements, or potassium-containing salt substitutes may lead to significant increases in serum potassium. Therefore, if concomitant use of these agents is indicated, because of demonstrated hypokalemia, they should be used with caution and with frequent monitoring of serum potassium. Lithium: Lithium toxicity has been reported in patients receiving lithium concomitantly with drugs which cause elimination of sodium, including ACE inhibitors. Lithium toxicity was usually reversible upon discontinuation of lithium and the ACE inhibitor. It is recommended that serum lithium levels be monitored frequently if lisinopril is administered concomitantly with lithium. Gold: Nitritoid reactions (symptoms include facial flushing, nausea, vomiting and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy including lisinopril and hydrochlorothiazide. Hydrochlorothiazide When administered concurrently the following drugs may interact with thiazide diuretics. Alcohol, barbiturates, or narcotics — potentiation of orthostatic hypotension may occur. Antidiabetic drugs (oral agents and insulin) — dosage adjustment of the antidiabetic drug may be required. Other antihypertensive drugs — additive effect or potentiation. Cholestyramine and colestipol resins — Absorption of hydrochlorothiazide is impaired in the presence of anionic exchange resins. Single doses of either cholestyramine or colestipol resins bind the hydrochlorothiazide and reduce its absorption from the gastrointestinal tract by up to 85 and 43 percent, respectively. Corticosteroids, ACTH — intensified electrolyte depletion, particularly hypokalemia. Pressor amines (e.g., norepinephrine) — possible decreased response to pressor amines but not sufficient to preclude their use. Skeletal muscle relaxants, nondepolarizing (e.g., tubocuraine)- possible increased responsiveness to the musclerelaxant Lithium -should not generally be given with diuretics. Diuretic agents reduce the renal clearance of lithium and add a high risk of lithium toxicity. Refer to the package insert for lithium preparations before use of such preparations with lisinopril and hydrochlorothiazide. Non-steroidal Anti-inflammatory Drugs- In some patients, the administration of a non-steroidal anti-inflammatory agent can reduce the diuretic, natriuretic, and antihypertensive effects of loop, potassium -sparing and thiazide diuretics. Therefore, when lisinopril and hydrochlorothiazide and non-steroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of lisinopril and hydrochlorothiazide is obtained.

OVERDOSAGE

No specific information is available on the treatment of overdosage with lisinopril and hydrochlorothiazide. Treatment is symptomatic and supportive. Therapy with lisinopril and hydrochlorothiazide should be discontinued and the patient observed closely. Suggested measures include induction of emesis and/or gastric lavage, and correction of dehydration, electrolyte imbalance and hypotension by established procedures. Lisinopril Following a single oral dose of 20 mg/kg, no lethality occurred in rats and death occurred in one of 20 mice receiving the same dose. The most likely manifestation of overdosage would be hypotension, for which the usual treatment would be intravenous infusion of normal saline solution. Lisinopril can be removed by hemodialysis. (See WARNINGS, Anaphylactoid reactions during membrane exposure .) Hydrochlorothiazide Oral administration of a single oral dose of 10 mg/kg to mice and rats was not lethal. The most common signs and symptoms observed are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias.

DESCRIPTION

Lisinopril and hydrochlorothiazide tablets USP combines an angiotensin converting enzyme inhibitor, lisinopril, and a diuretic, hydrochlorothiazide. Lisinopril, a synthetic peptide derivative, is an oral long-acting angiotensin converting enzyme inhibitor. It is chemically described as (S)-1-[N2 -(1-carboxy-3-phenylpropyl)-L-lysyl]-L-proline dihydrate. Its empirical formula is C21H31N3O5•2H2O and its structural formula is: Lisinopril is a white to off-white, crystalline powder, with a molecular weight of 441.52. It is soluble in water, sparingly soluble in methanol, and practically insoluble in ethanol. Hydrochlorothiazide is 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Its empirical formula is C7H8ClN3O4S2 and its structural formula is: Hydrochlorothiazide is a white, or practically white, crystalline powder with a molecular weight of 297.73, which is slightly soluble in water, but freely soluble in sodium hydroxide solution. Lisinopril and hydrochlorothiazide tablets are available for oral use in three tablet combinations of lisinopril with hydrochlorothiazide: lisinopril and hydrochlorothiazide tablets USP, 10 mg/12.5 mg, containing 10 mg lisinopril and 12.5 mg hydrochlorothiazide, lisinopril and hydrochlorothiazide tablets USP, 20 mg/12.5 mg, containing 20 mg lisinopril and 12.5 mg hydrochlorothiazide and lisinopril and hydrochlorothiazide tablets USP, 20 mg/25 mg, containing 20 mg lisinopril and 25 mg hydrochlorothiazide. Inactive ingredients are dibasic calcium phosphate, magnesium stearate, mannitol, pregelatinized starch and starch. Lisinopril and hydrochlorothiazide tablets USP, 10 mg/12.5 mg also contains FD&C Blue No. 2 Aluminum Lake. Lisinopril and hydrochlorothiazide tablets USP, 20 mg/12.5 mg also contains yellow iron oxide and lisinopril and hydrochlorothiazide tablets USP, 20 mg/25 mg also contain red iron oxide. ChemStruc1 LisHCTZChemStruc2.jpg

HOW SUPPLIED

Lisinopril and Hydrochlorothiazide Tablets USP, 20 mg/12.5 mg are yellow, round tablets, with “LL” debossed on one side and “B02” on other side. They are supplied as follows: NDC 58118-0519-9 90ct bottle NDC 58118-0519-3 30ct bottle NDC 58118-0519-8 30ct blister NDC 58118-0519-0 1ct packet Lisinopril and Hydrochlorothiazide Tablets USP, 20 mg/25 mg are peach, round tablets, with “LL” debossed on one side and “B03” on other side. They are supplied as follows: NDC 58118-0520-9 90ct bottle NDC 58118-0520-3 30ct bottle NDC 58118-0520-8 30ct blister NDC 58118-0520-0 1ct packet Storage Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature]. Protect from excessive light and humidity.

GERIATRIC USE

Geriatric Use Clinical studies of lisinopril and hydrochlorothiazide did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. In a multiple-dose pharmacokinetic study in elderly versus young hypertensive patients using the lisinopril/hydrochlorothiazide combination, area under the plasma concentration time curve (AUC) increased approximately 120% for lisinopril and approximately 80% for hydrochlorothiazide in older patients. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection. Evaluation of the hypertensive patient should always include assessment of renal function. (See DOSAGE AND ADMINISTRATION .)

MECHANISM OF ACTION

Mechanism of Action Lisinopril inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. Inhibition of ACE results in decreased plasma angiotensin II which leads to decreased vasopressor activity and to decreased aldosterone secretion. The latter decrease may result in a small increase of serum potassium. Removal of angiotensin II negative feedback on renin secretion leads to increased plasma renin activity. In hypertensive patients with normal renal function treated with lisinopril alone for up to 24 weeks, the mean increase in serum potassium was less than 0.1 mEq/L; however, approximately 15 percent of patients had increases greater than 0.5 mEq/L and approximately six percent had a decrease greater than 0.5 mEq/L. In the same study, patients treated with lisinopril plus a thiazide diuretic showed essentially no change in serum potassium. (See PRECAUTIONS .) ACE is identical to kininase, an enzyme that degrades bradykinin. Whether increased levels of bradykinin, a potent vasodepressor peptide, play a role in the therapeutic effects of lisinopril remains to be elucidated. While the mechanism through which lisinopril lowers blood pressure is believed to be primarily suppression of the renin-angiotensin-aldosterone system, lisinopril is antihypertensive even in patients with low-renin hypertension. Although lisinopril was antihypertensive in all races studied, Black hypertensive patients (usually a low-renin hypertensive population) had a smaller average response to lisinopril monotherapy than non-Black patients.

INDICATIONS AND USAGE

Lisinopril and hydrochlorothiazide tablets USP are indicated for the treatment of hypertension. These fixed-dose combinations are not indicated for initial therapy (see DOSAGE AND ADMINISTRATION ). In using lisinopril and hydrochlorothiazide tablets USP, consideration should be given to the fact that an angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that lisinopril does not have a similar risk. (See WARNINGS .) In considering use of lisinopril and hydrochlorothiazide tablets USP, it should be noted that Black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-Blacks. (See WARNINGS, Head and Neck Angioedema .)

PEDIATRIC USE

Pediatric Use Neonates with a history of in utero exposure to lisinopril and hydrochlorothiazide: If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function. Lisinopril, which crosses the placenta, has been removed from neonatal circulation by peritoneal dialysis with some clinical benefit, and theoretically may be removed by exchange transfusion, although there is no experience with the latter procedure.

NUSRING MOTHERS

Nursing Mothers It is not known whether lisinopril is secreted in human milk. However, milk of lactating rats contains radioactivity following administration of 14C lisinopril. In another study, lisinopril was present in rat milk at levels similar to plasma levels in the dams. Thiazides do appear in human milk. Because of the potential for serious reactions in nursing infants from ACE inhibitors and hydrochlorothiazide, a decision should be made whether to discontinue nursing or to discontinue lisinopril and hydrochlorothiazide, taking into account the importance of the drug to the mother.

BOXED WARNING

WARNING: FETAL TOXICITY • When pregnancy is detected, discontinue lisinopril and hydrochlorothiazide as soon as possible. • Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. See WARNINGS, Fetal Toxicity.

INFORMATION FOR PATIENTS

Information for Patients Angioedema: Angioedema, including laryngeal edema, may occur at any time during treatment with angiotensin converting enzyme inhibitors, including lisinopril. Patients should be so advised and told to report immediately any signs or symptoms suggesting angioedema (swelling of face, extremities, eyes, lips, tongue, difficulty in swallowing or breathing) and to take no more drug until they have consulted with the prescribing physician. Symptomatic Hypotension: Patients should be cautioned to report lightheadedness especially during the first few days of therapy. If actual syncope occurs, the patients should be told to discontinue the drug until they have consulted with the prescribing physician. All patients should be cautioned that excessive perspiration and dehydration may lead to an excessive fall in blood pressure because of reduction in fluid volume. Other causes of volume depletion such as vomiting or diarrhea may also lead to a fall in blood pressure; patients should be advised to consult with their physician. Hyperkalemia: Patients should be told not to use salt substitutes containing potassium without consulting their physician. Neutropenia: Patients should be told to report promptly any indication of infection (e.g., sore throat, fever) which may be a sign of neutropenia. Pregnancy: Female patients of childbearing age should be told about the consequences of exposure to lisinopril and hydrochlorothiazide during pregnancy. Discuss treatment options with women planning to become pregnant. Patients should be asked to report pregnancies to their physicians as soon as possible.

DOSAGE AND ADMINISTRATION

Lisinopril is an effective treatment of hypertension in once-daily doses of 10 to 80 mg, while hydrochlorothiazide is effective in doses of 12.5 to 50 mg. In clinical trials of lisinopril/hydrochlorothiazide combination therapy using lisinopril doses of 10 to 80 mg and hydrochlorothiazide doses of 6.25 to 50 mg, the antihypertensive response rates generally increased with increasing dose of either component. The side effects (see WARNINGS ) of lisinopril are generally rare and apparently independent of dose; those of hydrochlorothiazide are a mixture of dose-dependent phenomena (primarily hypokalemia) and dose-independent phenomena (e.g., pancreatitis), the former much more common than the latter. Therapy with any combination of lisinopril and hydrochlorothiazide will be associated with both sets of dose-independent side effects, but addition of lisinopril in clinical trials blunted the hypokalemia normally seen with diuretics. To minimize dose-independent side effects, it is usually appropriate to begin combination therapy only after a patient has failed to achieve the desired effect with monotherapy. Dose Titration Guided by Clinical Effect A patient whose blood pressure is not adequately controlled with either lisinopril or hydrochlorothiazide monotherapy may be switched to lisinopril and hydrochlorothiazide tablets 10 mg/12.5 mg or lisinopril and hydrochlorothiazide tablets 20 mg/12.5 mg. Further increases of either or both components could depend on clinical response. The hydrochlorothiazide dose should generally not be increased until 2-3 weeks have elapsed. Patients whose blood pressures are adequately controlled with 25 mg of daily hydrochlorothiazide, but who experience significant potassium loss with this regimen, may achieve similar or greater blood pressure control with less potassium loss if they are switched to lisinopril and hydrochlorothiazide tablets 10 mg/12.5 mg. Dosage higher than lisinopril 80 mg and hydrochlorothiazide 50 mg should not be used. Replacement Therapy The combination may be substituted for the titrated individual components. Use in Renal Impairment The usual regimens of therapy with lisinopril and hydrochlorothiazide tablets need not be adjusted as long as the patient’s creatinine clearance is greater than 30 mL/min/1.73 m2 (serum creatinine approximately less than or equal to 3 mg/dL or 265 µmol/L). In patients with more severe renal impairment, loop diuretics are preferred to thiazides, so lisinopril and hydrochlorothiazide tablets are not recommended (see WARNINGS, Anaphylactoid reactions during membrane exposure ).

