Terazosin 10 MG Oral Capsule

Generic Name: TERAZOSIN
Brand Name: Terazosin
  • Substance Name(s):
  • TERAZOSIN HYDROCHLORIDE

WARNINGS

Syncope and “First-dose” Effect Terazosin Capsules, like other alpha-adrenergic blocking agents, can cause marked lowering of blood pressure, especially postural hypotension, and syncope in association with the first dose or first few days of therapy. A similar effect can be anticipated if therapy is interrupted for several days and then restarted. Syncope has also been reported with other alpha-adrenergic blocking agents in association with rapid dosage increases or the introduction of another antihypertensive drug. Syncope is believed to be due to an excessive postural hypotensive effect, although occasionally the syncopal episode has been preceded by about of severe supraventricular tachycardia with heart rates of 120-160 beats per minute. Additionally, the possibility of the contribution of hemodilution to the symptoms of postural hypotension should be considered. To decrease the likelihood of syncope or excessive hypotension, treatment should always be initiated with a 1 mg dose of terazosin, given at bedtime. The 2 mg, 5 mg and 10 mg capsules are not indicated as initial therapy. Dosage should then be increased slowly, according to recommendations in the Dosage and Administration section and additional antihypertensive agents should be added with caution. The patient should be cautioned to avoid situations, such as driving or hazardous tasks, where injury could result should syncope occur during initiation of therapy. In early investigational studies, where increasing single doses up to 7.5 mg were given at 3 day intervals, tolerance to the first dose phenomenon did not necessarily develop and the “first-dose” effect could be observed at all doses. Syncopal episodes occurred in 3 of the 14 subjects given terazosin at doses of 2.5, 5 and 7.5 mg, which are higher than the recommended initial dose; in addition, severe orthostatic hypotension (blood pressure falling to 50/0 mmHg) was seen in two others and dizziness, tachycardia, and lightheadedness occurred in most subjects. These adverse effects all occurred within 90 minutes of dosing. In three placebo-controlled BPH studies 1, 2, and 3 (see CLINICAL PHARMACOLOGY ), the incidence of postural hypotension in the terazosin treated patients was 5.1%, 5.2%, and 3.7% respectively. In multiple dose clinical trials involving nearly 2000 hypertensive patients treated with terazosin, syncope was reported in about 1% of patients. Syncope was not necessarily associated only with the first dose. If syncope occurs, the patient should be placed in a recumbent position and treated supportively as necessary. There is evidence that the orthostatic effect of terazosin is greater, even in chronic use, shortly after dosing. The risk of the events is greatest during the initial seven days of treatment, but continues at all time intervals. Priapism Rarely, (probably less than once in every several thousand patients) terazosin and other α1 -antagonists have been associated with priapism (painful penile erection, sustained for hours and unrelieved by sexual intercourse or masturbation). Two or three dozen cases have been reported. Because this condition can lead to permanent impotence if not promptly treated, patients must be advised about the seriousness of the condition (see PRECAUTIONS: Information for Patients ).

DRUG INTERACTIONS

Drug Interactions In controlled trials, terazosin has been added to diuretics, and several beta-adrenergic blockers; no unexpected interactions were observed. Terazosin has also been used in patients on a variety of concomitant therapies; while these were not formal interaction studies, no interactions were observed. Terazosin has been used concomitantly in at least 50 patients on the following drugs or drug classes: 1) analgesic/anti-inflammatory (e.g., acetaminophen, aspirin, codeine, ibuprofen, indomethacin); 2) antibiotics (e.g., erythromycin, trimethoprim and sulfamethoxazole); 3) anticholinergic/sympathomimetics (e.g., phenylephrine hydrochloride, phenylpropanolamine hydrochloride, pseudoephedrine hydrochloride); 4) antigout (e.g., allopurinol); 5) antihistamines (e.g., chlorpheniramine); 6) cardiovascular agents (e.g., atenolol, hydrochlorothiazide, methyclothiazide, propranolol); 7) corticosteroids; 8) gastrointestinal agents (e.g., antacids); 9) hypoglycemics; 10) sedatives and tranquilizers (e.g., diazepam).

OVERDOSAGE

Should overdosage of Terazosin Capsules lead to hypotension, support of the cardiovascular system is of first importance. Restoration of blood pressure and normalization of heart rate may be accomplished by keeping the patient in the supine position. If this measure is inadequate, shock should first be treated with volume expanders. If necessary, vasopressors should then be used and renal function should be monitored and supported as needed. Laboratory data indicate that terazosin is 90-94% protein bound; therefore, dialysis may not be of benefit.

DESCRIPTION

Terazosin hydrochloride, an alpha-1-selective adrenoceptor blocking agent, is a quinazoline derivative represented by the following chemical name and structural formula: (RS)-Piperazine, 1-(4-amino-6,7-dimethoxy-2-quinazolinyl)-4-[(tetra-hydro-2-furanyl)carbonyl]-, monohydrochloride, dihydrate. Terazosin hydrochloride is a white, crystalline substance, freely soluble in water and isotonic saline and has a molecular weight of 459.93. Terazosin Capsules, USP for oral ingestion are supplied in four dosage strengths containing terazosin hydrochloride equivalent to 1 mg, 2 mg, 5 mg, or 10 mg of terazosin. formula Inactive Ingredients The 1 mg, 2 mg, 5 mg and 10 mg capsules contain the following inactive ingredients: lactose monohydrate, starch, stearic acid and talc. The 1 mg, 2 mg, 5 mg and 10 mg capsule imprinting ink contains ammonium hydroxide, black iron oxide, potassium hydroxide, propylene glycol and shellac. The 1 mg capsule shell contains black iron oxide, gelatin, titanium dioxide and yellow iron oxide. The 2 mg capsule shell contains D&C yellow #10, FD&C red #40, gelatin and titanium dioxide. The 5 mg capsule shell contains D&C red #28, FD&C red #40, gelatin and titanium dioxide. The 10 mg capsule shell contains D&C red #28, D&C yellow #10, FD&C blue #1, gelatin and titanium dioxide. USP Dissolution Test 2

HOW SUPPLIED

Terazosin Capsules, USP are available for oral administration as 1 mg, 2 mg and 10 mg capsules. Terazosin Capsules, USP 1 mg: Hard gelatin capsules with a beige opaque body and a beige opaque cap. “APO 115” is imprinted on each capsule in black ink; supplied in bottles of 30 (NDC 33261-0211-30). Terazosin Capsules, USP 2 mg: Hard gelatin capsules with a yellow opaque body and a yellow opaque cap. “APO 116” is imprinted on each capsule in black ink; supplied in bottles of 30 (NDC 33261-0212-30). Terazosin Capsules, USP 10 mg: Hard gelatin capsules with a blue opaque body and a blue opaque cap. “APO 118” is imprinted on each capsule in black ink; supplied in bottles of 30 (NDC 33261-0870-30). Recommended storage: Store at 20º to 25°C (68º to 77ºF); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture. APOTEX INC. TERAZOSIN CAPSULES, USP 1 MG, 2 MG AND 10 MG Repackaged By: Aidarex Pharmaceuticals, LLC. Corona, CA 92880 Revised: June 2011 Revision 2

INDICATIONS AND USAGE

Terazosin Capsules, USP are indicated for the treatment of symptomatic benign prostatic hyperplasia (BPH). There is a rapid response, with approximately 70% of patients experiencing an increase in urinary flow and improvement in symptoms of BPH when treated with Terazosin Capsules, USP. The long-term effects of Terazosin Capsules, USP on the incidence of surgery, acute urinary obstruction or other complications of BPH are yet to be determined. Terazosin Capsules, USP are also indicated for the treatment of hypertension. It can be used alone or in combination with other antihypertensive agents such as diuretics or beta-adrenergic blocking agents.

PEDIATRIC USE

Pediatric Use Safety and effectiveness in children have not been determined.

PREGNANCY

Pregnancy Teratogenic effects: Pregnancy Category C. Terazosin was not teratogenic in either rats or rabbits when administered at oral doses up to 280 and 60 times, respectively, the maximum recommended human dose. Fetal resorptions occurred in rats dosed with 480 mg/kg/day, approximately 280 times the maximum recommended human dose. Increased fetal resorptions, decreased fetal weight and an increased number of supernumerary ribs were observed in offspring of rabbits dosed with 60 times the maximum recommended human dose. These findings (in both species) were most likely secondary to maternal toxicity. There are no adequate and well-controlled studies in pregnant women and the safety of terazosin in pregnancy has not been established. Terazosin is not recommended during pregnancy unless the potential benefit justifies the potential risk to the mother and fetus. Nonteratogenic effects: In a peri- and post-natal development study in rats, significantly more pups died in the group dosed with 120 mg/kg/day (> 75 times the maximum recommended human dose) than in the control group during the three-week postpartum period.

NUSRING MOTHERS

Nursing Mothers It is not known whether terazosin is excreted in breast milk. Because many drugs are excreted in breast milk, caution should be exercised when terazosin is administered to a nursing woman.

DOSAGE AND ADMINISTRATION

If Terazosin Capsules administration is discontinued for several days, therapy should be reinstituted using the initial dosing regimen. Benign Prostatic Hyperplasia Initial Dose : 1 mg at bedtime is the starting dose for all patients, and this dose should not be exceeded as an initial dose. Patients should be closely followed during initial administration in order to minimize the risk of severe hypotensive response. Subsequent Doses: The dose should be increased in a stepwise fashion to 2 mg, 5 mg, or 10 mg once daily to achieve the desired improvement of symptoms and/or flow rates. Doses of 10 mg once daily are generally required for the clinical response. Therefore, treatment with 10 mg for a minimum of 4-6 weeks may be required to assess whether a beneficial response has been achieved. Some patients may not achieve a clinical response despite appropriate titration. Although some additional patients responded at a 20 mg daily dose, there was an insufficient number of patients studied to draw definitive conclusions about this dose. There are insufficient data to support the use of higher doses for those patients who show inadequate or no response to 20 mg daily. If terazosin administration is discontinued for several days or longer, therapy should be reinstituted using the initial dosing regimen. Use with Other Drugs: Caution should be observed when Terazosin Capsules are administered concomitantly with other antihypertensive agents, especially the calcium channel blocker verapamil, to avoid the possibility of developing significant hypotension. When using Terazosin Capsules and other antihypertensive agents concomitantly, dosage reduction and retitration of either agent may be necessary (see Precautions). Hypotension has been reported when Terazosin Capsules have been used with phosphodiesterase-5 (PDE-5) inhibitors. Hypertension The dose of Terazosin Capsules and the dose interval (12 or 24 hours) should be adjusted according to the patient’s individual blood pressure response. The following is a guide to its administration: Initial Dose: 1 mg at bedtime is the starting dose for all patients, and this dose should not be exceeded. This initial dosing regimen should be strictly observed to minimize the potential for severe hypotensive effects. Subsequent Doses: The dose may be slowly increased to achieve the desired blood pressure response. The usual recommended dose range is 1 mg to 5 mg administered once a day; however, some patients may benefit from doses as high as 20 mg per day. Doses over 20 mg do not appear to provide further blood pressure effect and doses over 40 mg have not been studied. Blood pressure should be monitored at the end of the dosing interval to be sure control is maintained throughout the interval. It may also be helpful to measure blood pressure 2-3 hours after dosing to see if the maximum and minimum responses are similar, and to evaluate symptoms such as dizziness or palpitations which can result from excessive hypotensive response. If response is substantially diminished at 24 hours an increased dose or use of a twice daily regimen can be considered. If terazosin administration is discontinued for several days or longer, therapy should be reinstituted using the initial dosing regimen. In clinical trials, except for the initial dose, the dose was given in the morning. Use With Other Drugs: (see above)

Tamsulosin hydrochloride 0.4 MG Oral Capsule [Flomax]

Generic Name: TAMSULOSIN HYDROCHLORIDE
Brand Name: FLOMAX
  • Substance Name(s):
  • TAMSULOSIN HYDROCHLORIDE

DRUG INTERACTIONS

7 FLOMAX capsules 0.4 mg should not be used with strong inhibitors of CYP3A4 (e.g., ketoconazole). FLOMAX capsules should be used with caution in combination with moderate inhibitors of CYP3A4 (e.g., erythromycin), in combination with strong (e.g., paroxetine) or moderate (e.g., terbinafine) inhibitors of CYP2D6, or in patients known to be CYP2D6 poor metabolizers, particularly at a dose higher than 0.4 mg (e.g., 0.8 mg). (5.2, 7.1, 12.3) Concomitant use of PDE5 inhibitors with tamsulosin can potentially cause symptomatic hypotension (5.2, 7.3, 12.3) 7.1 Cytochrome P450 Inhibition Strong and Moderate Inhibitors of CYP3A4 or CYP2D6 Tamsulosin is extensively metabolized, mainly by CYP3A4 and CYP2D6. Concomitant treatment with ketoconazole (a strong inhibitor of CYP3A4) resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 2.2 and 2.8, respectively [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of concomitant administration of a moderate CYP3A4 inhibitor (e.g., erythromycin) on the pharmacokinetics of FLOMAX have not been evaluated [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. Concomitant treatment with paroxetine (a strong inhibitor of CYP2D6) resulted in an increase in the Cmax and AUC of tamsulosin by a factor of 1.3 and 1.6, respectively [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. A similar increase in exposure is expected in CYP2D6 poor metabolizers (PM) as compared to extensive metabolizers (EM). Since CYP2D6 PMs cannot be readily identified and the potential for significant increase in tamsulosin exposure exists when FLOMAX 0.4 mg is co-administered with strong CYP3A4 inhibitors in CYP2D6 PMs, FLOMAX 0.4 mg capsules should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of concomitant administration of a moderate CYP2D6 inhibitor (e.g., terbinafine) on the pharmacokinetics of FLOMAX have not been evaluated [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. The effects of co-administration of both a CYP3A4 and a CYP2D6 inhibitor with FLOMAX capsules have not been evaluated. However, there is a potential for significant increase in tamsulosin exposure when FLOMAX 0.4 mg is co-administered with a combination of both CYP3A4 and CYP2D6 inhibitors [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. Cimetidine Treatment with cimetidine resulted in a significant decrease (26%) in the clearance of tamsulosin hydrochloride, which resulted in a moderate increase in tamsulosin hydrochloride AUC (44%) [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.2 Other Alpha Adrenergic Blocking Agents The pharmacokinetic and pharmacodynamic interactions between FLOMAX capsules and other alpha adrenergic blocking agents have not been determined; however, interactions between FLOMAX capsules and other alpha adrenergic blocking agents may be expected [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.3 PDE5 Inhibitors Caution is advised when alpha adrenergic blocking agents including FLOMAX are co-administered with PDE5 inhibitors. Alpha-adrenergic blockers and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.4 Warfarin A definitive drug-drug interaction study between tamsulosin hydrochloride and warfarin was not conducted. Results from limited in vitro and in vivo studies are inconclusive. Caution should be exercised with concomitant administration of warfarin and FLOMAX capsules [ see Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 7.5 Nifedipine, Atenolol, Enalapril Dosage adjustments are not necessary when FLOMAX capsules are administered concomitantly with nifedipine, atenolol, or enalapril [ see Clinical Pharmacology (12.3) ]. 7.6 Digoxin and Theophylline Dosage adjustments are not necessary when a FLOMAX capsule is administered concomitantly with digoxin or theophylline [ see Clinical Pharmacology (12.3) ]. 7.7 Furosemide FLOMAX capsules had no effect on the pharmacodynamics (excretion of electrolytes) of furosemide. While furosemide produced an 11% to 12% reduction in tamsulosin hydrochloride Cmax and AUC, these changes are expected to be clinically insignificant and do not require adjustment of the FLOMAX capsules dosage [ see Clinical Pharmacology (12.3) ].

OVERDOSAGE

10 Should overdosage of FLOMAX capsules lead to hypotension [ see Warnings and Precautions (5.1) and Adverse Reactions (6.1) ], support of the cardiovascular system is of first importance. Restoration of blood pressure and normalization of heart rate may be accomplished by keeping the patient in the supine position. If this measure is inadequate, then administration of intravenous fluids should be considered. If necessary, vasopressors should then be used and renal function should be monitored and supported as needed. Laboratory data indicate that tamsulosin hydrochloride is 94% to 99% protein bound; therefore, dialysis is unlikely to be of benefit.

DESCRIPTION

11 Tamsulosin hydrochloride is an antagonist of alpha1A adrenoceptors in the prostate. Tamsulosin hydrochloride is (-)-( R )-5-[2-[[2-( o -Ethoxyphenoxy) ethyl]amino]propyl]-2-methoxybenzenesulfonamide, monohydrochloride. Tamsulosin hydrochloride is a white crystalline powder that melts with decomposition at approximately 230°C. It is sparingly soluble in water and methanol, slightly soluble in glacial acetic acid and ethanol, and practically insoluble in ether. The empirical formula of tamsulosin hydrochloride is C20H28N2O5S • HCl. The molecular weight of tamsulosin hydrochloride is 444.98. Its structural formula is: Each FLOMAX capsule for oral administration contains tamsulosin hydrochloride 0.4 mg, and the following inactive ingredients: methacrylic acid copolymer dispersion, NF; microcrystalline cellulose, NF; triacetin, USP; calcium stearate, NF; talc, USP; FD&C blue No. 2; titanium dioxide; ferric oxide; gelatin, and trace amounts of black edible ink. Flomax Structure

CLINICAL STUDIES

14 Four placebo-controlled clinical studies and one active-controlled clinical study enrolled a total of 2296 patients (1003 received FLOMAX capsules 0.4 mg once daily, 491 received FLOMAX capsules 0.8 mg once daily, and 802 were control patients) in the U.S. and Europe. In the two U.S. placebo-controlled, double-blind, 13-week, multicenter studies [Study 1 (US92-03A) and Study 2 (US93-01)], 1486 men with the signs and symptoms of BPH were enrolled. In both studies, patients were randomized to either placebo, FLOMAX capsules 0.4 mg once daily, or FLOMAX capsules 0.8 mg once daily. Patients in FLOMAX capsules 0.8 mg once-daily treatment groups received a dose of 0.4 mg once daily for one week before increasing to the 0.8 mg once-daily dose. The primary efficacy assessments included: 1) total American Urological Association (AUA) Symptom Score questionnaire, which evaluated irritative (frequency, urgency, and nocturia), and obstructive (hesitancy, incomplete emptying, intermittency, and weak stream) symptoms, where a decrease in score is consistent with improvement in symptoms; and 2) peak urine flow rate, where an increased peak urine flow rate value over baseline is consistent with decreased urinary obstruction. Mean changes from baseline to Week 13 in total AUA Symptom Score were significantly greater for groups treated with FLOMAX capsules 0.4 mg and 0.8 mg once daily compared to placebo in both U.S. studies (Table 3, Figures 2A and 2B). The changes from baseline to Week 13 in peak urine flow rate were also significantly greater for the FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups compared to placebo in Study 1, and for the FLOMAX capsules 0.8 mg once-daily group in Study 2 (Table 3, Figures 3A and 3B). Overall there were no significant differences in improvement observed in total AUA Symptom Scores or peak urine flow rates between the 0.4 mg and the 0.8 mg dose groups with the exception that the 0.8 mg dose in Study 1 had a significantly greater improvement in total AUA Symptom Score compared to the 0.4 mg dose. Table 3 Mean (±S.D.) Changes from Baseline to Week 13 in Total AUA Symptom Score** and Peak Urine Flow Rate (mL/sec) Total AUA Symptom Score Peak Urine Flow Rate Mean Baseline Value Mean Change Mean Baseline Value Mean Change * Statistically significant difference from placebo (p-value ≤0.050; Bonferroni-Holm multiple test procedure). ** Total AUA Symptom Scores ranged from 0 to 35. † Peak urine flow rate measured 4 to 8 hours post dose at Week 13. ‡ Peak urine flow rate measured 24 to 27 hours post dose at Week 13. Week 13: For patients not completing the 13-week study, the last observation was carried forward. Study 1 † FLOMAX capsules 0.8 mg once daily 19.9 ± 4.9 n=247 -9.6* ± 6.7 n=237 9.57 ± 2.51 n=247 1.78* ± 3.35 n=247 FLOMAX capsules 0.4 mg once daily 19.8 ± 5.0 n=254 -8.3* ± 6.5 n=246 9.46 ± 2.49 n=254 1.75* ± 3.57 n=254 Placebo 19.6 ± 4.9 n=254 -5.5 ± 6.6 n=246 9.75 ± 2.54 n=254 0.52 ± 3.39 n=253 Study 2 ‡ FLOMAX capsules 0.8 mg once daily 18.2 ± 5.6 n=244 -5.8* ± 6.4 n=238 9.96 ± 3.16 n=244 1.79* ± 3.36 n=237 FLOMAX capsules 0.4 mg once daily 17.9 ± 5.8 n=248 -5.1* ± 6.4 n=244 9.94 ± 3.14 n=248 1.52 ± 3.64 n=244 Placebo 19.2 ± 6.0 n=239 -3.6 ± 5.7 n=235 9.95 ± 3.12 n=239 0.93 ± 3.28 n=235 Mean total AUA Symptom Scores for both FLOMAX capsules 0.4 mg and 0.8 mg once-daily groups showed a rapid decrease starting at 1 week after dosing and remained decreased through 13 weeks in both studies (Figures 2A and 2B). In Study 1, 400 patients (53% of the originally randomized group) elected to continue in their originally assigned treatment groups in a double-blind, placebo-controlled, 40-week extension trial (138 patients on 0.4 mg, 135 patients on 0.8 mg, and 127 patients on placebo). Three hundred twenty-three patients (43% of the originally randomized group) completed one year. Of these, 81% (97 patients) on 0.4 mg, 74% (75 patients) on 0.8 mg, and 56% (57 patients) on placebo had a response ≥25% above baseline in total AUA Symptom Score at one year. Figure 2A Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 1 * indicates significant difference from placebo (p-value ≤0.050). B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Total AUA Symptom Scores range from 0 to 35. Figure 2B Mean Change from Baseline in Total AUA Symptom Score (0-35) Study 2 * indicates significant difference from placebo (p-value ≤0.050). Baseline measurement was taken Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Total AUA Symptom Scores range from 0 to 35. Figure 3A Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 1 * indicates significant difference from placebo (p-value ≤0.050). B = Baseline determined approximately one week prior to the initial dose of double-blind medication at Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: The uroflowmetry assessments at Week 0 were recorded 4 to 8 hours after patients received the first dose of double-blind medication. Measurements at each visit were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration). Note: Patients in the 0.8 mg treatment groups received 0.4 mg for the first week. Figure 3B Mean Increase in Peak Urine Flow Rate (mL/Sec) Study 2 * indicates significant difference from placebo (p-value ≤0.050). Baseline measurement was taken Week 0. Subsequent values are observed cases. LOCF = Last observation carried forward for patients not completing the 13-week study. Note: Patients in the 0.8 mg treatment group received 0.4 mg for the first week. Note: Week 1 and Week 2 measurements were scheduled 4 to 8 hours after dosing (approximate peak plasma tamsulosin concentration). All other visits were scheduled 24 to 27 hours after dosing (approximate trough tamsulosin concentration). Figure 2a Figure 2b Figure 3a Figure 3b

HOW SUPPLIED

16 /STORAGE AND HANDLING FLOMAX capsules 0.4 mg are supplied in high density polyethylene bottles containing 100 hard gelatin capsules with olive green opaque cap and orange opaque body. The capsules are imprinted on one side with Flomax 0.4 mg and on the other side with BI 58. FLOMAX capsules 0.4 mg, 100 capsules (NDC 0597-0058-01) Store at 25°C (77°F); excursions permitted to 15°C–30°C (59°F–86°F) [see USP Controlled Room Temperature]. Keep FLOMAX capsules and all medicines out of reach of children.

RECENT MAJOR CHANGES

Dosage and Administration (2) 4/2009 Contraindications (4) 12/2009 Warnings and Precautions Drug Interactions (5.2) 12/2009 Screening for Prostate Cancer (5.4) 12/2009

GERIATRIC USE

8.5 Geriatric Use Of the total number of subjects (1783) in clinical studies of tamsulosin, 36% were 65 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and the other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out [ see Clinical Pharmacology (12.3) ].

