Aldactone 100 MG Oral Tablet

Generic Name: SPIRONOLACTONE
Brand Name: Aldactone
  • Substance Name(s):
  • SPIRONOLACTONE

DRUG INTERACTIONS

7 Agents increasing serum potassium: Concomitant administration can lead to hyperkalemia ( 5.1 , 7.1 ).

Lithium: Increased risk of lithium toxicity ( 7.2 ).

NSAIDs: May reduce the diuretic, natriuretic and antihypertensive effect of ALDACTONE ( 7.3 ).

Digoxin: ALDACTONE can interfere with radioimmunologic assays of digoxin exposure ( 7.4 ).

Cholestyramine: Hyperkalemic metabolic acidosis has been reported with concomitant use ( 7.5 ).

Acetylsalicylic Acid (ASA): ASA may reduce the efficacy of ALDACTONE ( 7.6 ).

7.1 Drugs and Supplements Increasing Serum Potassium Concomitant administration of ALDACTONE with potassium supplementation or drugs that can increase potassium may lead to severe hyperkalemia.

In general, discontinue potassium supplementation in heart failure patients who start ALDACTONE [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3) ] .

Check serum potassium levels when ACE inhibitor or ARB therapy is altered in patients receiving ALDACTONE.

Examples of drugs that can increase potassium include: ACE inhibitors angiotensin receptor blockers non-steroidal anti-inflammatory drugs (NSAIDs) heparin and low molecular weight heparin trimethoprim 7.2 Lithium Like other diuretics, ALDACTONE reduces the renal clearance of lithium, thus increasing the risk of lithium toxicity.

Monitor lithium levels periodically when ALDACTONE is coadministered [see Clinical Pharmacology (12.3) ] .

7.3 Nonsteroidal anti-inflammatory drugs (NSAIDs) In some patients, the administration of an NSAID can reduce the diuretic, natriuretic, and antihypertensive effect of diuretics.

Therefore, when ALDACTONE and NSAIDs are used concomitantly, monitor closely to determine if the desired effect of the diuretic is obtained [see Clinical Pharmacology (12.3) ] .

7.4 Digoxin Spironolactone and its metabolites interfere with radioimmunoassays for digoxin and increase the apparent exposure to digoxin.

It is unknown to what extent, if any, spironolactone may increase actual digoxin exposure.

In patients taking concomitant digoxin, use an assay that does not interact with spironolactone.

7.5 Cholestyramine Hyperkalemic metabolic acidosis has been reported in patients given ALDACTONE concurrently with cholestyramine.

7.6 Acetylsalicylic Acid Acetylsalicylic acid may reduce the efficacy of spironolactone.

Therefore, when ALDACTONE and acetylsalicylic acid are used concomitantly, ALDACTONE may need to be titrated to higher maintenance dose and the patient should be observed closely to determine if the desired effect is obtained [see Clinical Pharmacology (12.3) ] .

OVERDOSAGE

10 The oral LD 50 of ALDACTONE is greater than 1000 mg/kg in mice, rats, and rabbits.

Acute overdosage of ALDACTONE may be manifested by drowsiness, mental confusion, maculopapular or erythematous rash, nausea, vomiting, dizziness, or diarrhea.

Rarely, instances of hyponatremia, hyperkalemia, or hepatic coma may occur in patients with severe liver disease, but these are unlikely due to acute overdosage.

Hyperkalemia may occur, especially in patients with impaired renal function.

Treatment: Induce vomiting or evacuate the stomach by lavage.

There is no specific antidote.

Treatment is supportive to maintain hydration, electrolyte balance, and vital functions.

Patients who have renal impairment may develop hyperkalemia.

In such cases, discontinue ALDACTONE.

DESCRIPTION

11 ALDACTONE oral tablets contain 25 mg, 50 mg, or 100 mg of the aldosterone antagonist spironolactone, 17-hydroxy-7α-mercapto-3-oxo-17α-pregn-4-ene-21-carboxylic acid γ-lactone acetate, which has the following structural formula: Spironolactone is practically insoluble in water, soluble in alcohol, and freely soluble in benzene and in chloroform.