Lexapro 10 MG Oral Tablet

Generic Name: ESCITALOPRAM OXALATE
Brand Name: Lexapro
  • Substance Name(s):
  • ESCITALOPRAM OXALATE

DRUG INTERACTIONS

7 Concomitant use with SSRIs, SNRIs or Tryptophan is not recommended (7.2). Use caution when concomitant use with drugs that affect Hemostasis (NSAIDs, Aspirin, Warfarin) (7.6). 7.1 Monoamine Oxidase Inhibitors (MAOIs) [See Dosage and Administration (2.5 and 2.6), Contraindications (4.1) and Warnings and Precautions (5.2)]. 7.2 Serotonergic Drugs [See Dosage and Administration (2.5 and 2.6), Contraindications (4.1) and Warnings and Precautions (5.2)]. 7.3 Triptans There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of Lexapro with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases [see Warnings and Precautions (5.2)]. 7.4 CNS Drugs Given the primary CNS effects of escitalopram, caution should be used when it is taken in combination with other centrally acting drugs. 7.5 Alcohol Although Lexapro did not potentiate the cognitive and motor effects of alcohol in a clinical trial, as with other psychotropic medications, the use of alcohol by patients taking Lexapro is not recommended. 7.6 Drugs That Interfere With Hemostasis (NSAIDs, Aspirin, Warfarin, etc.) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate the risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when Lexapro is initiated or discontinued. 7.7 Cimetidine In subjects who had received 21 days of 40 mg/day racemic citalopram, combined administration of 400 mg twice a day cimetidine for 8 days resulted in an increase in citalopram AUC and Cmax of 43% and 39%, respectively. The clinical significance of these findings is unknown. 7.8 Digoxin In subjects who had received 21 days of 40 mg/day racemic citalopram, combined administration of citalopram and digoxin (single dose of 1 mg) did not significantly affect the pharmacokinetics of either citalopram or digoxin. 7.9 Lithium Coadministration of racemic citalopram (40 mg/day for 10 days) and lithium (30 mmol/day for 5 days) had no significant effect on the pharmacokinetics of citalopram or lithium. Nevertheless, plasma lithium levels should be monitored with appropriate adjustment to the lithium dose in accordance with standard clinical practice. Because lithium may enhance the serotonergic effects of escitalopram, caution should be exercised when Lexapro and lithium are coadministered. 7.10 Pimozide and Celexa In a controlled study, a single dose of pimozide 2 mg co-administered with racemic citalopram 40 mg given once daily for 11 days was associated with a mean increase in QTc values of approximately 10 msec compared to pimozide given alone. Racemic citalopram did not alter the mean AUC or Cmax of pimozide. The mechanism of this pharmacodynamic interaction is not known. 7.11 Sumatriptan There have been rare postmarketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of an SSRI and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, escitalopram) is clinically warranted, appropriate observation of the patient is advised. 7.12 Theophylline Combined administration of racemic citalopram (40 mg/day for 21 days) and the CYP1A2 substrate theophylline (single dose of 300 mg) did not affect the pharmacokinetics of theophylline. The effect of theophylline on the pharmacokinetics of citalopram was not evaluated. 7.13 Warfarin Administration of 40 mg/day racemic citalopram for 21 days did not affect the pharmacokinetics of warfarin, a CYP3A4 substrate. Prothrombin time was increased by 5%, the clinical significance of which is unknown. 7.14 Carbamazepine Combined administration of racemic citalopram (40 mg/day for 14 days) and carbamazepine (titrated to 400 mg/day for 35 days) did not significantly affect the pharmacokinetics of carbamazepine, a CYP3A4 substrate. Although trough citalopram plasma levels were unaffected, given the enzyme-inducing properties of carbamazepine, the possibility that carbamazepine might increase the clearance of escitalopram should be considered if the two drugs are coadministered. 7.15 Triazolam Combined administration of racemic citalopram (titrated to 40 mg/day for 28 days) and the CYP3A4 substrate triazolam (single dose of 0.25 mg) did not significantly affect the pharmacokinetics of either citalopram or triazolam. 7.16 Ketoconazole Combined administration of racemic citalopram (40 mg) and ketoconazole (200 mg), a potent CYP3A4 inhibitor, decreased the Cmax and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram. 7.17 Ritonavir Combined administration of a single dose of ritonavir (600 mg), both a CYP3A4 substrate and a potent inhibitor of CYP3A4, and escitalopram (20 mg) did not affect the pharmacokinetics of either ritonavir or escitalopram. 7.18 CYP3A4 and -2C19 Inhibitors In vitro studies indicated that CYP3A4 and -2C19 are the primary enzymes involved in the metabolism of escitalopram. However, coadministration of escitalopram (20 mg) and ritonavir (600 mg), a potent inhibitor of CYP3A4, did not significantly affect the pharmacokinetics of escitalopram. Because escitalopram is metabolized by multiple enzyme systems, inhibition of a single enzyme may not appreciably decrease escitalopram clearance. 7.19 Drugs Metabolized by Cytochrome P4502D6 In vitro studies did not reveal an inhibitory effect of escitalopram on CYP2D6. In addition, steady state levels of racemic citalopram were not significantly different in poor metabolizers and extensive CYP2D6 metabolizers after multiple-dose administration of citalopram, suggesting that coadministration, with escitalopram, of a drug that inhibits CYP2D6, is unlikely to have clinically significant effects on escitalopram metabolism. However, there are limited in vivo data suggesting a modest CYP2D6 inhibitory effect for escitalopram, i.e., coadministration of escitalopram (20 mg/day for 21 days) with the tricyclic antidepressant desipramine (single dose of 50 mg), a substrate for CYP2D6, resulted in a 40% increase in Cmax and a 100% increase in AUC of desipramine. The clinical significance of this finding is unknown. Nevertheless, caution is indicated in the coadministration of escitalopram and drugs metabolized by CYP2D6. 7.20 Metoprolol Administration of 20 mg/day Lexapro for 21 days in healthy volunteers resulted in a 50% increase in Cmax and 82% increase in AUC of the beta-adrenergic blocker metoprolol (given in a single dose of 100 mg). Increased metoprolol plasma levels have been associated with decreased cardioselectivity. Coadministration of Lexapro and metoprolol had no clinically significant effects on blood pressure or heart rate. 7.21 Electroconvulsive Therapy (ECT) There are no clinical studies of the combined use of ECT and escitalopram.

OVERDOSAGE

10 10.1 Human Experience In clinical trials of escitalopram, there were reports of escitalopram overdose, including overdoses of up to 600 mg, with no associated fatalities. During the postmarketing evaluation of escitalopram, Lexapro overdoses involving overdoses of over 1000 mg have been reported. As with other SSRIs, a fatal outcome in a patient who has taken an overdose of escitalopram has been rarely reported. Symptoms most often accompanying escitalopram overdose, alone or in combination with other drugs and/or alcohol, included convulsions, coma, dizziness, hypotension, insomnia, nausea, vomiting, sinus tachycardia, somnolence, and ECG changes (including QT prolongation and very rare cases of torsade de pointes). Acute renal failure has been very rarely reported accompanying overdose. 10.2 Management of Overdose Establish and maintain an airway to ensure adequate ventilation and oxygenation. Gastric evacuation by lavage and use of activated charcoal should be considered. Careful observation and cardiac and vital sign monitoring are recommended, along with general symptomatic and supportive care. Due to the large volume of distribution of escitalopram, forced diuresis, dialysis, hemoperfusion, and exchange transfusion are unlikely to be of benefit. There are no specific antidotes for Lexapro. In managing overdosage, consider the possibility of multiple-drug involvement. The physician should consider contacting a poison control center for additional information on the treatment of any overdose.

DESCRIPTION

11 Lexapro® (escitalopram oxalate) is an orally administered selective serotonin reuptake inhibitor (SSRI). Escitalopram is the pure S-enantiomer (single isomer) of the racemic bicyclic phthalane derivative citalopram. Escitalopram oxalate is designated S-(+)-1-[3-(dimethyl-amino)propyl]-1-(p-fluorophenyl)-5-phthalancarbonitrile oxalate with the following structural formula: The molecular formula is C20H21FN2O • C2H2O4 and the molecular weight is 414.40. Escitalopram oxalate occurs as a fine, white to slightly-yellow powder and is freely soluble in methanol and dimethyl sulfoxide (DMSO), soluble in isotonic saline solution, sparingly soluble in water and ethanol, slightly soluble in ethyl acetate, and insoluble in heptane. Lexapro (escitalopram oxalate) is available as tablets or as an oral solution. Lexapro tablets are film-coated, round tablets containing escitalopram oxalate in strengths equivalent to 5 mg, 10 mg, and 20 mg escitalopram base. The 10 and 20 mg tablets are scored. The tablets also contain the following inactive ingredients: talc, croscarmellose sodium, microcrystalline cellulose/colloidal silicon dioxide, and magnesium stearate. The film coating contains hypromellose, titanium dioxide, and polyethylene glycol. Lexapro oral solution contains escitalopram oxalate equivalent to 1 mg/mL escitalopram base. It also contains the following inactive ingredients: sorbitol, purified water, citric acid, sodium citrate, malic acid, glycerin, propylene glycol, methylparaben, propylparaben, and natural peppermint flavor. Structural Formula

CLINICAL STUDIES

14 14.1 Major Depressive Disorder Adolescents The efficacy of Lexapro as an acute treatment for major depressive disorder in adolescent patients was established in an 8-week, flexible-dose, placebo-controlled study that compared Lexapro 10-20 mg/day to placebo in outpatients 12 to 17 years of age inclusive who met DSM-IV criteria for major depressive disorder. The primary outcome was change from baseline to endpoint in the Children’s Depression Rating Scale – Revised (CDRS-R). In this study, Lexapro showed statistically significant greater mean improvement compared to placebo on the CDRS-R. The efficacy of Lexapro in the acute treatment of major depressive disorder in adolescents was established, in part, on the basis of extrapolation from the 8-week, flexible-dose, placebo-controlled study with racemic citalopram 20-40 mg/day. In this outpatient study in children and adolescents 7 to 17 years of age who met DSM-IV criteria for major depressive disorder, citalopram treatment showed statistically significant greater mean improvement from baseline, compared to placebo, on the CDRS-R; the positive results for this trial largely came from the adolescent subgroup. Two additional flexible-dose, placebo-controlled MDD studies (one Lexapro study in patients ages 7 to 17 and one citalopram study in adolescents) did not demonstrate efficacy. Although maintenance efficacy in adolescent patients has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of escitalopram pharmacokinetic parameters in adults and adolescent patients. Adults The efficacy of Lexapro as a treatment for major depressive disorder was established in three, 8-week, placebo-controlled studies conducted in outpatients between 18 and 65 years of age who met DSM-IV criteria for major depressive disorder. The primary outcome in all three studies was change from baseline to endpoint in the Montgomery Asberg Depression Rating Scale (MADRS). A fixed-dose study compared 10 mg/day Lexapro and 20 mg/day Lexapro to placebo and 40 mg/day citalopram. The 10 mg/day and 20 mg/day Lexapro treatment groups showed statistically significant greater mean improvement compared to placebo on the MADRS. The 10 mg and 20 mg Lexapro groups were similar on this outcome measure. In a second fixed-dose study of 10 mg/day Lexapro and placebo, the 10 mg/day Lexapro treatment group showed statistically significant greater mean improvement compared to placebo on the MADRS. In a flexible-dose study, comparing Lexapro, titrated between 10 and 20 mg/day, to placebo and citalopram, titrated between 20 and 40 mg/day, the Lexapro treatment group showed statistically significant greater mean improvement compared to placebo on the MADRS. Analyses of the relationship between treatment outcome and age, gender, and race did not suggest any differential responsiveness on the basis of these patient characteristics. In a longer-term trial, 274 patients meeting (DSM-IV) criteria for major depressive disorder, who had responded during an initial 8-week, open-label treatment phase with Lexapro 10 or 20 mg/day, were randomized to continuation of Lexapro at their same dose, or to placebo, for up to 36 weeks of observation for relapse. Response during the open-label phase was defined by having a decrease of the MADRS total score to ≤ 12. Relapse during the double-blind phase was defined as an increase of the MADRS total score to ≥ 22, or discontinuation due to insufficient clinical response. Patients receiving continued Lexapro experienced a statistically significant longer time to relapse compared to those receiving placebo. 14.2 Generalized Anxiety Disorder The efficacy of Lexapro in the acute treatment of Generalized Anxiety Disorder (GAD) was demonstrated in three, 8-week, multicenter, flexible-dose, placebo-controlled studies that compared Lexapro 10-20 mg/day to placebo in adult outpatients between 18 and 80 years of age who met DSM-IV criteria for GAD. In all three studies, Lexapro showed statistically significant greater mean improvement compared to placebo on the Hamilton Anxiety Scale (HAM-A). There were too few patients in differing ethnic and age groups to adequately assess whether or not Lexapro has differential effects in these groups. There was no difference in response to Lexapro between men and women.