DOSAGE FORMS AND STRENGTHS

3 Capsule: 0.4 mg, olive green and orange hard gelatin, imprinted on one side with Flomax 0.4 mg and on the other side with BI 58 Capsules: 0.4 mg (3)

MECHANISM OF ACTION

12.1 Mechanism of Action The symptoms associated with benign prostatic hyperplasia (BPH) are related to bladder outlet obstruction, which is comprised of two underlying components: static and dynamic. The static component is related to an increase in prostate size caused, in part, by a proliferation of smooth muscle cells in the prostatic stroma. However, the severity of BPH symptoms and the degree of urethral obstruction do not correlate well with the size of the prostate. The dynamic component is a function of an increase in smooth muscle tone in the prostate and bladder neck leading to constriction of the bladder outlet. Smooth muscle tone is mediated by the sympathetic nervous stimulation of alpha1 adrenoceptors, which are abundant in the prostate, prostatic capsule, prostatic urethra, and bladder neck. Blockade of these adrenoceptors can cause smooth muscles in the bladder neck and prostate to relax, resulting in an improvement in urine flow rate and a reduction in symptoms of BPH. Tamsulosin, an alpha1 adrenoceptor blocking agent, exhibits selectivity for alpha1 receptors in the human prostate. At least three discrete alpha1 adrenoceptor subtypes have been identified: alpha1A, alpha1B, and alpha1D; their distribution differs between human organs and tissue. Approximately 70% of the alpha1 receptors in the human prostate are of the alpha1A subtype. FLOMAX capsules are not intended for use as an antihypertensive drug.

INDICATIONS AND USAGE

1 Flomax® (tamsulosin hydrochloride) capsules are indicated for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH) [ see Clinical Studies (14) ]. FLOMAX capsules are not indicated for the treatment of hypertension. FLOMAX is an alpha1 adrenoceptor antagonist indicated for treatment of the signs and symptoms of benign prostatic hyperplasia (1) FLOMAX capsules are not indicated for the treatment of hypertension (1)

PEDIATRIC USE

8.4 Pediatric Use FLOMAX capsules are not indicated for use in pediatric populations. Efficacy and positive benefit/risk of tamsulosin hydrochloride was not demonstrated in two studies conducted in patients 2 years to 16 years of age with elevated detrusor leak point pressure (>40 cm H2O) associated with known neurological disorder (e.g., spina bifida). Patients in both studies were treated on a weight-based mg/kg schema (0.025 mg, 0.05 mg, 0.1 mg, 0.2 mg, or 0.4 mg tamsulosin hydrochloride) for the reduction in detrusor leak point pressure below 40 cm H2O. In a randomized, double-blind, placebo-controlled, 14-week, pharmacokinetic, safety and efficacy study in 161 patients, no statistically significant difference in the proportion of responders was observed between groups receiving tamsulosin hydrochloride and placebo. In an open-label, 12-month safety study, 87 patients were treated with tamsulosin hydrochloride. The most frequently reported adverse events (≥5%) from the pooled data of both studies were urinary tract infection, vomiting, pyrexia, headache, nasopharyngitis, cough, pharyngitis, influenza, diarrhea, abdominal pain, and constipation.

PREGNANCY

8.1 Pregnancy Teratogenic Effects, Pregnancy Category B. Administration of tamsulosin hydrochloride to pregnant female rats at dose levels up to approximately 50 times the human therapeutic AUC exposure (300 mg/kg/day) revealed no evidence of harm to the fetus. Administration of tamsulosin hydrochloride to pregnant rabbits at dose levels up to 50 mg/kg/day produced no evidence of fetal harm. FLOMAX capsules are not indicated for use in women.

NUSRING MOTHERS

8.3 Nursing Mothers FLOMAX capsules are not indicated for use in women.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Advise patients about the possibility of symptoms related to postural hypotension and to avoid situations where injury could result should syncope occur (5.1) Should not be used in combination with strong inhibitors of CYP3A4. Use with caution in combination with moderate inhibitors of CYP3A4, with strong or moderate inhibitors of CYP2D6, in patients known to be CYP2D6 poor metabolizers, or in combination with other cytochrome P450 inhibitors. (5.2, 7.1, 12.3) Should not be used in combination with other alpha adrenergic blocking agents (5.2, 7.2, 12.3) Exercise caution with concomitant administration of warfarin (5.2, 7.4, 12.3) Advise patients about the possibility and seriousness of priapism (5.3) Intraoperative Floppy Iris Syndrome has been observed during cataract surgery in some patients. Advise patients considering cataract surgery to tell their ophthalmologist that they have taken FLOMAX capsules. (5.5) Advise patients to be screened for the presence of prostate cancer prior to treatment and at regular intervals afterwards (5.4) 5.1 Orthostasis The signs and symptoms of orthostasis (postural hypotension, dizziness, and vertigo) were detected more frequently in FLOMAX capsule-treated patients than in placebo recipients. As with other alpha adrenergic blocking agents there is a potential risk of syncope [ see Adverse Reactions (6.1) ]. Patients beginning treatment with FLOMAX capsules should be cautioned to avoid situations in which injury could result should syncope occur [ see Patient Counseling Information (17.1) ]. 5.2 Drug Interactions Tamsulosin is extensively metabolized, mainly by CYP3A4 and CYP2D6. FLOMAX capsules 0.4 mg should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should be used with caution in combination with moderate inhibitors of CYP3A4 (e.g., erythromycin), in combination with strong (e.g., paroxetine) or moderate (e.g., terbinafine) inhibitors of CYP2D6, in patients known to be CYP2D6 poor metabolizers particularly at a dose higher than 0.4 mg (e.g., 0.8 mg) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should be used with caution in combination with cimetidine, particularly at a dose higher than 0.4 mg (e.g., 0.8 mg) [ see Drug Interactions (7.1) and Clinical Pharmacology (12.3) ]. FLOMAX capsules should not be used in combination with other alpha adrenergic blocking agents [ see Drug Interactions (7.2) and Clinical Pharmacology (12.3) ]. Caution is advised when alpha adrenergic blocking agents including FLOMAX are co-administered with PDE5 inhibitors. Alpha-adrenergic blockers and PDE5 inhibitors are both vasodilators that can lower blood pressure. Concomitant use of these two drug classes can potentially cause symptomatic hypotension [ see Drug Interactions (7.3) and Clinical Pharmacology (12.3) ]. Caution should be exercised with concomitant administration of warfarin and FLOMAX capsules [ see Drug Interactions (7.4) and Clinical Pharmacology (12.3) ]. 5.3 Priapism Rarely (probably less than 1 in 50,000 patients), tamsulosin, like other alpha1 antagonists, has been associated with priapism (persistent painful penile erection unrelated to sexual activity). Because this condition can lead to permanent impotence if not properly treated, patients must be advised about the seriousness of the condition [ see Patient Counseling Information (17.2) ]. 5.4 Screening for Prostate Cancer Prostate cancer and BPH frequently co-exist; therefore, patients should be screened for the presence of prostate cancer prior to treatment with FLOMAX capsules and at regular intervals afterwards [ see Patient Counseling Information (17.3) ]. 5.5 Intraoperative Floppy Iris Syndrome Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in some patients treated with alpha1 blockers, including FLOMAX capsules [ see Adverse Reactions (6.2) ]. Most reports were in patients taking the alpha1 blocker when IFIS occurred, but in some cases, the alpha1 blocker had been stopped prior to surgery. In most of these cases, the alpha1 blocker had been stopped recently prior to surgery (2 to 14 days), but in a few cases, IFIS was reported after the patient had been off the alpha1 blocker for a longer period (5 weeks to 9 months). IFIS is a variant of small pupil syndrome and is characterized by the combination of a flaccid iris that billows in response to intraoperative irrigation currents, progressive intraoperative miosis despite preoperative dilation with standard mydriatic drugs and potential prolapse of the iris toward the phacoemulsification incisions. The patient’s ophthalmologist should be prepared for possible modifications to their surgical technique, such as the utilization of iris hooks, iris dilator rings, or viscoelastic substances. The benefit of stopping alpha1 blocker therapy prior to cataract surgery has not been established. 5.6 Sulfa Allergy In patients with sulfa allergy, allergic reaction to FLOMAX capsules has been rarely reported. If a patient reports a serious or life-threatening sulfa allergy, caution is warranted when administering FLOMAX capsules.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Patient Labeling (17.6). 17.1 Hypotension Patients should be told about the possible occurrence of symptoms related to postural hypotension, such as dizziness, when taking FLOMAX capsules, and they should be cautioned about driving, operating machinery, or performing hazardous tasks [ see Warnings and Precautions (5.1) ]. 17.2 Priapism Patients should be advised about the possibility of priapism as a result of treatment with FLOMAX capsules and other similar medications. Patients should be informed that this reaction is extremely rare, but if not brought to immediate medical attention, can lead to permanent erectile dysfunction (impotence) [ see Warnings and Precautions (5.3) ]. 17.3 Screening for Prostate Cancer Prostate cancer and BPH frequently co-exist; therefore, patients should be screened for the presence of prostate cancer prior to treatment with FLOMAX capsules and at regular intervals afterwards [ see Warnings and Precautions (5.4) ]. 17.4 Intraoperative Floppy Iris Syndrome Patients considering cataract surgery should be advised to tell their ophthalmologist that they have taken FLOMAX capsules [ see Warnings and Precautions (5.5) ]. 17.5 Administration Patients should be advised not to crush or chew the FLOMAX capsules. 17.6 FDA-approved Patient Labeling Patient labeling is provided as a tear-off leaflet at the end of this prescribing information.

DOSAGE AND ADMINISTRATION

2 FLOMAX capsules 0.4 mg once daily is recommended as the dose for the treatment of the signs and symptoms of BPH. It should be administered approximately one-half hour following the same meal each day. For those patients who fail to respond to the 0.4 mg dose after 2 to 4 weeks of dosing, the dose of FLOMAX capsules can be increased to 0.8 mg once daily. FLOMAX capsules 0.4 mg should not be used in combination with strong inhibitors of CYP3A4 (e.g., ketoconazole) [ see Warnings and Precautions (5.2) ]. If FLOMAX capsules administration is discontinued or interrupted for several days at either the 0.4 mg or 0.8 mg dose, therapy should be started again with the 0.4 mg once-daily dose. 0.4 mg once daily taken approximately one-half hour following the same meal each day (2) Can be increased to 0.8 mg once daily for patients who fail to respond to the 0.4 mg dose after 2 to 4 weeks of dosing (2) If discontinued or interrupted for several days, therapy should start again with the 0.4 mg once-daily dose (2)

pantoprazole 40 MG Delayed Release Oral Tablet

Generic Name: PANTOPRAZOLE SODIUM
Brand Name: Pantoprazole Sodium
  • Substance Name(s):
  • PANTOPRAZOLE SODIUM

DRUG INTERACTIONS

7 Do not co-administer with atazanavir or nelfinavir (7.1) Concomitant warfarin use may require monitoring (7.2) May interfere with the absorption of drugs where gastric pH is important for bioavailability (e.g. ketoconazole, ampicillin esters, atazanavir, iron salts, erlotinib and mycophenolate mofetil) (7.4) May produce false-positive urine screen for THC (7.5) Methotrexate: Pantoprazole may increase serum level of methotrexate (7.6) 7.1 Interference with Antiretroviral Therapy Concomitant use of atazanavir or nelfinavir with proton pump inhibitors is not recommended. Co-administration of atazanavir or nelfinavir with proton pump inhibitors is expected to substantially decrease atazanavir or nelfinavir plasma concentrations and may result in a loss of therapeutic effect and development of drug resistance. 7.2 Coumarin Anticoagulants There have been postmarketing reports of increased INR and prothrombin time in patients receiving proton pump inhibitors, including pantoprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin concomitantly should be monitored for increases in INR and prothrombin time. 7.3 Clopidogrel Concomitant administration of pantoprazole and clopidogrel in healthy subjects had no clinically important effect on exposure to the active metabolite of clopidogrel or clopidogrel-induced platelet inhibition [see Clinical Pharmacology (12.3)]. No dose adjustment of clopidogrel is necessary when administered with an approved dose of pantoprazole. 7.4 Drugs for Which Gastric pH Can Affect Bioavailability Due to its effects on gastric acid secretion, pantoprazole can reduce the absorption of drugs where gastric pH is an important determinant of their bioavailability. Like with other drugs that decrease the intragastric acidity, the absorption of drugs such as ketoconazole, ampicillin esters, atazanavir, iron salts, erlotinib, and mycophenolate mofetil (MMF) can decrease. Co-administration of pantoprazole in healthy subjects and in transplant patients receiving MMF has been reported to reduce the exposure to the active metabolite, mycophenolic acid (MPA), possibly due to a decrease in MMF solubility at an increased gastric pH. The clinical relevance of reduced MPA exposure on organ rejection has not been established in transplant patients receiving pantoprazole and MMF. Use pantoprazole with caution in transplant patients receiving MMF [see Clinical Pharmacology (12.3)]. 7.5 False Positive Urine Tests for THC There have been reports of false positive urine screening tests for tetrahydrocannabinol (THC) in patients receiving proton pump inhibitors. An alternative confirmatory method should be considered to verify positive results. 7.6 Methotrexate Case reports, published population pharmacokinetic studies, and retrospective analyses suggest that concomitant administration of PPIs and methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite hydroxymethotrexate. However, no formal drug interaction studies of Methotrexate with PPIs have been conducted [see Warnings and Precautions (5.10)].

OVERDOSAGE

10 Experience in patients taking very high doses of pantoprazole (> 240 mg) is limited. Spontaneous post-marketing reports of overdose are generally within the known safety profile of pantoprazole. Pantoprazole is not removed by hemodialysis. In case of overdosage, treatment should be symptomatic and supportive. Single oral doses of pantoprazole at 709 mg/kg, 798 mg/kg, and 887 mg/kg were lethal to mice, rats, and dogs, respectively. The symptoms of acute toxicity were hypoactivity, ataxia, hunched sitting, limb-splay, lateral position, segregation, absence of ear reflex, and tremor.

DESCRIPTION

11 The active ingredient in pantoprazole sodium delayed-release tablets, USP is a substituted benzimidazole, sodium 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl) methyl] sulfinyl]-1H-benzimidazole sesquihydrate, a compound that inhibits gastric acid secretion. Its empirical formula is C16H14F2N3NaO4S x 1.5 H2O, with a molecular weight of 432.4. The structural formula is: Pantoprazole sodium (sesquihydrate), USP is a white to off-white crystalline powder and is racemic. Pantoprazole has weakly basic and acidic properties. Pantoprazole sodium (sesquihydrate), USP is freely soluble in water, very slightly soluble in phosphate buffer at pH 7.4, and practically insoluble in n-hexane. The stability of the compound in aqueous solution is pH-dependent. The rate of degradation increases with decreasing pH. At ambient temperature, the degradation half-life is approximately 2.8 hours at pH 5 and approximately 220 hours at pH 7.8. Pantoprazole sodium is supplied as a delayed-release tablet, available in two strengths (20 mg and 40 mg). Each pantoprazole sodium delayed-release tablet, USP contains 45.1 mg or 22.55 mg of pantoprazole sodium (sesquihydrate), USP (equivalent to 40 mg or 20 mg pantoprazole, respectively) with the following inactive ingredients: calcium stearate, crospovidone, hydroxypropyl cellulose, hypromellose, mannitol, methacrylic acid copolymer dispersion, propylene glycol, sodium carbonate, talc, titanium dioxide, and triethyl citrate. Pantoprazole sodium delayed-release tablets, USP, 20 mg and 40 mg meet USP dissolution test 3. Image

CLINICAL STUDIES

14 Pantoprazole sodium delayed-release tablets were used in the following clinical trials. 14.1 Erosive Esophagitis (EE) Associated with Gastroesophageal Reflux Disease (GERD) Adult Patients A US multicenter, double-blind, placebo-controlled study of pantoprazole 10 mg, 20 mg, or 40 mg once daily was conducted in 603 patients with reflux symptoms and endoscopically diagnosed EE of grade 2 or above (Hetzel-Dent scale). In this study, approximately 25% of enrolled patients had severe EE of grade 3, and 10% had grade 4. The percentages of patients healed (per protocol, n = 541) in this study are shown in Table 7. Table 7: Erosive Esophagitis Healing Rates (Per Protocol) + (p < 0.001) pantoprazole versus placebo * (p < 0.05) versus 10 mg or 20 mg pantoprazole # (p < 0.05) versus 10 mg pantoprazole ––––––––––––––– Pantoprazole ––––––––––––––– Placebo Week 10 mg daily (n = 153) 20 mg daily (n = 158) 40 mg daily (n = 162) (n = 68) 4 8 45.6%+ 66.0%+ 58.4%+ # 83.5 %+ # 75.0%+ * 92.6%+ * 14.3% 39.7% In this study, all pantoprazole treatment groups had significantly greater healing rates than the placebo group. This was true regardless of H. pylori status for the 40 mg and 20 mg pantoprazole treatment groups. The 40 mg dose of pantoprazole resulted in healing rates significantly greater than those found with either the 20 mg or 10 mg dose. A significantly greater proportion of patients taking pantoprazole 40 mg experienced complete relief of daytime and nighttime heartburn and the absence of regurgitation, starting from the first day of treatment, compared with placebo. Patients taking pantoprazole consumed significantly fewer antacid tablets per day than those taking placebo. Pantoprazole 40 mg and 20 mg once daily were also compared with nizatidine 150 mg twice daily in a US multicenter, double-blind study of 243 patients with reflux symptoms and endoscopically diagnosed EE of grade 2 or above. The percentages of patients healed (per protocol, n = 212) are shown in Table 8. Table 8: Erosive Esophagitis Healing Rates (Per Protocol) + (p < 0.001) pantoprazole versus nizatidine –––––––––––– Pantoprazole –––––––––––– Nizatidine Week 20 mg daily (n = 72) 40 mg daily (n = 70) 150 mg twice daily (n = 70) 4 8 61.4%+ 79.2%+ 64.0%+ 82.9%+ 22.2% 41.4% Once-daily treatment with pantoprazole 40 mg or 20 mg resulted in significantly superior rates of healing at both 4 and 8 weeks compared with twice-daily treatment with 150 mg of nizatidine. For the 40 mg treatment group, significantly greater healing rates compared to nizatidine were achieved regardless of the H. pylori status. A significantly greater proportion of the patients in the pantoprazole treatment groups experienced complete relief of nighttime heartburn and regurgitation, starting on the first day and of daytime heartburn on the second day, compared with those taking nizatidine 150 mg twice daily. Patients taking pantoprazole consumed significantly fewer antacid tablets per day than those taking nizatidine. Pediatric Patients Ages 5 Years through 16 Years The efficacy of pantoprazole in the treatment of EE associated with GERD in pediatric patients ages 5 years through 16 years is extrapolated from adequate and well-conducted trials in adults, as the pathophysiology is thought to be the same. Four pediatric patients with endoscopically diagnosed EE were studied in multicenter, randomized, double-blind, parallel-treatment trials. Children with endoscopically diagnosed EE (defined as an endoscopic Hetzel-Dent score ≥ 2) were treated once daily for 8 weeks with one of two dose levels of pantoprazole (20 mg or 40 mg). All 4 patients with EE were healed (Hetzel-Dent score of 0 or 1) at 8 weeks. 14.2 Long-Term Maintenance of Healing of Erosive Esophagitis Two independent, multicenter, randomized, double-blind, comparator-controlled trials of identical design were conducted in adult GERD patients with endoscopically confirmed healed erosive esophagitis to demonstrate efficacy of pantoprazole in long-term maintenance of healing. The two US studies enrolled 386 and 404 patients, respectively, to receive either 10 mg, 20 mg, or 40 mg of pantoprazole sodium delayed-release tablets once daily or 150 mg of ranitidine twice daily. As demonstrated in Table 9, pantoprazole 40 mg and 20 mg were significantly superior to ranitidine at every timepoint with respect to the maintenance of healing. In addition, pantoprazole 40 mg was superior to all other treatments studied. Table 9: Long-Term Maintenance of Healing of Erosive Gastroesophageal Reflux Disease (GERD Maintenance): Percentage of Patients Who Remained Healed * (p < 0.05 vs. ranitidine) # (p < 0.05 vs. pantoprazole 20 mg) Note: pantoprazole 10 mg was superior (p < 0.05) to ranitidine in Study 2, but not Study 1. Pantoprazole 20 mg daily Pantoprazole 40 mg daily Ranitidine 150 mg twice daily Study 1 n = 75 n = 74 n = 75 Month 1 91* 99* 68 Month 3 82* 93* # 54 Month 6 76* 90* # 44 Month 12 70* 86* # 35 Study 2 n = 74 n = 88 n = 84 Month 1 89* 92* # 62 Month 3 78* 91* # 47 Month 6 72* 88* # 39 Month 12 72* 83* 37 Pantoprazole 40 mg was superior to ranitidine in reducing the number of daytime and nighttime heartburn episodes from the first through the twelfth month of treatment. Pantoprazole 20 mg, administered once daily, was also effective in reducing episodes of daytime and nighttime heartburn in one trial, as presented in Table 10. Table 10: Number of Episodes of Heartburn (mean ± SD) Pantoprazole 40 mg daily Ranitidine 150 mg twice daily Month 1 Daytime Nighttime 5.1 ± 1.6(p < 0.001 vs. ranitidine, combined data from the two US studies) 3.9 ± 1.1 18.3 ± 1.6 11.9 ± 1.1 Month 12 Daytime Nighttime 2.9 ± 1.5 2.5 ± 1.2 17.5 ± 1.5 13.8 ± 1.3 14.3 Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome In a multicenter, open-label trial of 35 patients with pathological hypersecretory conditions, such as Zollinger-Ellison syndrome, with or without multiple endocrine neoplasia-type I, pantoprazole successfully controlled gastric acid secretion. Doses ranging from 80 mg daily to 240 mg daily maintained gastric acid output below 10 mEq/h in patients without prior acid-reducing surgery and below 5 mEq/h in patients with prior acid-reducing surgery. Doses were initially titrated to the individual patient needs, and adjusted in some patients based on the clinical response with time [see Dosage and Administration (2)]. Pantoprazole was well tolerated at these dose levels for prolonged periods (greater than 2 years in some patients).

HOW SUPPLIED

Product: 50090-1100 NDC: 50090-1100-0 30 TABLET, DELAYED RELEASE in a BOTTLE NDC: 50090-1100-1 90 TABLET, DELAYED RELEASE in a BOTTLE

RECENT MAJOR CHANGES

Dosage and Administration, Recommended Dosing Schedule (2.1) 12/2014 Contraindications (4) 12/2014 Warnings and Precautions, Acute Interstitial Nephritis (5.3) 12/2014

GERIATRIC USE

8.5 Geriatric Use In short-term US clinical trials, erosive esophagitis healing rates in the 107 elderly patients (≥ 65 years old) treated with pantoprazole were similar to those found in patients under the age of 65. The incidence rates of adverse reactions and laboratory abnormalities in patients aged 65 years and older were similar to those associated with patients younger than 65 years of age.

DOSAGE FORMS AND STRENGTHS

3 Delayed-Release Tablets, 20 mg and 40 mg (3) Delayed-Release Tablets: 20 mg, white to pale yellow colored, oval shape, biconvex, enteric-coated tablets, plain on one side and “96” printed with brown ink on the other side. 40 mg, white to pale yellow colored, oval shape, biconvex, enteric-coated tablets, plain on one side and “1097” printed with brown ink on the other side.

MECHANISM OF ACTION

12.1 Mechanism of Action Pantoprazole is a proton pump inhibitor (PPI) that suppresses the final step in gastric acid production by covalently binding to the (H+, K+)-ATPase enzyme system at the secretory surface of the gastric parietal cell. This effect leads to inhibition of both basal and stimulated gastric acid secretion, irrespective of the stimulus. The binding to the (H+, K+)-ATPase results in a duration of antisecretory effect that persists longer than 24 hours for all doses tested (20 mg to 120 mg).