Inactive ingredients include calcium sulfate, corn starch, flavor, hypromellose, iron oxide, magnesium stearate, polyethylene glycol, povidone, and titanium dioxide.

Chemical Structure

CLINICAL STUDIES

14 14.1 Heart Failure The Randomized Aldactone Evaluation Study (RALES) was a placebo controlled, double-blind study of the effect of spironolactone on mortality in patients with highly symptomatic heart failure and reduced ejection fraction.

To be eligible to participate patients had to have an ejection fraction of ≤ 35%, NYHA class III–IV symptoms, and a history of NYHA class IV symptoms within the last 6 months before enrollment.

Patients with a baseline serum creatinine of >2.5 mg/dL or a recent increase of 25% or with a baseline serum potassium of >5.0 mEq/L were excluded.

Follow-up visits and laboratory measurements (including serum potassium and creatinine) were performed every four weeks for the first 12 weeks, then every 3 months for the first year, and then every 6 months thereafter.

The initial dose of spironolactone was 25 mg once daily.

Patients who were intolerant of the initial dosage regimen had their dose decreased to one 25 mg tablet every other day at one to four weeks.

Patients who were tolerant of one tablet daily at 8 weeks may have had their dose increased to 50 mg daily at the discretion of the investigator.

The mean daily dose at study end for patients randomized to spironolactone was 26 mg.

1663 patients were randomized 1:1 to spironolactone or placebo.

87% of patients were white, 7% black, 2% Asian.

73% were male and median age was 67.

The median ejection fraction was 26%.

70% were NYHA class III and 29% class IV.

The etiology of heart failure was ischemic in 55%, and non-ischemic in 45%.

There was a history of myocardial infarction in 28%, of hypertension in 24%, and of diabetes in 22%.

The median baseline serum creatinine was 1.2 mg/dL and the median baseline creatinine clearance was 57 mL/min.

At baseline 100% of patients were taking loop diuretic and 95% were taking an ACE inhibitor.

Other medications used at any time during the study included digoxin (78%), anticoagulants (58%), aspirin (43%), and beta-blockers (15%).

The primary endpoint for RALES was time to all-cause mortality.

RALES was terminated early because of significant mortality benefit demonstrated during a planned interim analysis.

Compared to placebo, spironolactone reduced the risk of death by 30% (p<0.001; 95% confidence interval 18% to 40%).

Spironolactone also reduced the risk of hospitalization for cardiac causes (defined as worsening heart failure, angina, ventricular arrhythmias, or myocardial infarction) by 30% (p <0.001; 95% confidence interval 18% to 41%).

The survival curves by treatment group are shown in Figure 1.

Figure 1.

Survival by Treatment Group in RALES Mortality hazard ratios for some subgroups are shown in Figure 2.

The favorable effect of spironolactone on mortality appeared similar for both genders and all age groups except patients younger than 55.

There were too few non-whites in RALES to evaluate if the effects differ by race.

Spironolactone’s benefit appeared greater in patients with low baseline serum potassium levels and less in patients with ejection fractions <0.2.

These subgroup analyses must be interpreted cautiously.

Figure 2.

Hazard Ratios of All-Cause Mortality by Subgroup in RALES Figure 2: The size of each box is proportional to the sample size as well as the event rate.

LVEF denotes left ventricular ejection fraction, Ser Creatinine denotes serum creatinine, Cr Clearance denotes creatinine clearance, and ACEI denotes angiotensin-converting enzyme inhibitor.

Figure 1 Figure 2 14.2 Hypertension The dose response of spironolactone for hypertension has not been well characterized.

In patients with hypertension, decreases in systolic blood pressure have been observed at doses ranging from 25 to 100 mg/day.

Doses greater than 100 mg/day generally do not provide additional reductions in blood pressure [see Dosage and Administration (2.3) ] .