HOW SUPPLIED

16 /STORAGE AND HANDLING 16.1 Tablets 5 mg Tablets: Bottle of 100 NDC # 0456-2005-01 White to off-white, round, non-scored, film-coated. Imprint “FL” on one side of the tablet and “5” on the other side. 10 mg Tablets: Bottle of 100 NDC # 0456-2010-01 10 x 10 Unit Dose NDC # 0456-2010-63 White to off-white, round, scored, film-coated. Imprint on scored side with “F” on the left side and “L” on the right side. Imprint on the non-scored side with “10”. 20 mg Tablets: Bottle of 100 NDC # 0456-2020-01 10 x 10 Unit Dose NDC # 0456-2020-63 White to off-white, round, scored, film-coated. Imprint on scored side with “F” on the left side and “L” on the right side. Imprint on the non-scored side with “20”. 16.2 Oral Solution 5 mg/5 mL, peppermint flavor (240 mL) NDC # 0456-2101-08 Storage and Handling Store at 25°C (77°F); excursions permitted to 15 – 30°C (59-86°F).

RECENT MAJOR CHANGES

Warnings and Precautions (5.2) 01/2017

GERIATRIC USE

8.5 Geriatric Use Approximately 6% of the 1144 patients receiving escitalopram in controlled trials of Lexapro in major depressive disorder and GAD were 60 years of age or older; elderly patients in these trials received daily doses of Lexapro between 10 and 20 mg. The number of elderly patients in these trials was insufficient to adequately assess for possible differential efficacy and safety measures on the basis of age. Nevertheless, greater sensitivity of some elderly individuals to effects of Lexapro cannot be ruled out. SSRIs and SNRIs, including Lexapro, have been associated with cases of clinically significant hyponatremia in elderly patients, who may be at greater risk for this adverse event [see Hyponatremia (5.6)]. In two pharmacokinetic studies, escitalopram half-life was increased by approximately 50% in elderly subjects as compared to young subjects and Cmax was unchanged [see Clinical Pharmacology (12.3)]. 10 mg/day is the recommended dose for elderly patients [see Dosage and Administration (2.3)]. Of 4422 patients in clinical studies of racemic citalopram, 1357 were 60 and over, 1034 were 65 and over, and 457 were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but again, greater sensitivity of some elderly individuals cannot be ruled out.

DOSAGE FORMS AND STRENGTHS

3 Tablets: 5 mg, 10 mg (scored) and 20 mg (scored) (3.1) Oral solution: 1 mg per mL (3.2) 3.1 Tablets Lexapro tablets are film-coated, round tablets containing escitalopram oxalate in strengths equivalent to 5 mg, 10 mg and 20 mg escitalopram base. The 10 and 20 mg tablets are scored. Imprinted with “FL” on one side and either “5”, “10”, or “20” on the other side according to their respective strengths. 3.2 Oral Solution Lexapro oral solution contains escitalopram oxalate equivalent to 1 mg/mL escitalopram base.

MECHANISM OF ACTION

12.1 Mechanism of Action The mechanism of antidepressant action of escitalopram, the S-enantiomer of racemic citalopram, is presumed to be linked to potentiation of serotonergic activity in the central nervous system (CNS) resulting from its inhibition of CNS neuronal reuptake of serotonin (5-HT).

INDICATIONS AND USAGE

1 Lexapro® is a selective serotonin reuptake inhibitor (SSRI) indicated for: Acute and Maintenance Treatment of Major Depressive Disorder (MDD) in adults and adolescents aged 12-17 years (1.1) Acute Treatment of Generalized Anxiety Disorder (GAD) in adults (1.2) 1.1 Major Depressive Disorder Lexapro (escitalopram) is indicated for the acute and maintenance treatment of major depressive disorder in adults and in adolescents 12 to 17 years of age [see Clinical Studies (14.1)]. A major depressive episode (DSM-IV) implies a prominent and relatively persistent (nearly every day for at least 2 weeks) depressed or dysphoric mood that usually interferes with daily functioning, and includes at least five of the following nine symptoms: depressed mood, loss of interest in usual activities, significant change in weight and/or appetite, insomnia or hypersomnia, psychomotor agitation or retardation, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, a suicide attempt or suicidal ideation. 1.2 Generalized Anxiety Disorder Lexapro is indicated for the acute treatment of Generalized Anxiety Disorder (GAD) in adults [see Clinical Studies (14.2)]. Generalized Anxiety Disorder (DSM-IV) is characterized by excessive anxiety and worry (apprehensive expectation) that is persistent for at least 6 months and which the person finds difficult to control. It must be associated with at least 3 of the following symptoms: restlessness or feeling keyed up or on edge, being easily fatigued, difficulty concentrating or mind going blank, irritability, muscle tension, and sleep disturbance.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of Lexapro have been established in adolescents (12 to 17 years of age) for the treatment of major depressive disorder [see Clinical Studies (14.1)]. Although maintenance efficacy in adolescent patients with major depressive disorder has not been systematically evaluated, maintenance efficacy can be extrapolated from adult data along with comparisons of escitalopram pharmacokinetic parameters in adults and adolescent patients. The safety and effectiveness of Lexapro have not been established in pediatric (younger than 12 years of age) patients with major depressive disorder. In a 24-week, open- label safety study in 118 children (aged 7 to 11 years) who had major depressive disorder, the safety findings were consistent with the known safety and tolerability profile for Lexapro. Safety and effectiveness of Lexapro has not been established in pediatric patients less than 18 years of age with Generalized Anxiety Disorder. Decreased appetite and weight loss have been observed in association with the use of SSRIs. Consequently, regular monitoring of weight and growth should be performed in children and adolescents treated with an SSRI such as Lexapro.

PREGNANCY

8.1 Pregnancy Pregnancy Category C In a rat embryo/fetal development study, oral administration of escitalopram (56, 112, or 150 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased fetal body weight and associated delays in ossification at the two higher doses (approximately ≥ 56 times the maximum recommended human dose [MRHD] of 20 mg/day on a body surface area [mg/m2] basis). Maternal toxicity (clinical signs and decreased body weight gain and food consumption), mild at 56 mg/kg/day, was present at all dose levels. The developmental no-effect dose of 56 mg/kg/day is approximately 28 times the MRHD on a mg/m2 basis. No teratogenicity was observed at any of the doses tested (as high as 75 times the MRHD on a mg/m2 basis). When female rats were treated with escitalopram (6, 12, 24, or 48 mg/kg/day) during pregnancy and through weaning, slightly increased offspring mortality and growth retardation were noted at 48 mg/kg/day which is approximately 24 times the MRHD on a mg/m2 basis. Slight maternal toxicity (clinical signs and decreased body weight gain and food consumption) was seen at this dose. Slightly increased offspring mortality was also seen at 24 mg/kg/day. The no-effect dose was 12 mg/kg/day which is approximately 6 times the MRHD on a mg/m2 basis. In animal reproduction studies, racemic citalopram has been shown to have adverse effects on embryo/fetal and postnatal development, including teratogenic effects, when administered at doses greater than human therapeutic doses. In two rat embryo/fetal development studies, oral administration of racemic citalopram (32, 56, or 112 mg/kg/day) to pregnant animals during the period of organogenesis resulted in decreased embryo/fetal growth and survival and an increased incidence of fetal abnormalities (including cardiovascular and skeletal defects) at the high dose. This dose was also associated with maternal toxicity (clinical signs, decreased body weight gain). The developmental no-effect dose was 56 mg/kg/day. In a rabbit study, no adverse effects on embryo/fetal development were observed at doses of racemic citalopram of up to 16 mg/kg/day. Thus, teratogenic effects of racemic citalopram were observed at a maternally toxic dose in the rat and were not observed in the rabbit. When female rats were treated with racemic citalopram (4.8, 12.8, or 32 mg/kg/day) from late gestation through weaning, increased offspring mortality during the first 4 days after birth and persistent offspring growth retardation were observed at the highest dose. The no-effect dose was 12.8 mg/kg/day. Similar effects on offspring mortality and growth were seen when dams were treated throughout gestation and early lactation at doses ≥ 24 mg/kg/day. A no-effect dose was not determined in that study. There are no adequate and well-controlled studies in pregnant women; therefore, escitalopram should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Pregnancy-Nonteratogenic Effects Neonates exposed to Lexapro and other SSRIs or serotonin and norepinephrine reuptake inhibitors (SNRIs), late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding. Such complications can arise immediately upon delivery. Reported clinical findings have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with either a direct toxic effect of SSRIs and SNRIs or, possibly, a drug discontinuation syndrome. It should be noted that, in some cases, the clinical picture is consistent with serotonin syndrome [see Warnings and Precautions (5.2)]. Infants exposed to SSRIs in pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn (PPHN). PPHN occurs in 1 – 2 per 1,000 live births in the general population and is associated with substantial neonatal morbidity and mortality. Several recent epidemiologic studies suggest a positive statistical association between SSRI use (including Lexapro) in pregnancy and PPHN. Other studies do not show a significant statistical association. Physicians should also note the results of a prospective longitudinal study of 201 pregnant women with a history of major depression, who were either on antidepressants or had received antidepressants less than 12 weeks prior to their last menstrual period, and were in remission. Women who discontinued antidepressant medication during pregnancy showed a significant increase in relapse of their major depression compared to those women who remained on antidepressant medication throughout pregnancy. When treating a pregnant woman with Lexapro, the physician should carefully consider both the potential risks of taking an SSRl, along with the established benefits of treating depression with an antidepressant. This decision can only be made on a case by case basis [see Dosage and Administration (2.1.)].

NUSRING MOTHERS

8.3 Nursing Mothers Escitalopram is excreted in human breast milk. Limited data from women taking 10-20 mg escitalopram showed that exclusively breast-fed infants receive approximately 3.9% of the maternal weight-adjusted dose of escitalopram and 1.7% of the maternal weight-adjusted dose of desmethylcitalopram. There were two reports of infants experiencing excessive somnolence, decreased feeding, and weight loss in association with breastfeeding from a racemic citalopram-treated mother; in one case, the infant was reported to recover completely upon discontinuation of racemic citalopram by its mother and, in the second case, no follow-up information was available. Caution should be exercised and breastfeeding infants should be observed for adverse reactions when Lexapro is administered to a nursing woman.

BOXED WARNING

WARNINGS: SUICIDALITY AND ANTIDEPRESSANT DRUGS Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of Lexapro or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Lexapro is not approved for use in pediatric patients less than 12 years of age. [See Warnings and Precautions: Clinical Worsening and Suicide Risk (5.1), Patient Counseling Information: Information for Patients (17.1), and Use in Specific Populations: Pediatric Use (8.4)]. WARNING: Suicidality and Antidepressant Drugs See full prescribing information for complete boxed warning. Increased risk of suicidal thinking and behavior in children, adolescents and young adults taking antidepressants for major depressive disorder (MDD) and other psychiatric disorders. Lexapro is not approved for use in pediatric patients less than 12 years of age (5.1).