INDICATIONS AND USAGE

1 Pantoprazole is a proton pump inhibitor indicated for the following: Short-Term Treatment of Erosive Esophagitis Associated with Gastroesophageal Reflux Disease (GERD) (1.1) Maintenance of Healing of Erosive Esophagitis (1.2) Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome (1.3) Pantoprazole sodium delayed-release tablets, USP are indicated for: 1.1 Short-Term Treatment of Erosive Esophagitis Associated With Gastroesophageal Reflux Disease (GERD) Pantoprazole sodium delayed-release tablets, USP are indicated in adults and pediatric patients five years of age and older for the short-term treatment (up to 8 weeks) in the healing and symptomatic relief of erosive esophagitis. For those adult patients who have not healed after 8 weeks of treatment, an additional 8-week course of pantoprazole sodium delayed-release tablets, USP may be considered. Safety of treatment beyond 8 weeks in pediatric patients has not been established. 1.2 Maintenance of Healing of Erosive Esophagitis Pantoprazole sodium delayed-release tablets, USP are indicated for maintenance of healing of erosive esophagitis and reduction in relapse rates of daytime and nighttime heartburn symptoms in adult patients with GERD. Controlled studies did not extend beyond 12 months. 1.3 Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome Pantoprazole sodium delayed-release tablets, USP are indicated for the long-term treatment of pathological hypersecretory conditions, including Zollinger-Ellison syndrome.

PEDIATRIC USE

8.4 Pediatric Use The safety and effectiveness of pantoprazole for short-term treatment (up to eight weeks) of erosive esophagitis (EE) associated with GERD have been established in pediatric patients 1 year through 16 years of age. Effectiveness for EE has not been demonstrated in patients less than 1 year of age. In addition, for patients less than 5 years of age, there is no appropriate dosage strength in an age-appropriate formulation available. Therefore, pantoprazole is indicated for the short-term treatment of EE associated with GERD for patients 5 years and older. The safety and effectiveness of pantoprazole for pediatric uses other than EE have not been established. 1 year through 16 years of age Use of pantoprazole in pediatric patients 1 year through 16 years of age for short-term treatment (up to eight weeks) of EE associated with GERD is supported by: a) extrapolation of results from adequate and well-controlled studies that supported the approval of pantoprazole for treatment of EE associated with GERD in adults, and b) safety, effectiveness, and pharmacokinetic studies performed in pediatric patients [see Clinical Studies (14.1), and Clinical Pharmacology (12.3)]. Safety of pantoprazole in the treatment of EE associated with GERD in pediatric patients 1 through 16 years of age was evaluated in three multicenter, randomized, double-blind, parallel-treatment studies, involving 249 pediatric patients, including 8 with EE (4 patients ages 1 year to 5 years and 4 patients 5 years to 11 years). The children ages 1 year to 5 years with endoscopically diagnosed EE (defined as an endoscopic Hetzel-Dent score ≥ 2) were treated once daily for 8 weeks with one of two dose levels of pantoprazole (approximating 0.6 mg/kg or 1.2 mg/kg). All 4 of these patients with EE were healed (Hetzel-Dent score of 0 or 1) at 8 weeks. Because EE is uncommon in the pediatric population, predominantly pediatric patients with endoscopically-proven or symptomatic GERD were also included in these studies. Patients were treated with a range of doses of pantoprazole once daily for 8 weeks. For safety findings see Adverse Reactions (6.1). Because these pediatric trials had no placebo, active comparator, or evidence of a dose response, the trials were inconclusive regarding the clinical benefit of pantoprazole for symptomatic GERD in the pediatric population. The effectiveness of pantoprazole sodium delayed-release tablets for treating symptomatic GERD in pediatric patients has not been established. Although the data from the clinical trials support use of pantoprazole for the short-term treatment of EE associated with GERD in pediatric patients 1 year through 5 years, there is no commercially available dosage formulation appropriate for patients less than 5 years of age [see Dosage and Administration (2)]. In a population pharmacokinetic analysis, clearance values in the children 1 to 5 years old with endoscopically proven GERD had a median value of 2.4 L/h. Following a 1.2 mg/kg equivalent dose (15 mg for ≤ 12.5 kg and 20 mg for > 12.5 to 4 (from 60% at baseline to 80% at steady-state). Following once daily dosing of approximately 1.2 mg/kg of pantoprazole in infants 1 through 11 months of age, there was an increase in the mean gastric pH (from 3.1 at baseline to 4.2 at steady-state) and in the mean % time that gastric pH was > 4 (from 32% at baseline to 60% at steady-state). However, no significant changes were observed in mean intraesophageal pH or % time that esophageal pH was < 4 in either age group. Because pantoprazole was not shown to be effective in the randomized, placebo-controlled study in this age group, the use of pantoprazole for treatment of symptomatic GERD in infants less than 1 year of age is not indicated.

PREGNANCY

8.1 Pregnancy Teratogenic Effects Pregnancy Category B Reproduction studies have been performed in rats at oral doses up to 88 times the recommended human dose and in rabbits at oral doses up to 16 times the recommended human dose and have revealed no evidence of impaired fertility or harm to the fetus due to pantoprazole. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed [see Nonclinical Toxicology (13.2)].

NUSRING MOTHERS

8.3 Nursing Mothers Pantoprazole and its metabolites are excreted in the milk of rats. Pantoprazole excretion in human milk has been detected in a study of a single nursing mother after a single 40 mg oral dose. The clinical relevance of this finding is not known. Many drugs which are excreted in human milk have a potential for serious adverse reactions in nursing infants. Based on the potential for tumorigenicity shown for pantoprazole in rodent carcinogenicity studies, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the benefit of the drug to the mother.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Symptomatic response does not preclude presence of gastric malignancy (5.1) Atrophic gastritis has been noted with long-term therapy (5.2) Acute interstitial nephritis has been observed in patients taking PPIs. (5.3) Cyanocobalamin (vitamin B-12) Deficiency: Daily long-term use (e.g., longer than 3 years) may lead to malabsorption or a deficiency of cyanocobalamin. (5.4) PPI therapy may be associated with increased risk ofClostridium difficile associated diarrhea. (5.5) Bone Fracture: Long-term and multiple daily dose PPI therapy may be associated with an increased risk for osteoporosis-related fractures of the hip, wrist or spine. (5.6) Hypomagnesemia has been reported rarely with prolonged treatment with PPIs (5.7) 5.1 Concurrent Gastric Malignancy Symptomatic response to therapy with pantoprazole does not preclude the presence of gastric malignancy. 5.2 Atrophic Gastritis Atrophic gastritis has been noted occasionally in gastric corpus biopsies from patients treated long-term with pantoprazole, particularly in patients who were H. pylori positive. 5.3 Acute Interstitial Nephritis Acute interstitial nephritis has been observed in patients taking PPIs including pantoprazole. Acute interstitial nephritis may occur at any point during PPI therapy and is generally attributed to an idiopathic hypersensitivity reaction. Discontinue pantoprazole if acute interstitial nephritis develops [see Contraindications (4)]. 5.4 Cyanocobalamin (Vitamin B-12) Deficiency Generally, daily treatment with any acid-suppressing medications over a long period of time (e.g., longer than 3 years) may lead to malabsorption of cyanocobalamin (Vitamin B-12) caused by hypo- or achlorhydria. Rare reports of cyanocobalamin deficiency occurring with acid-suppressing therapy have been reported in the literature. This diagnosis should be considered if clinical symptoms consistent with cyanocobalamin deficiency are observed. 5.5 Clostridium difficile associated diarrhea Published observational studies suggest that PPI therapy like pantoprazole may be associated with an increased risk of Clostridium difficile associated diarrhea, especially in hospitalized patients. This diagnosis should be considered for diarrhea that does not improve [see Adverse Reactions (6.2)]. Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated. 5.6 Bone Fracture Several published observational studies suggest that proton pump inhibitor (PPI) therapy may be associated with an increased risk for osteoporosis-related fractures of the hip, wrist, or spine. The risk of fracture was increased in patients who received high-dose, defined as multiple daily doses, and long-term PPI therapy (a year or longer). Patients should use the lowest dose and shortest duration of PPI therapy appropriate to the condition being treated. Patients at risk for osteoporosis-related fractures should be managed according to established treatment guidelines [see Dosage and Administration (2) and Adverse Reactions (6.2)]. 5.7 Hypomagnesemia Hypomagnesemia, symptomatic and asymptomatic, has been reported rarely in patients treated with PPIs for at least three months, in most cases after a year of therapy. Serious adverse events include tetany, arrhythmias, and seizures. In most patients, treatment of hypomagnesemia required magnesium replacement and discontinuation of the PPI. For patients expected to be on prolonged treatment or who take PPIs with medications such as digoxin or drugs that may cause hypomagnesemia (e.g., diuretics), health care professionals may consider monitoring magnesium levels prior to initiation of PPI treatment and periodically [See Adverse Reactions 6.2)]. 5.8 Tumorigenicity Due to the chronic nature of GERD, there may be a potential for prolonged administration of pantoprazole. In long-term rodent studies, pantoprazole was carcinogenic and caused rare types of gastrointestinal tumors. The relevance of these findings to tumor development in humans is unknown [see Nonclinical Toxicology (13.1) ]. 5.9 Interference with Urine Screen for THC See Drug Interactions (7.5). 5.10 Concomitant use of Pantoprazole with Methotrexate Literature suggests that concomitant use of PPIs with methotrexate (primarily at high dose; see methotrexate prescribing information) may elevate and prolong serum levels of methotrexate and/or its metabolite, possibly leading to methotrexate toxicities. In high-dose methotrexate administration, a temporary withdrawal of the PPI may be considered in some patients [see Drug Interactions (7.6)].

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Medication Guide. Caution patients that pantoprazole sodium delayed-release tablets should not be split, crushed, or chewed. Tell patients that pantoprazole sodium delayed-release tablets should be swallowed whole, with or without food in the stomach. Let patients know that concomitant administration of antacids does not affect the absorption of pantoprazole sodium delayed-release tablets. Advise patients to immediately report and seek care for any cardiovascular or neurological symptoms including palpitation, dizziness, seizures, and tetany as these may be signs of hypomagnesemia[See Warnings and Precautions (5.7)]. Advise patients to immediately report and seek care for diarrhea that does not improve.This may be a sign ofClostridium difficile associated diarrhea[see Warnings and Precautions (5.5)]. This product’s label may have been updated. For current full prescribing information, please visit www.torrentpharma.com Manufactured by: TORRENT PHARMACEUTICALS LTD., Indrad-382 721, Dist. Mehsana, INDIA. For: TORRENT PHARMA INC., 150 Allen Road, Suite 102, Basking Ridge, NJ 07920 8053139 Revised January 2015 1

DOSAGE AND ADMINISTRATION

2 Indication Dose Frequency Short – Term Treatment of Erosive Esophagitis Associated With GERD ( 2 . 1 ) Adults 40 mg Once Daily for up to 8 wks Children (5 years and older) ≥ 15 kg to < 40 kg 20 mg Once Daily for up to 8 wks ≥ 40 kg 40 mg Maintenance of Healing of Erosive Esophagitis ( 2 . 1 ) Adults 40 mg Once Daily* Pathological Hypersecretory Conditions Including Zollinger – Ellison Syndrome ( 2 . 1 ) Adults 40 mg Twice Daily * Controlled studies did not extend beyond 12 months See full prescribing information for administration instructions 2.1 Recommended Dosing Schedule Pantoprazole sodium is supplied as delayed-release tablets. The recommended dosages are outlined in Table 1. Table 1: Recommended Dosing Schedule for Pantoprazole Sodium Delayed-Release Tablets * For adult patients who have not healed after 8 weeks of treatment, an additional 8-week course of pantoprazole sodium delayed-release tablets may be considered. * * Dosage regimens should be adjusted to individual patient needs and should continue for as long as clinically indicated. Doses up to 240 mg daily have been administered. *** Controlled studies did not extend beyond 12 months Indication Dose Frequency Short – Term Treatment of Erosive Esophagitis Associated With GERD Adults 40 mg Once daily for up to 8 weeks* Children (5 years and older) ≥ 15 kg to < 40 kg ≥ 40 kg 20 mg 40 mg Once daily for up to 8 weeks Maintenance of Healing of Erosive Esophagitis Adults 40 mg Once daily*** Pathological Hypersecretory Conditions Including Zollinger – Ellison Syndrome Adults 40 mg Twice daily** 2.2 Administration Instructions Directions for method of administration are presented in Table 2. Table 2: Administration Instructions Formulation Route Instructions Patients should be cautioned that pantoprazole sodium delayed-release tablets should not be split, chewed, or crushed. Delayed – Release Tablets Oral Swallowed whole, with or without food Pantoprazole sodium delayed-release tablets Pantoprazole sodium delayed-release tablets should be swallowed whole, with or without food in the stomach. If patients are unable to swallow a 40 mg tablet, two 20 mg tablets may be taken. Concomitant administration of antacids does not affect the absorption of pantoprazole sodium delayed-release tablets.

Hydrochlorothiazide 25 MG Oral Tablet

Generic Name: HYDROCHLOROTHIAZIDE
Brand Name: Hydrochlorothiazide
  • Substance Name(s):
  • HYDROCHLOROTHIAZIDE

WARNINGS

Use with caution in severe renal disease. In patients with renal disease, thiazides may precipitate azotemia. Cumulative effects of the drug may develop in patients with impaired renal function. Thiazides should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Thiazides may add to or potentiate the action of other antihypertensive drugs. Sensitivity reactions may occur in patients with or without a history of allergy or bronchial asthma. The possibility of exacerbation or activation of systemic lupus erythematosus has been reported. Lithium generally should not be given with diuretics (see PRECAUTIONS, Drug Interactions ). Acute Myopia and Secondary Angle-Closure Glaucoma Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.

DRUG INTERACTIONS

Drug Interactions When given concurrently the following drugs may interact with thiazide diuretics. Alcohol, Barbiturates, or Narcotics Potentiation of orthostatic hypotension may occur. Antidiabetic Drugs (Oral Agents and Insulin) Dosage adjustment of the antidiabetic drug may be required. Other Antihypertensive Drugs Additive effect or potentiation. Cholestyramine and Colestipol Resins Absorption of hydrochlorothiazide is impaired in the presence of anionic exchange resins. Single doses of either cholestyramine or colestipol resins bind the hydrochlorothiazide and reduce its absorption from the gastrointestinal tract by up to 85% and 43%, respectively. Corticosteroids, ACTH Intensified electrolyte depletion, particularly hypokalemia. Pressor Amines (e.g., Norepinephrine) Possible decreased response to pressor amines but not sufficient to preclude their use. Skeletal Muscle Relaxants, Nondepolarizing (e.g., Tubocurarine) Possible increased responsiveness to the muscle relaxant. Lithium Generally should not be given with diuretics. Diuretic agents reduce the renal clear­ance of lithium and add a high risk of lithium tox­icity. Refer to the package insert for lithium preparations before use of such preparations with hydrochloro­thiazide. Non-Steroidal Anti-Inflammatory Drugs In some patients, the administration of a non-steroidal anti-inflammatory agent can reduce the diuretic, natriuretic, and antihypertensive effects of loop, potassium-sparing and thiazide diuretics. Therefore, when hydrochlorothiazide and non-steroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained.

OVERDOSAGE

The most common signs and symptoms observed are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. In the event of overdosage, symptomatic and supportive measures should be employed. Emesis should be induced or gastric lavage performed. Correct dehydration, electrolyte imbalance, hepatic coma and hypotension by established procedures. If required, give oxygen or artificial respiration for respiratory impairment. The degree to which hydrochlorothiazide is removed by hemodialysis has not been established. The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in the mouse and rat.

DESCRIPTION

Hydrochlorothiazide is a diuretic and antihypertensive. It is the 3,4-dihydro derivative of chlorothiazide. It is chemically designated as 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide and it has the following structural formula: Hydrochloro­thiazide USP is a white, or practically white, crystalline powder which is slightly soluble in water, but freely soluble in sodium hydroxide solution. Each tablet for oral administration contains 25 mg or 50 mg hydrochlorothiazide USP. In addition, each tablet contains the following inactive ingredients: dibasic calcium phosphate, lactose monohydrate, pregelatinized starch, FD&C yellow No.6 lake, corn starch, colloidal silicon dioxide, and magnesium stearate. Chemical Structure

HOW SUPPLIED

Hydrochlorothiazide Tablets USP, 25 mg are light pink colored, round shaped, flat faced beveled edge uncoated tablets, debossed with ‘D’ and ‘27’ on one side separated by scoring and plain on the other side. Bottles of 100 NDC 65862-133-01 Bottles of 1000 NDC 65862-133-99 Hydrochlorothiazide Tablets USP, 50 mg are light pink colored, round shaped, flat faced beveled edge uncoated tablets, debossed with ‘D’ and ‘28’ on one side separated by scoring and plain on the other side. Bottles of 100 NDC 65862-134-01 Bottles of 1000 NDC 65862-134-99 PHARMACIST: Dispense in a well-closed container as defined in the USP. Use child-resistant closure (as required). Store at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Manufactured for: Aurobindo Pharma USA, Inc. 2400 Route 130 North Dayton, NJ 08810 Manufactured by: Aurobindo Pharma Limited Hyderabad–500 072, India Revised: 10/2011

INDICATIONS AND USAGE

Hydrochlorothiazide tablets, USP are indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. Hydrochlorothiazide tablets, USP have also been found useful in edema due to various forms of renal dysfunction such as nephrotic syndrome, acute glomerulonephritis, and chronic renal failure. Hydrochlorothiazide tablets, USP are indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. Use in Pregnancy Routine use of diuretics during normal pregnancy is inappropriate and exposes mother and fetus to unnecessary hazard. Diuretics do not prevent development of toxemia of pregnancy and there is no satisfactory evidence that they are useful in the treatment of toxemia. Edema during pregnancy may arise from pathologic causes or from the physiologic and mechanical consequences of pregnancy. Thiazides are indicated in pregnancy when edema is due to pathologic causes, just as they are in the absence of pregnancy (see PRECAUTIONS, Pregnancy ). Dependent edema in pregnan­cy, resulting from restriction of venous return by the gravid uterus, is properly treated through elevation of the lower extremities and use of support stockings. Use of diuretics to lower intravascular volume in this instance is illogical and unneces­sary. During normal pregnancy there is hypervolemia which is not harmful to the fetus or the mother in the absence of cardiovascular disease. However, it may be associated with edema, rarely generalized edema. If such edema causes discomfort, in­creased recumbency will often provide relief. Rarely this edema may cause extreme discomfort which is not relieved by rest. In these instances, a short course of diuretic therapy may provide relief and be appropriate.

PEDIATRIC USE

Pediatric Use There are no well-controlled clinical trials in pediatric patients. Information on dosing in this age group is supported by evidence from empiric use in pediatric patients and published literature regarding the treatment of hypertension in such patients. (See DOSAGE AND ADMINISTRATION, Infants and Children .)

PREGNANCY

Pregnancy Teratogenic Effects Pregnancy Category B Studies in which hydrochlorothiazide was orally administered to pregnant mice and rats during their respective periods of major organogenesis at doses up to 3000 and 1000 mg hydrochlorothiazide/kg, respectively, provided no evidence of harm to the fetus. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. Nonteratogenic Effects Thiazides cross the placental barrier and appear in cord blood. There is a risk of fetal or neonatal jaundice, thrombocytopenia, and possibly other adverse reactions that have occurred in adults.

NUSRING MOTHERS

Nursing Mothers Thiazides are excreted in breast milk. Because of the potential for serious adverse reactions in nursing infants, a decision should be made whether to discontinue nursing or to discontinue hydrochlorothiazide, taking into account the importance of the drug to the mother.

DOSAGE AND ADMINISTRATION

Therapy should be individualized according to patient response. Use the smallest dosage necessary to achieve the required response. Adults For Edema The usual adult dosage is 25 mg to 100 mg daily as a single or divided dose. Many patients with edema respond to intermittent therapy, i.e., administration on alternate days or on 3 to 5 days each week. With an intermittent schedule, excessive response and the resulting undesirable electrolyte imbalance are less likely to occur. For Control of Hypertension The usual initial dose in adults is 25 mg daily given as a single dose. The dose may be increased to 50 mg daily, given as a single or two divided doses. Doses above 50 mg are often associated with marked reductions in serum potassium (see also PRECAUTIONS ). Patients usually do not require doses in excess of 50 mg of hydrochlorothiazide daily when used concomitantly with other antihypertensive agents. Infants and Children For Diuresis and for Control of Hypertension The usual pediatric dosage is 0.5 mg to 1 mg per pound (1 to 2 mg/kg) per day in single or two divided doses, not to exceed 37.5 mg per day in infants up to 2 years of age or 100 mg per day in children 2 to 12 years of age. In infants less than 6 months of age, doses up to 1.5 mg per pound (3 mg/kg) per day in two divided doses may be required. (See PRECAUTIONS, Pediatric Use .)

Doxepin Hydrochloride 100 MG Oral Capsule

WARNINGS

Clinical Worsening and Suicide RiskPatients with major depressive disorder (MDD), both adult and pediatric, may experience worsening of their depression and/or the emergence of suicidal ideation and behavior (suicidality) or unusual changes in behavior, whether or not they are taking antidepressant medications, and this risk may persist until significant remission occurs. Suicide is a known risk of depression and certain other psychiatric disorders, and these disorders themselves are the strongest predictors of suicide. There has been a long-standing concern, however, that antidepressants may have a role in inducing worsening of depression and the emergence of suicidality in certain patients during the early phases of treatment. Pooled analyses of short-term placebo-controlled trials of antidepressant drugs (SSRIs and others) showed that these drugs increase the risk of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults (ages 18 to 24) with major depressive disorder (MDD) and other psychiatric disorders. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction with antidepressants compared to placebo in adults aged 65 and older. The pooled analyses of placebo-controlled trials in children and adolescents with MDD, obsessive compulsive disorder (OCD), or other psychiatric disorders included a total of 24 short-term trials of 9 antidepressant drugs in over 4,400 patients. The pooled analyses of placebo-controlled trials in adults with MDD or other psychiatric disorders included a total of 295 short-term trials (median duration of 2 months) of 11 antidepressant drugs in over 77,000 patients. There was considerable variation in risk of suicidality among drugs, but a tendency toward an increase in the younger patients for almost all drugs studied. There were differences in absolute risk of suicidality across the different indications, with the highest incidence in MDD. The risk differences (drug vs. placebo), however, were relatively stable within age strata and across indications. These risk differences (drug-placebo difference in the number of cases of suicidality per 1,000 patients treated) are provided in Table 1. Table 1 Age Range Drug-Placebo Difference in Number of Cases of Suicidality Per 1,000 Patients Treated Increases Compared to Placebo greater then 18 14 additional cases 18 to 24 5 additional cases Decreases Compared to Placebo 25 to 64 1 fewer case less then 65 6 fewer cases No suicides occurred in any of the pediatric trials. There were suicides in the adult trials, but the number was not sufficient to reach any conclusion about drug effect on suicide. It is unknown whether the suicidality risk extends to longer-term use, i.e., beyond several months. However, there is substantial evidence from placebo-controlled maintenance trials in adults with depression that the use of antidepressants can delay the recurrence of depression. All patients being treated with antidepressants for any indication should be monitored appropriately and observed closely for clinical worsening, suicidality and unusual changes in behavior, especially during the initial few months of a course of drug therapy, or at times of dose changes, either increases or decreases. The following symptoms, anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, and mania, have been reported in adult and pediatric patients being treated with antidepressants for major depressive disorder as well as for other indications, both psychiatric and nonpsychiatric. Although a causal link between the emergence of such symptoms and either the worsening of depression and/or the emergence of suicidal impulses has not been established, there is concern that such symptoms may represent precursors to emerging suicidality. Consideration should be given to changing the therapeutic regimen, including possibly discontinuing the medication, in patients whose depression is persistently worse, or who are experiencing emergent suicidality or symptoms that might be precursors to worsening depression or suicidality, especially if these symptoms are severe, abrupt in onset, or were not part of the patient’s presenting symptoms. Families and caregivers of patients being treated with antidepressants for major depressive disorder or other indications, both psychiatric and nonpsychiatric, should be alerted about the need to monitor patients for the emergence of agitation, irritability, unusual changes in behavior, and the other symptoms described above, as well as the emergence of suicidality, and to report such symptoms immediately to healthcare providers. Such monitoring should include daily observation by families and caregivers. Prescriptions for doxepin should be written for the smallest number of capsules consistent with good patient management, in order to reduce the risk of overdose. Screening Patients for Bipolar DisorderA major depressive episode may be the initial presentation of bipolar disorder. It is generally believed (though not established in controlled trials) that treating such an episode with an antidepressant alone may increase the likelihood of precipitation of a mixed/manic episode in patients at risk for bipolar disorder. Whether any of the symptoms described above represent such a conversion is unknown. However, prior to initiating treatment with an antidepressant, patients with depressive symptoms should be adequately screened to determine if they are at risk for bipolar disorder; such screening should include a detailed psychiatric history, including a family history of suicide, bipolar disorder, and depression. It should be noted that doxepin is not approved for use in treating bipolar depression. It should be noted that doxepin is not approved for use in treating any indications in the pediatric population. The once a day dosage regimen of doxepin in patients with intercurrent illness or patients taking other medications should be carefully adjusted. This is especially important in patients receiving other medications with anticholinergic effects. Geriatric UseThe use of doxepin on a once a day dosage regimen in geriatric patients should be adjusted carefully based on the patient’s condition (see PRECAUTIONS: Geriatric Use). PregnancyReproduction studies have been performed in rats, rabbits, monkeys and dogs and there was no evidence of harm to the animal fetus. The relevance to humans is not known. Since there is no experience in pregnant women who have received this drug, safety in pregnancy has not been established. There has been a report of apnea and drowsiness occurring in a nursing infant whose mother was taking doxepin. Pediatric UseThe use of doxepin in children under 12 years of age is not recommended because safe conditions for its use have not been established.