HOW SUPPLIED

16 /STORAGE AND HANDLING ALDACTONE 25 mg tablets are round, light yellow, film-coated, with SEARLE and 1001 debossed on one side and ALDACTONE and 25 on the other side, supplied as: NDC Number Size 0025-1001-31 bottle of 100 ALDACTONE 50 mg tablets are oval, light orange, scored, film-coated, with SEARLE and 1041 debossed on the scored side and ALDACTONE and 50 on the other side, supplied as: NDC Number Size 0025-1041-31 bottle of 100 ALDACTONE 100 mg tablets are round, peach-colored, scored, film-coated, with SEARLE and 1031 debossed on the scored side and ALDACTONE and 100 on the other side, supplied as: NDC Number Size 0025-1031-31 bottle of 100 Store below 77°F (25°C).

GERIATRIC USE

8.5 Geriatric Use ALDACTONE is substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function.

Because elderly patients are more likely to have decreased renal function, monitor renal function.

DOSAGE FORMS AND STRENGTHS

3 Tablets: 25 mg round, light yellow, film-coated, with SEARLE and 1001 debossed on one side and ALDACTONE and 25 on the other side.

Tablets: 50 mg oval, light orange, scored, film-coated, with SEARLE and 1041 debossed on the scored side and ALDACTONE and 50 on the other side.

Tablets: 100 mg round, peach-colored, scored, film-coated, with SEARLE and 1031 debossed on the scored side and ALDACTONE and 100 on the other side.

Tablets: 25 mg, 50 mg, and 100 mg ( 3 )

MECHANISM OF ACTION

12.1 Mechanism of Action Spironolactone and its active metabolites are specific pharmacologic antagonists of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule.

Spironolactone causes increased amounts of sodium and water to be excreted, while potassium is retained.

Spironolactone acts both as a diuretic and as an antihypertensive drug by this mechanism.

It may be given alone or with other diuretic agents that act more proximally in the renal tubule.

INDICATIONS AND USAGE

1 ALDACTONE is an aldosterone antagonist indicated for: The treatment of NYHA Class III–IV heart failure and reduced ejection fraction to increase survival, manage edema, and to reduce the need for hospitalization for heart failure ( 1.1 ) Use as an add-on therapy for the treatment of hypertension, to lower blood pressure.

Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions ( 1.2 ) The management of edema in adult patients who are cirrhotic when edema is not responsive to fluid and sodium restrictions and in the setting of nephrotic syndrome when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics produce an inadequate response ( 1.3 ).

Treatment of primary hyperaldosternism for: ( 1.4 ) Short-term preoperative treatment Long-term maintenance for patients with discrete aldosterone-producing adrenal adenomas who are not candidates for surgery and patients with bilateral micro or macronodular adrenal hyperplasia 1.1 Heart Failure ALDACTONE is indicated for treatment of NYHA Class III–IV heart failure and reduced ejection fraction to increase survival, manage edema, and reduce the need for hospitalization for heart failure.

ALDACTONE is usually administered in conjunction with other heart failure therapies.

1.2 Hypertension ALDACTONE is indicated as add-on therapy for the treatment of hypertension, to lower blood pressure in patients who are not adequately controlled on other agents.

Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions.

These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes.

Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake.

Many patients will require more than one drug to achieve blood pressure goals.

For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program’s Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).

Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits.

The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.

Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit.

Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.

Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease).

These considerations may guide selection of therapy.

1.3 Edema Associated with Hepatic Cirrhosis or Nephrotic Syndrome ALDACTONE is indicated for the management of edema in the following settings: Cirrhosis of the liver when edema is not responsive to fluid and sodium restriction.

Nephrotic syndrome when treatment of the underlying disease, restriction of fluid and sodium intake, and the use of other diuretics produce an inadequate response.

Because it increases serum potassium, ALDACTONE may be useful for treating edema when administration of other diuretics has caused hypokalemia.

1.4 Primary Hyperaldosteronism ALDACTONE is indicated in the following settings: Short-term preoperative treatment of patients with primary hyperaldosteronism.

Long-term maintenance therapy for patients with discrete aldosterone-producing adrenal adenomas who are not candidates for surgery.

Long-term maintenance therapy for patients with bilateral micro or macronodular adrenal hyperplasia (idiopathic hyperaldosteronism).