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Clinical Worsening/Suicide Risk: Monitor for clinical worsening, suicidality and unusual change in behavior, especially, during the initial few months of therapy or at times of dose changes (5.1). Serotonin Syndrome: Serotonin syndrome has been reported with SSRIs and SNRIs, including Lexapro, both when taken alone, but especially when co-administered with other serotonergic agents (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, and St. John’s Wort). If such symptoms occur, discontinue Lexapro and initiate supportive treatment. If concomitant use of Lexapro with other serotonergic drugs is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases (5.2). Discontinuation of Treatment with Lexapro: A gradual reduction in dose rather than abrupt cessation is recommended whenever possible (5.3). Seizures: Prescribe with care in patients with a history of seizure (5.4). Activation of Mania/Hypomania: Use cautiously in patients with a history of mania (5.5). Hyponatremia: Can occur in association with SIADH (5.6). Abnormal Bleeding: Use caution in concomitant use with NSAIDs, aspirin, warfarin or other drugs that affect coagulation (5.7). Interference with Cognitive and Motor Performance: Use caution when operating machinery (5.8). Angle Closure Glaucoma: Angle closure glaucoma has occurred in patients with untreated anatomically narrow angles treated with antidepressants. (5.9) Use in Patients with Concomitant Illness: Use caution in patients with diseases or conditions that produce altered metabolism or hemodynamic responses (5.10). 5.1 Clinical Worsening and Suicide Risk Patients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18-24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1000 patients treated) are provided in Table 1. TABLE 1 Age Range Drug-Placebo Difference in Number of Cases of Suicidality per 1000 Patients Treated Increases Compared to Placebo <18 14 additional cases 18-24 5 additional cases Decreases Compared to Placebo 25-64 1 fewer case ≥65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality, and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient's presenting symptoms. If the decision has been made to discontinue treatment, medication should be tapered, as rapidly as is feasible, but with recognition that abrupt discontinuation can be associated with certain symptoms [see Dosage and Administration (2.4)]. Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to health care providers. Such monitoring should include daily observation by families and caregivers [see also Patient Counseling Information (17.1)]. Prescriptions for Lexapro should be written for the smallest quantity of tablets consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar Disorder A major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that Lexapro is not approved for use in treating bipolar depression. 5.2 Serotonin Syndrome The development of a potentially life-threatening serotonin syndrome has been reported with SNRIs and SSRIs, including Lexapro, alone but particularly with concomitant use of other serotonergic drugs (including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines, and St. John's Wort) and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid and intravenous methylene blue). Serotonin syndrome symptoms may include mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination) seizures, and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Patients should be monitored for the emergence of serotonin syndrome. The concomitant use of Lexapro with MAOIs intended to treat psychiatric disorders is contraindicated. Lexapro should also not be started in a patient who is being treated with MAOIs such as linezolid or intravenous methylene blue. All reports with methylene blue that provided information on the route of administration involved intravenous administration in the dose range of 1 mg/kg to 8 mg/kg. No reports involved the administration of methylene blue by other routes (such as oral tablets or local tissue injection) or at lower doses. There may be circumstances when it is necessary to initiate treatment with an MAOI such as linezolid or intravenous methylene blue in a patient taking Lexapro. Lexapro should be discontinued before initiating treatment with the MAOI [see Contraindications (4.1) and Dosage and Administration (2.5 and 2.6)]. If concomitant use of Lexapro with other serotonergic drugs including, triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, buspirone, tryptophan, amphetamine and St. John's Wort is clinically warranted, patients should be made aware of a potential increased risk for serotonin syndrome, particularly during treatment initiation and dose increases. Treatment with Lexapro and any concomitant serotonergic agents, should be discontinued immediately if the above events occur and supportive symptomatic treatment should be initiated. 5.3 Discontinuation of Treatment with Lexapro During marketing of Lexapro and other SSRIs and SNRIs (serotonin and norepinephrine reuptake inhibitors), there have been spontaneous reports of adverse events occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g., paresthesias such as electric shock sensations), anxiety, confusion, headache, lethargy, emotional lability, insomnia, and hypomania. While these events are generally self-limiting, there have been reports of serious discontinuation symptoms. Patients should be monitored for these symptoms when discontinuing treatment with Lexapro. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate [see Dosage and Administration (2.4)]. 5.4 Seizures Although anticonvulsant effects of racemic citalopram have been observed in animal studies, Lexapro has not been systematically evaluated in patients with a seizure disorder. These patients were excluded from clinical studies during the product's premarketing testing. In clinical trials of Lexapro, cases of convulsion have been reported in association with Lexapro treatment. Like other drugs effective in the treatment of major depressive disorder, Lexapro should be introduced with care in patients with a history of seizure disorder. 5.5 Activation of Mania/Hypomania In placebo-controlled trials of Lexapro in major depressive disorder, activation of mania/hypomania was reported in one (0.1%) of 715 patients treated with Lexapro and in none of the 592 patients treated with placebo. One additional case of hypomania has been reported in association with Lexapro treatment. Activation of mania/hypomania has also been reported in a small proportion of patients with major affective disorders treated with racemic citalopram and other marketed drugs effective in the treatment of major depressive disorder. As with all drugs effective in the treatment of major depressive disorder, Lexapro should be used cautiously in patients with a history of mania. 5.6 Hyponatremia Hyponatremia may occur as a result of treatment with SSRIs and SNRIs, including Lexapro. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and was reversible when Lexapro was discontinued. Cases with serum sodium lower than 110 mmol/L have been reported. Elderly patients may be at greater risk of developing hyponatremia with SSRIs and SNRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk [see Geriatric Use (8.5 )]. Discontinuation of Lexapro should be considered in patients with symptomatic hyponatremia and appropriate medical intervention should be instituted. Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. Signs and symptoms associated with more severe and/or acute cases have included hallucination, syncope, seizure, coma, respiratory arrest, and death. 5.7 Abnormal Bleeding SSRIs and SNRIs, including Lexapro, may increase the risk of bleeding events. Concomitant use of aspirin, nonsteroidal anti-inflammatory drugs, warfarin, and other anticoagulants may add to the risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages. Patients should be cautioned about the risk of bleeding associated with the concomitant use of Lexapro and NSAIDs, aspirin, or other drugs that affect coagulation. 5.8 Interference with Cognitive and Motor Performance In a study in normal volunteers, Lexapro 10 mg/day did not produce impairment of intellectual function or psychomotor performance. Because any psychoactive drug may impair judgment, thinking, or motor skills, however, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that Lexapro therapy does not affect their ability to engage in such activities. 5.9 Angle Closure Glaucoma Angle Closure Glaucoma: The pupillary dilation that occurs following use of many antidepressant drugs including Lexapro may trigger an angle closure attack in a patient with anatomically narrow angles who does not have a patent iridectomy. 5.10 Use in Patients with Concomitant Illness Clinical experience with Lexapro in patients with certain concomitant systemic illnesses is limited. Caution is advisable in using Lexapro in patients with diseases or conditions that produce altered metabolism or hemodynamic responses. Lexapro has not been systematically evaluated in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were generally excluded from clinical studies during the product's premarketing testing. In subjects with hepatic impairment, clearance of racemic citalopram was decreased and plasma concentrations were increased. The recommended dose of Lexapro in hepatically impaired patients is 10 mg/day [see Dosage and Administration (2.3)]. Because escitalopram is extensively metabolized, excretion of unchanged drug in urine is a minor route of elimination. Until adequate numbers of patients with severe renal impairment have been evaluated during chronic treatment with Lexapro, however, it should be used with caution in such patients [see Dosage and Administration (2.3)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-approved Medication Guide 17.1 Information for Patients Physicians are advised to discuss the following issues with patients for whom they prescribe Lexapro. General Information about Medication Guide Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with Lexapro and should counsel them in its appropriate use. A patient Medication Guide about “Antidepressant Medicines, Depression and other Serious Mental Illness, and Suicidal Thoughts or Actions” is available for Lexapro. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking Lexapro. Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient’s prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication [see Warnings and Precautions (5.1)]. Serotonin Syndrome Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of Lexapro with other serotonergic drugs including triptans, tricyclic antidepressants, fentanyl, lithium, tramadol, tryptophan, buspirone, amphetamines and St. John’s Wort, and with drugs that impair metabolism of serotonin (in particular, MAOIs, both those intended to treat psychiatric disorders and also others, such as linezolid) [see Warnings and Precautions (5.2)]. Abnormal Bleeding Patients should be cautioned about the concomitant use of Lexapro and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents has been associated with an increased risk of bleeding [see Warnings and Precautions (5.7)]. Angle Closure Glaucoma Patients should be advised that taking Lexapro can cause mild pupillary dilation, which in susceptible individuals, can lead to an episode of angle closure glaucoma. Pre-existing glaucoma is almost always open-angle glaucoma because angle closure glaucoma, when diagnosed, can be treated definitively with iridectomy. Open-angle glaucoma is not a risk factor for angle closure glaucoma. Patients may wish to be examined to determine whether they are susceptible to angle closure, and have a prophylactic procedure (e.g., iridectomy), if they are susceptible [see Warnings and Precautions (5.9)]. Concomitant Medications Since escitalopram is the active isomer of racemic citalopram (Celexa), the two agents should not be coadministered. Patients should be advised to inform their physician if they are taking, or plan to take, any prescription or over-the-counter drugs, as there is a potential for interactions. Continuing the Therapy Prescribed While patients may notice improvement with Lexapro therapy in 1 to 4 weeks, they should be advised to continue therapy as directed. Interference with Psychomotor Performance Because psychoactive drugs may impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that Lexapro therapy does not affect their ability to engage in such activities. Alcohol Patients should be told that, although Lexapro has not been shown in experiments with normal subjects to increase the mental and motor skill impairments caused by alcohol, the concomitant use of Lexapro and alcohol in depressed patients is not advised. Pregnancy and Breast Feeding Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. are breastfeeding an infant. Need for Comprehensive Treatment Program Lexapro is indicated as an integral part of a total treatment program for MDD that may include other measures (psychological, educational, social) for patients with this syndrome. Drug treatment may not be indicated for all adolescents with this syndrome. Safety and effectiveness of Lexapro in MDD has not been established in pediatric patients less than 12 years of age. Antidepressants are not intended for use in the adolescent who exhibits symptoms secondary to environmental factors and/or other primary psychiatric disorders. Appropriate educational placement is essential and psychosocial intervention is often helpful. When remedial measures alone are insufficient, the decision to prescribe antidepressant medication will depend upon the physician’s assessment of the chronicity and severity of the patient’s symptoms. 17.2 FDA-Approved Medication Guide

DOSAGE AND ADMINISTRATION

2 Lexapro should be administered once daily, in the morning or evening, with or without food. Lexapro should generally be administered once daily, morning or evening with or without food (2.1, 2.2). Indication Recommended Dose MDD (2.1) Adolescents (2.1) Initial: 10 mg once daily Recommended: 10 mg once daily Maximum: 20 mg once daily Adults (2.1) Initial: 10 mg once daily Recommended: 10 mg once daily Maximum: 20 mg once daily GAD (2.2) Adults (2.2) Initial: 10 mg once daily Recommended: 10 mg once daily No additional benefits seen at 20 mg/day dose (2.1). 10 mg/day is the recommended dose for most elderly patients and patients with hepatic impairment (2.3). No dosage adjustment for patients with mild or moderate renal impairment. Use caution in patients with severe renal impairment (2.3). Discontinuing Lexapro: A gradual dose reduction is recommended (2.4). 2.1 Major Depressive Disorder Initial Treatment Adolescents The recommended dose of Lexapro is 10 mg once daily. A flexible-dose trial of Lexapro (10 to 20 mg/day) demonstrated the effectiveness of Lexapro [see Clinical Studies (14.1)]. If the dose is increased to 20 mg, this should occur after a minimum of three weeks. Adults The recommended dose of Lexapro is 10 mg once daily. A fixed-dose trial of Lexapro demonstrated the effectiveness of both 10 mg and 20 mg of Lexapro, but failed to demonstrate a greater benefit of 20 mg over 10 mg [see Clinical Studies (14.1)]. If the dose is increased to 20 mg, this should occur after a minimum of one week. Maintenance Treatment It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacological therapy beyond response to the acute episode. Systematic evaluation of continuing Lexapro 10 or 20 mg/day in adults patients with major depressive disorder who responded while taking Lexapro during an 8-week, acute-treatment phase demonstrated a benefit of such maintenance treatment [see Clinical Studies (14.1)]. Nevertheless, the physician who elects to use Lexapro for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient. Patients should be periodically reassessed to determine the need for maintenance treatment. 2.2 Generalized Anxiety Disorder Initial Treatment Adults The recommended starting dose of Lexapro is 10 mg once daily. If the dose is increased to 20 mg, this should occur after a minimum of one week. Maintenance Treatment Generalized anxiety disorder is recognized as a chronic condition. The efficacy of Lexapro in the treatment of GAD beyond 8 weeks has not been systematically studied. The physician who elects to use Lexapro for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient. 2.3 Special Populations 10 mg/day is the recommended dose for most elderly patients and patients with hepatic impairment. No dosage adjustment is necessary for patients with mild or moderate renal impairment. Lexapro should be used with caution in patients with severe renal impairment. 2.4 Discontinuation of Treatment with Lexapro Symptoms associated with discontinuation of Lexapro and other SSRIs and SNRIs have been reported [see Warnings and Precautions (5.3)]. Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. 2.5 Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric Disorders At least 14 days should elapse between discontinuation of an MAOI intended to treat psychiatric disorders and initiation of therapy with Lexapro. Conversely, at least 14 days should be allowed after stopping Lexapro before starting an MAOI intended to treat psychiatric disorders [see Contraindications (4.1)]. 2.6 Use of Lexapro with Other MAOIs such as Linezolid or Methylene Blue Do not start Lexapro in a patient who is being treated with linezolid or intravenous methylene blue because there is an increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered [see Contraindications (4.1)]. In some cases, a patient already receiving Lexapro therapy may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, Lexapro should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for 2 weeks or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with Lexapro may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue [see Warnings and Precautions (5.2)]. The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with Lexapro is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use [see Warnings and Precautions (5.2)].