DRUG INTERACTIONS

Drugs Metabolized by P450 2D6The biochemical activity of the drug metabolizing isozyme cytochrome P450 2D6 (debrisoquin hydroxylase) is reduced in a subset of the Caucasian population (about 7 to 10% of Caucasians are so called “poor metabolizers”); reliable estimates of the prevalence of reduced P450 2D6 isozyme activity among Asian, African and other populations are not yet available. Poor metabolizers have higher than expected plasma concentrations of tricyclic antidepressants (TCAs) when given usual doses. Depending on the fraction of drug metabolized by P450 2D6, the increase in plasma concentration may be small, or quite large (8-fold increase in plasma AUC of the TCA). In addition, certain drugs inhibit the activity of this isozyme and make normal metabolizers resemble poor metabolizers. An individual who is stable on a given dose of TCA may become abruptly toxic when given one of these inhibiting drugs as concomitant therapy. The drugs that inhibit cytochrome P450 2D6 include some that are not metabolized by the enzyme (quinidine; cimetidine) and many that are substrates for P450 2D6 (many other antidepressants, phenothiazines, and the Type 1C antiarrhythmics propafenone and flecainide). While all the selective serotonin reuptake inhibitors (SSRIs), e.g., citalopram, escitalopram, fluoxetine, sertraline, and paroxetine, inhibit P450 2D6, they may vary in the extent of inhibition. The extent to which SSRI-TCA interactions may pose clinical problems will depend on the degree of inhibition and the pharmacokinetics of the SSRI involved. Nevertheless, caution is indicated in the coadministration of TCAs with any of the SSRIs and also in switching from one class to the other. Of particular importance, sufficient time must elapse before initiating TCA treatment in a patient being withdrawn from fluoxetine, given the long half-life of the parent and active metabolite (at least 5 weeks may be necessary). Concomitant use of tricyclic antidepressants with drugs that can inhibit cytochrome P450 2D6 may require lower doses than usually prescribed for either the tricyclic antidepressant or the other drug. Furthermore, whenever one of these other drugs is withdrawn from cotherapy, an increased dose of tricyclic antidepressant may be required. It is desirable to monitor TCA plasma levels whenever a TCA is going to be coadministered with another drug known to be an inhibitor of P450 2D6. Doxepin is primarily metabolized by CYP2D6 (with CYP1A2 and CYP3A4 as minor pathways). Inhibitors or substrates of CYP2D6 (i.e., quinidine, selective serotonin reuptake inhibitors [SSRIs]) may increase the plasma concentration of doxepin when administered concomitantly. The extent of interaction depends on the variability of effect on CYP2D6. The clinical significance of this interaction with doxepin has not been systematically evaluated. MAO InhibitorsSerious side effects and even death have been reported following the concomitant use of certain drugs with MAO inhibitors. Therefore, MAO inhibitors should be discontinued at least two weeks prior to the cautious initiation of therapy with doxepin. The exact length of time may vary and is dependent upon the particular MAO inhibitor being used, the length of time it has been administered, and the dosage involved. CimetidineCimetidine has been reported to produce clinically significant fluctuations in steady-state serum concentrations of various tricyclic antidepressants. Serious anticholinergic symptoms (i.e., severe dry mouth, urinary retention and blurred vision) have been associated with elevations in the serum levels of tricyclic antidepressant when cimetidine therapy is initiated. Additionally, higher than expected tricyclic antidepressant levels have been observed when they are begun in patients already taking cimetidine. In patients who have been reported to be well controlled on tricyclic antidepressants receiving concurrent cimetidine therapy, discontinuation of cimetidine has been reported to decrease established steady-state serum tricyclic antidepressant levels and compromise their therapeutic effects. AlcoholIt should be borne in mind that alcohol ingestion may increase the danger inherent in any intentional or unintentional doxepin overdosage. This is especially important in patients who may use alcohol excessively. TolazamideA case of severe hypoglycemia has been reported in a type II diabetic patient maintained on tolazamide (1 gm/day) 11 days after the addition of doxepin (75 mg/day). DrowsinessSince drowsiness may occur with the use of this drug, patients should be warned of the possibility and cautioned against driving a car or operating dangerous machinery while taking the drug. Patients should also be cautioned that their response to alcohol may be potentiated. Sedating drugs may cause confusion and over sedation in the elderly; elderly patients generally should be started on low doses of doxepin and observed closely (see PRECAUTIONS: Geriatric Use). SuicideSince suicide is an inherent risk in any depressed patient and may remain so until significant improvement has occurred, patients should be closely supervised during the early course of therapy. Prescriptions should be written for the smallest feasible amount. PsychosisShould increased symptoms of psychosis or shift to manic symptomatology occur, it may be necessary to reduce dosage or add a major tranquilizer to the dosage regimen. Geriatric UseA determination has not been made whether controlled clinical studies of doxepin included sufficient numbers of subjects aged 65 and over to define a difference in response from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy. The extent of renal excretion of doxepin has not been determined. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selections. Sedating drugs may cause confusion and over sedation in the elderly; elderly patients generally should be started on low doses of doxepin and observed closely. (See WARNINGS.)

OVERDOSAGE

Deaths may occur from overdosage with this class of drugs. Multiple drug ingestion (including alcohol) is common in deliberate tricyclic antidepressant overdose. As the management is complex and changing, it is recommended that the physician contact a poison control center for current information on treatment. Signs and symptoms of toxicity develop rapidly after tricyclic antidepressant overdose; therefore, hospital monitoring is required as soon as possible. ManifestationsCritical manifestations of overdose include: cardiac dysrhythmias, severe hypotension, convulsions, and CNS depression, including coma. Changes in the electrocardiogram, particularly in QRS axis or width, are clinically significant indicators of tricyclic antidepressant toxicity. Other signs of overdose may include: confusion, disturbed concentration, transient visual hallucinations, dilated pupils, agitation, hyperactive reflexes, stupor, drowsiness, muscle rigidity, vomiting, hypothermia, hyperpyrexia, or any of the symptoms listed under ADVERSE REACTIONS. Deaths have been reported involving overdoses of doxepin. General Recommendations GeneralObtain an ECG and immediately initiate cardiac monitoring. Protect the patient’s airway, establish an intravenous line and initiate gastric decontamination. A minimum of six hours of observation with cardiac monitoring and observation for signs of CNS or respiratory depression, hypotension, cardiac dysrhythmias and/or conduction blocks, and seizures is strongly advised. If signs of toxicity occur at any time during this period, extended monitoring is recommended. There are case reports of patients succumbing to fatal dysrhythmias late after overdose; these patients had clinical evidence of significant poisoning prior to death and most received inadequate gastrointestinal decontamination. Monitoring of plasma drug levels should not guide management of the patient. Gastrointestinal DecontaminationAll patients suspected of tricyclic antidepressant overdose should receive gastrointestinal decontamination. This should include large volume gastric lavage followed by activated charcoal. If consciousness is impaired, the airway should be secured prior to lavage. Emesis is contraindicated. CardiovascularA maximal limb lead QRS duration of less then 0.10 seconds may be the best indication of the severity of the overdose. Intravenous sodium bicarbonate should be used to maintain the serum pH in the range of 7.45 to 7.55. If the pH response is inadequate, hyperventilation may also be used. Concomitant use of hyperventilation and sodium bicarbonate should be done with extreme caution, with frequent pH monitoring. A pH less then 7.60 or a pCO2 greater then 20 mm Hg is undesirable. Dysrhythmias unresponsive to sodium bicarbonate therapy/hyperventilation may respond to lidocaine, bretylium or phenytoin. Type 1A and 1C antiarrhythmics are generally contraindicated (e.g., quinidine, disopyramide, and procainamide). In rare instances, hemoperfusion may be beneficial in acute refractory cardiovascular instability in patients with acute toxicity. However, hemodialysis, peritoneal dialysis, exchange transfusions, and forced diuresis generally have been reported as ineffective in tricyclic antidepressant poisoning. CNSIn patients with CNS depression, early intubation is advised because of the potential for abrupt deterioration. Seizures should be controlled with benzodiazepines, or if these are ineffective, other anticonvulsants (e.g., phenobarbital, phenytoin). Physostigmine is not recommended except to treat life threatening symptoms that have been unresponsive to other therapies, and then only in consultation with a poison control center. Psychiatric Follow-upSince overdosage is often deliberate, patients may attempt suicide by other means during the recovery phase. Psychiatric referral may be appropriate. Pediatric ManagementThe principles of management of child and adult overdosages are similar. It is strongly recommended that the physician contact the local poison control center for specific pediatric treatment.

DESCRIPTION

Doxepin hydrochloride is one of a class of psychotherapeutic agents known as dibenzoxepin tricyclic compounds. The molecular formula of the compound is C19H21NOHCl having a molecular weight of 316. It is a white crystalline solid readily soluble in water, lower alcohols and chloroform. It may be represented by the following structural formula: Chemically, doxepin hydrochloride is a dibenzoxepin derivative and is the first of a family of tricyclic psychotherapeutic agents. Specifically, it is an isomeric mixture of 1-Propanamine, 3-dibenz[b,e]oxepin-11 (6H )ylidene-N,N-dimethyl-hydrochloride. Each 10 mg, 25 mg, 50 mg, 75 mg and 100 mg doxepin capsule for oral administration contains doxepin hydrochloride, USP equivalent to 10 mg, 25 mg, 50 mg, 75 mg and 100 mg of doxepin, respectively and the following inactive ingredients: black iron oxide, colloidal silicon dioxide, D&C Yellow No. 10 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake, FD&C Red No. 40 Aluminum Lake, gelatin, magnesium stearate, microcrystalline cellulose, n-butyl alcohol, pregelatinized starch, propylene glycol, SDA 3A alcohol, SD-45 alcohol, shellac glaze, sodium lauryl sulfate, and titanium dioxide. In addition, the 10 mg, 25 mg, and 50 mg capsules contain FD&C Yellow No. 6 Aluminum Lake and the 75 mg and 100 mg capsules contain FD&C Green No. 3 Aluminum Lake. MM1

HOW SUPPLIED

Doxepin hydrochloride capsules, USP are available containing doxepin hydrochloride, USP equivalent to 10 mg, 25 mg, 50 mg, 75 mg or 100 mg of doxepin. The 10 mg capsule is a hard-shell, gelatin capsule with a buff opaque cap and buff opaque body axially printed with MYLAN over 1049 in black ink on both the cap and the body. They are available as follows: NDC 0378-1049-01 bottles of 100 capsules NDC 0378-1049-10 bottles of 1000 capsules The 25 mg capsule is a hard-shell, gelatin capsule with an ivory opaque cap and white opaque body axially printed with MYLAN over 3125 in black ink on both the cap and the body. They are available as follows: NDC 0378-3125-01 bottles of 100 capsules NDC 0378-3125-10 bottles of 1000 capsules The 50 mg capsule is a hard-shell, gelatin capsule with an ivory opaque cap and ivory opaque body axially printed with MYLAN over 4250 in black ink on both the cap and the body. They are available as follows: NDC 0378-4250-01 bottles of 100 capsules NDC 0378-4250-10 bottles of 1000 capsules The 75 mg capsule is a hard-shell, gelatin capsule with a brite lite green opaque cap and brite lite green body axially printed with MYLAN over 5375 in black ink on both the cap and the body. They are available as follows: NDC 0378-5375-01 bottles of 100 capsules NDC 0378-5375-10 bottles of 1000 capsules The 100 mg capsule is a hard-shell, gelatin capsule with a brite lite green opaque cap and white opaque body axially printed with MYLAN over 6410 in black ink on both the cap and the body. They are available as follows: NDC 0378-6410-01 bottles of 100 capsules NDC 0378-6410-10 bottles of 1000 capsules Store at 20° to 25°C (68° to 77°F). [See USP for Controlled Room Temperature.] Protect from light. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure. PHARMACIST: Dispense a Medication Guide with each prescription.

INDICATIONS AND USAGE

INDICATIONS & USAGE Doxepin is recommended for the treatment of: Psychoneurotic patients with depression and/or anxiety. Depression and/or anxiety associated with alcoholism (not to be taken concomitantly with alcohol). Depression and/or anxiety associated with organic disease (the possibility of drug interaction should be considered if the patient is receiving other drugs concomitantly). Psychotic depressive disorders with associated anxiety including involutional depression and manic-depressive disorders. The target symptoms of psychoneurosis that respond particularly well to doxepin include anxiety, tension, depression, somatic symptoms and concerns, sleep disturbances, guilt, lack of energy, fear, apprehension and worry. Clinical experience has shown that doxepin is safe and well tolerated even in the elderly patient. Owing to lack of clinical experience in the pediatric population, doxepin is not recommended for use in children under 12 years of age.

BOXED WARNING

Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of doxepin or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Doxepin is not approved for use in pediatric patients. (See WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients and PRECAUTIONS: Pediatric Use.)

DOSAGE AND ADMINISTRATION

DOSAGE & ADMINISTRATION For most patients with illness of mild to moderate severity, a starting daily dose of 75 mg is recommended. Dosage may subsequently be increased or decreased at appropriate intervals and according to individual response. The usual optimum dose range is 75 mg/day to 150 mg/day. In more severely ill patients higher doses may be required with subsequent gradual increase to 300 mg/day if necessary. Additional therapeutic effect is rarely to be obtained by exceeding a dose of 300 mg/day. In patients with very mild symptomatology or emotional symptoms accompanying organic disease, lower doses may suffice. Some of these patients have been controlled on doses as low as 25 to 50 mg/day. The total daily dosage of doxepin (as the hydrochloride) may be given on a divided or once a day dosage schedule. If the once a day schedule is employed the maximum recommended dose is 150 mg/day. This dose may be given at bedtime. The 150 mg capsule strength is intended for maintenance therapy only and is not recommended for initiation of treatment. Antianxiety effect is apparent before the antidepressant effect. Optimal antidepressant effect may not be evident for two to three weeks.

AndroGel 1 % (25MG / 2.5GM) Transdermal Gel

Generic Name: TESTOSTERONE
Brand Name: Androgel
  • Substance Name(s):
  • TESTOSTERONE

DRUG INTERACTIONS

7 •Androgens may decrease blood glucose and therefore may decrease insulin requirements in diabetic patients. (7.1) •Changes in anticoagulant activity may be seen with androgens. More frequent monitoring of INR and prothrombin time is recommended. (7.2) •Use of testosterone with adrenocorticotrophic hormone (ACTH) or corticosteroids may result in increased fluid retention. Use with caution, particularly in patients with cardiac, renal, or hepatic disease. (7.3) 7.1 Insulin Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease insulin requirements. 7.2 Oral Anticoagulants Changes in anticoagulant activity may be seen with androgens, therefore more frequent monitoring of international normalized ratio (INR) and prothrombin time are recommended in patients taking anticoagulants, especially at the initiation and termination of androgen therapy. 7.3 Corticosteroids The concurrent use of testosterone with adrenocorticotropic hormone(ACTH) or corticosteroids may result in increased fluid retention and requires careful monitoring particularly in patients with cardiac, renal or hepatic disease.

OVERDOSAGE

10 There is one report of acute overdosage with use of an approved injectable testosterone product: this subject had serum testosterone concentrations of up to 11,400 ng/dL with a cerebrovascular accident. Treatment of overdosage would consist of discontinuation of Testosterone Gel 1%, washing the application site with soap and water, and appropriate symptomatic and supportive care.

DESCRIPTION

11 Testosterone Gel 1% is a clear, colorless hydroalcoholic gel containing testosterone. The active pharmacologic ingredient in Testosterone Gel 1% is testosterone, an androgen. Testosterone USP is a white to practically white crystalline powder chemically described as 17-beta hydroxyandrost-4-en-3-one. The structural formula is: C 19H28O2 MW 288.42 Pharmacologically inactive ingredients in Testosterone Gel 1% are carbomer 940, ethanol 68.9%, isopropyl myristate, purified water and sodium hydroxide. These ingredients are not pharmacologically active. structure

CLINICAL STUDIES

14 14.1 Clinical Trials in Adult Hypogonadal Males Testosterone Gel 1% was evaluated in a multi-center, randomized, parallel-group, active-controlled, 180-day trial in 227 hypogonadal men. The study was conducted in 2 phases. During the Initial Treatment Period (Days 1-90), 73 patients were randomized to Testosterone Gel 1% 50 mg daily, 78 patients to Testosterone Gel 1% 100 mg daily, and 76 patients to a non-scrotal testosterone transdermal system. The study was double-blind for dose of Testosterone Gel 1% but open-label for active control. Patients who were originally randomized to Testosterone Gel 1% and who had single-sample serum testosterone concentrations above or below the normal range on Day 60 were titrated to 75 mg daily on Day 91. During the Extended Treatment Period (Days 91-180), 51 patients continued on Testosterone Gel 1% 50 mg daily, 52 patients continued on Testosterone Gel 1% 100 mg daily, 41 patients continued on a non-scrotal testosterone transdermal system (5 mg daily), and 40 patients received Testosterone Gel 1% 75 mg daily. Upon completion of the initial study, 163 enrolled and 162 patients received treatment in an open-label extension study of Testosterone Gel 1% for an additional period of up to 3 years. Mean peak, trough and average serum testosterone concentrations within the normal range (298‑1043 ng/dL) were achieved on the first day of treatment with doses of 50 mg and 100 mg of Testosterone Gel 1%. In patients continuing on Testosterone Gel 1% 50 mg and 100 mg, these mean testosterone concentrations were maintained within the normal range for the 180-day duration of the original study. Figure 2 summarizes the 24-hour pharmacokinetic profiles of testosterone administered as Testosterone Gel 1% for 30, 90 and 180 days. Testosterone concentrations were maintained as long as the patient continued to properly apply the prescribed Testosterone Gel 1% treatment. Figure2: MeanSteady-StateTestosteroneConcentrationsinPatientswithOnce-DailyTestosterone Gel1% Therapy Table 5 summarizes the mean testosterone concentrations on Treatment Day 180 for patients receiving 50 mg, 75 mg, or 100 mg of Testosterone Gel 1%. The 75 mg dose produced mean concentrations intermediate to those produced by 50 mg and 100 mg of Testosterone Gel 1%. Table 5: Mean (±SD) Steady-State Serum Testosterone Concentrations During Therapy (Day 180) 50 mg 75 mg 100 mg N= 44 N= 37 N= 48 Cavg 555 ± 225 601 ± 309 713 ± 209 Cmax 830 ± 347 901 ± 471 1083 ± 434 Cmin 371 ± 165 406 ± 220 485 ± 156 Of 129 hypogonadal men who were appropriately titrated with Testosterone Gel 1% and who had sufficient data for analysis, 87% achieved an average serum testosterone concentration within the normal range on Treatment Day 180. In patients treated with Testosterone Gel 1%, there were no observed differences in the average daily serum testosterone concentrations at steady state based on age, cause of hypogonadism, or body mass index. DHT concentrations increased in parallel with testosterone concentrations at Testosterone Gel 1% doses of 50 mg/day and100 mg/day, but the DHT/T ratio stayed within normal range, indicating enhanced availability of the major physiologically active androgen. Serum estradiol (E2) concentrations increased significantly within 30 days of starting treatment with Testosterone Gel 1% 50 or 100 mg/day and remained elevated throughout the treatment period but remained within the normal range for eugonadal men. Serum levels of SHBG decreased very slightly (1 to11%) during Testosterone Gel 1% treatment. In men with hypergonadotropic hypogonadism, serum levels of LH and FSH fell in a dose- and time-dependent manner during treatment with Testosterone Gel1% figure2 14.2 Phototoxicity in Humans The phototoxic potential of Testosterone Gel 1% was evaluated in a double-blind, single-dose study in 27 subjects with photosensitive skin types. The Minimal Erythema Dose (MED) of ultraviolet radiation was determined for each subject. A single 24 (+1) hour application of duplicate patches containing test articles (placebo gel, testosterone gel, or saline) was made to naive skin sites on Day 1. On Day 2, each subject received five exposure times of ultraviolet radiation, each exposure being 25% greater than the previous one. Skin evaluations were made on Days 2 to 5. Exposure of test and control article application sites to ultraviolet light did not produce increased inflammation relative to non-irradiated sites, indicating no phototoxic effect.

HOW SUPPLIED

16 Testosterone Gel 1% is supplied in unit-dose aluminum foil packets in cartons of 30. Each packet of 2.5 g or 5 g gel contains 25 mg or 50 mg testosterone, respectively. NDC Number Package Size 49884-418-72 30 packets(a unit dose packet containing 25 mg of testosterone provided in 2.5g of gel) 49884-510-72 30 packets(a unit dose packet containing 50 mg of testosterone provided in 5g of gel) Storage Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Disposal Used Testosterone Gel 1% pumps or used Testosterone Gel 1% packets should be discarded in household trash in a manner that prevents accidental application or ingestion by children or pets.

RECENT MAJOR CHANGES

Indications and Usage (1) 5/2015 Dosage and Administration (2) 5/2015 Dosage and Administration (2.2) 11/2014 Warnings and Precautions (5.4) 6/2014 Warnings and Precautions (5.5) 5/2015

GERIATRIC USE

8.5 Geriatric Use There have not been sufficient numbers of geriatric patients involved in controlled clinical studies utilizing Testosterone Gel 1% to determine whether efficacy in those over 65 years of age differs from younger subjects. Additionally, there is insufficient long-term safety data in geriatric patients to assess the potential risks of cardiovascular disease and prostate cancer. Geriatric patients treated with androgens may also be at risk for worsening of signs and symptoms of BPH.

DOSAGE FORMS AND STRENGTHS

3 Testosterone Gel 1% for topical use is available as follows: •A unit dose packet containing 25 mg of testosterone provided in 2.5 g of gel. •A unit dose packet containing 50 mg of testosterone provided in 5 g of gel. Testosterone Gel 1% for topical use is available as follows: •Packets containing 25 mg of testosterone. (3) •Packets containing 50 mg of testosterone. (3)

MECHANISM OF ACTION

12.1 Mechanism of Action Endogenous androgens, including testosterone and dihydrotestosterone (DHT), are responsible for the normal growth and development of the male sex organs and for maintenance of secondary sex characteristics. These effects include the growth and maturation of prostate, seminal vesicles, penis and scrotum; the development of male hair distribution, such as facial, pubic, chest and axillary hair; laryngeal enlargement, vocal chord thickening, alterations in body musculature and fat distribution. Testosterone and DHT are necessary for the normal development of secondary sex characteristics. Male hypogonadism, a clinical syndrome resulting from insufficient secretion of testosterone, has two main etiologies. Primary hypogonadism caused by defects of the gonads, such as Klinefelter’s Syndrome or Leydigcellaplasia, whereas secondary hypogonadism is the failure of the hypothalamus (or pituitary) to produce sufficient gonadotropins(FSH, LH).