PEDIATRIC USE

8.4 Pediatric Use Safety and effectiveness in pediatric patients have not been established.

PREGNANCY

8.1 Pregnancy Risk Summary Based on mechanism of action and findings in animal studies, spironolactone may affect sex differentiation of the male during embryogenesis (see Data ) .

Rat embryofetal studies report feminization of male fetuses and endocrine dysfunction in females exposed to spironolactone in utero.

Limited available data from published case reports and case series did not demonstrate an association of major malformations or other adverse pregnancy outcomes with spironolactone .

There are risks to the mother and fetus associated with heart failure, cirrhosis and poorly controlled hypertension during pregnancy (see Clinical Considerations ) .

Because of the potential risk to the male fetus due to anti-androgenic properties of spironolactone and animal data, avoid spironolactone in pregnant women or advise a pregnant woman of the potential risk to a male fetus.

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown.

All pregnancies have a background risk of birth defect, loss or other adverse outcomes.

In the U.S.

general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2%–4% and 15%–20%, respectively.

Clinical Considerations Disease-Associated Maternal and/or Embryo/Fetal Risk Pregnant women with congestive heart failure are at increased risk for preterm birth.

Stroke volume and heart rate increase during pregnancy, increasing cardiac output, especially during the first trimester.

Clinical classification of heart disease may worsen with pregnancy and lead to maternal death.

Closely monitor pregnant patients for destabilization of their heart failure.

Pregnant women with symptomatic cirrhosis generally have poor outcomes including hepatic failure, variceal hemorrhage, preterm delivery, fetal growth restriction and maternal death.

Outcomes are worse with coexisting esophageal varices.

Pregnant women with cirrhosis of the liver should be carefully monitored and managed accordingly.

Hypertension in pregnancy increases the maternal risk for pre-eclampsia, gestational diabetes, premature delivery, and delivery complications (e.g., need for cesarean section, and post-partum hemorrhage).

Hypertension increases the fetal risk for intrauterine growth restriction and intrauterine death.

Data Animal Data Teratology studies with ALDACTONE have been carried out in mice and rabbits at doses of up to 20 mg/kg/day.

On a body surface area basis, this dose in the mouse is substantially below the maximum recommended human dose and, in the rabbit, approximates the maximum recommended human dose.

No teratogenic or other embryotoxic effects were observed in mice, but the 20 mg/kg dose caused an increased rate of resorption and a lower number of live fetuses in rabbits.

Because of its antiandrogenic activity and the requirement of testosterone for male morphogenesis, ALDACTONE may have the potential for adversely affecting sex differentiation of the male during embryogenesis.

When administered to rats at 200 mg/kg/day between gestation days 13 and 21 (late embryogenesis and fetal development), feminization of male fetuses was observed.

Offspring exposed during late pregnancy to 50 and 100 mg/kg/day doses of ALDACTONE exhibited changes in the reproductive tract including dose-dependent decreases in weights of the ventral prostate and seminal vesicle in males, ovaries and uteri that were enlarged in females, and other indications of endocrine dysfunction, that persisted into adulthood.

ALDACTONE has known endocrine effects in animals including progestational and antiandrogenic effects.

WARNING AND CAUTIONS

5 WARNINGS AND PRECAUTIONS Hyperkalemia: Monitor serum potassium within one week of initiation and regularly thereafter ( 5.1 ).

Hypotension and Worsening Renal Function: Monitor volume status and renal function periodically ( 5.2 ).

Electrolyte and Metabolic Abnormalities: Monitor serum electrolytes, uric acid and blood glucose periodically ( 5.3 ).

Gynecomastia: ALDACTONE can cause gynecomastia ( 5.4 ).

5.1 Hyperkalemia ALDACTONE can cause hyperkalemia.

This risk is increased by impaired renal function or concomitant potassium supplementation, potassium-containing salt substitutes or drugs that increase potassium, such as angiotensin converting enzyme inhibitors and angiotensin receptor blockers [see Drug Interactions (7.1) ] .

Monitor serum potassium within 1 week of initiation or titration of ALDACTONE and regularly thereafter.