Diazepam 5 MG Oral Tablet

Generic Name: DIAZEPAM
Brand Name: Diazepam
  • Substance Name(s):
  • DIAZEPAM

WARNINGS

Diazepam is not recommended in the treatment of psychotic patients and should not be employed instead of appropriate treatment. Since diazepam has a central nervous system depressant effect, patients should be advised against the simultaneous ingestion of alcohol and other CNS-depressant drugs during diazepam therapy. As with other agents that have anticonvulsant activity, when diazepam is used as an adjunct in treating convulsive disorders, the possibility of an increase in the frequency and/or severity of grand mal seizures may require an increase in the dosage of standard anticonvulsant medication. Abrupt withdrawal of diazepam in such cases may also be associated with a temporary increase in the frequency and/or severity of seizures. Pregnancy Teratogenic Effects An increased risk of congenital malformations and other developmental abnormalities associated with the use of benzodiazepine drugs during pregnancy has been suggested. There may also be non-teratogenic risks associated with the use of benzodiazepines during pregnancy. There have been reports of neonatal flaccidity, respiratory and feeding difficulties, and hypothermia in children born to mothers who have been receiving benzodiazepines late in pregnancy. In addition, children born to mothers receiving benzodiazepines on a regular basis late in pregnancy may be at some risk of experiencing withdrawal symptoms during the postnatal period. Diazepam has been shown to be teratogenic in mice and hamsters when given orally at daily doses of 100 mg/kg or greater (approximately eight times the maximum recommended human dose [MRHD = 1 mg/kg/day] or greater on a mg/m2 basis). Cleft palate and encephalopathy are the most common and consistently reported malformations produced in these species by administration of high, maternally toxic doses of diazepam during organogenesis. Rodent studies have indicated that prenatal exposure to diazepam doses similar to those used clinically can produce long-term changes in cellular immune responses, brain neurochemistry, and behavior. In general, the use of diazepam in women of childbearing potential, and more specifically during known pregnancy, should be considered only when the clinical situation warrants the risk to the fetus. The possibility that a woman of childbearing potential may be pregnant at the time of institution of therapy should be considered. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. Patients should also be advised that if they become pregnant during therapy or intend to become pregnant they should communicate with their physician about the desirability of discontinuing the drug. Labor and Delivery Special care must be taken when diazepam is used during labor and delivery, as high single doses may produce irregularities in the fetal heart rate and hypotonia, poor sucking, hypothermia, and moderate respiratory depression in the neonates. With newborn infants it must be remembered that the enzyme system involved in the breakdown of the drug is not yet fully developed (especially in premature infants). Nursing Mothers Diazepam passes into breast milk. Breastfeeding is therefore not recommended in patients receiving diazepam.

OVERDOSAGE

Overdose of benzodiazepines is usually manifested by central nervous system depression ranging from drowsiness to coma. In mild cases, symptoms include drowsiness, confusion, and lethargy. In more serious cases, symptoms may include ataxia, diminished reflexes, hypotonia, hypotension, respiratory depression, coma (rarely), and death (very rarely). Overdose of benzodiazepines in combination with other CNS depressants (including alcohol) may be fatal and should be closely monitored. Management of Overdosage Following overdose with oral benzodiazepines, general supportive measures should be employed including the monitoring of respiration, pulse, and blood pressure. Vomiting should be induced (within 1 hour) if the patient is conscious. Gastric lavage should be undertaken with the airway protected if the patient is unconscious. Intravenous fluids should be administered. If there is no advantage in emptying the stomach, activated charcoal should be given to reduce absorption. Special attention should be paid to respiratory and cardiac function in intensive care. General supportive measures should be employed, along with intravenous fluids, and an adequate airway maintained. Should hypotension develop, treatment may include intravenous fluid therapy, repositioning, judicious use of vasopressors appropriate to the clinical situation, if indicated, and other appropriate countermeasures. Dialysis is of limited value. As with the management of intentional overdosage with any drug, it should be considered that multiple agents may have been ingested. Flumazenil, a specific benzodiazepine-receptor antagonist, is indicated for the complete or partial reversal of the sedative effects of benzodiazepines and may be used in situations when an overdose with a benzodiazepine is known or suspected. Prior to the administration of flumazenil, necessary measures should be instituted to secure airway, ventilation and intravenous access. Flumazenil is intended as an adjunct to, not as a substitute for, proper management of benzodiazepine overdose. Patients treated with flumazenil should be monitored for resedation, respiratory depression and other residual benzodiazepine effects for an appropriate period after treatment. The prescriber should be aware of a risk of seizure in association with flumazenil treatment, particularly in long-term benzodiazepine users and in cyclic antidepressant overdose. Caution should be observed in the use of flumazenil in epileptic patients treated with benzodiazepines. The complete flumazenil package insert, including CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS, should be consulted prior to use. Withdrawal symptoms of the barbiturate type have occurred after the discontinuation of benzodiazepines (see DRUG ABUSE AND DEPENDENCE).

DESCRIPTION

Diazepam Tablets USP are a benzodiazepine derivative. Chemically, diazepam, USP is 7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one. It is a colorless to light yellow crystalline compound, and is insoluble in water. Its structural formula is: C16H13ClN2O M.W. 284.75 Diazepam Tablets USP are available as 2 mg, 5 mg, and 10 mg tablets for oral administration and contain the following inactive ingredients: anhydrous lactose, colloidal silicon dioxide; colorants: 5 mg only (D&C Yellow No. 10 aluminum lake and FD&C Yellow No. 6); 10 mg only (FD&C Blue No. 1 aluminum lake); magnesium stearate, microcrystalline cellulose, pregelatinized corn starch, and sodium starch glycolate. Diazepam Structural Formula

HOW SUPPLIED

Diazepam Tablets USP, 5 mg are available as yellow, round, flat face, beveled edge tablets, debossed “3926” and bisected on one side and “TEVA” on the other side, containing 5 mg of diazepam, USP, packaged in bottles of 20, 30, and 50 tablets. Diazepam Tablets USP, 10 mg are available as light blue, round, flat face, beveled edge tablets, debossed “3927” and bisected on one side and “TEVA” on the other side, containing 10 mg of diazepam, USP, packaged in bottles of 20, 30, and 50 tablets. Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP, with a child-resistant closure (as required). KEEP THIS AND ALL MEDICATIONS OUT OF THE REACH OF CHILDREN. Manufactured In Czech Republic By: TEVA CZECH INDUSTRIES s.r.o. Opava-Komarov, Czech Republic Manufactured For: TEVA PHARMACEUTICALS USA Sellersville, PA 18960 Rev. B 10/2013 Repackaged By: KAISER FOUNDATION HOSPITALS Livermore, CA 94551

INDICATIONS AND USAGE

Diazepam Tablets USP are indicated for the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. In acute alcohol withdrawal, Diazepam Tablets USP may be useful in the symptomatic relief of acute agitation, tremor, impending or acute delirium tremens and hallucinosis. Diazepam Tablets USP are a useful adjunct for the relief of skeletal muscle spasm due to reflex spasm to local pathology (such as inflammation of the muscles or joints, or secondary to trauma), spasticity caused by upper motor neuron disorders (such as cerebral palsy and paraplegia), athetosis, and stiff-man syndrome. Oral diazepam may be used adjunctively in convulsive disorders, although it has not proved useful as the sole therapy. The effectiveness of Diazepam Tablets USP in long-term use, that is, more than 4 months, has not been assessed by systematic clinical studies. The physician should periodically reassess the usefulness of the drug for the individual patient.

DOSAGE AND ADMINISTRATION

Dosage should be individualized for maximum beneficial effect. While the usual daily dosages given below will meet the needs of most patients, there will be some who may require higher doses. In such cases dosage should be increased cautiously to avoid adverse effects. ADULTS: USUAL DAILY DOSE Management of Anxiety Disorders and Relief of Symptoms of Anxiety Depending upon severity of symptoms – 2 mg to 10 mg, 2 to 4 times daily Symptomatic Relief in Acute Alcohol Withdrawal 10 mg, 3 or 4 times during the first 24 hours, reducing to 5 mg, 3 or 4 times daily as needed Adjunctively for Relief of Skeletal Muscle Spasm 2 mg to 10 mg, 3 or 4 times daily Adjunctively in Convulsive Disorders 2 mg to 10 mg, 2 to 4 times daily Geriatric Patients, or in the presence of debilitating disease 2 mg to 2.5 mg, 1 or 2 times daily initially; increase gradually as needed and tolerated PEDIATRIC PATIENTS: Because of varied responses to CNS-acting drugs, initiate therapy with lowest dose and increase as required. Not for use in pediatric patients under 6 months. 1 mg to 2.5 mg, 3 or 4 times daily initially; increase gradually as needed and tolerated

HYDROcodone bitartrate 10 MG / acetaminophen 325 MG Oral Tablet

Generic Name: HYDROCODONE BITARTRATE AND ACETAMINOPHEN
Brand Name: HYDROCODONE BITARTRATE AND ACETAMINOPHEN
  • Substance Name(s):
  • HYDROCODONE BITARTRATE
  • ACETAMINOPHEN

WARNINGS

Respiratory Depression:At high doses or in sensitive patients, hydrocodone may produce dose-related respiratory depression by acting directly on the brain stem respiratory center. Hydrocodone also affects the center that controls respiratory rhythm, and may produce irregular and periodic breathing. Head Injury and Increased Intracranial Pressure:The respiratory depressant effects of narcotics and their capacity to elevate cerebrospinal fluid pressure may be markedly exaggerated in the presence of head injury, other intracranial lesions or a preexisting increase in intracranial pressure. Furthermore, narcotics produce adverse reactions which may obscure the clinical course of patients with head injuries. Acute Abdominal Conditions:The administration of narcotics may obscure the diagnosis or clinical course of patients with acute abdominal conditions. Misuse, Abuse, and Diversion of Opioids:Hydrocodone bitartrate and acetaminophen tablets contain hydrocodone, an opioid agonist, and is a Schedule III controlled substance. Opioid agonists have the potential for being abused and are sought by abusers and people with addiction disorders, and are subject to diversion. Hydrocodone bitartrate and acetaminophen tablets can be abused in a manner similar to other opioid agonists, legal or illicit. This should be considered when prescribing or dispensing hydrocodone bitartrate and acetaminophen tablets in situations where the physician or pharmacist is concerned about an increased risk of misuse, abuse or diversion (see DRUG ABUSE AND DEPENDENCE ).

DRUG INTERACTIONS

Drug Interactions: Acetaminophen may produce false-positive test results for urinary 5-hydroxyindoleacetic acid.

OVERDOSAGE

Following an acute overdosage, toxicity may result from hydrocodone or acetaminophen. Signs and Symptoms: Hydrocodone: Serious overdose with hydrocodone is characterized by respiratory depression (a decrease in respiratory rate and/or tidal volume, Cheyne-Stokes respiration, cyanosis), extreme somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, and sometimes bradycardia and hypotension. In severe overdosage, apnea, circulatory collapse, cardiac arrest and death may occur. Acetaminophen: In acetaminophen overdosage: dose-dependent, potentially fatal hepatic necrosis is the most serious adverse effect. Renal tubular necrosis, hypoglycemic coma, and thrombocytopenia may also occur. Early symptoms following a potentially hepatotoxic overdose may include: nausea, vomiting, diaphoresis and general malaise. Clinical and laboratory evidence of hepatic toxicity may not be apparent until 48 to 72 hours post-ingestion. In adults, hepatic toxicity has rarely been reported with acute overdoses of less than 10 grams, or fatalities with less than 15 grams. Treatment:A single or multiple overdose with hydrocodone and acetaminophen is a potentially lethal polydrug overdose, and consultation with a regional poison control center is recommended. Immediate treatment includes support of cardiorespiratory function and measures to reduce drug absorption. Vomiting should be induced mechanically, or with syrup of ipecac, if the patient is alert (adequate pharyngeal and laryngeal reflexes). Oral activated charcoal (1 g/kg) should follow gastric emptying. The first dose should be accompanied by an appropriate cathartic. If repeated doses are used, the cathartic might be included with alternate doses as required. Hypotension is usually hypovolemic and should respond to fluids. Vasopressors and other supportive measures should be employed as indicated. A cuffed endotracheal tube should be inserted before gastric lavage of the unconscious patient and, when necessary, to provide assisted respiration. Meticulous attention should be given to maintaining adequate pulmonary ventilation. In severe cases of intoxication, peritoneal dialysis, or preferably hemodialysis may be considered. If hypoprothrombinemia occurs due to acetaminophen overdose, vitamin K should be administered intravenously. Naloxone, a narcotic antagonist, can reverse respiratory depression and coma associated with opioid overdose. Naloxone hydrochloride 0.4 mg to 2 mg is given parenterally. Since the duration of action of hydrocodone may exceed that of the naloxone, the patient should be kept under continuous surveillance and repeated doses of the antagonist should be administered as needed to maintain adequate respiration. A narcotic antagonist should not be administered in the absence of clinically significant respiratory or cardiovascular depression. If the dose of acetaminophen may have exceeded 140 mg/kg, acetylcysteine should be administered as early as possible. Serum acetaminophen levels should be obtained, since levels four or more hours following ingestion help predict acetaminophen toxicity. Do not await acetaminophen assay results before initiating treatment. Hepatic enzymes should be obtained initially, and repeated at 24-hour intervals. Methemoglobinemia over 30% should be treated with methylene blue by slow intravenous administration. The toxic dose for adults for acetaminophen is 10 g.