INDICATIONS AND USAGE

1 Testosterone Gel 1% is indicated for replacement therapy in adult males for conditions associated with a deficiency or absence of endogenous testosterone: •Primary hypogonadism (congenital or acquired): testicular failure due to conditions such as cryptorchidism, bilateral torsion, orchitis, vanishing testis syndrome, orchiectomy, Klinefelter’s syndrome, chemotherapy, or toxic damage from alcohol or heavy metals. These men usually have low serum testosterone concentrations and gonadotropins (follicle- stimulating hormone [FSH], luteinizing hormone [LH]) above the normal range. •Hypogonadotropic hypogonadism (congenital or acquired): gonadotropin or luteinizing hormone-releasing hormone (LHRH) deficiency or pituitary-hypothalamic injury from tumors, trauma, or radiation. These men have low testosterone serum concentrations, but have gonadotropins in the normal or low range. Limitations of use: •Safety and efficacy of Testosterone Gel 1% in men with “age-related hypogonadism” (also referred to as “late-onset hypogonadism”) have not been established. •Safety and efficacy of Testosterone Gel 1% in males less than 18 years old have not been established [see Use in Specific Populations (8.4)]. •Topical testosterone products may have different doses, strengths or application instructions that may result in different systemic exposure (1, 12.3). Testosterone Gel 1% is indicated for replacement therapy in males for conditions associated with a deficiency or absence of endogenous testosterone: •Primary hypogonadism (congenital or acquired). (1) •Hypogonadotropic hypogonadism (congenital or acquired). (1) Limitations of use: •Safety and efficacy of Testosterone Gel 1% in men with “age-related hypogonadism” have not been established. (1) •Safety and efficacy of Testosterone Gel 1% in males less than 18 years old have not been established. (8.4) •Topical testosterone products may have different doses, strengths or application instructions that may result in different systemic exposure. (1, 12.3)

PEDIATRIC USE

8.4 Pediatric Use The safety and efficacy of Testosterone Gel 1% in pediatric patients less than 18 years old has not been established. Improper use may result in acceleration of bone age and premature closure of epiphyses.

PREGNANCY

8.1 Pregnancy Pregnancy Category X [see Contraindications (4)]: Testosterone Gel 1% is contraindicated during pregnancy or in women who may become pregnant. Testosterone is teratogenic and may cause fetal harm. Exposure of a female fetus to androgens may result in varying degrees of virilization. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus.

NUSRING MOTHERS

8.3 Nursing Mothers Although it is not known how much testosterone transfers into human milk, Testosterone Gel 1% is contraindicated in nursing women because of the potential for serious adverse reactions in nursing infants. Testosterone and other androgens may adversely affect lactation [see Contraindications (4)].

BOXED WARNING

WARNING: SECONDARY EXPOSURE TO TESTOSTERONE • Virilization has been reported in children who were secondarily exposed to testosterone gel [see Warnings and Precautions (5.2) and Adverse Reactions (6.2)]. • Children should avoid contact with unwashed or unclothed application sites in men using testosterone gel [see Dosage and Administration (2.2) and Warnings and Precautions (5.2)]. • Healthcare providers should advise patients to strictly adhere to recommended instructions for use [see Dosage and Administration (2.2), Warnings and Precautions (5.2) and Patient Counseling Information (17)]. WARNING: SECONDARY EXPOSURE TO TESTOSTERONE See full prescribing information for complete boxed warning •Virilization has been reported in children who were secondarily exposed to testosterone gel. (5.2, 6.2). •Children should avoid contact with unwashed or unclothed application sites in men using testosterone gel. (2.2, 5.2) •Healthcare providers should advise patients to strictly adhere to recommended instructions for use. (2.2, 5.2, 17).

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS •Monitor patients with benign prostatic hyperplasia (BPH) for worsening of signs and symptoms of BPH. (5.1) •Avoid unintentional exposure of women or children to Testosterone Gel 1%. Secondary exposure to testosterone can produce signs of virilization. Testosterone Gel 1% should be discontinued until the cause of virilization is identified. (5.2) •Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE) have been reported in patients using testosterone products. Evaluate patients with signs or symptoms consistent with DVT or PE. (5.4) •Some postmarketing studies have shown an increased risk of myocardial infarction and stroke associated with use of testosterone replacement therapy. (5.5) •Exogenous administration of androgens may lead to azoospermia. (5.7) •Edema, with or without congestive heart failure (CHF), may be a complication in patients with preexisting cardiac, renal, or hepatic disease. (5.9, 6.2) •Sleep apnea may occur in those with risk factors. (5.11) •Monitor serum testosterone, prostate specific antigen (PSA), hemoglobin, hematocrit, liver function tests, and lipid concentrations periodically. (5.1, 5.3, 5.8, 5.12) •Testosterone Gel 1% is flammable until dry. (5.15) 5.1 Worsening of Benign Prostatic Hyperplasia (BPH) and Potential Risk of Prostate Cancer •Patients with BPH treated with androgens are at an increased risk for worsening of signs and symptoms of BPH. Monitor patients with BPH for worsening signs and symptoms. •Patients treated with androgens may be at increased risk for prostate cancer. Evaluate patients for prostate cancer prior to initiating and during treatment with androgens [see Contraindications (4), Adverse Reactions (6.1) and Nonclinical Toxicology (13.1)]. 5.2 Potential for Secondary Exposure to Testosterone Cases of secondary exposure resulting in virilization of children have been reported in postmarketing surveillance. Signs and symptoms have included enlargement of the penis or clitoris, development of pubic hair, increased erections and libido, aggressive behavior, and advanced bone age. In most cases, these signs and symptoms regressed with removal of the exposure to testosterone gel. In a few cases, however, enlarged genitalia did not fully return to age-appropriate normal size, and bone age remained modestly greater than chronological age. The risk of transfer was increased in some of these cases by not adhering to precautions for the appropriate use of the topical testosterone product. Children and women should avoid contact with unwashed or unclothed application sites in men using Testosterone Gel 1% [see Dosage and Administration (2.2), Use in Specific Populations (8.1) and Clinical Pharmacology (12.3)]. Inappropriate changes in genital size or development of pubic hair or libido in children, or changes in body hair distribution, significant increase in acne, or other signs of virilization in adult women should be brought to the attention of a physician and the possibility of secondary exposure to testosterone gel should also be brought to the attention of a physician. Testosterone gel should be promptly discontinued until the cause of virilization has been identified. 5.3 Polycythemia Increases in hematocrit, reflective of increases in red blood cell mass, may require lowering or discontinuation of testosterone. Check hematocrit prior to initiating treatment. It would also be appropriate to re-evaluate the hematocrit 3 to 6 months after starting treatment, and then annually. If hematocrit becomes elevated, stop therapy until hematocrit decreases to an acceptable concentration. An increase in red blood cell mass may increase the risk of thromboembolic events. 5.4 Venous Thromboembolism There have been postmarketing reports of venous thromboembolic events, including deep vein thrombosis (DVT) and pulmonary embolism (PE), in patients using testosterone products such as Testosterone Gel 1%. Evaluate patients who report symptoms of pain, edema, warmth and erythema in the lower extremity for DVT and those who present with acute shortness of breath for PE. If a venous thromboembolic event is suspected, discontinue treatment with Testosterone Gel 1% and initiate appropriate workup and management [see Adverse Reactions (6.2)]. 5.5 Cardiovascular Risk Long term clinical safety trials have not been conducted to assess the cardiovascular outcomes of testosterone replacement therapy in men. To date, epidemiologic studies and randomized controlled trials have been inconclusive for determining the risk of major adverse cardiovascular events (MACE), such as non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death, with the use of testosterone compared to non-use. Some studies, but not all, have been reported an increased risk of MACE in association with use of testosterone replacement therapy in men. Patients should be informed of this possible risk when deciding whether to use or to continue to use Testosterone Gel 1%. 5.6 Use in Women Due to lack of controlled evaluations in women and potential virilizing effects, Testosterone Gel 1% is not indicated for use in women [see Contraindications (4) and Use in Specific Populations (8.1, 8.3)]. 5.7 Potential for Adverse Effects on Spermatogenesis With large doses of exogenous androgens, including Testosterone Gel 1%, spermatogenesis maybe suppressed through feedback inhibition of pituitary follicle-stimulating hormone (FSH) which could possibly lead to adverse effects on semen parameters including sperm count. 5.8 Hepatic Adverse Effects Prolonged use of high doses of orally active17-alpha-alkylandrogens (e.g., methyltestosterone) has been associated with serious hepatic adverse effects (peliosishepatis, hepatic neoplasms, cholestatic hepatitis, and jaundice). Peliosishepatis can be a life-threatening or fatal complication. Long-term therapy with intramuscular testosterone enanthate has produced multiple hepatic adenomas. Testosterone Gel 1% is not known to cause these adverse effects. 5.9 Edema Androgens, including Testosterone Gel 1%, may promote retention of sodium and water. Edema, with or without congestive heart failure, may be a serious complication in patients with preexisting cardiac, renal, or hepatic disease [see Adverse Reactions (6.2)]. 5.10 Gynecomastia Gynecomastia may develop and persist in patients being treated with androgens, including Testosterone Gel 1%, for hypogonadism. 5.11 Sleep Apnea The treatment of hypogonadal men with testosterone may potentiate sleep apnea in some patients, especially those with risk factors such as obesity or chronic lung diseases [see Adverse Reactions (6.2)]. 5.12 Lipids Changes in serum lipid profile may require dose adjustment or discontinuation of testosterone therapy. 5.13 Hypercalcemia Androgens, including Testosterone Gel 1%, should be used with caution in cancer patients at risk of hypercalcemia (and associated hypercalciuria). Regular monitoring of serum calcium concentrations is recommended in these patients. 5.14 Decreased Thyroxine-binding Globulin Androgens, including Testosterone Gel 1%, may decrease concentrations of thyroxin-binding globulins, resulting in decreased total T4 serum concentrations and increased resin uptake of T3 and T4. Free thyroid hormone concentrations remain unchanged, however, and there is no clinical evidence of thyroid dysfunction. 5.15 Flammability Alcohol based products, including Testosterone Gel 1%, are flammable; therefore, patients should be advised to avoid fire, flame or smoking until the Testosterone Gel 1%has dried.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION See FDA-Approved Patient Labeling (Medication Guide) Patients should be informed of the following: 17.1 Use in Men with Known or Suspected Prostate or Breast Cancer Men with known or suspected prostate or breast cancer should not use Testosterone Gel 1% [see Contraindications (4) and Warnings and Precautions (5.1)]. 17.2 Potential for Secondary Exposure to Testosterone and Steps to Prevent Secondary Exposure Secondary exposure to testosterone in children and women can occur with the use of testosterone gel in men. Cases of secondary exposure to testosterone have been reported in children. Physicians should advise patients of the reported signs and symptoms of secondary exposure which may include the following: •In children; unexpected sexual development including inappropriate enlargement of the penis or clitoris, premature development of pubic hair, increased erections, and aggressive behavior •In women; changes in hair distribution, increase in acne, or other signs of testosterone effects •The possibility of secondary exposure to testosterone gel should be brought to the attention of a healthcare provider •Testosterone Gel 1% should be promptly discontinued until the cause of virilization is identified Strict adherence to the following precautions is advised to minimize the potential for secondary exposure to testosterone from testosterone gel in men [see Medication Guide]: • Children and women should avoid contact with unwashed or unclothed application site(s) of men using testosterone gel. •Patients using Testosterone Gel 1% should apply the product as directed and strictly adhere to the following: • Wash hands with soap and water after application • Cover the application site(s) with clothing after the gel has dried. • Wash the application site(s) thoroughly with soap and water prior to any situation where skin-to-skin contact of the application site with another person is anticipated •In the event that unwashed or unclothed skin to which Testosterone Gel 1% has been applied comes in contact with the skin of another person, the general area of contact on the other person should be washed with soap and water as soon as possible [see Dosage and Administration (2.2), Warnings and Precautions (5.2) and Clinical Pharmacology (12.3)]. 17.3 Potential Adverse Reactions with Androgens Patients should be informed that treatment with androgens may lead to adverse reactions which include: •Changes in urinary habits such as increased urination at night, trouble starting your urine stream, passing urine many times during the day, having an urge that you have to go to the bathroom right away, having a urine accident, being unable to pass urine and weak urine flow. •Breathing disturbances, including those associated with sleep, or excessive daytime sleepiness. •Too frequent or persistent erections of the penis. •Nausea, vomiting, changes in skin color, or ankle swelling. 17.4 Patients Should Be Advised of the Following Instructions for Use: • Read the Medication Guide before starting Testosterone Gel 1% therapy and to reread it each time the prescription is renewed • Testosterone Gel 1% should be applied and used appropriately to maximize the benefits and to minimize the risk of secondary exposure in children and women • Keep Testosterone Gel 1% out of the reach of children • Testosterone Gel 1% is an alcohol based product and is flammable; therefore avoid fire, flame or smoking until the gel has dried • It is important to adhere to all recommended monitoring • Report any changes in their state of health, such as changes in urinary habits, breathing, sleep, and mood •Testosterone Gel 1% is prescribed to meet the patient’s specific needs; therefore, the patient should never share Testosterone Gel 1% with anyone •Wait 5 hours before swimming or washing following application of Testosterone Gel 1%. This will ensure that the greatest amount of Testosterone Gel 1% is absorbed into their system Distributed by: Par Pharmaceutical Companies, Inc. Chestnut Ridge, NY 10977 Revised 05/2015

DOSAGE AND ADMINISTRATION

2 Dosage and Administration for Testosterone Gel 1% differs from Testosterone Gel 1.62 %. For dosage and administration of Testosterone Gel 1.62% refer to its full prescribing information. (2) Prior to initiating Testosterone Gel 1%, confirm the diagnosis of hypogonadism by ensuring that serum testosterone concentrations have been measured in the morning on a least two separate days and that these serum testosterone concentrations are below the normal range. • Dosage and Administration for Testosterone Gel 1% differs from Testosterone Gel 1.62 %. For dosage and administration of Testosterone Gel 1.62% refer to its full prescribing information. (2) •Prior to initiating Testosterone Gel 1%, confirm the diagnosis of hypogonadism by ensuring that serum testosterone has been measured in the morning on at least two separate days and that these concentrations are below the normal range. (2) •Starting dose of Testosterone Gel 1% is 50 mg of testosterone (4 pump actuations, two 25 mg packets, or one 50 mg packet), applied once daily in the morning. (2.1) •Apply to clean, dry, intact skin of shoulders and upper arms and/or abdomen. Do NOT apply Testosterone Gel 1% to any other parts of the body including the genitals, chest, armpits (axillae), knees or back. (2.2) •Dose adjustment: Testosterone Gel 1% can be dose adjusted using 50 mg, 75 mg, or 100 mg of testosterone on the basis of total serum testosterone concentration. The dose should be titrated based on the serum testosterone concentration. Additionally, serum testosterone concentration should be assessed periodically. (2.1) •Patients should wash hands immediately with soap and water after applying Testosterone Gel 1% and cover the application site(s) with clothing after the gel has dried. Wash the application site thoroughly with soap and water prior to any situation where skin-to-skin contact of the application site with another person is anticipated. (2.2) 2.1 Dosing and Dose Adjustment The recommended starting dose of Testosterone Gel 1% is 50 mg of testosterone (two 25 mg packets, or one 50 mg packet), applied topically once daily in the morning to the shoulders and upper arms and/or abdomen area (preferably at the same time every day). Dose Adjustment To ensure proper dosing, serum testosterone concentrations should be measured at intervals. If the serum testosterone concentration is below the normal range, the daily Testosterone Gel 1% dose may be increased from 50 mg to 75 mg and from 75 mg to 100 mg for adult males as instructed by the physician. If the serum testosterone concentration exceeds the normal range, the daily Testosterone Gel 1% dose may be decreased. If the serum testosterone concentration consistently exceeds the normal range at a daily dose of 50 mg, Testosterone Gel 1% therapy should be discontinued. In addition, serum testosterone concentrations should be assessed periodically. The application site and dose of Testosterone Gel 1% are not interchangeable with other topical testosterone products. 2.2 Administration Instructions Testosterone Gel 1% should be applied to clean, dry, healthy, intact skin of the right and left upper arms/shoulders and/or right and left abdomen. Area of application should be limited to the area that will be covered by the patient’s short sleeve T-shirt. Do not apply Testosterone Gel 1% to any other part of the body including the genitals, chest, armpits (axillae), knees or back. Testosterone Gel 1% should be evenly distributed between the right and left upper arms/shoulders or both sides of the abdomen. The prescribed daily dose of Testosterone Gel 1% should be applied to the right and left upper arms/shoulders and/or right/left abdomen as shown in the shaded areas in the figure below. After applying the gel, the application site should be allowed to dry prior to dressing. Hands should be washed thoroughly with soap and water after application. Avoid fire, flames or smoking until the gel has dried since alcohol based products, including Testosterone Gel 1%, are flammable. The patient should be advised to avoid swimming or showering for at least 5 hours after the application of Testosterone Gel 1%. Packets The entire contents should be squeezed into the palm of the hand and immediately applied to the application sites. Alternately, patients may squeeze a portion of the gel from the packet into the palm of the hand and apply to application sites. Repeat until entire contents have been applied. Strict adherence to the following precautions is advised in order to minimize the potential for secondary exposure to testosterone from Testosterone Gel 1%-treated skin: •Children and women should avoid contact with unwashed or unclothed application site(s) of men using Testosterone Gel 1%. •Patients should wash hands with soap and water immediately after application of Testosterone Gel 1%. •Patients should cover the application site(s) with clothing (e.g., a T-shirt) after the gel has dried. •Prior to situation in which direct skin-to-skin contact is anticipated, patients should wash the application site thoroughly with soap and water to remove any testosterone residue. •In the event that unwashed or unclothed skin to which Testosterone Gel 1% has been applied comes in direct contact with the skin of another person, the general area of contact on the other person should be washed with soap and water as soon as possible. New image

amoxicillin 250 MG per 5 ML Oral Suspension

Generic Name: AMOXICILLIN
Brand Name: AMOXICILLIN
  • Substance Name(s):
  • AMOXICILLIN

DRUG INTERACTIONS

7 Probenicid decreases renal tubular secretion of amoxicillin which may result in increased blood levels of amoxicillin. (7.1) Concomitant use of Amoxicillin and oral anticoagulants may increase the prolongation of prothrombin time. (7.2) Coadministration with allopurinol increases the risk of rash. (7.3) Amoxicillin may reduce the efficacy of oral contraceptives. (7.4) 7.1 Probenecid Probenecid decreases the renal tubular secretion of amoxicillin. Concurrent use of amoxicillin and probenecid may result in increased and prolonged blood levels of amoxicillin. 7.2 Oral Anticoagulants Abnormal prolongation of prothrombin time (increased international normalized ratio [INR]) has been reported in patients receiving amoxicillin and oral anticoagulants. Appropriate monitoring should be undertaken when anticoagulants are prescribed concurrently. Adjustments in the dose of oral anticoagulants may be necessary to maintain the desired level of anticoagulation. 7.3 Allopurinol The concurrent administration of allopurinol and amoxicillin increases the incidence of rashes in patients receiving both drugs as compared to patients receiving amoxicillin alone. It is not known whether this potentiation of amoxicillin rashes is due to allopurinol or the hyperuricemia present in these patients. 7.4 Oral Contraceptives AMOXICILLIN may affect the gut flora, leading to lower estrogen reabsorption and reduced efficacy of combined oral estrogen/progesterone contraceptives. 7.5 Other Antibacterials Chloramphenicol, macrolides, sulfonamides, and tetracyclines may interfere with the bactericidal effects of penicillin. This has been demonstrated in vitro; however, the clinical significance of this interaction is not well documented. 7.6 Effects on Laboratory Tests High urine concentrations of ampicillin may result in false-positive reactions when testing for the presence of glucose in urine using CLINITEST®, Benedict’s Solution, or Fehling’s Solution. Since this effect may also occur with amoxicillin, it is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as CLINISTIX®) be used. Following administration of ampicillin or amoxicillin to pregnant women, a transient decrease in plasma concentration of total conjugated estriol, estriol-glucuronide, conjugated estrone, and estradiol has been noted.

OVERDOSAGE

10 In case of overdosage, discontinue medication, treat symptomatically, and institute supportive measures as required. A prospective study of 51 pediatric patients at a poison-control center suggested that overdosages of less than 250 mg/kg of amoxicillin are not associated with significant clinical symptoms. Interstitial nephritis resulting in oliguric renal failure has been reported in a small number of patients after overdosage with amoxicillin1. Crystalluria, in some cases leading to renal failure, has also been reported after amoxicillin overdosage in adult and pediatric patients. In case of overdosage, adequate fluid intake and diuresis should be maintained to reduce the risk of amoxicillin crystalluria. Renal impairment appears to be reversible with cessation of drug administration. High blood levels may occur more readily in patients with impaired renal function because of decreased renal clearance of amoxicillin. Amoxicillin may be removed from circulation by hemodialysis.

DESCRIPTION

11 Formulations of AMOXICILLIN contain amoxicillin, a semisynthetic antibiotic, an analog of ampicillin, with a broad spectrum of bactericidal activity against many gram-positive and gram-negative microorganisms. Chemically, it is (2S,5R,6R)-6-[(R)-(-)-2-amino-2-(p-hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate. It may be represented structurally as: The amoxicillin molecular formula is C16H19N3O5S•3H2O, and the molecular weight is 419.45. Capsules: Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate. The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500. Inactive ingredients: D&C Red No. 28, FD&C Blue No. 1, FD&C Red No. 40, gelatin, magnesium stearate, and titanium dioxide. Tablets: Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate. Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively. The 875-mg tablet is scored on the reverse side. Inactive ingredients: Colloidal silicon dioxide, crospovidone, FD&C Red No. 30 aluminum lake, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and titanium dioxide. Powder for Oral Suspension: Each 5 mL of reconstituted suspension contains 125 mg, 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate. Each 5 mL of the 125-mg reconstituted suspension contains 0.11 mEq (2.51 mg) of sodium. Each 5 mL of the 200-mg reconstituted suspension contains 0.15 mEq (3.39 mg) of sodium. Each 5 mL of the 250 mg reconstituted suspension contains 0.15 mEq (3.36 mg) of sodium; each 5 mL of the 400 mg reconstituted suspension contains 0.19 mEq (4.33 mg) of sodium. Inactive ingredients: FD&C Red No. 3, flavorings, silica gel, sodium benzoate, sodium citrate, sucrose, and xanthan gum. amoxicillin-chemstruc

CLINICAL STUDIES

14 14.1 H. pylori Eradication to Reduce the Risk of Duodenal Ulcer Recurrence Randomized, double-blind clinical studies performed in the United States in patients with H. pylori and duodenal ulcer disease (defined as an active ulcer or history of an ulcer within 1 year) evaluated the efficacy of lansoprazole in combination with amoxicillin capsules and clarithromycin tablets as triple 14 day therapy, or in combination with amoxicillin capsules as dual 14 day therapy, for the eradication of H. pylori. Based on the results of these studies, the safety and efficacy of 2 different eradication regimens were established: Triple therapy: Amoxicillin 1 gram twice daily/clarithromycin 500 mg twice daily/lansoprazole 30 mg twice daily (see Table 6). Dual therapy: Amoxicillin 1 gram three times daily/lansoprazole 30 mg three times daily (see Table 7). All treatments were for 14 days. H. pylori eradication was defined as 2 negative tests (culture and histology) at 4 to 6 weeks following the end of treatment. Triple therapy was shown to be more effective than all possible dual therapy combinations. Dual therapy was shown to be more effective than both monotherapies. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. Table 6. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Triple Therapy Regimen Study Triple Therapy Triple Therapy ​Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 92 [80.0 – 97.7] (n = 48) 86 [73.3 – 93.5] (n = 55) Study 2 86 [75.7 – 93.6] (n = 66) 83 [72.0 – 90.8] (n = 70) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest®, histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. b Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy. Table 7. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Dual Therapy Regimen Study Dual Therapy Dual Therapy Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 77 [62.5 – 87.2] (n = 51) 70 [56.8 – 81.2] (n = 60) Study 2 66 [51.9 – 77.5] (n = 58) 61 [48.5 – 72.9] (n = 67) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest®, histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. b Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy.