More frequent monitoring may be needed when ALDACTONE is given with other drugs that cause hyperkalemia or in patients with impaired renal function.

If hyperkalemia occurs, decrease the dose or discontinue ALDACTONE and treat hyperkalemia.

5.2 Hypotension and Worsening Renal Function Excessive diuresis may cause symptomatic dehydration, hypotension and worsening renal function, particularly in salt-depleted patients or those taking angiotensin converting enzyme inhibitors and angiotensin II receptor blockers.

Worsening of renal function can also occur with concomitant use of nephrotoxic drugs (e.g., aminoglycosides, cisplatin, and NSAIDs).

Monitor volume status and renal function periodically.

5.3 Electrolyte and Metabolic Abnormalities In addition to causing hyperkalemia, ALDACTONE can cause hyponatremia, hypomagnesemia, hypocalcemia, hypochloremic alkalosis, and hyperglycemia.

Asymptomatic hyperuricemia can occur and rarely gout is precipitated.

Monitor serum electrolytes, uric acid and blood glucose periodically.

5.4 Gynecomastia ALDACTONE can cause gynecomastia.

In RALES, patients with heart failure treated with a mean dose of 26 mg of spironolactone once daily, about 9% of the male subjects developed gynecomastia.

The risk of gynecomastia increases in a dose-dependent manner with an onset that varies widely from 1–2 months to over a year.

Gynecomastia is usually reversible.

INFORMATION FOR PATIENTS

17 PATIENT COUNSELING INFORMATION Patients who receive ALDACTONE should be advised to avoid potassium supplements and foods containing high levels of potassium, including salt substitutes.

This product’s label may have been updated.

For current full prescribing information, please visit www.pfizer.com.

LAB-0231-14.0 Logo

DOSAGE AND ADMINISTRATION

2 Heart Failure: Initiate treatment at 25 mg once daily ( 2.2 ).

Hypertension: Initiate treatment at 25 to 100 mg daily in either single or divided doses ( 2.3 ).

Edema: Initiate therapy in a hospital setting and titrate slowly.

The recommended initial daily dose is 100 mg in single or divided doses ( 2.4 ).

Primary hyperaldosteronism: Initiate treatment at 100 to 400 mg in preparation for surgery.

In patients unsuitable for surgery use the lowest effective dosage determined for the individual patient ( 2.5 ).

2.1 General Considerations ALDACTONE can be taken with or without food, but should be taken consistently with respect to food [see Clinical Pharmacology (12.3) ] .

2.2 Treatment of Heart Failure In patients with serum potassium ≤5.0 mEq/L and eGFR >50 mL/min/1.73 m 2 , initiate treatment at 25 mg once daily.

Patients who tolerate 25 mg once daily may have their dosage increased to 50 mg once daily as clinically indicated.

Patients who develop hyperkalemia on 25 mg once daily may have their dosage reduced to 25 mg every other day [see Warnings and Precautions (5.1) ] .

In patients with an eGFR between 30 and 50 mL/min/1.73 m 2 , consider initiating therapy at 25 mg every other day because of the risk of hyperkalemia [see Use in Specific Populations (8.6) ].

2.3 Treatment of Essential Hypertension The recommended initial daily dose is 25 to 100 mg of ALDACTONE administered in either single or divided doses is recommended.

Dosage can be titrated at two-week intervals.

Doses greater than 100 mg/day generally do not provide additional reductions in blood pressure.

2.4 Treatment of Edema In patients with cirrhosis, initiate therapy in a hospital setting and titrate slowly [see Use in Specific Populations (8.7) ] .

The recommended initial daily dosage is 100 mg of ALDACTONE administered in either single or divided doses, but may range from 25 to 200 mg daily.

When given as the sole agent for diuresis, administer for at least five days before increasing dose to obtain desired effect.

2.5 Treatment of Primary Hyperaldosteronism Administer ALDACTONE in doses of 100 to 400 mg daily in preparation for surgery.

For patients who are considered unsuitable for surgery, ALDACTONE can be used as long-term maintenance therapy at the lowest effective dosage determined for the individual patient.