DESCRIPTION

Hydrocodone bitartrate and acetaminophen is supplied in tablet form for oral administration. Hydrocodone bitartrate is an opioid analgesic and antitussive and occurs as fine, white crystals or as a crystalline powder. It is affected by light. The chemical name is 4,5α-epoxy-3-methoxy-17-methylmorphinan-6-one tartrate (1:1) hydrate (2:5). It has the following structural formula: Acetaminophen, 4′-hydroxyacetanilide, a slightly bitter, white, odorless, crystalline powder, is a non-opiate, non-salicylate analgesic and antipyretic. It has the following structural formula: Hydrocodone Bitartrate and Acetaminophen Tablets, USP 10 mg/325 mgEach tablet contains: Hydrocodone Bitartrate ………… 10 mg Acetaminophen ……………………. 325 mg In addition each tablet contains the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, D and C Yellow No. 10 lake, magnesium stearate, microcrystalline cellulose, povidone, pregelatinized starch, and stearic acid. May also contain crospovidone. Meets USP Dissolution Test 1. structural formula structural formula

HOW SUPPLIED

Hydrocodone Bitartrate and Acetaminophen Tablets, USP 10 mg/325 mgare supplied as light yellow, modified capsule-shaped, scored tablets, debossed “3601” on one side and debossed “V” on the reverse side. The tablets are supplied in containers of 10, 20, and 30. Storage:Store at 20°-25°C (68°-77°F) [see USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP/NF with a child-resistant closure. A Schedule CIII Narcotic.

GERIATRIC USE

Geriatric Use: Clinical studies of hydrocodone bitartrate and acetaminophen tablets did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy. Hydrocodone and the major metabolites of acetaminophen are known to be substantially excreted by the kidney. Thus the risk of toxic reactions may be greater in patients with impaired renal function due to the accumulation of the parent compound and/or metabolites in the plasma. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. Hydrocodone may cause confusion and over-sedation in the elderly; elderly patients generally should be started on low doses of hydrocodone bitartrate and acetaminophen tablets and observed closely.

INDICATIONS AND USAGE

Hydrocodone bitartrate and acetaminophen tablets are indicated for the relief of moderate to moderately severe pain.

PEDIATRIC USE

Pediatric Use: Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

Pregnancy: Teratogenic Effects: Pregnancy Category C:There are no adequate and well-controlled studies in pregnant women. Hydrocodone bitartrate and acetaminophen tablets should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonteratogenic Effects: Babies born to mothers who have been taking opioids regularly prior to delivery will be physically dependent. The withdrawal signs include irritability and excessive crying, tremors, hyperactive reflexes, increased respiratory rate, increased stools, sneezing, yawning, vomiting, and fever. The intensity of the syndrome does not always correlate with the duration of maternal opioid use or dose. There is no consensus on the best method of managing withdrawal.

NUSRING MOTHERS

Nursing Mothers: Acetaminophen is excreted in breast milk in small amounts, but the significance of its effects on nursing infants is not known. It is not known whether hydrocodone is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from hydrocodone and acetaminophen, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

WARNING AND CAUTIONS

PRECAUTIONS General: Special Risk Patients: As with any narcotic analgesic agent, hydrocodone bitartrate and acetaminophen tablets should be used with caution in elderly or debilitated patients, and those with severe impairment of hepatic or renal function, hypothyroidism, Addison’s disease, prostatic hypertrophy or urethral stricture. The usual precautions should be observed and the possibility of respiratory depression should be kept in mind. Cough Reflex: Hydrocodone suppresses the cough reflex; as with all narcotics, caution should be exercised when hydrocodone bitartrate and acetaminophen tablets are used postoperatively and in patients with pulmonary disease. Hydrocodone Bitartrate and Acetaminophen Tablets 7.5 mg/500 mg contain FD and C Yellow No. 5 (tartrazine) which may cause allergic-type reactions (including bronchial asthma) in certain susceptible persons. Although the overall incidence of FD and C Yellow No. 5 (tartrazine) sensitivity in the general population is low, it is frequently seen in patients who also have aspirin hypersensitivity.

INFORMATION FOR PATIENTS

Information for Patients: Hydrocodone, like all narcotics, may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks such as driving a car or operating machinery; patients should be cautioned accordingly. Alcohol and other CNS depressants may produce an additive CNS depression, when taken with this combination product, and should be avoided. Hydrocodone may be habit-forming. Patients should take the drug only for as long as it is prescribed, in the amounts prescribed, and no more frequently than prescribed.

DOSAGE AND ADMINISTRATION

Dosage should be adjusted according to the severity of the pain and the response of the patient. However, it should be kept in mind that tolerance to hydrocodone can develop with continued use and that the incidence of untoward effects is dose related. Hydrocodone Bitartrate and Acetaminophen Tablets, USP 10 mg/325 mgThe usual adult dosage is one tablet every four to six hours as needed for pain. The total daily dosage should not exceed 6 tablets.

clindamycin HCl 300 MG Oral Capsule

Generic Name: CLINDAMYCIN HYDROCHLORIDE
Brand Name: Clindamycin Hydrochloride
  • Substance Name(s):
  • CLINDAMYCIN HYDROCHLORIDE

WARNINGS

SECTION See WARNING box. Clostridium difficile associated diarrhea Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including clindamycin hydrochloride capsules, USP, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, leading to overgrowth of C. difficile. C. difficile produces toxins A and B, which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. Severe Skin Reactions Severe skin reactions such as Toxic Epidermal Necrolysis, some with fatal outcome, have been reported. In case of such an event, treatment should be permanently discontinued. A careful inquiry should be made concerning previous sensitivities to drugs and other allergens. Usage in Meningitis—Since clindamycin does not diffuse adequately into the cerebrospinal fluid, the drug should not be used in the treatment of meningitis.

OVERDOSAGE

SECTION Significant mortality was observed in mice at an intravenous dose of 855 mg/kg and in rats at an oral or subcutaneous dose of approximately 2618 mg/kg. In the mice, convulsions and depression were observed. Hemodialysis and peritoneal dialysis are not effective in removing clindamycin from the serum.

DESCRIPTION

SECTION Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin hydrochloride capsules, USP contain clindamycin hydrochloride equivalent to 75 mg, 150 mg, or 300 mg of clindamycin. Inactive ingredients: 75 mg – lactose monohydrate, corn starch, magnesium stearate, talc, D&C Yellow No. 10, FD&C Green No. 3, and gelatin; 150 mg – lactose monohydrate, corn starch, magnesium stearate, talc, D&C Yellow No. 10, FD&C Green No. 3, D&C Red No. 33, FD&C Blue No. 1, titanium dioxide, and gelatin; 300 mg – lactose monohydrate, corn starch, magnesium stearate, talc, D&C Red No. 33, FD&C Blue No. 1, FD&C Green No. 3, titanium dioxide, and gelatin. The capsule imprinting ink contains: shellac glaze in ethanol, titanium dioxide, isopropyl alcohol, ammonium hydroxide, n-butyl alcohol, propylene glycol, and simethicone. The structural formula is represented below: image description

INDICATIONS AND USAGE

INDICATIONS & USAGE SECTION Clindamycin is indicated in the treatment of serious infections caused by susceptible anaerobic bacteria. Clindamycin is also indicated in the treatment of serious infections due to susceptible strains of streptococci, pneumococci, and staphylococci. Its use should be reserved for penicillin-allergic patients or other patients for whom, in the judgment of the physician, a penicillin is inappropriate. Because of the risk of colitis, as described in the WARNING box, before selecting clindamycin, the physician should consider the nature of the infection and the suitability of less toxic alternatives (e.g., erythromycin). Anaerobes: Serious respiratory tract infections such as empyema, anaerobic pneumonitis, and lung abscess; serious skin and soft tissue infections; septicemia; intra-abdominal infections such as peritonitis and intra-abdominal abscess (typically resulting from anaerobic organisms resident in the normal gastrointestinal tract); infections of the female pelvis and genital tract such as endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis, and postsurgical vaginal cuff infection. Streptococci: Serious respiratory tract infections; serious skin and soft tissue infections. Staphylococci: Serious respiratory tract infections; serious skin and soft tissue infections. Pneumococci: Serious respiratory tract infections. Bacteriologic studies should be performed to determine the causative organisms and their susceptibility to clindamycin. To reduce the development of drug-resistant bacteria and maintain the effectiveness of Clindamycin HCl and other antibacterial drugs, Clindamycin HCl Capsules, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

BOXED WARNING

SECTION WARNING Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Clindamycin HCl and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, leading to overgrowth of C. difficile. Because Clindamycin HCl therapy has been associated with severe colitis which may end fatally, it should be reserved for serious infections where less toxic antimicrobial agents are inappropriate, as described in the INDICATIONS AND USAGE section. It should not be used in patients with nonbacterial infections such as most upper respiratory tract infections. C. difficile produces toxins A and B, which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION SECTION If significant diarrhea occurs during therapy, this antibiotic should be discontinued (see WARNING box). Adults: Serious infections—150 to 300 mg every 6 hours. More severe infections—300 to 450 mg every 6 hours. Pediatric Patients: Serious infections—8 to 16 mg/kg/day (4 to 8 mg/lb/day) divided into three or four equal doses. More severe infections—16 to 20 mg/kg/day (8 to 10 mg/lb/day) divided into three or four equal doses. To avoid the possibility of esophageal irritation, Clindamycin HCl Capsules, USP should be taken with a full glass of water. Serious infections due to anaerobic bacteria are usually treated with clindamycin injection. However, in clinically appropriate circumstances, the physician may elect to initiate treatment or continue treatment with Clindamycin HCl Capsules, USP. In cases of β-hemolytic streptococcal infections, treatment should continue for at least 10 days.

SENOKOT-S (docusate sodium 50 MG / sennosides, USP 8.6 MG) Oral Tablet

Generic Name: STANDARDIZED SENNA CONCENTRATE AND DOCUSATE SODIUM
Brand Name: Senokot-S
  • Substance Name(s):
  • DOCUSATE SODIUM
  • SENNOSIDES

WARNINGS

Warnings

HOW SUPPLIED

Other information each tablet contains: calcium 10 mg, sodium 4 mg VERY LOW SODIUM store at 25°C (77°F); excursions permitted between 15°-30°C (59°-86°F)

DOSAGE FORMS AND STRENGTHS

Directions take preferably at bedtime or as directed by a doctor age starting dosage maximum dosage adults and children 12 years of age and over 2 tablets once a day 4 tablets twice a day children 6 to under 12 years 1 tablet once a day 2 tablets twice a day children 2 to under 6 years 1/2 tablet once a day 1 tablet twice a day children under 2 years ask a doctor ask a doctor

INDICATIONS AND USAGE

Drug Facts

WARNING AND CAUTIONS

INACTIVE INGREDIENTS

Inactive ingredients Inactive ingredients dicalcium phosphate,D&C Yellow #10 Aluminum Lake, FD&C Yellow #6 Aluminum Lake, lecithin, magnesium stearate ,microcrystalline cellulose, polyethylene glycol, polyvinyl alcohol, pregelatinized starch, sodium benzoate, talc, and titanium dioxide ©2012, Purdue Products L.P. Manufactured for: Purdue Products L.P. Stamford, CT 06901-3431 By: Purdue Pharma 575 Granite Court Pickering, ON L1W 3W8, Canada 302887-0A

PURPOSE

Purpose Stool softener Laxative

KEEP OUT OF REACH OF CHILDREN

Keep out of reach of children. In case of overdose, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Ask a doctor before use if you have stomach pain nausea vomiting noticed a sudden change in bowel habits that continues over a period of 2 weeks

DOSAGE AND ADMINISTRATION

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use.

DO NOT USE

Do not use if you are now taking mineral oil, unless directed by a doctor laxative products for longer than 1 week unless directed by a doctor

STOP USE

Stop use and ask a doctor if you have rectal bleeding or fail to have a bowel movement after use of a laxative. These may indicate a serious condition.