HOW SUPPLIED

16 /STORAGE AND HANDLING Capsules: Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate. The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500 250-mg Capsule NDC 43598-225-01 Bottles of 100 NDC 43598-225-05 Bottles of 500 500-mg Capsule NDC 43598-205-01 Bottles of 100 NDC 43598-205-05 Bottles of 500 Tablets: Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate. Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively. The 875-mg tablet is scored on the reverse side. 500-mg Tablet NDC 43598-224-14 Bottles of 20 NDC 43598-224-01 Bottles of 100 NDC 43598-224-05 Bottles of 500 875-mg Tablet NDC 43598-219-14 Bottles of 20 NDC 43598-219-01 Bottles of 100 Powder for Oral Suspension: Each 5 mL of reconstituted strawberry-flavored suspension contains 125 mg amoxicillin as the trihydrate. Each 5 mL of reconstituted bubble-gum-flavored suspension contains 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate. 125 mg/5 mL NDC 43598-222-80 80-mL bottle NDC 43598-222-52 100-mL bottle NDC 43598-222-53 150-mL bottle 200 mg/5 mL NDC 43598-223-50 50-mL bottle NDC 43598-223-51 75-mL bottle NDC 43598-223-52 100-mL bottle 250 mg/5 mL NDC 43598-209-80 80-mL bottle NDC 43598-209-52 100-mL bottle NDC 43598-209-53 150-mL bottle 400 mg/5 mL NDC 43598-207-50 50-mL bottle NDC 43598-207-51 75-mL bottle NDC 43598-207-52 100-mL bottle Store at or below 25ºC (77ºF) 250 mg and 500 mg Capsules 500 mg and 875 mg Tablets 200 mg and 400 mg unreconstituted powder Store Dry Powder at 20ºC-25ºC (68ºF-77ºF) 125 mg and 250 mg unreconstituted powder

RECENT MAJOR CHANGES

Indications and Usage, Gonorrhea (1.5)……………………………………………………………………………… Removed 9/2015 Dosage and Administration, Gonorrhea (2.1) …………………………………………………………………………Removed 9/2015

DOSAGE FORMS AND STRENGTHS

3 Capsules: 250 mg, 500 mg. Each capsule of AMOXICILLIN, with royal blue opaque cap and pink opaque body, contains 250 mg or 500 mg amoxicillin as the trihydrate. The cap and body of the 250-mg capsule are imprinted with the product name AMOXIL and 250; the cap and body of the 500 mg capsule are imprinted with AMOXIL and 500. Tablets: 500 mg, 875 mg. Each tablet contains 500 mg or 875 mg amoxicillin as the trihydrate. Each film-coated, capsule-shaped, pink tablet is debossed with AMOXIL centered over 500 or 875, respectively. The 875-mg tablet is scored on the reverse side. Powder for Oral Suspension: 125 mg/5 mL, 200 mg/5 mL, 250 mg/5 mL, 400 mg/5 mL. Each 5 mL of reconstituted strawberry-flavored suspension contains 125 mg amoxicillin as the trihydrate. Each 5 mL of reconstituted bubble-gum-flavored suspension contains 200 mg, 250 mg or 400 mg amoxicillin as the trihydrate. Capsules: 250 mg, 500 mg (3) Tablets: 500 mg, 875 mg (3) Powder for Oral Suspension: 125 mg/5 mL, 200 mg/5 mL, 250 mg/5 mL, 400 mg/5 mL (3)

INDICATIONS AND USAGE

1 AMOXICILLIN is a penicillin-class antibacterial indicated for treatment of infections due to susceptible strains of designated microorganisms. Infections of the ear, nose, throat, genitourinary tract, skin and skin structure, and lower respiratory tract. (1.1 – 1.4) In combination for treatment of H. pylori infection and duodenal ulcer disease. (1.5) To reduce the development of drug-resistant bacteria and maintain the effectiveness of AMOXICILLIN and other antibacterial drugs, AMOXICILLIN should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. (1.6) 1.1 Infections of the Ear, Nose, and Throat AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus species. (α and β hemolytic isolates only), Streptococcus pneumoniae, Staphylococcus spp., or Haemophilus influenzae. 1.2 Infections of the Genitourinary Tract AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Escherichia coli, Proteus mirabilis, or Enterococcus faecalis. 1.3 Infections of the Skin and Skin Structure AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus spp. (α and β hemolytic isolates only), Staphylococcus spp., or E. coli. 1.4 Infections of the Lower Respiratory Tract AMOXICILLIN is indicated in the treatment of infections due to susceptible (ONLY β-lactamase–negative) isolates of Streptococcus spp. (α and β hemolytic isolates only), S. pneumoniae, Staphylococcus spp., or H. influenzae. 1.5 Helicobacter pylori Infection Triple therapy for Helicobacter pylori with clarithromycin and lansoprazole: AMOXICILLIN, in combination with clarithromycin plus lansoprazole as triple therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or 1 year history of a duodenal ulcer) to eradicate H. pylori. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. Dual therapy for H. pylori with lansoprazole: AMOXICILLIN, in combination with lansoprazole delayed release capsules as dual therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or 1 year history of a duodenal ulcer) who are either allergic or intolerant to clarithromycin or in whom resistance to clarithromycin is known or suspected. (See the clarithromycin package insert, MICROBIOLOGY.) Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. 1.6 Usage To reduce the development of drug resistant bacteria and maintain the effectiveness of AMOXICILLIN and other antibacterial drugs, AMOXICILLIN should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Anaphylactic reactions: Serious and occasionally fatal anaphylactic reactions have been reported in patients on penicillin therapy. Serious anaphylactic reactions require immediate emergency treatment with supportive measures. (5.1) Clostridium difficile-associated diarrhea (ranging from mild diarrhea to fatal colitis): Evaluate if diarrhea occurs. (5.2) 5.1 Anaphylactic Reactions Serious and occasionally fatal hypersensitivity (anaphylactic) reactions have been reported in patients on penicillin therapy including amoxicillin. Although anaphylaxis is more frequent following parenteral therapy, it has occurred in patients on oral penicillins. These reactions are more likely to occur in individuals with a history of penicillin hypersensitivity and/or a history of sensitivity to multiple allergens. There have been reports of individuals with a history of penicillin hypersensitivity who have experienced severe reactions when treated with cephalosporins. Before initiating therapy with AMOXICILLIN, careful inquiry should be made regarding previous hypersensitivity reactions to penicillins, cephalosporins, or other allergens. If an allergic reaction occurs, AMOXICILLIN should be discontinued and appropriate therapy instituted. 5.2 Clostridium difficile Associated Diarrhea Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including AMOXICILLIN, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile. C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin-producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial use. Careful medical history is necessary since CDAD has been reported to occur over 2 months after the administration of antibacterial agents. If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated. 5.3 Development of Drug-Resistant Bacteria Prescribing AMOXICILLIN in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria. 5.4 Use in Patients With Mononucleosis A high percentage of patients with mononucleosis who receive amoxicillin develop an erythematous skin rash. Thus amoxicillin should not be administered to patients with mononucleosis. 5.5 Phenylketonurics Amoxicillin chewable tablets contain aspartame which contains phenylalanine. Each 200 mg chewable tablet contains 1.82 mg phenylalanine; each 400 mg chewable tablet contains 3.64 mg phenylalanine. The oral suspensions of Amoxicillin do not contain phenylalanine and can be used by phenylketonurics.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Information for Patients Patients should be advised that AMOXICILLIN may be taken every 8 hours or every 12 hours, depending on the dose prescribed. Patients should be counseled that antibacterial drugs, including AMOXICILLIN, should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When AMOXICILLIN is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may: (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by AMOXICILLIN or other antibacterial drugs in the future. Patients should be counseled that diarrhea is a common problem caused by antibiotics, and it usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as 2 or more months after having taken their last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible. Patients should be aware that AMOXICILLIN contains a penicillin class drug product that can cause allergic reactions in some individuals. AMOXIL is registered trademark of GlaxoSmithKline and is licensed to Dr. Reddy’s Laboratories Inc. Manufactured. By: Dr. Reddy’s Laboratories Tennessee LLC. Bristol, TN 37620 Issued: 052016

DOSAGE AND ADMINISTRATION

2 In adults, 750-1750 mg/day in divided doses every 8-12 hours. In Pediatric Patients > 3 Months of Age, 20-45 mg/kg/day in divided doses every 8-12 hours. Refer to full prescribing information for specific dosing regimens. (2.1, 2.2, 2.3) The upper dose for neonates and infants ≤ 3 months is 30 mg/kg/day divided every 12 hours. (2.2) Dosing for H. pylori Infection: Triple therapy: 1 gram AMOXICILLIN, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days. Dual therapy: 1 gram AMOXICILLIN and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days. (2.3) Reduce the dose in patients with severe renal impairment (GFR 3 Months of Age Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic or evidence of bacterial eradication has been obtained. It is recommended that there be at least 10 days treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever. In some infections, therapy may be required for several weeks. It may be necessary to continue clinical and/or bacteriological follow-up for several months after cessation of therapy. Table 1. Dosing Recommendations for Adult and Pediatric Patients > 3 Months of Age Infection Severitya Usual Adult Dose Usual Dose for Children > 3 Monthsb Ear/Nose/Throat Skin/Skin Structure Genitourinary Tract Mild/Moderate 500 mg every 12 hours or 250 mg every 8 hours 25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours Lower Respiratory Tract Mild/Moderate or Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours a Dosing for infections caused by bacteria that are intermediate in their susceptibility to amoxicillin should follow the recommendations for severe infections. b The children’s dosage is intended for individuals whose weight is less than 40 kg. Children weighing 40 kg or more should be dosed according to the adult recommendations. 2.2 Dosing in Neonates and Infants Aged ≤ 12 Weeks (≤ 3 Months) Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic or evidence of bacterial eradication has been obtained. It is recommended that there be at least 10 days’ treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever. Due to incompletely developed renal function affecting elimination of amoxicillin in this age group, the recommended upper dose of AMOXICILLIN is 30 mg/kg/day divided every 12 hours. There are currently no dosing recommendations for pediatric patients with impaired renal function. 2.3 Dosing for H. pylori Infection Triple therapy: The recommended adult oral dose is 1 gram AMOXICILLIN, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days. Dual therapy: The recommended adult oral dose is 1 gram AMOXICILLIN and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days. Please refer to clarithromycin and lansoprazole full prescribing information. 2.4 Dosing in Renal Impairment Patients with impaired renal function do not generally require a reduction in dose unless the impairment is severe. Severely impaired patients with a glomerular filtration rate of < 30 mL/min. should not receive a 875 mg dose. Patients with a glomerular filtration rate of 10 to 30 mL/min should receive 500 mg or 250 mg every 12 hours, depending on the severity of the infection. Patients with a glomerular filtration rate less than 10 mL/min should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection. Hemodialysis patients should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection. They should receive an additional dose both during and at the end of dialysis. 2.5 Directions for Mixing Oral Suspension Tap bottle until all powder flows freely. Add approximately 1/3 of the total amount of water for reconstitution (see Table 2) and shake vigorously to wet powder. Add remainder of the water and again shake vigorously. Table 2. Amount of Water for Mixing Oral Suspension Strength Bottle Size Amount of Water Required for Reconstitution Oral Suspension 125 mg/5 mL 80 mL 62 mL 100 mL 78 mL 150 mL 116 mL Oral Suspension 200 mg/5 mL 50 mL 39 mL 75 mL 57 mL 100 mL 76 mL Oral Suspension 250 mg/5 mL 80 mL 59 mL 100 mL 74 mL 150 mL 111 mL Oral Suspension 400 mg/5 mL 50 mL 36 mL 75 mL 54 mL 100 mL 71 mL After reconstitution, the required amount of suspension should be placed directly on the child’s tongue for swallowing. Alternate means of administration are to add the required amount of suspension to formula, milk, fruit juice, water, ginger ale, or cold drinks. These preparations should then be taken immediately. NOTE: SHAKE ORAL SUSPENSION WELL BEFORE USING. Keep bottle tightly closed. Any unused portion of the reconstituted suspension must be discarded after 14 days. Refrigeration is preferable, but not required.

aspirin 325 MG Enteric Coated Oral Tablet

Generic Name: REGULAR STRENGTH
Brand Name: Enteric Coated Aspirin
  • Substance Name(s):
  • ASPIRIN

WARNINGS

Reye’s syndrome: Children and teenagers who have or are recovering from chicken pox or flu-like symptoms should not use this product. When using this product, if changes in behavior with nausea and vomiting occur, consult a doctor because these symptoms could be an early sign of Reye’s syndrome, a rare but serious illness. Allergy alert: Aspirin may cause a severe allergic reaction which may include: hives facial swelling asthma (wheezing) shock Stomach bleeding warning: This product contains an NSAID, which may cause severe stomach bleeding. The chance is higher if you: are age 60 or older have had stomach ulcers or bleeding problems take a blood thinning (anticoagulant) or steroid drug take other drugs containing prescription or nonprescription NSAIDs (aspirin, ibuprofen, naproxen, or others) have 3 or more alcoholic drinks every day while using this product take more or for a longer time than directed Do Not Use if you are allergic to aspirin or other pain relievers/fever reducers Ask a doctor before use if stomach bleeding warning applies to you you have a history of stomach problems, such as heartburn you have high blood pressure, heart disease, liver cirrhosis, or kidney disease you have asthma you are taking a diuretic Ask a doctor or pharmacist before use if you are taking a prescription drug for: anticoagulation (thinning the blood) diabetes gout arthritis Stop use and ask a doctor if an allergic reaction occurs. Seek medical help right away. you experience any of the following signs of stomach bleeding: feel faint, vomit blood, have bloody or black stools, have stomach pain that does not get better new symptoms occur redness or swelling is present ringing in the ears or loss of hearing occurs pain gets worse or lasts for more than 10 days If pregnant or breast-feeding, ask a health professional before use. It is especially important not to use aspirin during the last 3 months of pregnancy unless specifically directed to do so by a doctor because it may cause problems in the unborn child or complications during delivery. Keep Out of Reach of Children In case of overdose, get medical help or contact a Poison Control Center right away.

INDICATIONS AND USAGE

USES for the temporary relief of minor aches and pains or as recommended by your doctor. Because of its delayed action, this product will not provide fast relief of headaches or other symptoms needing immediate relief.

INACTIVE INGREDIENTS

corrn starch, croscarmellose sodium, Dimethicone, D&C Yellow # 10 aluminum lake, FD&C Yellow #6 aluminum lake, hypromellose, methacrylic acid copolymer, microcrystalline cellulose, mineral oil, polysorbate 80, sodium hydroxide, sodium lauryl sulfate, talc, titanium dioxide, triethyl citrate.

PURPOSE

Pain reliever

KEEP OUT OF REACH OF CHILDREN

Keep Out of Reach of Children In case of overdose, get medical help or contact a Poison Control Center right away.

ASK DOCTOR

Ask a doctor before use if stomach bleeding warning applies to you you have a history of stomach problems, such as heartburn you have high blood pressure, heart disease, liver cirrhosis, or kidney disease you have asthma you are taking a diuretic

DOSAGE AND ADMINISTRATION

DIRECTIONS drink a full glass of water with each dose adults and children 12 years and over: take 1 or 2 tablets every 4 hours not to exceed 12 tablets in 24 hours unless directed by a doctor children under 12 years: consult a doctor

PREGNANCY AND BREAST FEEDING

If pregnant or breast-feeding, ask a health professional before use. It is especially important not to use aspirin during the last 3 months of pregnancy unless specifically directed to do so by a doctor because it may cause problems in the unborn child or complications during delivery.

DO NOT USE

Do Not Use if you are allergic to aspirin or other pain relievers/fever reducers

STOP USE

Stop use and ask a doctor if an allergic reaction occurs. Seek medical help right away. you experience any of the following signs of stomach bleeding: feel faint, vomit blood, have bloody or black stools, have stomach pain that does not get better new symptoms occur redness or swelling is present ringing in the ears or loss of hearing occurs pain gets worse or lasts for more than 10 days

ACTIVE INGREDIENTS

(IN EACH TABLET) Aspirin 325mg (NSAID*) *nonsteroidal anti-inflammatory drug

ASK DOCTOR OR PHARMACIST

Ask a doctor or pharmacist before use if you are taking a prescription drug for: anticoagulation (thinning the blood) diabetes gout arthritis

levothyroxine sodium 50 MCG Oral Tablet

Generic Name: LEVOTHYROXINE SODIUM
Brand Name: LEVOTHYROXINE SODIUM
  • Substance Name(s):
  • LEVOTHYROXINE SODIUM

WARNINGS

WARNING: Thyroid hormones, including Levothyroxine Sodium Tablets, USP, either alone or with other therapeutic agents, should not be used for the treatment of obesity for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects. Levothyroxine sodium should not be used in the treatment of male or female infertility unless this condition is associated with hypothyroidism. In patients with nontoxic diffuse goiter or nodular thyroid disease, particularly the elderly or those with underlying cardiovascular disease, levothyroxine sodium therapy is contraindicated if the serum TSH level is already suppressed due to the risk of precipitating overt thyrotoxicosis (see CONTRAINDICATIONS ). If the serum TSH level is not suppressed, Levothyroxine Sodium Tablets, USP should be used with caution in conjunction with careful monitoring of thyroid function for evidence of hyperthyroidism and clinical monitoring for potential associated adverse cardiovascular signs and symptoms of hyperthyroidism.

DRUG INTERACTIONS

Drug Interactions Many drugs affect thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to Levothyroxine Sodium Tablets, USP. In addition, thyroid hormones and thyroid status have varied effects on the pharmacokinetics and action of other drugs. A listing of drug-thyroidal axis interactions is contained in Table 2. The list of drug-thyroidal axis interactions in Table 2 may not be comprehensive due to the introduction of new drugs that interact with the thyroidal axis or the discovery of previously unknown interactions. The prescriber should be aware of this fact and should consult appropriate reference sources (e.g., package inserts of newly approved drugs, medical literature) for additional information if a drug-drug interaction with levothyroxine is suspected. Table 2: Drug-Thyroidal Axis Interactions Drug or Drug Class Effect Drugs that may reduce TSH secretion – the reduction is not sustained; therefore, hypothyroidism does not occur Dopamine/Dopamine Agonists Glucocorticoids Octreotide Use of these agents may result in a transient reduction in TSH secretion when administered at the following doses: dopamine ( ≥ 1 mcg/kg/min); Glucocorticoids (hydrocortisone ≥ 100 mg/day or equivalent); Octreotide ( > 100 mcg/day). Drugs that alter thyroid hormone secretion Drugs that may decrease thyroid hormone secretion, which may result in hypothyroidism Aminoglutethimide Amiodarone Iodide (including iodine-containing Radiographic contrast agents) Lithium Methimazole Propylthioracil (PTU) Sulfonamides Tolbutamide Long-term lithium therapy can result in goiter in up to 50% of patients, and either subclinical or overt hypothyroidism, each in up to 20% of patients. The fetus, neonate, elderly and euthyroid patients with underlying thyroid disease (e.g., Hashimoto’s thyroiditis or with Grave’s disease previously treated with radioiodine or surgery) are among those individuals who are particularly susceptible to iodine-induced hypothyroidism. Oral cholecystographic agents and amiodarone are slowly excreted, producing more prolonged hypothyroidism than parenterally administered iodinated contrast agents. Long-term amino-glu-tethimide therapy may minimally decrease T4 and T3 levels and increase TSH, although all values remain within normal limits in most patients. Drugs that may increase thyroid hormone secretion, which may result in hyperthyroidism Amiodarone Iodide (including iodine-containing Radiographic contrast agents) Iodide and drugs that contain pharmacologic amounts of iodide may cause hyperthyroidism in euthyroid patients with Grave’s disease previously treated with antithyroid drugs or in euthyroid patients with thyroid autonomy (e.g., multinodular goiter or hyper functioning thyroid adenoma). Hyperthyroidism may develop over several weeks and may persist for several months after therapy discontinuation. Amiodarone may induce hyperthyroidism by causing thyroiditis. Drugs that may decrease T 4 absorption, which may result in hypothyroidism Antacids – Aluminum & Magnesium Hydroxides – Simethicone Bile Acid Sequestrants – Cholestyramine – Colestipol Calcium Carbonate Cation Exchange Resins – Kayexalate Ferrous Sulfate Orlistat Sucralfate Concurrent use may reduce the efficacy of levothyroxine by binding and delaying or preventing absorption, potentially resulting in hypothyroidism. Calcium carbonate may form an insoluble chelate with levothyroxine, and ferrous sulfate likely forms a ferric-thyroxine complex. Administer levothyroxine at least 4 hours apart from these agents. Patients treated concomitantly with orlistat and levothyroxine should be monitored for changes in thyroid function. Drugs that may alter T 4 and T 3 serum transport – but FT 4 concentration remains normal; and, therefore, the patient remains euthyroid Drugs that may increase serum TBG concentration Drugs that may decrease serum TBG concentration Clofibrate Estrogen-containing oral contraceptives Estrogens (oral) Heroin / Methadone 5-Fluorouracil Mitotane Tamoxifen Androgens / Anabolic Steroids Asparaginase Glucocorticoids Slow-Release Nicotinic Acid Drugs that may cause protein-binding site displacement Furosemide ( > 80 mg IV) Heparin Hydantoins Non Steroidal Anti-lnflammatory Drugs – Fenamates – Phenylbutazone Salicylates ( > 2 g/day) Administration of these agents with levothyroxine results in an initial transient increase in FT4. Continued administration results in a decrease in serum T4 and normal FT4 and TSH concentrations and, therefore, patients are clinically euthyroid. Salicylates inhibit binding of T4 and T3 to TBG and transthyretin. An initial increase in serum FT4, is followed by return of FT4 to normal levels with sustained therapeutic serum salicylate concentrations, although total-T4 levels may decrease by as much as 30%. Drugs that may alter T 4 and T 3 metabolism Drugs that may increase hepatic metabolism, which may result in hypothyroidism Carbamazepine Hydantoins Phenobarbital Rifampin Stimulation of hepatic microsomal drug-metabolizing enzyme activity may cause increased hepatic degradation of levothyroxine, resulting in increased Ievothyroxine requirements. Phenytoin and carbamazepine reduce serum protein binding of levothyroxine, and total- and free-T4 may be reduced by 20% to 40%, but most patients have normal serum TSH levels and are clinically euthyroid. Drugs that may decrease T 4 5′ – deiodinase activity Amiodarone Beta-adrenergic antagonists – (e.g., Propranolol > 160 mg/day) Glucocorticoids -(e.g., Dexamethasone ≥ 4 mg/day) Propylthiouracil (PTU) Administration of these enzyme inhibitors decrease the peripheral conversion of T4 to T3, leading to decreased T3 levels. However, serum T4 levels are usually normal but may occasionally be slightly increased. In patients treated with large doses of propranolol ( > 160 mg/day), T3 and T4 levels change slightly, TSH levels remain normal, and patients are clinically euthyroid. It should be noted that actions of particular beta-adrenergic antagonists may be impaired when the hypothyroid patient is converted to the euthyroid state. Short-term administration of large doses of glucocorticoids may decrease serum T3 concentrations by 30% with minimal change in serum T4 levels. However, long-term glucocorticoid therapy may result in slightly decreased T3 and T4 levels due to decreased TBG production (see above). Miscellaneous Anticoagulants (oral) – Coumarin Derivatives – Indandione Derivatives Thyroid hormones appear to increase the catabolism of vitamin K-dependent clotting factors, thereby increasing the anticoagulant activity of oral anticoagulants. Concomitant use of these agents impairs the compensatory increases in clotting factor synthesis. Prothrombin time should be carefully monitored in patients taking levothyroxine and oral anticoagulants and the dose of anticoagulant therapy adjusted accordingly. Antidepressants – Tricyclics (e.g., Amitriptyline) – Tetracyclics (e.g., Maprotiline) – Selective Serotonin Reuptake Inhibitors (SSRIs; e.g., Sertraline) Concurrent use of tri/tetracyclic antidepressants and levothyroxine may increase the therapeutic and toxic effects of both drugs, possibly due to increased receptor sensitivity to catecholamines.Toxic effects may include increased risk of cardiac arrhythmias and CNS stimulation; onset of action of tricyclics may be accelerated. Administration of sertraline in patients stabilized on levothyroxine may result in increased levothyroxine requirements. Antidiabetic Agents – Biguanides – Meglitinides – Sulfonylureas – Thiazolidediones – Insulin Addition of levothyroxine to antidiabetic or insulin therapy may result in increased antidiabetic agent or insulin requirements. Careful monitoring of diabetic control is recommended, especially when thyroid therapy is started, changed, or discontinued. Cardiac Glycosides Serum digitalis glycoside levels may be reduced in hyperthyroidism or when the hypothyroid patient is converted to the euthyroid state. Therapeutic effect of digitalis glycosides may be reduced. Cytokines – Interferon-α – Interleukin-2 Therapy with interferon-α has been associated with the development of antithyroid microsomal antibodies in 20% of patients and some have transient hypothyroidism, hyperthyroidism, or both. Patients who have antithyroid antibodies before treatment are at higher risk for thyroid dysfunction during treatment. Interleukin-2 has been associated with transient painless thyroiditis in 20% of patients. Interferon-β and -γ have not been reported to cause thyroid dysfunction. Growth Hormones – Somatrem – Somatropin Excessive use of thyroid hormones with growth hormones may accelerate epiphyseal closure. However, untreated hypothyroidism may interfere with growth response to growth hormone. Ketamine Concurrent use may produce marked hypertension and tachycardia; cautious administration to patients receiving thyroid hormone therapy is recommended. Methylxanthine Bronchodilators – (e.g., Theophylline) Decreased theophylline clearance may occur in hypothyroid patients; clearance returns to normal when the euthyroid state is achieved. Radiographic Agents Thyroid hormones may reduce the uptake of 123I, 131I, and 99mTc. Sympathomimetics Concurrent use may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease. Chloral Hydrate Diazepam Ethionamide Lovastatin Metoclopramide 6-Mercaptopurine Nitroprusside Para-aminosalicylate sodium Perphenazine Resorcinol (excessive topical use) Thiazide Diuretics These agents have been associated with thyroid hormone and/or TSH level alterations by various mechanisms. Oral anticoagulants – Levothyroxine increases the response to oral anticoagulant therapy. Therefore, a decrease in the dose of anticoagulant may be warranted with correction of the hypothyroid state or when the Levothyroxine Sodium Tablets, USP dose is increased. Prothrombin time should be closely monitored to permit appropriate and timely dosage adjustments (see Table 2). Digitalis glycosides – The therapeutic effects of digitalis glycosides may be reduced by levothyroxine. Serum digitalis glycoside levels may be decreased when a hypothyroid patient becomes euthyroid, necessitating an increase in the dose of digitalis glycosides (see Table 2).