ACTIVE INGREDIENTS

Active ingredients (in each tablet) Docusate sodium 50 mg Sennosides 8.6 mg

Tylenol #3 Oral Tablet

Generic Name: ACETAMINOPHEN AND CODEINE PHOSPHATE
Brand Name: TYLENOL with Codeine
  • Substance Name(s):
  • CODEINE PHOSPHATE
  • ACETAMINOPHEN

WARNINGS

Hepatotoxicity Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4,000 milligrams per day, and often involve more than one acetaminophen-containing product. The excessive intake of acetaminophen may be intentional to cause self-harm or unintentional as patients attempt to obtain more pain relief or unknowingly take other acetaminophen-containing products (see Boxed Warning). The risk of acute liver failure is higher in individuals with underlying liver disease and in individuals who ingest alcohol while taking acetaminophen. Instruct patients to look for acetaminophen or APAP on package labels and not to use more than one product that contains acetaminophen. Instruct patients to seek medical attention immediately upon ingestion of more than 4,000 milligrams of acetaminophen per day, even if they feel well. Serious Skin Reactions Rarely, acetaminophen may cause serious skin reactions such as acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson Syndrome (SJS), and toxic epidermal necrolysis (TEN), which can be fatal. Patients should be informed about the signs of serious skin reactions, and use of the drug should be discontinued at the first appearance of skin rash or any other sign of hypersensitivity. Death Related to Ultra-Rapid Metabolism of Codeine to Morphine Respiratory depression and death have occurred in children who received codeine in the postoperative period following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine (i.e., multiple copies of the gene for cytochrome P450 isoenzyme 2D6 or high morphine concentrations). Deaths have also occurred in nursing infants who were exposed to high levels of morphine in breast milk because their mothers were ultra-rapid metabolizers of codeine [see Precautions, Nursing Mothers]. Some individuals may be ultra-rapid metabolizers because of a specific CYP2D6 genotype (gene duplications denoted as *1/*1×N or *1/*2×N). The prevalence of this CYP2D6 phenotype varies widely and has been estimated at 0.5 to 1% in Chinese and Japanese, 0.5 to 1% in Hispanics, 1 to 10% in Caucasians, 3% in African Americans, and 16 to 28% in North Africans, Ethiopians, and Arabs. Data are not available for other ethnic groups. These individuals convert codeine into its active metabolite, morphine, more rapidly and completely than other people. This rapid conversion results in higher than expected serum morphine levels. Even at labeled dosage regimens, individuals who are ultra-rapid metabolizers may have life-threatening or fatal respiratory depression or experience signs of overdose (such as extreme sleepiness, confusion, or shallow breathing) [see Overdosage]. Children with obstructive sleep apnea who are treated with codeine for post-tonsillectomy and/or adenoidectomy pain may be particularly sensitive to the respiratory depressant effects of codeine that has been rapidly metabolized to morphine. Codeine-containing products are contraindicated for post-operative pain management in all pediatric patients undergoing tonsillectomy and/or adenoidectomy [see Contraindications]. When prescribing codeine-containing products, healthcare providers should choose the lowest effective dose for the shortest period of time and inform patients and caregivers about these risks and the signs of morphine overdose [see Overdosage]. Hypersensitivity/Anaphylaxis There have been post-marketing reports of hypersensitivity and anaphylaxis associated with the use of acetaminophen. Clinical signs included swelling of the face, mouth, and throat, respiratory distress, urticaria, rash, pruritus, and vomiting. There were infrequent reports of life-threatening anaphylaxis requiring emergency medical attention. Instruct patients to discontinue TYLENOL® with Codeine immediately and seek medical care if they experience these symptoms. Do not prescribe TYLENOL® with Codeine for patients with acetaminophen allergy. Head Injuries In the presence of head injury or other intracranial lesions, the respiratory-depressant effects of codeine and other narcotics may be markedly enhanced, as well as their capacity for elevating cerebrospinal fluid pressure. Narcotics also produce other CNS-depressant effects, such as drowsiness, that may further obscure the clinical course of the patients with head injuries. Acute Abdominal Conditions Codeine or other narcotics may obscure signs on which to judge the diagnosis or clinical course of patients with acute abdominal conditions. Abuse Potential Codeine is habit forming and potentially abusable. Consequently, the extended use of this product is not recommended. Sulfite Sensitivity TYLENOL® with Codeine (acetaminophen and codeine phosphate) Tablets contain sodium metabisulfite, a sulfite that may cause allergic-type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people.

DRUG INTERACTIONS

Drug Interactions This drug may enhance the effects of other narcotic analgesics, alcohol, general anesthetics, tranquilizers such as chlordiazepoxide, sedative-hypnotics, or other CNS depressants, causing increased CNS depression.

OVERDOSAGE

Following an acute overdosage, toxicity may result from codeine or acetaminophen. Signs and Symptoms Toxicity from codeine poisoning includes the opioid triad of pinpoint pupils, depression of respiration, and loss of consciousness. Convulsions may occur. In acetaminophen overdosage, dose-dependent, potentially fatal hepatic necrosis is the most serious adverse effect. Renal tubular necrosis, hypoglycemic coma, and coagulation defects may also occur. Early symptoms following a potentially hepatotoxic overdose may include nausea, vomiting, diaphoresis, and general malaise. Clinical and laboratory evidence of hepatic toxicity may not be apparent until 48 to 72 hours post-ingestion. Treatment A single or multiple drug overdose with acetaminophen and codeine is a potentially lethal polydrug overdose and consultation with a regional poison control center is recommended. Immediate treatment includes support of cardiorespiratory function and measures to reduce drug absorption. Oxygen, intravenous fluids, vasopressors, and other supportive measures should be employed as indicated. Assisted or controlled ventilation should also be considered. For respiratory depression due to overdosage or unusual sensitivity to codeine, parenteral naloxone is a specific and effective antagonist. Gastric decontamination with activated charcoal should be administered just prior to N-acetylcysteine (NAC) to decrease systemic absorption if acetaminophen ingestion is known or suspected to have occurred within a few hours of presentation. Serum acetaminophen levels should be obtained immediately if the patient presents 4 or more hours after ingestion to assess potential risk of hepatotoxicity; acetaminophen levels drawn less than 4 hours post-ingestion may be misleading. To obtain the best possible outcome, NAC should be administered as soon as possible where impending or evolving liver injury is suspected. Intravenous NAC may be administered when circumstances preclude oral administration. Vigorous supportive therapy is required in severe intoxication. Procedures to limit the continuing absorption of the drug must be readily performed since the hepatic injury is dose-dependent and occurs early in the course of intoxication.

DESCRIPTION

TYLENOL® with Codeine is supplied in tablet form for oral administration. Acetaminophen, 4′-hydroxyacetanilide, a slightly bitter, white, odorless, crystalline powder, is a non-opiate, non-salicylate analgesic and antipyretic. It has the following structural formula: C8 H9 NO2 M.W. 151.16 Codeine phosphate, 7,8-didehydro-4, 5α-epoxy-3-methoxy-17-methylmorphinan-6α-ol phosphate (1:1) (salt) hemihydrate, a white crystalline powder, is a narcotic analgesic and antitussive. It has the following structural formula: C18H21NO3•H3PO4•1/2 H2O M.W. 406.37 Tylenol with Codeine No. 3 tablets contain: Acetaminophen 300 mg Codeine Phosphate 30 mg (Warning: May be habit forming) Tylenol with Codeine No. 4 tablets contain: Acetaminophen 300 mg Codeine Phosphate 60 mg (Warning: May be habit forming) In addition, each tablet contains the following inactive ingredients: TYLENOL® with Codeine No. 3 contains powdered cellulose, magnesium stearate, sodium metabisulfiteSee WARNINGS , pregelatinized starch (corn), and modified starch (corn). TYLENOL® with Codeine No. 4 contains powdered cellulose, magnesium stearate, sodium metabisulfite, pregelatinized starch (corn), and corn starch. Chemical Structure Chemical Structure

HOW SUPPLIED

Product: 50090-0006 NDC: 50090-0006-2 20 TABLET in a BOTTLE

INDICATIONS AND USAGE

TYLENOL® with Codeine (acetaminophen and codeine phosphate) Tablets are indicated for the relief of mild to moderately severe pain.

PEDIATRIC USE

Pediatric Use Respiratory depression and death have occurred in children with obstructive sleep apnea who received codeine in the post-operative period following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine (i.e., multiple copies of the gene for cytochrome P450 isoenzyme CYP2D6 or high morphine concentrations). These children may be particularly sensitive to the respiratory depressant effects of codeine that has been rapidly metabolized to morphine. Codeine-containing products are contraindicated for post-operative pain management in all pediatric patients undergoing tonsillectomy and/or adenoidectomy [see Contraindications and Warnings].

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category C Codeine A study in rats and rabbits reported no teratogenic effect of codeine administered during the period of organogenesis in doses ranging from 5 to 120 mg/kg. In the rat, doses at the 120 mg/kg level, in the toxic range for the adult animal, were associated with an increase in embryo resorption at the time of implantation. In another study a single 100 mg/kg dose of codeine administered to pregnant mice reportedly resulted in delayed ossification in the offspring. There are no adequate and well-controlled studies in pregnant women. TYLENOL® with Codeine (acetaminophen and codeine phosphate) Tablets should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonteratogenic Effects Dependence has been reported in newborns whose mothers took opiates regularly during pregnancy. Withdrawal signs include irritability, excessive crying, tremors, hyperreflexia, fever, vomiting, and diarrhea. These signs usually appear during the first few days of life.

NUSRING MOTHERS

Nursing Mothers Acetaminophen is excreted in breast milk in small amounts, but the significance of its effect on nursing infants is not known. Because of the potential for serious adverse reactions in nursing infants from acetaminophen, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother. Codeine is secreted into human milk. In women with normal codeine metabolism (normal CYP2D6 activity), the amount of codeine secreted into human milk is low and dose-dependent. Despite the common use of codeine products to manage postpartum pain, reports of adverse events in infants are rare. However, some women are ultra-rapid metabolizers of codeine. These women achieve higher-than-expected serum levels of codeine’s active metabolite, morphine, leading to higher-than-expected levels of morphine in breast milk and potentially dangerously high serum morphine levels in their breastfed infants. Therefore, maternal use of codeine can potentially lead to serious adverse reactions, including death, in nursing infants. The risk of infant exposure to codeine and morphine through breast milk should be weighed against the benefits of breastfeeding for both the mother and baby. Caution should be exercised when codeine is administered to a nursing woman. If a codeine-containing product is selected, the lowest dose should be prescribed for the shortest period of time to achieve the desired clinical effect. Mothers using codeine should be informed about when to seek immediate medical care and how to identify the signs and symptoms of neonatal toxicity, such as drowsiness or sedation, difficulty breastfeeding, breathing difficulties, and decreased tone, in their baby. Nursing mothers who are ultra-rapid metabolizers may also experience overdose symptoms such as extreme sleepiness, confusion, or shallow breathing. Prescribers should closely monitor mother-infant pairs and notify treating pediatricians about the use of codeine during breastfeeding (See Warnings- Death Related to Ultra-Rapid Metabolism of Codeine to Morphine).

BOXED WARNING

HEPATOTOXICITY Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4,000 milligrams per day, and often involve more than one acetaminophen-containing product (see WARNINGS). WARNING: Death Related to Ultra-Rapid Metabolism of Codeine to Morphine Respiratory depression and death have occurred in children who received codeine following tonsillectomy and/or adenoidectomy and had evidence of being ultra-rapid metabolizers of codeine due to a CYP2D6 polymorphism.

INFORMATION FOR PATIENTS

Information for Patients/Caregivers Do not take TYLENOL® with Codeine if you are allergic to any of its ingredients. If you develop signs of allergy such as a rash or difficulty breathing, stop taking TYLENOL® with Codeine and contact your healthcare provider immediately. Do not take more than 4,000 milligrams of acetaminophen per day. Call your healthcare provider if you took more than the recommended dose. Codeine may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks such as driving a car or operating machinery. Avoid such tasks while taking this product. Alcohol and other CNS depressants may produce an additive CNS depression when taken with this combination product. Avoid drinking alcohol or taking other CNS depressants when you are taking TYLENOL® with Codeine. Codeine may be habit forming. Take this drug only for as long as it is prescribed, in the amounts prescribed, and no more frequently than prescribed. Advise patients that some people have a genetic variation that results in codeine changing into morphine more rapidly and completely than other people. Most people are unaware of whether they are an ultra-rapid codeine metabolizer or not. These higher-than-normal levels of morphine in the blood may lead to life-threatening or fatal respiratory depression or signs of overdose such as extreme sleepiness, confusion, or shallow breathing. Children with this genetic variation who were prescribed codeine after tonsillectomy and/or adenoidectomy for obstructive sleep apnea may be at greatest risk based on reports of several deaths in this population due to respiratory depression. Codeine-containing products are contraindicated in all children who undergo tonsillectomy and/or adenoidectomy. Advise caregivers of children receiving codeine-containing products for other reasons to monitor for signs of respiratory depression. Nursing mothers taking codeine can also have higher morphine levels in their breast milk if they are ultra-rapid metabolizers. These higher levels of morphine in breast milk may lead to life-threatening or fatal side effects in nursing babies. If you are a nursing mother, watch for signs of morphine toxicity in your infant, including increased sleepiness (more than usual), difficulty breastfeeding, breathing difficulties, or limpness. Talk to your baby’s doctor immediately if you notice these signs. If you cannot reach the doctor right away, take your baby to an emergency room or call 911 (or local emergency services).