OVERDOSAGE

The signs and symptoms of overdosage are those of hyperthyroidism (see PRECAUTIONS and ADVERSE REACTIONS ). In addition, confusion and disorientation may occur. Cerebral embolism, shock, coma, and death have been reported. Seizures have occurred in a child ingesting 18 mg of levothyroxine. Symptoms may not necessarily be evident or may not appear until several days after ingestion of levothyroxine sodium. Treatment of Overdosage Levothyroxine sodium should be reduced in dose or temporarily discontinued if signs or symptoms of overdosage occur. Acute Massive Overdosage – This may be a life-threatening emergency, therefore, symptomatic and supportive therapy should be instituted immediately. If not contraindicated (e.g., by seizures, coma, or loss of the gag reflex), the stomach should be emptied by emesis or gastric lavage to decrease gastrointestinal absorption. Activated charcoal or cholestyramine may also be used to decrease absorption. Central and peripheral increased sympathetic activity may be treated by administering β-receptor antagonists, e.g., propranolol, provided there are no medical contraindications to their use. Provide respiratory support as needed; control congestive heart failure and arrhythmia; control fever, hypoglycemia, and fluid loss as necessary. Large doses of antithyroid drugs (e.g., methimazole or propylthiouracil) followed in one to two hours by large doses of iodine may be given to inhibit synthesis and release of thyroid hormones. Glucocorticoids may be given to inhibit the conversion of T4 to T3. Plasmapheresis, charcoal hemoperfusion and exchange transfusion have been reserved for cases in which continued clinical deterioration occurs despite conventional therapy. Because T4 is highly protein bound, very little drug will be removed by dialysis.

DESCRIPTION

Levothyroxine Sodium Tablets, USP contain synthetic crystalline L-3,3′,5,5′-tetraiodothyronine sodium salt [levothyroxine (T4) sodium]. Synthetic T4 is identical to that produced in the human thyroid gland. Levothyroxine (T4) sodium has an empirical formula of C15H10I4N NaO4 • H2O, molecular weight of 798.86 g/mol (anhydrous), and structural formula as shown: Chemical Structure Inactive Ingredients Colloidal silicon dioxide, lactose, magnesium stearate, microcrystalline cellulose, corn starch, acacia and sodium starch glycolate. The following are the coloring additives per tablet strength: Strength (mcg) Color Additive(s) 25 FD&C Yellow No. 6 Aluminum Lake 50 None 75 FD&C Red No. 40 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake 88 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake 100 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake 112 D&C Red No. 27 Aluminum Lake 125 FD&C Yellow No. 6 Aluminum Lake, FD&C Red No. 40 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake 137 FD&C Blue No. 1 Aluminum Lake 150 FD&C Blue No. 2 Aluminum Lake 175 FD&C Blue No. 1 Aluminum Lake, D&C Red No. 27 Aluminum Lake 200 FD&C Red No. 40 Aluminum Lake 300 D&C Yellow No. 10 Aluminum Lake, FD&C Yellow No. 6 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake

HOW SUPPLIED

Levothyroxine Sodium 50 mcg Tablets, USP are round, white, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-403-30 Bottles of 100 – NDC # 16590-403-71 Bottles of 180 – NDC # 16590-403-82 Levothyroxine Sodium 100 mcg Tablets, USP are round, yellow, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-302-30 Bottles of 60 – NDC # 16590-302-60 Bottles of 90 – NDC # 16590-302-90 Bottles of 100 – NDC # 16590-302-71 Levothyroxine Sodium 112 mcg Tablets, USP are round, rose colored, partial bisected tablets debossed with JSP and ID Number: Bottles of 30 – NDC # 16590-977-30 STORAGE CONDITIONS: 20°C to 25°C (68°F to 77°F) with excursions between 15°C to 30°C (59°F to 86°F) Rx only Manufactured for: Lannett Company, Inc. Philadelphia, PA 19136 Manufactured by: Jerome Stevens Pharmaceuticals, Inc. Bohemia, NY 11716 Rev. 10/07 Relabeling and Repackaging by: STAT Rx USA LLC Gainesville, GA 30501

GERIATRIC USE

Geriatric Use Because of the increased prevalence of cardiovascular disease among the elderly, levothyroxine therapy should not be initiated at the full replacement dose (see WARNINGS, PRECAUTIONS and DOSAGE AND ADMINISTRATION ).

INDICATIONS AND USAGE

Levothyroxine sodium is used for the following indications: Hypothyroidism – As replacement or supplemental therapy in congenital or acquired hypothyroidism of any etiology, except transient hypothyroidism during the recovery phase of subacute thyroiditis. Specific indications include: primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) hypothyroidism and subclinical hypothyroidism. Primary hypothyroidism may result from functional deficiency, primary atrophy, partial or total congenital absence of the thyroid gland, or from the effects of surgery, radiation, or drugs, with or without the presence of goiter. Pituitary TSH Suppression – In the treatment or prevention of various types of euthyroid goiters (see WARNINGS and PRECAUTIONS ), including thyroid nodules (see WARNINGS and PRECAUTIONS ), subacute or chronic Iymphocytic thyroiditis (Hashimoto’s thyroiditis), multinodular goiter (see WARNINGS and PRECAUTIONS ), and, as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer.

PEDIATRIC USE

Pediatric Use General The goal of treatment in pediatric patients with hypothyroidism is to achieve and maintain normal intellectual and physical growth and development. The initial dose of levothyroxine varies with age and body weight (see DOSAGE AND ADMINISTRATION , Table 3). Dosing adjustments are based on an assessment of the individual patient’s clinical and laboratory parameters (see PRECAUTIONS, Laboratory Tests ). In children in whom a diagnosis of permanent hypothyroidism has not been established, it is recommended that levothyroxine administration be discontinued for a 30-day trial period, but only after the child is at least 3 years of age. Serum T4 and TSH levels should then be obtained. If the T4 is low and the TSH high, the diagnosis of permanent hypothyroidism is established, and levothyroxine therapy should be reinstituted. If the T4 and TSH levels are normal, euthyroidism may be assumed and, therefore, the hypothyroidism can be considered to have been transient. In this instance, however, the physician should carefully monitor the child and repeat the thyroid function tests if any signs or symptoms of hypothyroidism develop. In this setting, the clinician should have a high index of suspicion of relapse. If the results of the levothyroxine withdrawal test are inconclusive, careful follow-up and subsequent testing will be necessary. Since some more severely affected children may become clinically hypothyroid when treatment is discontinued for 30 days, an alternate approach is to reduce the replacement dose of levothyroxine by half during the 30-day trial period. If, after 30 days, the serum TSH is elevated above 20 mU/L, the diagnosis of permanent hypothyroidism is confirmed, and full replacement therapy should be resumed. However, if the serum TSH has not risen to greater than 20 mU/L, levothyroxine treatment should be discontinued for another 30-day trial period followed by repeat serum T4 and TSH. The presence of concomitant medical conditions should be considered in certain clinical circumstances and, if present, appropriately treated (see PRECAUTIONS ). Congenital Hypothyroidism (see PRECAUTIONS, Laboratory Tests and DOSAGE AND ADMINISTRATION ) Rapid restoration of normal serum T4 concentrations is essential for preventing the adverse effects of congenital hypothyroidism on intellectual development as well as on overall physical growth and maturation. Therefore, Levothyroxine Sodium Tablets, USP therapy should be initiated immediately upon diagnosis and is generally continued for life. During the first 2 weeks of Levothyroxine Sodium Tablets, USP therapy, infants should be closely monitored for cardiac overload, arrhythmias, and aspiration from avid suckling. The patient should be monitored closely to avoid undertreatment or overtreatment. Undertreatment may have deleterious effects on intellectual development and linear growth. Overtreatment has been associated with craniosynostosis in infants, and may adversely affect the tempo of brain maturation and accelerate the bone age with resultant premature closure of the epiphyses and compromised adult stature. Acquired Hypothyroidism in Pediatric Patients The patient should be monitored closely to avoid undertreatment and overtreatment. Undertreatment may result in poor school performance due to impaired concentration and slowed mentation and in reduced adult height. Overtreatment may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature. Treated children may manifest a period of catch-up growth, which may be adequate in some cases to normalize adult height. In children with severe or prolonged hypothyroidism, catch-up growth may not be adequate to normalize adult height.

PREGNANCY

Pregnancy – Category A Studies in women taking levothyroxine sodium during pregnancy have not shown an increased risk of congenital abnormalities. Therefore, the possibility of fetal harm appears remote. Levothyroxine Sodium Tablets, USP should not be discontinued during pregnancy and hypothyroidism diagnosed during pregnancy should be promptly treated. Hypothyroidism during pregnancy is associated with a higher rate of complications, including spontaneous abortion, pre-eclampsia, stillbirth and premature delivery. Maternal hypothyroidism may have an adverse effect on fetal and childhood growth and development. During pregnancy, serum T4 levels may decrease and serum TSH levels increase to values outside the normal range. Since elevations in serum TSH may occur as early as 4 weeks gestation, pregnant women taking Levothyroxine Sodium Tablets, USP should have their TSH measured during each trimester. An elevated serum TSH level should be corrected by an increase in the dose of Levothyroxine Sodium Tablets, USP. Since postpartum TSH levels are similar to preconception values, the Levothyroxine Sodium Tablets, USP dosage should return to the pre-pregnancy dose immediately after delivery. A serum TSH level should be obtained 6-8 weeks postpartum. Thyroid hormones cross the placental barrier to some extent as evidenced by levels in cord blood of athyroceotic fetuses being approximately one third maternal levels. Transfer of thyroid hormone from the mother to the fetus, however, may not be adequate to prevent in utero, hypothyroidism.

NUSRING MOTHERS

Nursing Mothers Although thyroid hormones are excreted only minimally in human milk, caution should be exercised when Levothyroxine Sodium Tablets, USP is administered to a nursing woman. However, adequate replacement doses of levothyroxine are generally needed to maintain normal lactation.

BOXED WARNING

WARNING: Thyroid hormones, including Levothyroxine Sodium Tablets, USP, either alone or with other therapeutic agents, should not be used for the treatment of obesity for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects.

INFORMATION FOR PATIENTS

Information for Patients Patients should be informed of the following information to aid in the safe and effective use of Levothyroxine Sodium Tablets, USP: Notify your physician if you are allergic to any foods or medicines, are pregnant or intend to become pregnant, are breast-feeding or are taking any other medications, including prescription and over-the-counter preparations. Notify your physician of any other medical conditions you may have, particularly heart disease, diabetes, clotting disorders, and adrenal or pituitary gland problems. Your dose of medications used to control these other conditions may need to be adjusted while you are taking Levothyroxine Sodium Tablets, USP. If you have diabetes, monitor your blood and/or urinary glucose levels as directed by your physician and immediately report any changes to your physician. If you are taking anticoagulants (blood thinners), your clotting status should be checked frequently. Use Levothyroxine Sodium Tablets, USP only as prescribed by your physician. Do not discontinue or change the amount you take or how often you take it, unless directed to do so by your physician. The levothyroxine in Levothyroxine Sodium Tablets, USP is intended to replace a hormone that is normally produced by your thyroid gland. Generally, replacement therapy is to be taken for life, except in cases of transient hypothyroidism, which is usually associated with an inflammation of the thyroid gland (thyroiditis). Take Levothyroxine Sodium Tablets, USP in the morning on an empty stomach, at least one-half hour to one hour before eating any food. It may take several weeks before you notice an improvement in your symptoms. Notify your physician if you experience any of the following symptoms: rapid or irregular heartbeat, chest pain, shortness of breath, leg cramps, headache, nervousness, irritability, sleeplessness, tremors, change in appetite, weight gain or loss, vomiting, diarrhea, excessive sweating, heat intolerance, fever, changes in menstrual periods, hives or skin rash, or any other unusual medical event. Notify your physician if you become pregnant while taking Levothyroxine Sodium Tablets, USP. It is likely that your dose of Levothyroxine Sodium Tablets, USP will need to be increased while you are pregnant. Notify your physician or dentist that you are taking Levothyroxine Sodium Tablets, USP prior to any surgery. Partial hair loss may occur rarely during the first few months of Levothyroxine Sodium Tablets, USP therapy, but this is usually temporary. Levothyroxine Sodium Tablets, USP should not be used as a primary or adjunctive therapy in a weight control program. Keep Levothyroxine Sodium Tablets, USP out of the reach of children. Store Levothyroxine Sodium Tablets, USP away from heat, moisture, and light. Agents such as iron and calcium supplements and antacids can decrease the absorption of levothyroxine sodium tablets. Therefore, levothyroxine sodium tablets should not be administered within 4 hrs of these agents.

DOSAGE AND ADMINISTRATION

General Principles: The goal of replacement therapy is to achieve and maintain a clinical and biochemical euthyroid state. The goal of suppressive therapy is to inhibit growth and/or function of abnormal thyroid tissue. The dose of Levothyroxine Sodium Tablets, USP that is adequate to achieve these goals depends on a variety of factors including the patient’s age, body weight, cardiovascular status, concomitant medical conditions, including pregnancy, concomitant medications, and the specific nature of the condition being treated (see WARNINGS and PRECAUTIONS ). Hence, the following recommendations serve only as dosing guidelines. Dosing must be individualized and adjustments made based on periodic assessment of the patient’s clinical response and laboratory parameters (see PRECAUTIONS, Laboratory Tests ). Levothyroxine Sodium Tablets, USP should be taken in the morning on an empty stomach, at least one-half hour to one hour before any food is eaten. Levothyroxine Sodium Tablets, USP should be taken at least 4 hours apart from drugs that are known to interfere with its absorption (see PRECAUTIONS, Drug Interactions ). Due to the long half-life of levothyroxine, the peak therapeutic effect at a given dose of levothyroxine sodium may not be attained for 4-6 weeks. Caution should be exercised when administering Levothyroxine Sodium Tablets, USP to patients with underlying cardiovascular disease, to the elderly, and to those with concomitant adrenal insufficiency (see PRECAUTIONS ). Specific Patient Populations: Hypothyroidism in Adults and in Children in Whom Growth and Puberty are Complete (see WARNINGS and PRECAUTIONS, Laboratory Tests ). Therapy may begin at full replacement doses in otherwise healthy individuals less than 50 years old and in those older than 50 years who have been recently treated for hyperthyroidism or who have been hypothyroid for only a short time (such as a few months). The average full replacement dose of levothyroxine sodium is approximately 1.7 mcg/kg/day (e.g., 100-125 mcg/day for a 70 kg adult). Older patients may require less than 1 mcg/kg/day. Levothyroxine sodium doses greater than 200 mcg/day are seldom required. An inadequate response to daily doses ≥ 300 mcg/day is rare and may indicate poor compliance, malabsorption, and/or drug interactions. For most patients older than 50 years or for patients under 50 years of age with underlying cardiac disease, an initial starting dose of 25-50 mcg/day of levothyroxine sodium is recommended, with gradual increments in dose at 6-8 week intervals, as needed. The recommended starting dose of levothyroxine sodium in elderly patients with cardiac disease is 12.5-25 mcg/day, with gradual dose increments at 4-6 week intervals. The levothyroxine sodium dose is generally adjusted in 12.5-25 mcg increments until the patient with primary hypothyroidism is clinically euthyroid and the serum TSH has normalized. In patients with severe hypothyroidism, the recommended initial levothyroxine sodium dose is 12.5-25 mcg/day with increases of 25 mcg/day every 2-4 weeks, accompanied by clinical and laboratory assessment, until the TSH level is normalized. In patients with secondary (pituitary) or tertiary (hypothalamic) hypothyroidism, the levothyroxine sodium dose should be titrated until the patient is clinically euthyroid and the serum free-T4 level is restored to the upper half of the normal range. Pediatric Dosage – Congenital or Acquired Hypothyroidism (see PRECAUTIONS, Laboratory Tests ) General Principles In general, levothyroxine therapy should be instituted at full replacement doses as soon as possible. Delays in diagnosis and institution of therapy may have deleterious effects on the child’s intellectual and physical growth and development. Undertreatment and overtreatment should be avoided (see PRECAUTIONS, Pediatric Use ). Levothyroxine Sodium Tablets, USP may be administered to infants and children who cannot swallow intact tablets by crushing the tablet and suspending the freshly crushed tablet in a small amount (5-10 mL or 1-2 teaspoons) of water. This suspension can be administered by spoon or dropper. DO NOT STORE THE SUSPENSION. Foods that decrease absorption of levothyroxine, such as soybean infant formula, should not be used for administering levothyroxine sodium tablets. (see PRECAUTIONS, Drug-Food Interactions ). Newborns The recommended starting dose of levothyroxine sodium in newborn infants is 10-15 mcg/kg/day. A lower starting dose (e.g., 25 mcg/day) should be considered in infants at risk for cardiac failure, and the dose should be increased in 4-6 weeks as needed based on clinical and laboratory response to treatment. In infants with very low (12 years but growth and puberty incomplete 2-3 mcg/kg/day Growth and puberty complete 1.7 mcg/kg/day Pregnancy- Pregnancy may increase levothyroxine requirements (see PREGNANCY ). Subclinical Hypothyroidism- If this condition is treated, a lower levothyroxine sodium dose (e.g., 1 mcg/kg/day) than that used for full replacement may be adequate to normalize the serum TSH level. Patients who are not treated should be monitored yearly for changes in clinical status and thyroid laboratory parameters. TSH Suppression in Well-differentiated Thyroid Cancer and Thyroid Nodules- The target level for TSH suppression in these conditions has not been established with controlled studies. In addition, the efficacy of TSH suppression for benign nodular disease is controversial. Therefore, the dose of Levothyroxine Sodium Tablets, USP used for TSH suppression should be individualized based on the specific disease and the patient being treated. In the treatment of well differentiated (papillary and follicular) thyroid cancer, levothyroxine is used as an adjunct to surgery and radioiodine therapy. Generally, TSH is suppressed to <0.1 mU/L, and this usually requires a levothyroxine sodium dose of greater than 2 mcg/kg/day. However, in patients with high-risk tumors, the target level for TSH suppression may be <0.01 mU/L. In the treatment of benign nodules and nontoxic multinodular goiter, TSH is generally suppressed to a higher target (e.g., 0.1-0.5 mU/L for nodules and 0.5-1.0 mU/L for multinodular goiter) than that used for the treatment of thyroid cancer. Levothyroxine sodium is contraindicated if the serum TSH is already suppressed due to the risk of precipitating overt thyrotoxicosis (see CONTRAINDICATIONS, WARNINGS and PRECAUTIONS ). Myxedema Coma – Myxedema coma is a life-threatening emergency characterized by poor circulation and hypometabolism, and may result in unpredictable absorption of levothyroxine sodium from the gastrointestinal tract. Therefore, oral thyroid hormone drug products are not recommended to treat this condition. Thyroid hormone products formulated for intravenous administration should be administered.