DOSAGE AND ADMINISTRATION

Dosage should be adjusted according to severity of pain and response of the patient. The usual adult dosage is: Single Doses (Range) Maximum 24-Hour Dose Codeine Phosphate 15 mg to 60 mg 360 mg Acetaminophen 300 mg to 1,000 mg 4,000 mg Doses may be repeated up to every 4 hours. The prescriber must determine the number of tablets per dose, and the maximum number of tablets per 24 hours, based upon the above dosage guidance. This information should be conveyed in the prescription. It should be kept in mind, however, that tolerance to codeine can develop with continued use and that the incidence of untoward effects is dose related. Adult doses of codeine higher than 60 mg fail to give commensurate relief of pain but merely prolong analgesia and are associated with an appreciably increased incidence of undesirable side effects. Equivalently high doses in children would have similar effects.

Methyldopa 250 MG Oral Tablet

Generic Name: METHYLDOPA
Brand Name: Methyldopa
  • Substance Name(s):
  • METHYLDOPA

WARNINGS

It is important to recognize that a positive Coombs test, hemolytic anemia, and liver disorders may occur with methyldopa therapy. The rare occurrences of hemolytic anemia or liver disorders could lead to potentially fatal complications unless properly recognized and managed. Read this section carefully to understand these reactions. With prolonged methyldopa therapy, 10 to 20 percent of patients develop a positive direct Coombs test which usually occurs between 6 and 12 months of methyldopa therapy. Lowest incidence is at daily dosage of 1 g or less. This on rare occasions may be associated with hemolytic anemia, which could lead to potentially fatal complications. One cannot predict which patients with a positive direct Coombs test may develop hemolytic anemia. Prior existence or development of a positive direct Coombs test is not in itself a contraindication to use of methyldopa. If a positive Coombs test develops during methyldopa therapy, the physician should determine whether hemolytic anemia exists and whether the positive Coombs test may be a problem. For example, in addition to a positive direct Coombs test there is less often a positive indirect Coombs test which may interfere with cross matching of blood. Before treatment is started, it is desirable to do a blood count (hematocrit, hemoglobin, or red cell count) for a baseline or to establish whether there is anemia. Periodic blood counts should be done during therapy to detect hemolytic anemia. It may be useful to do a direct Coombs test before therapy and at 6 and 12 months after the start of therapy. If Coombs-positive hemolytic anemia occurs, the cause may be methyldopa and the drug should be discontinued. Usually the anemia remits promptly. If not, corticosteroids may be given and other causes of anemia should be considered. If the hemolytic anemia is related to methyldopa, the drug should not be reinstituted. When methyldopa causes Coombs positivity alone or with hemolytic anemia, the red cell is usually coated with gamma globulin of the IgG (gamma G) class only. The positive Coombs test may not revert to normal until weeks to months after methyldopa is stopped. Should the need for transfusion arise in a patient receiving methyldopa, both a direct and an indirect Coombs test should be performed. In the absence of hemolytic anemia, usually only the direct Coombs test will be positive. A positive direct Coombs test alone will not interfere with typing or cross matching. If the indirect Coombs test is also positive, problems may arise in the major cross match and the assistance of a hematologist or transfusion expert will be needed. Occasionally, fever has occurred within the first three weeks of methyldopa therapy, associated in some cases with eosinophilia or abnormalities in one or more liver function tests, such as serum alkaline phosphatase, serum transaminases (SGOT, SGPT), bilirubin, and prothrombin time. Jaundice, with or without fever, may occur with onset usually within the first two to three months of therapy. In some patients the findings are consistent with those of cholestasis. In others the findings are consistent with hepatitis and hepatocellular injury. Rarely, fatal hepatic necrosis has been reported after use of methyldopa. These hepatic changes may represent hypersensitivity reactions. Periodic determinations of hepatic function should be done particularly during the first 6 to 12 weeks of therapy or whenever an unexplained fever occurs. If fever, abnormalities in liver function tests, or jaundice appear, stop therapy with methyldopa. If caused by methyldopa, the temperature and abnormalities in liver function characteristically have reverted to normal when the drug was discontinued. Methyldopa should not be reinstituted in such patients. Rarely, a reversible reduction of the white blood cell count with a primary effect on the granulocytes has been seen. The granulocyte count returned promptly to normal on discontinuance of the drug. Rare cases of granulocytopenia have been reported. In each instance, upon stopping the drug, the white cell count returned to normal. Reversible thrombocytopenia has occurred rarely.

DRUG INTERACTIONS

Drug Interactions When methyldopa is used with other antihypertensive drugs, potentiation of antihypertensive effect may occur. Patients should be followed carefully to detect side reactions or unusual manifestations of drug idiosyncrasy. Patients may require reduced doses of anesthetics when on methyldopa. If hypotension does occur during anesthesia, it usually can be controlled by vasopressors. The adrenergic receptors remain sensitive during treatment with methyldopa. When methyldopa and lithium are given concomitantly, the patient should be carefully monitored for symptoms of lithium toxicity. Read the circular for lithium preparations. Several studies demonstrate a decrease in the bioavailability of methyldopa when it is ingested with ferrous sulfate or ferrous gluconate. This may adversely affect blood pressure control in patients treated with methyldopa. Coadministration of methyldopa with ferrous sulfate or ferrous gluconate is not recommended. Monoamine oxidase (MAO) inhibitors: See CONTRAINDICATIONS .

OVERDOSAGE

Acute overdosage may produce acute hypotension with other responses attributable to brain and gastrointestinal malfunction (excessive sedation, weakness, bradycardia, dizziness, light-headedness, constipation, distention, flatus, diarrhea, nausea, vomiting). In the event of overdosage, symptomatic and supportive measures should be employed. When ingestion is recent, gastric lavage or emesis may reduce absorption. When ingestion has been earlier, infusions may be helpful to promote urinary excretion. Otherwise, management includes special attention to cardiac rate and output, blood volume, electrolyte balance, paralytic ileus, urinary function and cerebral activity. Sympathomimetic drugs [e.g., levarterenol, epinephrine, ARAMINE ®1 (Metaraminol Bitartrate)] may be indicated. Methyldopa is dialyzable. The oral LD 50 of methyldopa is greater than 1.5 g/kg in both the mouse and the rat. ─ 1ARAMINE ® is a registered trademark of Merck.

DESCRIPTION

Methyldopa is an antihypertensive and is the L-isomer of alpha-methyldopa. It is levo-3-(3,4-dihydroxyphenyl)-2-methylalanine sesquihydrate. Methyldopa is supplied as tablets for oral administration, containing 125 mg, 250 mg and 500 mg of methyldopa. The amount of methyldopa is calculated on the anhydrous basis. Its molecular formula is C 10H 13NO 4• 1 1/2 H 2, with a molecular weight of 238.24, and its structural formula is: Methyldopa is a white to yellowish white, odorless fine powder and is sparingly soluble in water. The tablets contain the following inactive ingredients: pregelatinized starch, sodium starch glycolate, povidone, microcrystalline cellulose, magnesium stearate, hypromellose, FD&C yellow #6 lake and titanium dioxide. In addition 125 mg and 250 mg tablets contain corn starch. Methyldopa structural formula

HOW SUPPLIED

Methyldopa Tablets, USP are supplied as film-coated tablets containing 125 mg, 250 mg or 500 mg of Methyldopa, USP. The 125 mg tablets are round, convex, peach colored, tablets debossed with ‘AHI’ on one side and ‘M21’ on the other. They are available as follows: NDC 16729-029-01 bottles of 100 tablets The 250 mg tablets are round, convex, peach colored, tablets debossed with ‘AHI’ on one side and ‘M22’ on the other. They are available as follows: NDC 16729-030-01 bottles of 100 tablets NDC 16729-030-16 bottles of 500 tablets NDC 16729-030-17 bottles of 1000 tablets The 500 mg tablets are round, convex, peach colored, tablets debossed with ‘AHI’ on one side and ‘M23’ on the other. They are available as follows: NDC 16729-031-01 bottles of 100 tablets NDC 16729-031-16 bottles of 500 tablets Store at 20° to 25°C (68° to 77°F). [See USP for Controlled Room Temperature.] Protect from light. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. Manufactured For: Accord Healthcare, Inc., 1009 Slater Road, Suite 210-B, Durham, NC 27703, USA. Manufactured By: Intas Pharmaceuticals Limited, Plot No. : 457, 458, Village – Matoda, Bavla Road, Ta.- Sanand, Dist.- Ahmedabad – 382 210. India. 10 10934 1 638457 Issued May 2012

GERIATRIC USE

Geriatric Use Of the total number of subjects (1685) in clinical studies of methyldopa, 223 patients were 65 years of age and over while 33 patients were 75 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. (See DOSAGE AND ADMINISTRATION .) This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection and it may be useful to monitor renal function.

INDICATIONS AND USAGE

Hypertension.

PEDIATRIC USE

Pediatric Use There are no well-controlled clinical trials in pediatric patients. Information on dosing in pediatric patients is supported by evidence from published literature regarding the treatment of hypertension in pediatric patients. (See DOSAGE AND ADMINISTRATION .)

PREGNANCY

Pregnancy Teratogenic Effects. Pregnancy Category B Reproduction studies performed with methyldopa at oral doses up to 1000 mg/kg in mice, 200 mg/kg in rabbits and 100 mg/kg in rats revealed no evidence of harm to the fetus. These doses are 16.6 times, 3.3 times and 1.7 times, respectively, the maximum daily human dose when compared on the basis of body weight; 1.4 times, 1.1 times and 0.2 times, respectively, when compared on the basis of body surface area; calculations assume a patient weight of 50 kg. There are, however, no adequate and well-controlled studies in pregnant women in the first trimester of pregnancy. Because animal reproduction studies are not always predictive of human response, methyldopa should be used during pregnancy only if clearly needed. Published reports of the use of methyldopa during all trimesters indicate that if this drug is used during pregnancy the possibility of fetal harm appears remote. In five studies, three of which were controlled, involving 332 pregnant hypertensive women, treatment with methyldopa was associated with an improved fetal outcome. The majority of these women were in the third trimester when methyldopa therapy was begun. In one study, women who had begun methyldopa treatment between weeks 16 and 20 of pregnancy gave birth to infants whose average head circumference was reduced by a small amount (34.2 ± 1.7 cm vs. 34.6 ± 1.3 cm [mean ± 1 S.D.]). Long-term follow-up of 195 (97.5%) of the children born to methyldopa-treated pregnant women (including those who began treatment between weeks 16 and 20) failed to uncover any significant adverse effect on the children. At four years of age, the developmental delay commonly seen in children born to hypertensive mothers was less evident in those whose mothers were treated with methyldopa during pregnancy than those whose mothers were untreated. The children of the treated group scored consistently higher than the children of the untreated group on five major indices of intellectual and motor development. At age 7 and one-half developmental scores and intelligence indices showed no significant differences in children of treated or untreated hypertensive women.

NUSRING MOTHERS

Nursing Mothers Methyldopa appears in breast milk. Therefore, caution should be exercised when methyldopa is given to a nursing woman.

DOSAGE AND ADMINISTRATION

Adults Initiation of Therapy The usual starting dosage of methyldopa tablet is 250 mg two to three times a day in the first 48 hours. The daily dosage then may be increased or decreased, preferably at intervals of not less than two days, until an adequate response is achieved. To minimize the sedation, start dosage increases in the evening. By adjustment of dosage, morning hypotension may be prevented without sacrificing control of afternoon blood pressure. When methyldopa is given to patients on other antihypertensives, the dose of these agents may need to be adjusted to effect a smooth transition. When methyldopa is given with anti-hypertensives other than thiazides, the initial dosage of methyldopa should be limited to 500 mg daily in divided doses; when methyldopa is added to a thiazide, the dosage of thiazide need not be changed. Maintenance of Therapy The usual daily dosage of methyldopa is 500 mg to 2 g in two to four doses. Although occasional patients have responded to higher doses, the maximum recommended daily dosage is 3 g. Once an effective dosage range is attained, a smooth blood pressure response occurs in most patients in 12 to 24 hours. Since methyldopa has a relatively short duration of action, withdrawal is followed by return of hypertension usually within 48 hours. This is not complicated by an overshoot of blood pressure. Occasionally tolerance may occur, usually between the second and third month of therapy. Adding a diuretic or increasing the dosage of methyldopa frequently will restore effective control of blood pressure. A thiazide may be added at any time during methyldopa therapy and is recommended if therapy has not been started with a thiazide or if effective control of blood pressure cannot be maintained on 2 g of methyldopa daily. Methyldopa is largely excreted by the kidney and patients with impaired renal function may respond to smaller doses. Syncope in older patients may be related to an increased sensitivity and advanced arteriosclerotic vascular disease. This may be avoided by lower doses. Pediatric Patients Initial dosage is based on 10 mg/kg of body weight daily in two to four doses. The daily dosage then is increased or decreased until an adequate response is achieved. The maximum dosage is 65 mg/kg or 3 g daily, whichever is less (see PRECAUTIONS: Pediatric Use .)