Lovastatin 10 MG Oral Tablet

WARNINGS

Myopathy/Rhabdomyolysis Lovastatin, like other inhibitors of HMG-CoA reductase, occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase (CK) above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma. The risk of myopathy/rhabdomyolysis is dose related. In a clinical study (EXCEL) in which patients were carefully monitored and some interacting drugs were excluded, there was one case of myopathy among 4933 patients randomized to lovastatin 20 to 40 mg daily for 48 weeks, and 4 among 1649 patients randomized to 80 mg daily. There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents. All patients starting therapy with lovastatin, or whose dose of lovastatin is being increased, should be advised of the risk of myopathy and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if muscle signs and symptoms persists after discontinuing lovastatin. Lovastatin therapy should be discontinued immediately if myopathy is diagnosed or suspected. In most cases, muscle symptoms and CK increases resolved when treatment was promptly discontinued. Periodic CK determinations may be considered in patients starting therapy with lovastatin or whose dose is being increased, but there is no assurance that such monitoring will prevent myopathy. Many of the patients who have developed rhabdomyolysis on therapy with lovastatin have had complicated medical histories, including renal insufficiency usually as a consequence of long-standing diabetes mellitus. Such patients merit closer monitoring. Lovastatin therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. Lovastatin therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy. The risk of myopathy/rhabdomyolysis is increased by concomitant use of lovastatin with the following: Strong inhibitors of CYP3A4 Lovastatin, like several other inhibitors of HMG-CoA reductase, is a substrate of cytochrome P450 3A4 (CYP3A4). Certain drugs which inhibit this metabolic pathway can raise the plasma levels of lovastatin and may increase the risk of myopathy. These include itraconazole, ketoconazole, posaconazole, voriconazole, the macrolide antibiotics erythromycin and clarithromycin, the ketolide antibiotic telithromycin, HIV protease inhibitors, boceprevir, telaprevir, the antidepressant nefazodone, or cobicistat-containing products. Combination of these drugs with lovastatin is contraindicated. If short-term treatment with strong CYP3A4 inhibitors is unavoidable, therapy with lovastatin should be suspended during the course of treatment (see CONTRAINDICATIONS; PRECAUTIONS, Drug Interactions ). Gemfibrozil The combined use of lovastatin with gemfibrozil should be avoided. Other lipid-lowering drugs (other fibrates or ≥1 g/day of niacin) Caution should be used when prescribing other fibrates or lipid-lowering doses (≥1 g/day) of niacin with lovastatin, as these agents can cause myopathy when given alone. The benefit of further alterations in lipid levels by the combined use of lovastatin with other fibrates or niacin should be carefully weighed against the potential risks of these combination s. Cyclosporine The use of lovastatin with cyclosporine should be avoided. Danazol, diltiazem, dronedarone or verapamil with higher doses of lovastatin The dose of lovastatin should not exceed 20 mg daily in patients receiving concomitant medication with danazol, diltiazem, dronedarone, or verapamil. The benefits of the use of lovastatin in patients receiving danazol, diltiazem, dronedarone, or verapamil should be carefully weighed against the risks of these combinations. Amiodarone The dose of lovastatin should not exceed 40 mg daily in patients receiving concomitant medication with amiodarone. The combined use of lovastatin at doses higher than 40 mg daily with amiodarone should be avoided unless the clinical benefit is likely to outweigh the increased risk of myopathy. The risk of myopathy/rhabdomyolysis is increased when amiodarone is used concomitantly with higher doses of a closely related member of the HMG-CoA reductase inhibitor class. Colchicine Cases of myopathy, including rhabdomyolysis, have been reported with lovastatin coadministered with colchicine, and caution should be exercised when prescribing lovastatin with colchicine (see PRECAUTIONS, Drug Interactions ). Ranolazine The risk of myopathy, including rhabdomyolysis, may be increased by concomitant administration of ranolazine. Dose adjustment of lovastatin may be considered during coadministration with ranolazine. Prescribing recommendations for interacting agents are summarized in Table VII (see also CLINICAL PHARMACOLOGY, Pharmacokinetics;PRECAUTIONS, Drug Interactions; DOSAGE AND ADMINISTRATION ). Table VII Drug Interactions Associated with Increased Risk of Myopathy/ Rhabdomyolysis Interacting Agents Prescribing Recommendations Strong CYP3A4 inhibitors, e.g.: Ketoconazole Itraconazole Posaconazole Voriconazole Erythromycin Clarithromycin Telithromycin HIV protease inhibitors Boceprevir Telaprevir Nefazodone Cobicistat-containing products Contraindicated with lovastatin Gemfibrozil Cyclosporine Avoid with lovastatin Danazol Diltiazem Dronedarone Verapamil Do not exceed 20 mg lovastatin daily Amiodarone Do not exceed 40 mg lovastatin daily Grapefruit juice Avoid grapefruit juice Liver Dysfunction Persistent increases (to more than 3 times the upper limit of normal) in serum transaminases occurred in 1.9% of adult patients who received lovastatin for at least one year in early clinical trials (see ADVERSE REACTIONS ). When the drug was interrupted or discontinued in these patients, the transaminase levels usually fell slowly to pretreatment levels. The increases usually appeared 3 to 12 months after the start of therapy with lovastatin, and were not associated with jaundice or other clinical signs or symptoms. There was no evidence of hypersensitivity. In the EXCEL study (see CLINICAL PHARMACOLOGY, Clinical Studies ), the incidence of persistent increases in serum transaminases over 48 weeks was 0.1% for placebo, 0.1% at 20 mg/day, 0.9% at 40 mg/day, and 1.5% at 80 mg/day in patients on lovastatin. However, in post-marketing experience with lovastatin, symptomatic liver disease has been reported rarely at all dosages (see ADVERSE REACTIONS ). In AFCAPS/TexCAPS, the number of participants with consecutive elevations of either alanine aminotransferase (ALT) or aspartate aminotransferase (AST) (> 3 times the upper limit of normal), over a median of 5.1 years of follow-up, was not significantly different between the lovastatin and placebo groups (18 [0.6%] vs. 11 [0.3%]). The starting dose of lovastatin was 20 mg/day; 50% of the lovastatin treated participants were titrated to 40 mg/day at Week 18. Of the 18 participants on lovastatin with consecutive elevations of either ALT or AST, 11 (0.7%) elevations occurred in participants taking 20 mg/day, while 7 (0.4%) elevations occurred in participants titrated to 40 mg/day. Elevated transaminases resulted in discontinuation of 6 (0.2%) participants from therapy in the lovastatin group (n=3,304) and 4 (0.1%) in the placebo group (n=3,301). It is recommended that liver enzyme tests be obtained prior to initiating therapy with lovastatin and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including lovastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with lovastatin, promptly interrupt therapy. If an alternate etiology is not found do not restart lovastatin. The drug should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver disease or unexplained transaminase elevations are contraindications to the use of lovastatin. Moderate (less than three times the upper limit of normal) elevations of serum transaminases have been reported following therapy with lovastatin (see ADVERSE REACTIONS ). These changes appeared soon after initiation of therapy with lovastatin, were often transient, were not accompanied by any symptoms and interruption of treatment was not required.

OVERDOSAGE

After oral administration of lovastatin to mice, the median lethal dose observed was >15 g/m2. Five healthy human volunteers have received up to 200 mg of lovastatin as a single dose without clinically significant adverse experiences. A few cases of accidental overdosage have been reported; no patients had any specific symptoms, and all patients recovered without sequelae. The maximum dose taken was 5 to 6 g. Until further experience is obtained, no specific treatment of overdosage with lovastatin can be recommended. The dialyzability of lovastatin and its metabolites in man is not known at present.

DESCRIPTION

Lovastatin is a cholesterol lowering agent isolated from a strain of Aspergillus terreus. After oral ingestion, lovastatin, which is an inactive lactone, is hydrolyzed to the corresponding β-hydroxyacid form. This is a principal metabolite and an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol. Lovastatin is [1S-[1α(R*),3α,7β,8β(2S*,4S*),8aβ]]-1,2,3,7, 8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-methylbutanoate. The empirical formula of lovastatin is C24H36O5 and its molecular weight is 404.55. Its structural formula is: Lovastatin is a white, nonhygroscopic crystalline powder that is insoluble in water and sparingly soluble in ethanol, methanol, and acetonitrile. Lovastatin tablets USP are supplied as 10 mg, 20 mg and 40 mg tablets for oral administration. In addition to the active ingredient lovastatin, each tablet contains the following inactive ingredients: D&C Yellow No. 10 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake, lactose anhydrous, lactose monohydrate, magnesium stearate, microcrystalline cellulose and pregelatinized corn starch. Butylated hydroxyanisole (BHA) is added as a preservative. Picture of Chemical Structure

CLINICAL STUDIES

Clinical Studies in Adults Lovastatin has been shown to reduce total-C and LDL-C in heterozygous familial and non-familial forms of primary hypercholesterolemia and in mixed hyperlipidemia. A marked response was seen within 2 weeks, and the maximum therapeutic response occurred within 4 to 6 weeks. The response was maintained during continuation of therapy. Single daily doses given in the evening were more effective than the same dose given in the morning, perhaps because cholesterol is synthesized mainly at night. In multicenter, double-blind studies in patients with familial or non-familial hypercholesterolemia, lovastatin, administered in doses ranging from 10 mg q.p.m. to 40 mg b.i.d., was compared to placebo. Lovastatin consistently and significantly decreased plasma total-C, LDL-C, total-C/HDL-C ratio and LDL-C/HDL-C ratio. In addition, lovastatin produced increases of variable magnitude in HDL-C, and modestly decreased VLDL-C and plasma TG (see Tables II through IV for dose response results). The results of a study in patients with primary hypercholesterolemia are presented in Table II. TABLE II Lovastatin vs. Placebo (Mean Percent Change from Baseline After 6 Weeks DOSAGE N TOTAL-C LDL-C HDL-C LDL-C/ HDL-C TOTAL-C/ HDL-C TG. Placebo 33 -2 -1 -1 0 +1 +9 Lovastatin 10 mg q.p.m. 33 -16 -21 +5 -24 -19 -10 20 mg q.p.m. 33 -19 -27 +6 -30 -23 +9 10 mg b.i.d. 32 -19 -28 +8 -33 -25 -7 40 mg q.p.m. 33 -22 -31 +5 -33 -25 -8 20 mg b.i.d. 36 -24 -32 +2 -32 -24 -6 Lovastatin was compared to cholestyramine in a randomized open parallel study. The study was performed with patients with hypercholesterolemia who were at high risk of myocardial infarction. Summary results are presented in Table III. TABLE III Lovastatin vs. Cholestyramine (Percent Change from Baseline After 12 Weeks) TREATMENT N TOTAL-C (mean) LDL-C (mean) HDL-C (mean) LDL-C/ HDL-C (mean) TOTAL-C/ HDL-C (mean) VLDL- (median) TG (mean) Lovastatin 20 mg b.i.d. 85 -27 -32 +9 -36 -31 -34 -21 40 mg b.i.d. 88 -34 -42 +8 -44 -37 -31 -27 Cholestyramine 12 g b.i.d. 88 -17 -23 +8 -27 -21 +2 +11 Lovastatin was studied in controlled trials in hypercholesterolemic patients with well-controlled non-insulin dependent diabetes mellitus with normal renal function. The effect of lovastatin on lipids and lipoproteins and the safety profile of lovastatin were similar to that demonstrated in studies in nondiabetics. Lovastatin had no clinically important effect on glycemic control or on the dose requirement of oral hypoglycemic agents. Expanded Clinical Evaluation of Lovastatin (EXCEL) Study Lovastatin was compared to placebo in 8,245 patients with hypercholesterolemia (total-C 240 to 300 mg/dL [6.2 mmol/L to 7.6 mmol/L], LDL-C >160 mg/dL [4.1 mmol/L]) in the randomized, double-blind, parallel, 48-week EXCEL study. All changes in the lipid measurements (Table IV) in lovastatin treated patients were dose-related and significantly different from placebo (p≤0.001). These results were sustained throughout the study. TABLE IV Lovastatin vs. Placebo (Percent Change from Baseline — Average Values Between Weeks 12 and 48) DOSAGE N** TOTAL-C (mean) LDL-C (mean) HDL-C (mean) LDL-C/ HDL-C (mean) TOTAL-C/ HDL-C (mean) TG. (median) Placebo 1663 +0.7 +0.4 +2.0 +0.2 +0.6 +4 Lovastatin 20 mg q.p.m. 1642 -17 -24 +6.6 -27 -21 -10 40 mg q.p.m. 1645 -22 -30 +7.2 -34 -26 -14 20 mg b.i.d. 1646 -24 -34 +8.6 -38 -29 -16 40 mg b.i.d. 1649 -29 -40 +9.5 -44 -34 -19 **Patients enrolled Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS) The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), a double-blind, randomized, placebo-controlled, primary prevention study, demonstrated that treatment with lovastatin decreased the rate of acute major coronary events (composite endpoint of myocardial infarction, unstable angina, and sudden cardiac death) compared with placebo during a median of 5.1 years of follow-up. Participants were middle-aged and elderly men (ages 45 to 73) and women (ages 55 to 73) without symptomatic cardiovascular disease with average to moderately elevated total-C and LDL-C, below average HDL-C, and who were at high risk based on elevated total-C/HDL-C. In addition to age, 63% of the participants had at least one other risk factor (baseline HDL-C 110 mg/dL at the 20-mg starting dose. Lovastatin reduced the risk of a first acute major coronary event, the primary efficacy endpoint, by 37% (lovastatin 3.5%, placebo 5.5%; p<0.001; Figure 1). A first acute major coronary event was defined as myocardial infarction (54 participants on lovastatin, 94 on placebo) or unstable angina (54 vs. 80) or sudden cardiac death (8 vs. 9). Furthermore, among the secondary endpoints, lovastatin reduced the risk of unstable angina by 32% (1.8 vs. 2.6%; p=0.023), of myocardial infarction by 40% (1.7 vs. 2.9%; p=0.002), and of undergoing coronary revascularization procedures (e.g., coronary artery bypass grafting or percutaneous transluminal coronary angioplasty) by 33% (3.2 vs. 4.8%; p=0.001). Trends in risk reduction associated with treatment with lovastatin were consistent across men and women, smokers and non-smokers, hypertensives and non-hypertensives, and older and younger participants. Participants with ≥2 risk factors had risk reductions (RR) in both acute major coronary events (RR 43%) and coronary revascularization procedures (RR 37%). Because there were too few events among those participants with age as their only risk factor in this study, the effect of lovastatin on outcomes could not be adequately assessed in this subgroup. Figure 1 Atherosclerosis In the Canadian Coronary Atherosclerosis Intervention Trial (CCAIT), the effect of therapy with lovastatin on coronary atherosclerosis was assessed by coronary angiography in hyperlipidemic patients. In the randomized, double-blind, controlled clinical trial, patients were treated with conventional measures (usually diet and 325 mg of aspirin every other day) and either lovastatin 20 to 80 mg daily or placebo. Angiograms were evaluated at baseline and at two years by computerized quantitative coronary angiography (QCA). Lovastatin significantly slowed the progression of lesions as measured by the mean change per-patient in minimum lumen diameter (the primary endpoint) and percent diameter stenosis, and decreased the proportions of patients categorized with disease progression (33% vs. 50%) and with new lesions (16% vs. 32%). In a similarly designed trial, the Monitored Atherosclerosis Regression Study (MARS), patients were treated with diet and either lovastatin 80 mg daily or placebo. No statistically significant difference between lovastatin and placebo was seen for the primary endpoint (mean change per patient in percent diameter stenosis of all lesions), or for most secondary QCA endpoints. Visual assessment by angiographers who formed a consensus opinion of overall angiographic change (Global Change Score) was also a secondary endpoint. By this endpoint, significant slowing of disease was seen, with regression in 23% of patients treated with lovastatin compared to 11% of placebo patients. In the Familial Atherosclerosis Treatment Study (FATS), either lovastatin or niacin in combination with a bile acid sequestrant for 2.5 years in hyperlipidemic subjects significantly reduced the frequency of progression and increased the frequency of regression of coronary atherosclerotic lesions by QCA compared to diet and, in some cases, low-dose resin. The effect of lovastatin on the progression of atherosclerosis in the coronary arteries has been corroborated by similar findings in another vasculature. In the Asymptomatic Carotid Artery Progression Study (ACAPS), the effect of therapy with lovastatin on carotid atherosclerosis was assessed by B-mode ultrasonography in hyperlipidemic patients with early carotid lesions and without known coronary heart disease at baseline. In this double-blind, controlled clinical trial, 919 patients were randomized in a 2 x 2 factorial design to placebo, lovastatin 10 to 40 mg daily and/or warfarin. Ultrasonograms of the carotid walls were used to determine the change per patient from baseline to three years in mean maximum intimalmedial thickness (IMT) of 12 measured segments. There was a significant regression of carotid lesions in patients receiving lovastatin alone compared to those receiving placebo alone (p=0.001). The predictive value of changes in IMT for stroke has not yet been established. In the lovastatin group there was a significant reduction in the number of patients with major cardiovascular events relative to the placebo group (5 vs. 14) and a significant reduction in all-cause mortality (1 vs. 8). Eye There was a high prevalence of baseline lenticular opacities in the patient population included in the early clinical trials with lovastatin. During these trials the appearance of new opacities was noted in both the lovastatin and placebo groups. There was no clinically significant change in visual acuity in the patients who had new opacities reported nor was any patient, including those with opacities noted at baseline, discontinued from therapy because of a decrease in visual acuity. A three-year, double-blind, placebo-controlled study in hypercholesterolemic patients to assess the effect of lovastatin on the human lens demonstrated that there were no clinically or statistically significant differences between the lovastatin and placebo groups in the incidence, type or progression of lenticular opacities. There are no controlled clinical data assessing the lens available for treatment beyond three years. Figure 1

HOW SUPPLIED

Lovastatin Tablets USP, 10 mg are light green colored, oval shaped, uncoated tablets, debossed with ‘LU’ on one side and ‘G01’ on the other side. They are supplied as follows: NDC 54458-938-10 Adherence packages of 30 Lovastatin Tablets USP, 20 mg are light green colored, circular, beveled edged, uncoated tablets, debossed with ‘LU’ on one side and ‘G02’ on the other side. They are supplied as follows: NDC 54458-937-10 Adherence packages of 30 Lovastatin Tablets USP, 40 mg are light green colored, circular, beveled edged uncoated tablets, debossed with ‘LU’ on one side and ‘G03’ on the other side. They are supplied as follows: NDC 54458-936-10 Adherence packages of 30 Storage Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Lovastatin tablets must be protected from light. 1 Kantola, T, et al., Clin Pharmacol Ther 1998; 63(4): 397-402 3 Manson, J.M., Freyssinges,C.Ducroqc, M.B., Stephenson, W.P., Postmarketing Surveillance of Lovastatin and Simvastatin Exposure During Pregnancy. Reproductive Toxicology. 10(6):439-446, 1996. 4 National Cholesterol Education Program (NCEP): Highlights of the Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics. 89(3):495-501. 1992. Manufactured by: Lupin Limited Goa 403 722 INDIA Packaged by: International Laboratories, Inc. St. Petersburg, FL 33710 Distributed by: Walmart Bentonville, AR 72716 Rev. 09/16 LI0024

INDICATIONS AND USAGE

Therapy with lovastatin tablets USP should be a component of multiple risk factor intervention in those individuals with dyslipidemia at risk for atherosclerotic vascular disease. Lovastatin tablets USP should be used in addition to a diet restricted in saturated fat and cholesterol as part of a treatment strategy to lower total-C and LDL-C to target levels when the response to diet and other nonpharmacological measures alone has been inadequate to reduce risk. Primary Prevention of Coronary Heart Disease In individuals without symptomatic cardiovascular disease, average to moderately elevated total-C and LDL-C and below average HDL-C, lovastatin tablets USP are indicated to reduce the risk of: -Myocardial infarction -Unstable angina -Coronary revascularization procedures (See CLINICAL PHARMACOLOGY, Clinical Studies ). Coronary Heart Disease Lovastatin tablets USP are indicated to slow the progression of coronary atherosclerosis in patients with coronary heart disease as part of a treatment strategy to lower total-C and LDL-C to target levels. Hypercholesterolemia Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Lovastatin tablets USP are indicated as an adjunct to diet for the reduction of elevated total-C and LDL-C levels in patients with primary hypercholesterolemia (Types IIa and IIb2), when the response to diet restricted in saturated fat and cholesterol and to other nonpharmacological measures alone has been inadequate. 2Classification of Hyperlipoproteinemias Type Lipoproteins elevated Lipid Elevations major minor I chylomicrons TG ↑→C IIa LDL C — IIb LDL,VLDL C TG III (rare) IDL C/TG — IV VLDL TG ↑→C V (rare) chylomicrons,VLDL TG ↑→C IDL = intermediate-density lipoprotein. Adolescent Patients with Heterozygous Familial Hypercholesterolemia Lovastatin tablets USP are indicated as an adjunct to diet to reduce total-C, LDL-C and apolipoprotein B levels in adolescent boys and girls who are at least one year post-menarche, 10 to 17 years of age, with heFH if after an adequate trial of diet therapy the following findings are present: 1. LDL-C remains >189 mg/dL or 2. LDL-C remains >160 mg/dL and: there is a positive family history of premature cardiovascular disease or two or more other CVD risk factors are present in the adolescent patient General Recommendations Prior to initiating therapy with lovastatin, secondary causes for hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism) should be excluded, and a lipid profile performed to measure total-C, HDL-C, and TG. For patients with TG less than 400 mg/dL (400 mg/dL (>4.5 mmol/L), this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. In hypertriglyceridemic patients, LDL-C may be low or normal despite elevated total-C. In such cases, lovastatin tablets USP are not indicated. The National Cholesterol Education Program (NCEP) Treatment Guidelines are summarized below: NCEP Treatment Guidelines: LDL-C Goals and Cutpoints for Therapeutic Lifestyle Changes and Drug Therapy in Different Risk Categories Risk Category LDL Goal (mg/dL) LDL Level at Which to Initiate Therapeutic Lifestyle Changes (mg/dL) LDL Level at Which to Consider Drug Therapy (mg/dL) CHD† or CHD risk equivalents (10-year risk >20%) <100 ≥100 ≥130 (100 to 129: drug optional) †† 2+ Risk factors (10-year risk ≤20%) <130 ≥130 10-year risk 10 to 20%: ≥130 10-year risk<10%: ≥160 0 to 1 Risk factor††† <160 ≥160 ≥190 (160 to 189: LDL-lowering drug optional) †CHD, coronary heart disease ††Some authorities recommend use of LDL-lowering drugs in this category if an LDL-C level of <100 mg/dL cannot be achieved by therapeutic lifestyle changes. Others prefer use of drugs that primarily modify triglycerides and HDL-C, e.g., nicotinic acid or fibrate. Clinical judgment also may call for deferring drug therapy in this subcategory. †††Almost all people with 0 to 1 risk factor have a 10-year risk <10%; thus, 10-year risk assessment in people with 0 to 1 risk factor is not necessary. After the LDL-C goal has been achieved, if the TG is still ≥200 mg/dL, non-HDL-C (total-C minus HDL-C) becomes a secondary target of therapy. Non-HDL-C goals are set 30 mg/dL higher than LDL-C goals for each risk category. At the time of hospitalization for an acute coronary event, consideration can be given to initiating drug therapy at discharge if the LDL-C is ≥130 mg/dL (see NCEP Guidelines above). Since the goal of treatment is to lower LDL-C, the NCEP recommends that LDL-C levels be used to initiate and assess treatment response. Only if LDL-C levels are not available, should the total-C be used to monitor therapy. Although lovastatin tablets USP may be useful to reduce elevated LDL-C levels in patients with combined hypercholesterolemia and hypertriglyceridemia where hypercholesterolemia is the major abnormality (Type IIb hyperlipoproteinemia), it has not been studied in conditions where the major abnormality is elevation of chylomicrons, VLDL or IDL (i.e., hyperlipoproteinemia types I, III, IV, or V).2 The NCEP classification of cholesterol levels in pediatric patients with a familial history of hypercholesterolemia or premature cardiovascular disease is summarized below: Category Total-C (mg/dL) LDL-C (mg/dL) Acceptable <170 <110 Borderline 170 to 199 110 to129 High ≥200 ≥130 Children treated with lovastatin in adolescence should be re-evaluated in adulthood and appropriate changes made to their cholesterol-lowering regimen to achieve adult goals for LDL-C.

DOSAGE AND ADMINISTRATION

The patient should be placed on a standard cholesterol-lowering diet before receiving lovastatin tablets USP and should continue on this diet during treatment with lovastatin tablets USP (see NCEP Treatment Guidelines for details on dietary therapy). Lovastatin tablets USP should be given with meals. Adult Patients The usual recommended starting dose is 20 mg once a day given with the evening meal. The recommended dosing range of lovastatin is 10 to 80 mg/day in single or two divided doses; the maximum recommended dose is 80 mg/day. Doses should be individualized according to the recommended goal of therapy (see NCEP Guidelines and CLINICAL PHARMACOLOGY). Patients requiring reductions in LDL-C of 20% or more to achieve their goal (see INDICATIONS AND USAGE) should be started on 20 mg/day of lovastatin tablets. A starting dose of 10 mg of lovastatin may be considered for patients requiring smaller reductions. Adjustments should be made at intervals of 4 weeks or more. Cholesterol levels should be monitored periodically and consideration should be given to reducing the dosage of lovastatin tablets if cholesterol levels fall significantly below the targeted range. Dosage in Patients taking Danazol, Diltiazem, Dronedarone or Verapamil In patients taking danazol, diltiazem, dronedarone or verapamil concomitantly with lovastatin, therapy should begin with 10 mg of lovastatin and should not exceed 20 mg/day (see CLINICAL PHARMACOLOGY, Pharmacokinetics, WARNINGS, Myopathy/Rhabdomyolysis, PRECAUTIONS, Drug Interactions, Other Drug Interactions). Dosage in Patients taking Amiodarone In patients taking amiodarone concomitantly with lovastatin, the dose should not exceed 40 mg/day (see WARNINGS, Myopathy/Rhabdomyolysis and PRECAUTIONS, Drug Interactions, Other Drug Interactions). Adolescent Patients (10 to 17 years of age) with Heterozygous Familial Hypercholesterolemia The recommended dosing range of lovastatin is 10 to 40 mg/day; the maximum recommended dose is 40 mg/day. Doses should be individualized according to the recommended goal of therapy (see NCEP Pediatric Panel Guidelines 4, CLINICAL PHARMACOLOGY, and INDICATIONS AND USAGE). Patients requiring reductions in LDL-C of 20% or more to achieve their goal should be started on 20 mg/day of lovastatin. A starting dose of 10 mg of lovastatin may be considered for patients requiring smaller reductions. Adjustments should be made at intervals of 4 weeks or more. Concomitant Lipid-Lowering Therapy Lovastatin tablets USP are effective alone or when used concomitantly with bile-acid sequestrants (see WARNINGS, Myopathy/Rhabdomyolysis and PRECAUTIONS, Drug Interactions). Dosage in Patients with Renal Insufficiency In patients with severe renal insufficiency (creatinine clearance <30 mL/min), dosage increases above 20 mg/day should be carefully considered and, if deemed necessary, implemented cautiously (see CLINICAL PHARMACOLOGY and WARNINGS, Myopathy/Rhabdomyolysis).